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Abstract

[Rationale] Fibroblast growth factors (FGF) are major factors associated with the pathogenesis 

of pulmonary fibrosis. Nintedanib, a tyrosine kinase inhibitor targeting several growth factor 

receptors including the FGF receptor (FGFR), has been approved for the treatment of idiopathic 

pulmonary fibrosis (IPF). On the other hand, recent reports suggest that FGF are required for 

epithelial recovery. In this study, we focused on FGF signaling to both fibroblasts and alveolar 

epithelial cells (AECs), and examined the effect of a pan-FGFR blocker on experimental 

pulmonary fibrosis in mice.

[Methods] The effects of BGJ398, a pan-FGFR inhibitor, on the migration and proliferation of 

fibroblasts and AECs were assessed using transwell migration or 3H-thymidine incorporation 

assays. The expression of FGFR was analyzed using immunoblot or flow cytometry. We also 

investigated the effect of BGJ398 on the pulmonary fibrosis induced by bleomycin in mice.

 [Results] Both lung fibroblasts and AECs expressed FGFRs. BGJ398 significantly inhibited 

the proliferation and migration of lung fibroblasts stimulated with FGF2. BGJ398 also reduced 

the proliferation of AECs in response to FGF2. Although the administration of BGJ398 

ameliorated pulmonary fibrosis in bleomycin-treated mice, it increased mortality due to 

alveolar injury and inhibition of AEC regeneration.

 [Conclusions] These data suggest that the total inhibition of FGFR signaling can suppress 
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lung fibrosis by inhibiting fibroblast activities, although alveolar injury is simultaneously 

caused.

Key Words: Fibroblast growth factor, pulmonary fibrosis, epithelial recovery

Abbreviations:

IPF　idiopathic pulmonary fibrosis

FGF　fibroblast growth factor

FGFR　FGF receptor

PDGFR　platelet-derived growth factor receptor

VEGFR　vascular endothelial growth factor receptor

AEC　alveolar epithelial cells

BLM　bleomycin

3H-TdR　[3H] thymidine deoxyribose

FACS　fluorescence-activated cell sorter

BAL　bronchoalveolar lavage

NS　normal saline
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a refractory fibrotic disease characterized by 

progressive loss of the lung function and median survival of 3-4 years. Characteristic 

pathological features are the proliferation of fibroblasts and deposition of extracellular matrix 

(1-3).

Recently, treatment with nintedanib led to reduction in the annual rate of decline of the 

forced vital capacity in patients with IPF (4). Nintedanib is an inhibitor of receptor tyrosine 

kinases targeting fibroblast growth factor receptor (FGFR), platelet-derived growth factor 

receptor (PDGFR), and vascular endothelial growth factor receptor (VEGFR). These tyrosine 

kinases have been reported to be related to signaling pathways associated with the progression 

of fibrosis (5).

Focusing on the inhibitory effect on each receptor, we and others previously reported that 

the inhibition of PDGFR can ameliorate pulmonary fibrosis (6-9). It has been reported that the 

targeting of VEGFR signaling could attenuate pulmonary fibrosis (10, 11). However, the 

effects of FGF/FGFR on pulmonary fibrosis still remain controversial.

Fibroblast growth factors (FGF) have 22 ligands in humans, bind to four receptors (FGFR1-

4, and its isoform), and have various functions such as developmental processes, wound healing, 

and angiogenesis (12-14). FGF signaling is important in the lung maturation process, and 
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affects epithelial-mesenchymal interaction (15). FGFR expression occurs in fibroblast foci and 

also in alveolar epithelial cells (AEC) in the human IPF lung (16), thus, FGF signaling may 

affect various cells depending on the localization and intensity of expression.

FGF/FGFR have been reported to be involved in the pathogenesis of pulmonary fibrosis (12, 

15-19). It was shown that blocking the activation of FGFR by S252W mutant soluble 

ectodomain of FGFR-2 IIIc alleviated pulmonary fibrosis in mice (17). Another report 

proposed that mesenchymal FGF signaling is required for the development of pulmonary 

fibrosis, and that therapeutic strategies aimed directly at mesenchymal FGF signaling could be 

beneficial in the treatment of pulmonary fibrosis (18). On the other hand, it was suggested that 

FGF1 has preventative and therapeutic effects on pulmonary fibrosis via inhibiting 

myofibroblast differentiation and enhancing the proliferation and hyperplasia of AEC (19). The 

overexpression of FGF2 or the administration of recombinant FGF2 were also reported to 

ameliorate pulmonary fibrosis of the bleomycin-induced mouse model via inhibiting 

transforming growth factor beta 1 (TGF1) – induced stress fiber formation and serum 

response factor-dependent gene expression (20). Thus, the significance of FGFR signaling in 

pulmonary fibrosis is bidirectional.

However, it is important to investigate the effects of the total inhibition of FGF/FGFR 

signaling pathways from a therapeutic perspective, because FGFR inhibitor is considered a 
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future candidate for anti-fibrotic agents based on the inhibitory profile of nintedanib. We 

therefore examined the effect of pan-FGFR blocker BGJ398 on pulmonary fibrosis using an 

experimental mouse model.

Materials and Methods

Detailed methods are described in the online supplement.

Proliferation assay

Human lung fibroblasts, murine lung fibroblasts, or murine lung epithelial cells were seeded 

on a 96-well plate, and cultured with various concentration of FGFR inhibitor BGJ398 in the 

presence of FGF2 (30 ng/ml) for 48 hours. One Ci/well of [3H] thymidine deoxyribose (3H-

TdR) was pulsed for the final 24 hours and the incorporation of 3H-TdR was measured using a 

liquid scintillation counter (7).

Cell migration assay

Human or murine lung fibroblasts were plated to the upper chamber of an 8-μm-pore cell 

culture insert in the presence or absence of various concentrations of inhibitors. FGF2 was 

added to the lower chamber. After 24-hour incubation, cells that had migrated to the bottom 

surface of the filter were stained with Diff-Quick and counted (21).

Page 7 of 69

 AJRCMB Articles in Press. Published April 27, 2020 as 10.1165/rcmb.2019-0090OC 
 Copyright © 2020 by the American Thoracic Society 



Immunoblot analysis

Cell extracts of murine fibroblast cells (B6), AEC lines (LA4, MLE12), and homogenized lung 

tissues were lysed and used for immunoblotting as previously described (22).

Bleomycin-induced pulmonary fibrosis in mice

Seven to eight-week-old C57BL/6 mice were purchased from Charles River Japan (Yokohama, 

Japan). Mice received a single intra-tracheal instillation of 3 or 6 mg/kg bleomycin on day 0. 

BGJ398 was administered each day by gavage until day 21. Lung tissues analyzed on day 21 

were used for the Ashcroft score and hydroxyproline assay.

Histopathology

Right lung tissues were harvested, fixed in 10% formalin, and embedded in paraffin. Three-

micrometer-thick sections were stained with hematoxylin and eosin (H&E) or azan mallory. In 

the quantitative analysis, a numeric fibrotic scale was used (Ashcroft score). The mean score 

was considered to be the fibrotic score.

Bronchoalveolar lavage

Bronchoalveolar lavage (BAL) was performed with saline (1 mL) using a soft cannula (21). 

After counting the number of cells in the BAL fluid (BALF), cells were stained with Diff-

Quick for cell classification.
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Flow cytometric analysis

The minced lungs were digested, and harvested single-cell suspensions were stained with anti-

Ep-CAM Ab, anti-FGFR-1 Ab, and anti-FGFR-2 Ab. The stained cells were analyzed by a 

FACScan flow cytometer as previously described (22).

Endothelial permeability

Evans Blue dye was utilized as a marker of the endothelial barrier function. C57BL/6 mice 

received an intranasal instillation of 3 mg/kg NaCl or bleomycin on day 0. After seven days, 

mice were sacrificed and analyzed. At three hours prior to termination, Evans Blue dye was 

injected via the tail vein, and the extravasation of dye into BALF was quantified by 

spectrophotometry. 

Immunofluorescence staining

Paraffin-embedded lung sections were stained with primary antibodies at 4°C overnight and 

subsequently stained with fluorescence-conjugated secondary antibodies and 4’, 6-diamidino-

2-phenylindole at room temperature for 1 hour. Fluorescence images were captured with a 

confocal laser scanning microscope. Double-positive cells for pro-SPC and Ki-67 were counted 

in 5 random fields (22).
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Statistical Analysis

Significances of differences were analyzed by one-way ANOVA followed by Tukey’s test or 

Student’s t-test for unpaired samples. The survival curve was analyzed by log rank test. P-

values of less than 0.05 were considered significant. Statistical analyses were performed using 

GraphPad Prism program Ver.5.01 (GraphPad Software Inc.)

Results

Expression of FGFR in lung fibroblasts and alveolar epithelial cells

The expression of FGFR on murine lung fibroblasts and AEC was examined by immunoblot 

analysis and flow-cytometry. On immunoblot, murine fibroblasts expressed FGFR1, 2, and 3, 

but not FGFR4. On the other hand, two murine AEC lines expressed FGFR2 and 3 but not 

FGFR1 and 4 (Figure 1A). 

On flow-cytometry, the primary murine AECs, which were recognized as Ep-CAM-positive 

cells, also expressed only FGFR2 but not FGFR1 (Figure 1B). 

We also examined the mRNA expression of FGFRs (Figure E1). Although some results differ 

at the mRNA levels and protein levels, it was considered to be due to the differences of stability 

in mRNA and protein. Furthermore, our group had also previously reported the FGFR2 

expression on MRC-5 cells which are human lung fibroblasts (22). Taken together, these data 
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suggest that both lung fibroblasts and AEC expressed FGFRs.

BGJ398 inhibits the proliferation of lung fibroblasts and alveolar epithelial cells induced 

by FGF2

It is now widely accepted that FGF2 is a growth factor that stimulates the migration and 

proliferation of fibroblasts (23). In order to examine the direct effect of the inhibition of FGF 

signaling on fibroblasts and epithelial cells, we stimulated these cells with FGF2 with or 

without the pan-FGFR inhibitor BGJ398. The proliferation of human lung fibroblasts induced 

by FGF2 was inhibited by BGJ398 in a dose-dependent manner (Figure 2A). The same trend 

was observed for murine lung fibroblasts (Figure 2B) and murine lung epithelial cells (Figure 

2C).

BGJ398 inhibits the migration of lung fibroblasts induced by FGF2

 We assessed the effect of BGJ398 on the migration of lung fibroblasts induced by FGF2. The 

number of migrated fibroblasts markedly increased when cells were treated with FGF2. 

BGJ398 inhibited the migration of human lung fibroblasts (Figure 3A, C) and murine lung 

fibroblasts (Figure 3B, D) mediated by FGF2. 

Taken together, these data show that FGFR inhibition can affect not only the proliferation and 

migration of fibroblasts but also the proliferation of lung epithelial cells.
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Pan-FGFR inhibition attenuates pulmonary fibrosis

To examine how pan-FGFR inhibition works in vivo, we induced pulmonary fibrosis in the 

mouse lung by bleomycin. Mice received a single intra-tracheal instillation of 6 mg/kg of 

bleomycin on day 0. After the administration of BGJ398 with a concentration of 20 mg/kg by 

gavage from days 0 to 21, lung tissues were harvested and analyzed. By the continuous 

administration of BGJ398, the number of fibrotic lesions in the lungs of bleomycin-treated 

mice was reduced (Figure 4A, Figure E2, E3, E4, E5). Quantitative histological analysis 

showed that the Ashcroft fibrotic score was significantly lower in mice treated with bleomycin 

and BGJ398 than in those treated with bleomycin alone (Figure 4B). A hydroxyproline 

colorimetric assay also showed a reduced collagen content in the lungs of mice treated with 

BGJ398 (Figure 4C).

Pan-FGFR inhibition increases the mortality of bleomycin-treated mice

The body weight of mice not exposed to bleomycin increased in a time-dependent manner 

without any significant difference between vehicle and BGJ398-alone groups. The weight of 

mice in the bleomycin-alone group started to decrease on days 2 to 3. Surprisingly, in the 

bleomycin plus BGJ398 group, the body weight started to decrease soon after the intratracheal 

instillation of bleomycin. The rate of reduction was higher than in the bleomycin-alone group 

(Figure 5A), but the significant difference was found on only day 3. The body weights of both 
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groups were then nearly equal after day 3.

Along with the decrease of body weight, the survival rate in the bleomycin plus BGJ398 group 

also began to decline from an early period, and as a result, the total survival rate was lower 

than that in the bleomycin-alone group (Figure 5B).

Even if the administration of BGJ398 was started from day 10, the histology and the Ashcroft 

score of bleomycin-treated mice was reduced, and the mortality was increased like as the full-

day administration (Figure E6).

Because the high mortality might introduce survivorship bias, we reduced dose of bleomycin 

to 3 mg/kg in next experiments. Furthermore, to avoid the potential bias caused by using single 

lungs, we analyzed bilateral lung samples. In consequence, although the reduced dose of 

bleomycin decreased the mortality (Figure E7A), Pan-FGFR inhibition attenuated pulmonary 

fibrosis as the same as shown above (Figure E7B, E7C).

Pan-FGFR inhibition does not affect infiltration of inflammatory cells into the lungs

To examine why BGJ398 increased the mortality of bleomycin-treated mice, we examined 

the effects on lung inflammation using BALF. BALF was harvested from mice in each group 

on days 5 and 7. As shown in Figure 6, treatment with BGJ398 reduced the number of 

neutrophils in BALF on day 5, but no effects on the number and classification of inflammatory 

cells were observed on day 7. The concentration of protein contained in BALF supernatant was 
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increased in bleomycin-treated group, but not changed by BGJ398 (Figure E8). These results 

suggest that the analysis of BAL cells showed no finding associated with increased mortality 

due to BGJ398.

Pan-FGFR inhibition suppresses the activity of fibroblasts induced by FGF2

We examined the expression of -SMA and the amount of cleaved caspase-3 in lung tissue 

homogenates. The amounts of cleaved caspase-3 were increased in bleomycin plus BGJ398 

group compared with bleomycin alone group (Figure E9A, E9C). On the contrary, the 

expressions of -SMA were decreased by BGJ398 (Figure E9B, E9D).

Next, in order to examine the response to cytokines and growth factors of fibroblasts as well 

as the effects of BGJ398 on those, the mRNA expression of Col1a1 and Acta2 were examined 

using a quantitative PCR. The incubation of murine primary fibroblasts with the FGF2 resulted 

in the upregulation of Col1a1 and Acta2, which was inhibited by BGJ398 (Figure E10A). 

However, the inhibitory effects of BGJ398 did not work when fibroblasts were stimulated by 

TGF-1 (Figure E10B).

Pan-FGFR inhibition suppresses the proliferation of alveolar epithelial cells and 

increases vascular leak in vivo

Finally, to examine the effects of BGJ398 on epithelial injury and recovery, we harvested 

lung tissue from the bleomycin plus BGJ398 group on day 5 when their body weight peaked. 
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Paraffin-embedded lung sections were stained for pro-SPC and Ki-67, proliferation markers 

(Figure 7A). The immunohistochemical staining revealed that the number of pro-SPC+Ki-67+ 

cells in the bleomycin plus BGJ398 group was significantly lower than in the bleomycin-alone 

group (Figure 7B, C). Furthermore, we performed the immunofluorescence by H2AX and 

pro-SPC. Although the number of pro-SPC positive cells was not different between bleomycin-

alone group and BGJ398-treated bleomycin group, the H2AX expression, which reflects DNA 

damage leading cells to apoptosis, was increased in pro-SPC positive cells (Figure E11). Taken 

together, these data suggest that the pan-FGFR inhibition suppressed the proliferation of AECs 

and increased the apoptosis of AECs in vivo. 

Finally, we examined pulmonary vascular permeability by comparing the leakage of Evans 

blue dye to BALF in the murine lung. Evans blue has a high affinity for albumin in the blood 

and leaks out of blood vessels when the permeability of blood vessels is enhanced. The mice 

treated with bleomycin 7 days after the daily administration of normal saline (NS) or BGJ398 

were injected with an Evans blue solution via the tail vein. Three hours later, BALF was 

collected and the Evans blue concentration of BALF was measured. The administration of 

BGJ398 increased the concentration of Evans blue dye in BALF, indicating the increased 

vascular permeability of bleomycin-induced murine lungs (Figure 7D). 
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Discussion

In this study, we examined the role of a pan-FGFR blocker on pulmonary fibrosis using an 

experimental mouse model. The results from this study suggest that the total inhibition of 

FGFR signaling ameliorates pulmonary fibrosis, but also increases mortality.

The twenty-two types of FGF identified in humans are signaling molecules with structural 

similarity. Although the FGF family was named and characterized by its ability to promote the 

proliferation of fibroblasts (24), it is now recognized that FGF family members affect not only 

fibroblasts but also multiple types of cells (17-20, 24). However, currently used anti-fibrotic 

drugs cannot select cells targeted for their signal inhibition. Furthermore, previous reports 

targeting molecules of FGF/FGFR signaling have shown varying results (17-20).

Currently, for the treatment of pulmonary fibrosis, it is common to use receptor inhibitors 

such as nintedanib. Such inhibitors target all FGFRs in general. Nevertheless, no previous 

reports have evaluated the effects of all FGFR inhibition on the pathology of pulmonary 

fibrosis. This study is the first to address this important clinical question.

Here we demonstrate that murine epithelial cells express FGFR 2 and 3 but not FGFR 1 and 

4, and that murine fibroblasts express FGFR 1, 2, and 3, but not FGFR4. These results 

complement those reported by MacKenzie B et al. who found that human alveolar epithelial 

type II cells in the normal lung expressed FGFR2, 3, and 4, and that those cells in IPF lungs 
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expressed all FGFRs (16). They also observed FGFR1 and FGFR2 in myofibroblasts of 

fibroblast foci as well as in overlying hyperplastic bronchiolar basal cells (16). These results 

indicate that total FGFR inhibition affects not only fibroblasts but also AECs.

According to expectation, BGJ398, a pan-FGFR blocker, suppressed not only the proliferation 

and migration of fibroblasts but also the proliferation of AEC in vitro. Furthermore, in the 

mouse model, the administration of BGJ398 suppressed the proliferation of AEC, and 

increased the DNA damage of AEC and the vascular permeability of bleomycin-induced 

murine lungs. From these results, we considered that the increase of mortality is due to alveolar 

injury and inhibition of AEC regeneration. The main finding of this study is that the use of pan-

FGFR inhibitor for pulmonary fibrosis was suggested to be harmful despite its anti-fibrotic 

effects. However, contrary to expectation, in the examination of whole lung tissue, the addition 

of BGJ398 did not change the -SMA expressions by the administration of BGJ398. This 

might be due to the fact that FGF2 acts as an antagonist of TGF- through suppression of the 

transcriptional activity of SRF (25, 26).

Nintedanib, one of two approved anti-fibrotic drugs, also has an inhibitory effect on FGFR 1, 

2, and 3 (27). Nintedanib is effective without causing fatal adverse events in vivo or clinically. 

The reason for this might be that the IC50 of nintedanib for FGFR is much higher than that of 

BGJ398. The IC50 values of BGJ398 against FGFR were reported to be 0.9, 1.4, 1.0, and 60 
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nM for FGFR1, 2, 3, and 4, respectively (28). In a phase I study of BGJ398 in patients with 

advanced solid tumors, the maximum tolerated dose (MTD) was determined to be 125 mg once 

daily (29). In this study, the unbound average steady-state BGJ398 concentration on day 28 of 

cycle 1 was 6.93 nM after a 125-mg once daily dosing (29). This concentration may be 

sufficient to inhibit FGFR1, 2, and 3. 

On the other hand, the inhibitory effect of nintedanib on the phosphorylation of FGFR was 

observed at approximately 100-1000 nM (22), and the IC50 values of nintedanib for each FGFR 

were reported to be higher than 257 nM (30). The C max (peak plasma concentration of a drug 

after administration) of nintedanib in IPF patients who were administered 150 mg of nintedanib 

twice daily was 34.9 ng/mL (31). Since the molecular weight/molar mass of nintedanib is about 

539.62 g/mol, the actual serum concentration of nintedanib can be estimated to be around 50 

to 100 nM. Therefore, the inhibitory effects of nintedanib on the FGFR signaling may be 

extremely weak. 

By contrast, although we tried to assess the expression of PDGFR in alveolar type 2 cells by 

FACS, the results obtained showed that type 2 epithelial cells in normal and bleomycin-treated 

mice did not express PDGFR-α or - (data not shown). Furthermore, we previously showed 

that proliferative effects on fibroblasts are stronger with PDGF than with FGF (7). From 

examining these findings, with respect to anti-fibrotic capacity, we believe that inhibition of 

Page 18 of 69

 AJRCMB Articles in Press. Published April 27, 2020 as 10.1165/rcmb.2019-0090OC 
 Copyright © 2020 by the American Thoracic Society 



the receptor for PDGF is safer and more effective than FGFR inhibition. Indeed, the inhibitory 

effect for PDGFR of nintedanib is more potent than FGFR inhibition (30). This PDGFR 

inhibition-based effect may be the main reason that nintedanib is successful as a therapeutic 

agent.

In developing new anti-fibrotic drugs for pulmonary fibrosis, the present studies emphasize 

the significance of examining not only its positive effect on fibroblasts but also the expression 

of target receptors on AEC. Hence, although our results indicate that the inhibition of pan-

FGFR is not good, it may be possible that the specific inhibition for each FGF/FGFR molecules 

is effective. Besides, if we can develop drugs that selectively targets cell populations like 

fibroblasts, these results may be different.

One limitation of our study is specificity of BGJ398 as FGFR inhibitor. BGJ398 has been 

reported as a potent and selective pan-FGFR inhibitor in many previous reports. However, in 

the original report about BGJ398, BGJ398 has been reported to have strong activity to 

FGFR1/2/3/4, but also have very weak activity to VEGFR2, Abl, Fyn, Kit, Lck, Lyn and Yes 

(32). These other inhibiting effects might affect the results in the present study. Another 

limitation is that EpCAM is not a perfectly specific marker for alveolar epithelial cells. 

Therefore, the possibility that other types of cells were mixed cannot be denied.

In summary, although the inhibition of FGFR signaling contributed to the prevention of 
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pulmonary fibrosis by suppressing the proliferation and migration of pulmonary fibroblasts, 

this inhibition also decreased the survival rate by suppressing the recovery of epithelial cells 

from injury. The present results may offer new insight into the pathogenesis of and therapeutic 

strategy for pulmonary fibrosis. In pathways which involve various molecules such the 

FGF/FGFR signaling pathway, it is important that the experimental approach assesses the role 

of each molecule using genetic techniques like knockdown or overexpression. Besides, to 

conduct preclinical research from a therapeutic perspective, it is also important that the 

approach uses a pan-blocker to determine whether it is totally beneficial or harmful.
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Figure legends

Figure 1. Expression of receptors for fibroblast growth factors on murine lung fibroblasts 

and alveolar epithelial cells. The expression of fibroblast growth factor receptors (FGFR) 1, 

2, 3, 4 and pro-SPC was examined in cell extracts of murine primary cultured lung fibroblasts 

(B6) and alveolar epithelial cell lines (LA4, MLE12) by immunoblot analysis (A). By 

flowcytometry, the expressions of FGFR1 and 2 were investigated in primary culture of 

alveolar epithelial cells from murine lungs as Ep-CAM-positive cells (B). The dotted line 

indicates the data with control antibody, and the solid line is with anti-FGFR1 antibody or anti-

FGFR2 antibody. The western blot was performed twice, and flow-cytometry was performed 

thrice.

Figure 2. BGJ398 inhibits the proliferation of lung fibroblasts and alveolar epithelial 

cells in response to fibroblast growth factor 2. The proliferation of MRC-5 (A), B6 (B), 

and LA4 (C) cells cultured with recombinant fibroblast growth factor 2 (FGF2: 30 ng/mL) 

and various concentrations of BGJ398 for 48 hours was measured using a 3H-thymidine 

incorporation assay. Data were analyzed by one-way ANOVA and are presented as means ± 

SDs (n=4, independent experiments each).  For all graphs: * p<0.05, ** p<0.01 versus the 

value in the group treated with FGF2 alone.
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Figure 3. BGJ398 inhibits the migration of lung fibroblasts induced by fibroblast growth 

factor 2. MRC-5 (A) or B6 (B) cells were plated with to the upper chamber with medium in 

the presence or absence of various concentrations of BGJ398. Medium containing recombinant 

fibroblast growth factor 2 (FGF2: 30 ng/mL) were added to the lower chamber. After 24-hour 

incubation, fibroblasts that had migrated to the bottom surface of the filter were counted in 5 

random fields per section at 100× magnification. Data were analyzed by one-way ANOVA and 

are presented as means ± SDs (n=3 in each group). Representative photographs of MRC-5 

treated with FGF2 plus various concentrations of BGJ398 (C). Representative photographs of 

B6 treated with FGF2 plus various concentrations of BGJ398 (D). For all graphs: * p<0.05, ** 

p<0.01 versus the value in the group treated with FGF2 alone.

Figure 4. Administration of BGJ398 attenuates pulmonary fibrosis in bleomycin-treated 

pulmonary fibrosis mouse model. C57BL/6 mice received an intra-tracheal instillation of 6 

mg/kg NaCl or bleomycin on day 0.

 BGJ398 was administered daily by gavage at 20 mg/kg until day 21. Analyses were performed 

on day 21. A histological examination was performed by staining with hematoxylin and eosin 

(H.E) and azan mallory (A) (scale bar = 500 m). The fibrotic changes in the lung were 

evaluated using a numeric fibrotic score. A histological examination of the right lung was 

performed using H&E staining (B) (n=7 in each group). Collagen content in the left lung lobe 
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was measured using the hydroxyproline colorimetric assay (C) (n=7 in each group). Data were 

analyzed by one-way ANOVA and are presented as means ± SDs. For all graphs: * p<0.05, ** 

p<0.01 versus the value in the group treated with bleomycin only.

Figure 5. Administration of BGJ 398 increases mortality accompanied by acute loss of 

body weight in early phase. C57BL/6 mice received an intra-bronchial instillation of 6 mg/kg 

NaCl or bleomycin (BLM) on day 0. BGJ398 was administered daily by gavage at 20 mg/kg 

until day 21. The change of body weight in each group (A) and a Kaplan-Meier plot showing 

survival in each group (B) (n=7: NS / Vehicle, n=8: NS / BGJ398, n=17: BLM / Vehicle, n=26: 

BLM / BGJ398). The results of body weight on each day were analyzed by one-way ANOVA, 

and the survival curve was analyzed by log rank test. *p<0.05 versus the value in the group 

treated with bleomycin only.

Figure 6. Analysis of bronchoalveolar lavage fluid in mice treated with bleomycin and 

BGJ398. C57BL/6 mice received an intra-tracheal instillation of 6 mg/kg NaCl or bleomycin 

on day 0. BGJ398 was administered daily by gavage at 20 mg/kg until day 5 or 7. The number 

of cells and percentage of the cell component in BALF on day 5 or 7 were compared (Day5: 

n=4 in each group, Day7: n=3: NS / Vehicle, n=3: NS / BGJ398, n=5: BLM / Vehicle, n=5: 

BLM / BGJ398). Data were analyzed by one-way ANOVA and are presented as means ± SDs. 

*p<0.05 versus the value in the group treated with bleomycin only.
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Figure 7 Administration of BGJ398 inhibits the proliferation of alveolar epithelial cells 

in bleomycin-induced pulmonary fibrosis in mice. C57BL/6 mice received an intra-tracheal 

instillation of 6 mg/kg NaCl or bleomycin on day 0. BGJ398 was administered daily by gavage 

at 20 mg/kg until day 5. The lung tissue in each group was harvested and analyzed on day 5. 

(A) Paraffin-embedded lung sections were stained with anti-pro-SPC antibody (green) and 

anti-Ki-67 (red). Representative images of immunofluorescence staining at a high 

magnification in bleomycin-treated lungs are shown to confirm the double-positive cells. (B) 

Representative images of immunofluorescence staining in each group are shown. Arrows 

indicate double-positive cells for pro-SPC and Ki-67 (scale bar = 50 m). (C) pro-SPC+Ki-67+ 

cells, defined as proliferating type II alveolar epithelial cells, were counted in 5 random fields 

per section at x200 magnification using lung sections. The results are shown as the ratio of Ki-

67 positive cells in the total pro-SPC positive cells. Data were analyzed by one-way ANOVA 

and are presented as means ± SDs. For all graphs: * p<0.05, ** p<0.01 versus the value in the 

group treated with bleomycin only. (D) C57BL/6 mice received an intra-tracheal instillation of 

3 mg/kg NaCl or bleomycin on day 0. Seven days later, mice were injected with an Evans blue 

solution via the tail vein 3 hours before being killed, and BALF was collected. The Evans blue 

concentration, which reflects the vascular permeability, was measured with absorbance at 620 

nm (n=4 in each group). The results were normalized with NS/Vehicle group, and shown as 

Page 32 of 69

 AJRCMB Articles in Press. Published April 27, 2020 as 10.1165/rcmb.2019-0090OC 
 Copyright © 2020 by the American Thoracic Society 



fold change. Data were analyzed by one-way ANOVA and are presented as means ± SDs. For 

all graphs: * p<0.05, ** p<0.01 versus the value in the group treated with bleomycin only.
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SUPPLEMENTAL DATA

Materials and Methods

BGJ398 was purchased from Chemietek (Indianapolis, IN, USA). Bleomycin (BLM) was 

purchased from Nippon Kayaku Co. (Tokyo, Japan). Recombinant FGF2 was purchased from 

PeproTech (Rocky Hill, NJ, USA). Recombinant Human TGF-beta 1 was purchased from 

R&D Systems, Inc. (Minneapolis, MN, USA). FGF Receptor 1 (D8E4) XP Rabbit mAb was 

purchased from Cell Signaling Technology (Danvers, MA, USA). FGF Receptor 2 (D4L2V) 

Rabbit mAb was purchased from Cell Signaling Technology (Danvers, MA, USA). Anti-

FGFR3 antibody [EPR2304(3)] and Anti-FGFR4 antibody were purchased from Abcam 

(Cambridge, UK). FITC-conjugated anti-mouse CD326 (Ep-CAM) (BioLegend; San Diego, 

CA, USA), FGF Receptor 1 (D8E4) XP Rabbit mAb (PE Conjugate) (Cell Signaling 

Technology, Danvers, MA, USA), PE-conjugated rabbit anti-FGF receptor 2 Antibody (LSBio; 

Seattle, WA, USA), and anti-pro-surfactant Protein C antibody (Abcam; Cambridge, UK) were 

used. Monoclonal antibody to Ki-67 was purchased from Acris (Herford, Germany). Evans 

Blue dye was obtained from Sigma-Aldrich (St. Louis, MO, USA). Anti-cleaved caspase-3 

antibody was purchased from Cell Signaling Technology (Danvers, MA, USA). Anti-alpha 

smooth muscle actin antibody was purchased from Abcam (Cambridge, UK). DNA Damage 

Detection Kit (γH2AX) was purchased from Dojindo (Kumamoto, Japan).
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Cell lines

The human lung fibroblast cell line, MRC-5, was purchased from DS PHARMA 

BIOMEDICAL (Osaka, Japan). The murine fibroblasts, B6 were primary cultured from lung 

tissue of C57BL/6 mice. Two murine epithelial cell lines, LA4 and MLE12 were purchased 

from the American Type Culture Collection, ATCC (Manassas, VA, USA). Cells were 

maintained in DMEM or RPMI medium (MRC-5 and B6; DMEM, LA4 and MLE12; RPMI) 

supplemented with 10% FBS, penicillin (100 U/ml), and streptomycin (50 μg/ml). All cells 

were cultured at 37°C in a humidified atmosphere of 5% CO2 in air.

Isolation of primary murine alveolar epithelial cells

Lung tissues of C57BL/6 mice were excised and minced, and then treated with collagenase to 

obtain a single cell suspension. Subsequently, cells were stained with FITC-conjugated anti-

Ep-CAM antibody, and the positive cells were used as alveolar epithelial cells for flow 

cytometry.

Proliferation assay

Human lung fibroblasts (8×103 cells/well), murine lung fibroblasts (8×103 cells/well), or 

murine lung epithelial cells (LA4; 4×103 cells/well) were seeded on a 96-well plate, and 

cultured with various concentration of FGFR inhibitor BGJ398 (10-1000 nM) in the presence 

of FGF2 (30 ng/ml) for 48 hours. One Ci/well of [3H] thymidine deoxyribose (3H-TdR) was 
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pulsed for the final 24 hours and the incorporation of 3H-TdR was measured using a liquid 

scintillation counter (E1).

Cell migration assay

Human or murine lung fibroblasts in DMEM containing 0.1% of FBS were plated to the upper 

chamber of an 8-μm-pore cell culture insert (BD Bioscience, San Jose, CA, USA) in the 

presence or absence of various concentrations of inhibitors. FGF2 (30 ng/mL) was added to 

the lower chamber. After 24-hour incubation, cells that had migrated to the bottom surface of 

the filter were stained with Diff-Quick (Baxter, Miami, FL) and counted (E2).

Immunoblot analysis

Cell extracts of murine fibroblast cells (B6) and alveolar epithelial cells (LA4, MLE12) were 

collected after culturing in DMEM (B6) or RPMI (LA4, MLE12) containing 10% FBS. Whole 

cell extracts and homogenized lung tissues were prepared with M-PER reagents (Thermo 

Fisher Scientific, Waltham, MA USA) containing phosphatase and protease inhibitor cocktails 

(Roche, Basel, Switzerland). Protein concentrations were measured using the Bradford method. 

The same amounts of total cell extract proteins were electrophoresed on 4-10% NuPAGE Bis-

tris Mini Gels and transferred onto polyvinylidene difluoride membranes (Millipore, Billerica, 

MA) using the WSE-4040 HorizeBLOT 4M-R system (ATTO, Tokyo, Japan). The membrane 

was treated with the blocking agent Blocking One (Nacalai Tesque) for one hour and incubated 

at 4℃ overnight with the first antibodies. Following four-times washes, the membrane was 
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incubated with horseradish peroxidase-conjugated secondary antibodies (1:2000 dilution, GE 

Healthcare, Fairfield, CT) in buffer at room temperature for one hour. The membrane was 

developed using Amersham ECL Western Blotting Detection Reagents (GE Healthcare, 

Fairfield, CT), and signals were detected using an enhanced chemiluminescence system (GE 

Healthcare, Fairfield, CT) (E3). The intensity of the bands was quantified using the public 

domain National Institutes of Health imaging program (W. Rasband, Reaserch Service Branch, 

National institutes of Health, Bethesda, MD, USA). The first antibodies used were as follows: 

anti-FGFR-1 antibody (1:1000 dilution, #9740S, Cell Signaling Technology, Danvers, MA), 

anti-FGFR-2 antibody (1:1000 dilution, #23328, Cell Signaling Technology, Danvers, MA), 

anti-FGFR-3 antibody (1:1000 dilution, ab133644, Abcam, Cambridge, UK), anti-FGFR-4 

antibody (1:1000 dilution, ab119378, Abcam, Cambridge, UK), anti-proSPC antibody (1:1000 

dilution, ab90716, Abcam, Cambridge, UK), and anti-β-actin antibody (1:200 dilution, sc-

47778, Santa Cruz, Dallas, TX). Cleaved Caspase-3 (Asp175) Antibody (1:1000 dilution, 

#9661, Cell Signaling Technology, Danvers, MA). Anti-alpha smooth muscle actin antibody 

[1A4] (1:300, ab7817, Abcam, Cambridge, UK). DNA Damage Detection Kit - γH2AX (1:50, 

G265, Dojindo, Kumamoto, Japan). Densitometric analysis was performed using National 

Institutes of Health (NIH) Image J software.

Bleomycin-induced pulmonary fibrosis in mice

Seven to eight-week-old C57BL/6 mice were purchased from Charles River Japan (Yokohama, 
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Japan). Mice were maintained in the animal facility of Tokushima University under specific 

pathogen-free conditions according to the guidelines of our university. The present study was 

approved by the Institutional Animal Care and Use Committee of Tokushima University 

(Permission Number: 14099). Mice received a single intra-tracheal instillation of 3 or 6 mg/kg 

bleomycin on day 0. BGJ398 was administered each day by gavage until day 21. Lung tissues 

analyzed on day 21 were used for the Ashcroft score (left lung) and hydroxyproline 

colorimetric assay (right lung) when 6 mg/kg bleomycin was used. Bilateral lung tissues were 

analyzed on day 21 for both assay when 3 mg/kg bleomycin was used.

Histopathology

Right lung tissues were harvested, fixed in 10% formalin, and embedded in paraffin. Three-

micrometer-thick sections were stained with hematoxylin and eosin (H&E) or azan mallory. In 

the quantitative analysis, a numeric fibrotic scale was used (Ashcroft score) (E4). The mean 

score was considered to be the fibrotic score.

Bronchoalveolar lavage

BGJ398 was administered daily by gavage at 20 mg/kg until day 5 or 7 after an intra-tracheal 

instillation of 6 mg/kg NaCl or bleomycin on day 0. On day 5 or 7, bronchoalveolar lavage 

(BAL) was performed five times with saline (1 mL) using a soft cannula (E2). After counting 

the number of cells in the BAL fluid (BALF), cells were cytospun onto glass slides and stained 

with Diff-Quick (Baxter, Miami, FL, USA) for cell classification. Protein concentrations of 
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supernatant of BALF were measured using the Bradford method.

Flow cytometric analysis

The minced lungs were digested, and harvested single-cell suspensions were stained with anti-

Ep-CAM Ab (#118207, BioLegend), anti-FGFR-1 Ab (#12777, Cell Signaling Technology), 

and anti-FGFR-2 Ab (#LS-C214234, LSBio). The stained cells were analyzed by a FACScan 

flow cytometer as previously described (BD Biosciences-Pharmingen, San Diego, CA, USA) 

(E3).

Endothelial permeability

Evans Blue dye was utilized as a marker of the endothelial barrier function. C57BL/6 mice 

received an intranasal instillation of 3 mg/kg NaCl or bleomycin on day 0. After seven days, 

mice were sacrificed and analyzed. At three hours prior to termination, Evans Blue dye was 

injected via the tail vein, and the extravasation of dye into bronchial alveolar lavage fluid 

(BALF) was quantified by spectrophotometry (absorbance at 620 nm). 

Immunofluorescence staining

After the paraffin-embedded lung sections were deparaffinized, the antigen was activated in an 

autoclave (120 ° C., 15 minutes) with Dako REAL™ Target Retrieval Solution (#S203130, 

Dako, Denmark). Lung sections were stained with primary antibodies (anti-pro-surfactant 

Protein C antibody (1:1000 dilution, ab90716, Abcam, Cambridge, UK) and Monoclonal 
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antibody to Ki-67 (1:200 dilution, AM33074PU-N, Acris, Herford, Germany) at 4°C overnight 

and subsequently stained with fluorescence-conjugated secondary antibodies and 4’, 6-

diamidino-2-phenylindole at room temperature for 1 hour. Fluorescence images were captured 

with a confocal laser scanning microscope at 200x magnification (Nikon A1R resonant 

scanning confocal system, Tokyo, Japan). Double-positive cells for pro-SPC and Ki-67 were 

counted in 5 random fields (E3). 

Quantitative real-time PCR

Total cellular RNA was isolated by acid guanidinium thiocyanate-phenol-chloroform 

extraction as described previously (E5) and reverse-transcribed into cDNA using the TaKaRa 

PCR Thermal Cycler Dice. Quantitative real-time PCR analysis was performed using the 

CFX96 real-time PCR system (Bio-Rad). Primers used for Figure E1 were previously described 

(E6). 

In the experiments to examine the response to cytokines and growth factors of fibroblasts as 

well as the effects of BGJ398 on those (shown in Figure E10), Serum-starved lung fibroblast 

B6 cells were harvested in DMEM with 0.1% FBS and 1% penicillin-streptomycin. B6 cells 

were cultured in medium containing 30 ng/mL of FGF2 or 20 ng/ml of TGF-1 together with 

100 nM of BGJ398. Total cellular RNAs were extracted 12 hours after (for examining Col1a1 

expression and Acta2 expression stimulated with FGF2, or Col1a1 expression stimulated by 

TGF-1) or 24 hours after (for examining Acta 2 expression stimulated with TGF-1). The 
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sequences of primers used for Figure E10 were as follows: 

Col1a1 forward, 5’-TCTGCGACAACGGCAAGGTG-3’, 

Col1a1 reverse, 5’-GACGCCGGTGGTTTCTTGGT-3’, 

Acta2 forward, 5’-GAGCGTGGCTATTCCTTCGT-3’, 

Acta2 reverse, 5’-GCCCATCAGGCAACTCGTAA-3’, 

Gapdh forward, 5’-GAAGGTGAAGGTCGGAGTC-3’, 

Gapdh reverse, 5’-GAAGATGGTGATGGGATTTC-3’.

Statistical Analysis

Significances of differences were analyzed by one-way ANOVA followed by Tukey’s test or 

Student’s t-test for unpaired samples. The survival curve was analyzed by log rank test. P-

values of less than 0.05 were considered significant. Statistical analyses were performed using 

GraphPad Prism program Ver.5.01 (GraphPad Software Inc.)
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Figure legends

Figure E1. The mRNA expression of receptors for fibroblast growth factors on murine 

lung fibroblasts and alveolar epithelial cells. 

The relative levels of FGFR1 (A), FGFR2 (B), FGFR3 (C), and FGFR4 (D) in B6, MLE12, 

and LA4 cells were examined using RT-qPCR. Data are presented as means ± SDs.

Figure E2. Representative images for H.E and Azan-staining in NS/Vehicle group of 

Figure 4.

Three representative images for HE-stain, Azan-stain, and higher magnification images of HE-

stain per NS/Vehicle mice-group is shown.

Figure E3. Representative images for H.E and Azan-staining in NS/BGJ398 group of 

Figure 4.

Three representative images for HE-stain, Azan-stain, and higher magnification images of HE-

stain per NS/BGJ398 mice-group is shown.

Figure E4. Representative images for H.E and Azan-staining in BLM/Vehicle group of 

Figure 4.

Three representative images for HE-stain, Azan-stain, and higher magnification images of HE-

stain per BLM/Vehicle mice-group is shown.
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Figure E5. Representative images for H.E and Azan-staining in BLM/BGJ398 group of 

Figure 4.

Three representative images for HE-stain, Azan-stain, and higher magnification images of HE-

stain per BLM/BGJ398 mice-group is shown.

Figure E6. The late phase administration of BGJ398 reduces the lung fibrosis but 

increases mortality.

C57BL/6 mice received an intra-tracheal instillation of 6 mg/kg NaCl or bleomycin on day 0. 

BGJ398 was administered daily by gavage at 20 mg/kg from day 10 until day 21 (A). The 

Kaplan-Meier plot shows survival in each group (B) (n=10: NS / Vehicle, n=10: NS / BGJ398, 

n=19: BLM / Vehicle, n=20: BLM / BGJ398). The fibrotic changes in the lung were evaluated 

using a numeric fibrotic score. A histological examination of the right lung was performed 

using H&E staining (C) (n=8 in each group). Collagen content in the left lung lobe was 

measured using the hydroxyproline colorimetric assay (D) (n=10 in each group). Data were 

analyzed by one-way ANOVA and are presented as means ± SDs. For all graphs: * p<0.05, ** 

p<0.01 versus the value in the group treated with bleomycin only.

Figure E7. The administration of BGJ398 to mice with reduced dose of bleomycin 

attenuated the lung fibrosis.

C57BL/6 mice received an intra-tracheal instillation of 3 mg/kg NaCl or bleomycin on day 0. 
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BGJ398 was administered daily by gavage at 20 mg/kg from day 0 until day 21. The Kaplan-

Meier plot shows survival in each group (A) (n=5 NS / Vehicle, n=5: NS / BGJ398, n=15: 

BLM / Vehicle, n=15: BLM / BGJ398). The fibrotic changes in the lung were evaluated using 

a numeric fibrotic score. A histological examination of the bilateral lung was performed using 

H&E staining (B) (n=6 in each group). Collagen content in the left lung lobe was measured 

using the hydroxyproline colorimetric assay (C) (n=6 in each group). Data were analyzed by 

one-way ANOVA and are presented as means ± SDs. For all graphs: * p<0.05, ** p<0.01 

versus the value in the group treated with bleomycin only.

Figure E8. The concentration of protein contained in BALF supernatant was increased 

in bleomycin-treated group, but not changed by BGJ398.

C57BL/6 mice received an intra-tracheal instillation of 6 mg/kg NaCl or bleomycin on day 0. 

BGJ398 was administered daily by gavage at 20 mg/kg until day 5 or 7. Protein concentrations 

of supernatant of BALF were measured using the Bradford method. Data were analyzed by 

one-way ANOVA and are presented as means ± SDs. For all graphs: ** p<0.01 versus the 

value in the group treated with bleomycin only.

Figure E9. BGJ398 increased the expression of cleaved caspase-3 in bleomycin-treated 

lung, but decreased the expression of -SMA.

C57BL/6 mice received an intra-tracheal instillation of 3 mg/kg NaCl or bleomycin on day 0. 

BGJ398 was administered daily by gavage at 20 mg/kg from day 0 until day 21. The 
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expression of pro-SPC, cleaved caspase-3, and α-SMA was examined by immunoblot 

analysis. The cell extracts of murine lungs harvested on day 7 were used for cleaved caspase-

3 (A, C), and those harvested on day 21 were used for α-SMA (B, D). The relative expression 

of each band was calculated by densitometric analysis.

Figure E10. BGJ398 inhibited the Col1a1 and Acta2 expression of fibroblasts 

upregulated by FGF2 but not TGF-1.

Murine primary fibroblasts stimulated by 30 ng/ml of FGF2 (A) or 20 ng/ml of TGF-1 (B) 

were cultured with 100 nM of BGJ398. The mRNA expression of Col1a1 and Acta2 of 

fibroblasts were examined by quantitative PCR.

Figure E11. Administration of BGJ398 increases the DNA damage of alveolar epithelial 

cells in bleomycin-induced pulmonary fibrosis in mice.

C57BL/6 mice received an intra-tracheal instillation of 6 mg/kg NaCl or bleomycin on day 0. 

BGJ398 was administered daily by gavage at 20 mg/kg until day 5. The lung tissue in each 

group was harvested and analyzed on day 5. (A) Representative images of immunofluorescence 

staining in each group are shown. Arrows indicate double-positive cells for pro-SPC and 

γH2AX (scale bar = 50 μm). Paraffin-embedded lung sections were stained with anti-pro-SPC 

antibody (green) and anti-γH2AX (red). (B) Representative images of immunofluorescence 

staining at a high magnification in bleomycin-treated lungs are shown to confirm the double-

positive cells. (C) pro-SPC+γH2AX+ cells, defined as DNA damaged, or apoptosis type II 
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alveolar epithelial cells, were counted in 5 random fields per section at x200 magnification 

using lung sections. The results are shown as the ratio of Ki-67 positive cells in the total pro-

SPC positive cells. (D) pro-SPC+ cells, defined as type II alveolar epithelial cells, were counted 

in 5 random fields per section at x200 magnification using lung sections. Data were analyzed 

by one-way ANOVA and are presented as means ± SDs. For all graphs: ** p<0.01 versus the 

value in the group treated with bleomycin only.

Figure E12. Expanded blots from Figure 1A.

Figure E13. Expanded blots from Figure E9.
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Figure E1
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Figure E2
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Figure E3
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Figure E4
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Figure E5
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Figure E6
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Figure E7
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Figure E8
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Figure E9
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Figure E10
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Figure E11
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Figure E12
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Figure E13
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