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ABSTRACT Insect pests are one of the main threats to the commercially important crops. An effective
insect pest recognition method can avoid economic losses. In this paper, we proposed a new and simple
structure based on the original residual block and named as feature reuse residual block which combines
feature from the input signal of a residual block with the residual signal. In each feature reuse residual
block, it enhances the capacity of representation by learning half and reuse half feature. By stacking the
feature reuse residual block, we obtained the feature reuse residual network (FR-ResNet) and evaluated the
performance on IP102 benchmark dataset. The experimental results showed that FR-ResNet can achieve
significant performance improvement in terms of insect pest classification. Moreover, to demonstrate the
adaptive of our approach, we applied it to various kinds of residual networks, including ResNet, Pre-ResNet,
and WRN, and we tested the performance on a series of benchmark datasets: CIFAR-10, CIFAR-100, and
SVHN. The experimental results showed that the performance can be improved obviously than original
networks. Based on these experiments on CIFAR-10, CIFAR-100, SVHN, and IP102 benchmark datasets,

it demonstrates the effectiveness of our approach.

INDEX TERMS Insect pest recognition, feature reuse, residual network.

I. INTRODUCTION

The production of crops is related to many factors, such
as climate change, biodiversity, plant diseases and insect
pests. Insect pests are regarded as a significant threat to the
commercially important crops [1]. The conventional method
of insect pests recognition relies on the professional knowl-
edge of agricultural experts, which is a low efficient and
expensive cost. In order to promote the development of
intelligent agriculture, a new effectively recognition method
should be proposed. In recent years, with the development
of deep learning techniques, many researchers are attracted
to apply this technology into different fields and propose
many excellent approaches. With the successful application
of deep learning in various areas, it also has been used in the
agricultural domain [2]-[8].

The emergence of deep learning technology has made
breakthroughs in various fields, including natural language
processing [9], emotion computing [10], especially for com-
puter vision tasks, such as image classification [11]-[13],
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object detection [14], [15], image segmentation [16], [17],
facial expression recognition [18], [19]. Since LeNet [20]
introduced the use of deep neural network architec-
tures for computer vision tasks, the advanced architecture
AlexNet [21] acquired ground-breaking victory at the Ima-
geNet competition in 2012 by a large margin over traditional
methods. Subsequently, many excellent neural networks,
such as ZF-net [22], VGG [23], GoogleNet [24], Residual
Networks [12], [25], and Inception Residual Networks [26],
are proposed and obtain better performance on ImageNet
and other benchmark datasets. The ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2015, Residual
Networks (ResNets) [12] win the 1st places on ImageNet
classification, detection, localization, COCO detection as
well as segmentation tasks. The shortcut connections concept
inside a proposed residual unit for residual learning makes it
possible to train much deeper network architectures.

In order to acquire an effective classifier to recognize the
insect pest, we train the models on IP102 dataset, which
is a large-scale benchmark dataset for insect pests recogni-
tion. Because the classification task of IP102 belongs to a
fine-grained visual classification, we hypothesize that reuse
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FIGURE 1. Various residual blocks used in the paper.

feature from previous can enhance the accuracy performance.
The method of feature reuse is widely used in computer vision
tasks. In particular, DenseNets [13] allow layers connect to
feature-maps from all of its preceding layers. In this way,
feature-maps of all preceding layers are used as inputs and
are input into all subsequent layers. It can not only effectively
alleviate the difficulty of training very deep networks, but
also strongly enhance the performance by reusing features
from the initial layers in all subsequent layers. Therefore,
we design a feature reuse residual block based on the basic
residual unit, as shown in Fig. 1(b), to enhance the perfor-
mance of the network. By stacking Feature Reuse Residual
block, we can construct Feature Reuse Residual Network
(FR-ResNet). First, compared to the original residual block
used in ResNets, as shown in Fig. 1(a), we add extra connec-
tions from the input of basic residual block and concatenate
the output of two branches, as seen in Fig. 1(b), then the
concatenated features are feed into the next feature reuse
residual block after the operation of summation. Second,
in order to keep the original feature dimension and reduce
complexity, the 1x1 convolutional layer halves the number
of filters. Third, we used three serial convolutional layers
instead of two convolutional layers.

In this paper, we evaluated FR-ResNet performance on
IP102 dataset and compared with several state-of-art mod-
els. The experimental results show that FR-ResNet can
achieve the best performance on IP102 dataset. Consequently,
to demonstrate the adaptive of our method, we explored it on
various residual networks, including Pre-ResNets and WRNSs,
and found that it is not only suitable for original ResNets, but
also fit for other residual networks nicely on several bench-
mark datasets: CIFAR-10, CIFAR-100 [27], and SVHN [28].
The experimental results show that FR-ResNets outperform
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in accuracy and efficiency compared with original models,
by merely reusing features from the input signal of residual
blocks.

The rest of this paper is organized as follows. Section II
summarizes the related works. Section III describes the
feature reuse residual block and the optimization princi-
ples. In section IV, the experimental results are presented.
In section V, we make some discussion. Finally, section VI
concludes our paper.

Il. RELATED WORKS

In this section, we will review some related works. We first
introduce the deep learning application in agriculture. Then,
we present the deep convolutional neural networks, residual
network variants, and feature reuse networks.

A. DEEP LEARNING APPLICATIONS IN AGRICULTURE

The deep learning technology was applied in agriculture in
recent years, and most of applications focused on identifica-
tion of weed [2], plant recognition [3], [4], fruits counting [5]
and crop type classification [6]. The PlantVillage, contain-
ing 54,306 images with 14 crop species and 26 kinds of
diseases, is a large-scale plant disease classification dataset.
And Mohanty et al. [7] trained AlexNet and GoogleNet via
transfer learning on PlantVillage. Lin et al. [8] proposed
a novel CNN-Fourier Dense Network and evaluated this
method on their self-build dataset which is based on the
optical images captured using an unmanned aerial vehicle.
Lin et al. [29] improved the accuracy performance with a
tolerable addition of parameters on the matrix-based con-
volutional neural network to increase neurons, data streams,
and link channel of the model based. S. Chouhan et al. [30]
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introduced a method of bacterial foraging optimization to
identify and classify the plant leaf diseases automatically.

B. DEEP CONVOLUTIONAL NEURAL NETWORKS

Since the network of AlexNet [21] was proposed in 2012,
many different deeper and deeper convolutional neural
networks emerged, such as VGGNet [23], NiN [31],
GooglLeNet [24], ResNet [12] and DenseNet [13]. With depth
going deep, the accuracy has continued to increase. How-
ever, very deep CNNs have to face the vanishing gradients
problem [12]. Initialization methods and layer-wise train-
ing were adopted to address this problem in earlier works.
Moreover, the activation function of ReLU and its vari-
ants were also used to prevent vanishing gradients, such as
ELU [32], PReLU [33], and PELU [34]. Then batch normal-
ization (BN) [35] could largely address this problem through
standardizing the mean and variance of hidden layers for
each mini-batch, and MSR initialized the weights with more
reasonable variance. Meanwhile, a degradation problem has
emerged, and several methods were proposed to resolve this
problem. Motivated by Long Short-Term Memory recurrent
networks and by using adaptive gating units to regulate the
information flow, Highway Networks [36] can be trained with
simple gradient descent. ResNets [12] introduced a short-
cut conception to propagate information to deeper layers of
networks, which achieved better performance than Highway
Networks in a simpler way. Consequently, ResNets con-
structed deep residual network with layers exceeding 1000+
and still have competitive accuracy and superior conver-
gence performance on many computer vision tasks. There-
fore, it attracts many researchers, and more and more residual
network variants have been proposed as a family of extremely
deep residual architectures.

C. RESIDUAL NETWORK VARIANTS

ResNets achieved significant success in computer vision.
However, ResNets become difficult to converge when the
depth goes very deep. Pre-ResNets [25] reduced the training
difficulties by introducing a BN-ReLU-Conv order residual
block with identity mappings as the skip connections and
after-addition activation. Weighted Residual Networks [37]
found the original residual networks have the incompati-
bility between ReLU and element-wise addition and deep
network initialization problem. Therefore, they proposed
the weighted residual networks, which enjoy a consistent
improvement over accuracy when depths increase from 100+
layers to 1000+ layers. More residual network variants try
to improve performance by constructing deeper residual net-
works, while the problem of diminishing feature reuse for
very deep residual networks makes these networks very slow
to train. To conduct these problems, WRNs [39] gener-
ated residual networks by increasing width and decreasing
depth of residual networks. WRNs improved accuracy and
reduced the training time compared with thin and very deep
counterparts. Feng and Ren [19] proposed a stochastic depth
drop-path approach which randomly drops a subset of layers
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and bypasses them with identity function. Their experiments
showed that their method shortened training time substan-
tially and reduced the test errors. RoR [38] added short-
cut connections upon original residual networks to further
dug the optimization ability of residual networks. Pyramidal
Residual Network [40] enhanced the generalization ability
by increasing the feature map dimension gradually instead
of increasing the feature map dimension sharply at the down-
sampling location.

D. FEATURE REUSE NETWORKS

Feature reuse is also regarded as an effective method to
improve the performance of networks. In DenseNets [13],
feature-maps from all preceding layers are used as inputs
and feed into all subsequent layers directly. This method
alleviated the difficulty of training very deep networks and
enhanced the performance by reusing features from the initial
layers in all subsequent layers. DSOD [14] trained an object
detector which learned half of the feature maps from the
previous scale with a series of convolutional layers and the
remaining half feature maps downsampled from the contigu-
ous high-resolution feature maps. Wang et al. [41] proposed
a regularization method which stochastically reused feature
by randomly dropping a set of feature maps for each mini-
batch during the training phase to address the problem of
overfitting.

In this paper, we mainly focus on models with feature reuse
residual networks for insect pest recognition. We mean to
explore how to construct a new effective residual network
with feature reuse method to achieve better performance on
IP102 dataset and evaluate the effectiveness of our approach
on other residual networks and datasets.

IIl. FEATURE REUSE OF RESIDUAL NETWORK

In this section, we first introduce the methodology of feature
reuse residual network. Then, we present some important
optimization principles.

A. METHODOLOGY

The original residual block with identity mapping can be
expressed by the following computation:

yi =hx)+F (G, wp) (D
xi+1 =f 1) ()

where x;4+1 and x; are output and input of the /-th residual
block in the network, F denotes a residual function and wy
are parameters of the /-th residual block. The function % (x;)
denotes an identity mapping: & (x;) = x;, and f denotes a
ReLU function. Fig. 1(a) shows the original residual basic
block with branched residual signal consisting of two succes-
sive 3x3 conv layers. Sequentially stacked residual blocks
construct residual networks.

We try to explore the effects of feature reuse for the orig-
inal residual block by an adding extra connection from the
input signal of the residual block. In order to match feature
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size and dimension, the input feature maps pass through a
1x1 conv layer without ReLU function shown in Fig. 1 (b).
To maximize the performance of the network, we experiment
with kinds of residual block size and analysis results in the
following section. Therefore, the Feature Reuse Residual
block can be denoted by the following formulations:

yi=h@p)+F (g, w)og (x) ©)
X1 =f o) “4)

where g is a function to transform feature map size and
dimensions, which is realized by a 1x1 conv layer without
ReLU. Meanwhile, the location of reducing feature size also
have a significant impact on test error, and our experiments
empirically show that using average pooling layer before
1x 1 convolutional layer in down-sampling block can achieve
better performance than other options. The comparison of this
matter is continued in the following section.

B. OPTIMIZATION OF FR-RESNET

In order to optimize FR-ResNet, we must determine some
important principles, such as residual block size, and location
of reducing feature map size. We tested these principles on
CIFAR-10 benchmark dataset.

In the case of original ResNets, the basic residual unit
consists of a stack of two 3x3 convolutional layers in [12]
as shown in Fig. 1(a). In order to compare the performance
of different residual block sizes, we explored several types
of convolutions in every residual block with a similar total
number of parameters. We use B(M) to denote residual block
structure, which is used by WRN [39], and M means a list
with the kernel sizes of the convolutional layers in a residual
block. For example, B(1, 3, 3, 3) denotes a residual block
with one 1x 1 and three 3 x3 convolutional layers, as shown
in Fig. 1(b). We experiment with these types of convolutions
on CIFAR-10 dataset, and the results are reported in Table 1.
The experimental results show that B(1, 3, 3, 3) had the best
performance when the epoch number was 164 or 500.

TABLE 1. Test error (%) on CIFAR-10 with different types of convolutions
for FR-ResNet.

Block Type Depth Params 164 epoch 500 epoch
B(1,3,3) 98 1.7M 6.12 5.23
B(1,3,3,3) 135 1.7M 5.17 4.76

B(1,3,3,3,3) 122 1.7M 6.77 5.52

The experiments show that the performance can vary
depending on the location of reducing feature map size
in down-sampling block. We consider four variants in this
paper: (A) adding a 2x2 average pooling layer before
Ix1 conv; (B) adding a 3x3 max pooling layer with the
stride of 2 before 1x1 conv; (C) 1x1 conv with the stride
of 2; (D) first 3x43 conv with the stride of 2. The test results
are shown in Fig. 2, which shows type A can achieve lower
test error than other variants on CIFAR-10 dataset. Therefore,
in our paper, we choose type A in our structures.
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FIGURE 2. Comparison of FR-ResNet with different location of reducing
feature map size on CIFAR-10. Using type A can achieve best performance
than others.
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FIGURE 3. Example images from the IP102 dataset.

IV. EXPERIMENTS AND ANALYSIS

We empirically demonstrated the effectiveness of Feature
Reuse Residual Network (FR-ResNet) on IP102 dataset.
In order to investigate the effectiveness of our approach
generalize, we combined our method with various residual
networks: ResNet, Pre-ResNet, and WRN and evaluate the
performance on a series of benchmark datasets: CIFAR-10,
CIFAR-100, and SVHN.

A. IP102 CLASSIFICATION RESULTS

IP102 [1] is a large-scaled insect pest dataset covered
102 species of common crop insect pests. The dataset con-
tains 45,095 images in the training set, 7,508 images in the
validation set, and 22,619 images in the testing set for classi-
fication task. Fig. 3 shows some example images from IP102.
As illustrated in [1], several factors affect classification per-
formance. First, the pests are difficult to be distinguished,
because the colors are similar between object and back-
ground. Second, IP102 contains the image throughout the
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TABLE 2. Test performance on IP102 by FR-ResNets.

1P102 Depth Params F1 Acc (%)
34 20.67M 53.58 54.73
FR-ResNet 50 30.78M 54.18 55.24
TABLE 3. Test performance on IP102 by state-of-art methods.

1P102 Params F1 Acc (%)
AlexNet 57.42M 48.22 49.41
ResNet-50 23.72M 52.93 54.19
ResNet-101 42.63M 52.00 53.07
Googlenet 10.24M 51.24 52.17
VGG-16 134.68M 51.20 51.84
DenseNet-121 7.06M 52.97 54.59

pests life cycle, and it is hard to classify, especially in the
larval period. Third, the pests are often similar to each other.
Due to these factors, it is more challenging for classification
on IP102 dataset.

The ResNets models for ImageNet contain four residual
block groups. The basic residual block required 64, 128,
256, 512 filters, and the bottleneck residual block needed
256, 512, 1024, 2048 filters. More planes will increase the
number of parameters and introduce the overfitting problem
for IP102. Therefore, to limit the number of parameters,
we only conducted feature reuse residual network based on
the basic residual block, as discussed in Section III. For
IP102 dataset, we follow the implementation in [1]. SGD
was adopted with a mini-batch size of 64. The learning rate
is initialized by 0.01 and is divided by 10 every 40 epochs.
The weight decay is 0.0005, and momentum is 0.9. The
data augmentation strategies were adopted in our experiments
for training: first, the image is resized into 256 x256 square
image; second, a rectangular region is randomly cropped
with aspect ratio randomly in [3/4, 4/3] and area randomly
sampled in [0.08, 1]; third, the cropped region resized into
a 224 x224 square image; last, mean and standard deviation
normalization is also applied. During testing, we followed
the processing of training except for random augmentation
and cropped out the 224 x4224 regions in the center of the
resized image during validation. We trained our models on the
training set and evaluated the performance on the test set. Our
implementations are based on Pytorch 1.0 with one Nvidia
Titan X.

We constructed FR-ResNet with different depths and
evaluated accuracy performance on IP102 compared with
ResNet baseline models. The results are reported in Table 2.
Moreover, we compared FR-ResNet with several state-of-
art models: AlexNet, ResNet-50, ResNet-101, Googlenet,
VGG-16, and DeseNet121 to demonstrate their performance
on IP102 dataset, and the results are reported in Table 3.
As can be observed, compared with Table 2 and Table 3,
34-layer FR-ResNet had a test accuracy of 54.73% and
53.58 F1 score on the test set, which outperformed all model’s
performance in Table 3. 50-layer FR-ResNet can acquire
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FIGURE 4. Test accuracy on IP102 by 34-layer and 50-layer FR-ResNets,
corresponding to results in table 2.

better performance than 34-layer FR-ResNet. As Fig. 5 and
Table 3 shown, ResNet-101 can achieve lower training
loss than ResNet-50, while its test accuracy is worse than
ResNet-50 because the increased parameters led to overfit-
ting. Through these experiments, it demonstrated the effec-
tiveness of our method on IP102 dataset.
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FIGURE 5. Test accuracy on IP102 by several state-of-art methods,
corresponding to results table 3.

B. IMPLEMENTATION ON CIFAR-10, CIFAR-100 AND
SVHN DATASETS

We combined our method with various residual networks:
ResNet, Pre-ResNet, and WRN and evaluate the perfor-
mance on CIFAR-10, CIFAR-100, and SVHN datasets to
demonstrate the effectiveness of our approach. We com-
pared the results of FR-ResNets and the original ResNets
baseline with a similar total number of parameters. In the
case of CIFAR-10 and CIFAR-100, we used the 135-layer
and 194-layer FR-ResNets compared with 100-layer and
164-layer ResNets, respectively. The original ResNets con-
tained three groups which hadl6 filters, 32 filters and
64 filters of residual blocks, and the size of feature map are
32, 16 and 8, respectively. As shown in Fig. 1(b), we adopted
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TABLE 4. Test error (%) on CIFAR-10 by ResNets and FR-ResNets.

CIFAR-10 o Error (%)
500 Epoch Depth Params Error (%) +SD
110 1.7M 5.79 4.84
ResNets 164 2.6M 5.59 4.70
FR- 135 1.7M 4.76 4.57
ResNets 194 2.5M 4.96 4.15

each convolution following batch normalization and activa-
tion (ReLU). In FR-Pre-ResNet and FR-WRN experiments,
we used BN-ReLU-Conv order. For CIFAR datasets, we ini-
tialize the weights with Kaiming Xavier algorithm [33] and
use SGD with a batch size of 128 for 500 epochs as in [38].
The learning rate is initialized by 0.1 and is divided by 10 at
the 250th and 375th. For SVHN dataset, we adopted SGD
with a batch size of 128 for 50 epochs. The learning rate is
initialized by 0.1 and is divided by 10 at the 30th and 35th
as in [38]. The weight decay is 0.0001, and momentum is
0.9 on all datasets. According to [42], the stochastic drop-
path method can alleviate overfitting and enhance the test
performance, so we also adopted this method in this paper
for more a comprehensive comparison. We set p; with the
linear decay rule of pg = 1 and p; = 0.5 when depth exceeds
100 layers, and we set pp = 1 and p; = 0.8 with the linear
decay when the depth is less than 100 layers.

C. CIFAR-10 CLASSIFICATION BY FR-RESNET

CIFAR-10 is a dataset comprising a collection of 50k train-
ing images and 10k testing 32x32 pixel RGB images
in 10 classes of natural scene objects. The standard data
augmentation strategies were adopted in our experiments for
training: 4 pixels are padded on each side, then a random
32x32 crop is sampled from the padded image; mean and
standard deviation normalization is also applied or its hori-
zontal flip.

135-layer FR-ResNet on CIFAR-10

—— ResNet110
FR-ResNet135

—— ResNet110+SD

11 4 —— FR-ResNet135+SD

13

test error (%)

ISy e

T T T T T
200 250 300 350 400 450 500
epoch

FIGURE 6. Smoothed test errors on CIFAR-10 by 110-layer ResNets,
135-layer FR-ResNet, 110-layer ResNets+SD and 135-layer FR-ResNet+SD
during training, corresponding to results in Table 4. Either FR-ResNet
without SD (the orange curve) or FR-ResNet+SD (the red curve) is shown
yielding a lower test error than ResNets.
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FIGURE 7. Smoothed test error on CIFAR-100 by 164-layer ResNets,
194-layer FR-ResNet, 164-layer ResNets+SD and 194-layer FR-ResNet+SD
during training, corresponding to results in Table 5. FR-ResNet+SD (the
red curve) has lower test errors than other curves.

N
3]

TABLE 5. Test error (%) on CIFAR-100 by ResNets and FR-ResNets.

CIFAR-100 ., Error (%)
500 Epoch Depth Params Error (%) +SD
110 1.7M 2621 2345
ResNets 164 2.6M 25.96 22.78
FR- 135 1.7M 24.88 22.19
ResNets 194 2.5M 2426 21.83

We construct 135-layer and 194-layer FR-ResNets to com-
pare with 110-layer and 164-layer ResNets with a similar
total number of parameters, respectively. The Table 4 and
Fig. 6 show that the 110-layer ResNet and 135-layer
FR-ResNet without SD achieved 5.79% and 4.76% error
on the test set and the 135-layer FR-ResNets without SD
outperformed the 110-layer ResNets without SD by 17.8% on
CIFAR-10. Consequently, the 135-layer FR-ResNets without
SD can also slightly outperform the 4.92% test error of the
1001-layer Pre-ResNets with the same batch size [25]. The
194-layer FR-ResNets without SD achieved a 4.96% error
on the test set, which outperforms the 164-layer ResNets
without SD by 11.3%. As can be observed, we found that the
194-layer FR-ResNets performance is worse than 135-layer
FR-ResNet while the result changed when we add SD.
We conjectured that the incompatibility between ReLU and
element-wise addition degraded the accuracy and feature
reuse method made the situation worse, and the problem was
resolved in FR-Pre-ResNets which treat both x; and f as
identity mappings.

D. CIFAR-100 CLASSIFICATION BY FR-RESNET

CIFAR-100 is a dataset comprising a collection of 50k train-
ing images and 10k testing 3232 pixels RGB images, sim-
ilar to CIFAR-10, but the number of classes is extended to
100. Due to each class only consists of 600 images, it is
more challenging for classification on CIFAR-100 dataset.
We adopt the same augmentation and preprocessing tech-
niques as on CIFAR-10. As shown in Table 5 and Fig. 7,
the 110-layer and 164-layer ResNets without SD achieved
a compelling 26.21% and 25.96% error on the test set,
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TABLE 6. Test error (%) on CIFAR-10 and CIFAR-100 by Pre-ResNets and FR-Pre-ResNets.

CIFAR-10 CIFAR-100
300 Epoch Depth Params Error (%) Error (%) +SD Error (%) Error (%) +SD
Pre-ResNet 110 1.7M 522 4.71 25.93 23.09
c-Resiets 164 2.6M 4.75 4.69 25.06 22.98
135 1.7M 441 4.35 23.38 21.53
FR-Pre-ResNets 194 2.5M 4.36 3.90 22.39 20.73
TABLE 7. Test error (%) on CIFAR-10 and CIFAR-100 by WRNs and FR-WRNSs.
CIFAR-10 CIFAR-100
300 Epoch Depth Params Error (%) Error (%) +SD Error (%) Error (%) +SD
WRNSs 40-2 2.2M 4.63 4.25 24.42 22.21
40-4 8.9M 4.07 3.98 21.85 20.28
49-2 2.2M 4.50 4.18 23.21 21.45
FR-WRNs 49-4 8.7M 3.99 3.73 20.92 19.16
and the 135-layer FR-ResNets and 194-layer FR-ResNets FR-WRN-49-4 on CIFAR-10
without SD had 24.88% and 24.26% error on the test set. —— WRN-40-4
Unlike on CIFAR-10, FR-ResNets without SD outperformed 114 T N a0 dren
their counterparts obviously on CIFAR-100 even when depth —— FR-WRN-49-4+5D

becomes deep. FR-ResNets perform better performance on a
more challenging dataset. It is gratifying that the 135-layer
FR-ResNets+SD and 194-layer FR-ResNets+SD achieved a
22.19% and 21.83% error on the test set which outperformed
the 110-layer ResNets, 110-layer ResNets+SD, 164-layer
ResNets and 164-layer ResNets+SD by 15.3%, 5.3%, 15.9%
and 4.2%, respectively on CIFAR-100.

test error (%)

E. FEATURE REUSE FOR PRE-RESNET AND WRN . | | | |
Pre-ResNets [25] changed the order of Conv-BN-ReLU 200 250 300 efus:[c)h 400 450 300
to BN-ReLU-Conv to reduce vanishing gradients, and

WRN [39] can achieve a dramatic performance improvement

FIGURE 8. Smoothed test error on CIFAR-10 by WRN40-4, WRN40-4+SD,
FR-WRN49-4 and FR-WRN49-4+SD during training, corresponding to

by increasing width and decreasing depth of residual net- results in Table 7. FR-WRN49-4+SD (the red curve) has lower test errors
works. We replaced the residual blocks of the original ~ thanthe other curves.
FR-ResNet in a BN-ReLU-Conv order, as shown in Fig. 1(c). FR-WRN-49-4 on CIFAR-100
We did the same experiment by FR-Pre-ResNet on CIFAR 7 T
datasets, and the results are reported in Table 6, where 351 c;;m’;’ig’gb
—_ -49-4+

FR-Pre-ResNet is compared with Pre-ResNet. As can be
observed, the 135-layer and 194-layer FR-Pre-ResNets
with SD achieved 4.35% and 3.90% test error, and
they outperformed the 110-layer Pre-ResNet, 110-layer
Pre-ResNet+SD, 164-layer Pre-ResNet and 164-layer Pre-
ResNet+SD by 16.7%, 7.6%, 17.9%, and 16.8%, respec-
tively on CIFAR-10. Consequently, a similar phenomenon

appeared on CIFAR-100. m
In the case of WRN, we found B(I, 3, 3) can achieve \\\"'\/\—\,—\w

better performance. Therefore, B(/, 3, 3) was adopted in 191

w
w
L

-}

—— FR-WRN-49-4+SD

test error (%)
NoOONN W
u ~ 0 (=
L L L

N
w

~
-

FR-WRN. We did the same experiment by 40-layer WRN 200 250 300 eizgh 400 450 500

and 49-layer FR-WRN of a width of 2 and 4 on CIFAR-10

and CIFAR-100 with a similar total number of parame- FIGURE 9. Smoothed test error on CIFAR-100 by WRN40-4, WRN40-4+SD,
FR-WRN49-4 and FR-WRN49-4+SD during training, corresponding to

ters. Table 7 shows the results of our FR-WRN compared results in Table 7. FR-WRN49-4-+SD (the red curve) has lower test errors

with WRN. Fig. 8 and Fig. 9 show the test error curves on than the other curves.

CIFAR-10 and CIFAR-100 at different training epochs. The

experimental results show that FR-WRNs are better than on CIFAR-100, and it outperformed WRN-40-4+SD by 6.3%
WRNs on CIFAR-10 and CIFAR-100. FR-WRN49-4+4-SD on CIFAR-10 and 5.5% on CIFAR-100. Based on these exper-
achieved 3.73% test error on CIFAR-10 and 19.16% test error iments and analysis, we can conclude that our Feature Reuse
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Residual architecture can also improve the performance of
other residual networks, including Pre-ResNets and WRNGs.

F. EFFECT OF FEATURE REUSE, DEPTH AND WIDTH

Based on preceding experiments in this section, we can con-
clude that increasing width or depth can improve the perfor-
mance. In order to investigate the effect of width and depth
to feature reuse residual network, we explored the following
experiments.

The FR-ResNets derive from the original ResNets, and
the vanishing gradients problems appear when depth goes
deep. As shown in Table 8, the test error gradually increases
from 135-layer to 194-layer, then to 314-layer on CIFAR-10.
Interesting, in the case of CIFAR-100, FR-ResNets present
consistent improvement. These experiments indicated that the
vanishing problem still exists in deep FR-ResNet, and feature
reuse method is more effective in the competitive dataset, for
example, CIFAR-100.

TABLE 8. Test error (%) on CIFAR-10 and CIFAR-100 by FR-ResNet with
different depths.

Depth CIFAR-10 FR- CIFAR-100 FR-
ResNet ResNet
135-layer 4.76 24.88
194-layer 4.97 24.26
314-layer 5.09 23.25

In the case of Pre-ResNet, it reduced the vanishing prob-
lem. We constructed FR-Pre-ResNet based on Pre-ResNet
and experimented with different depth, as shown in Table 9.
As can be observed, the test error gradually reduced as the
depth increased. For the 1202-layer FR-Pre-ResNet with a
batch size of 32, it had the 3.74% test error on CIFAR-10
and 17.85% test error on CIFAR-100. So, we conclude that
the vanishing gradients can be alleviated, even on very deep
FR-Pre-ResNet.

TABLE 9. Test error (%) on CIFAR-10 and CIFAR-100 by FR-Pre-ResNet
with different depths.

Depth CIFAR-10 FR- CIFAR-100 FR-
ResNet ResNet
135-layer 4.35 21.53
194-layer 3.90 20.73
242-layer 3.85 20.01
1202-layer 374 17.85

(15.7M, bs=32)

In the case of WRN, the vanishing problem is not apparent
for the shallow network, but adding more feature planes and
parameters introduce overfitting. We explored experiments
with FR-WRN with various widths and depths on CIFAR-10
and CIFAR-100, as reported in Table 10. The experiments
show that the network performance can be improved as
both depth and width increasing. But when we widened the
FR-WRN, the problem of overfitting appeared. So, we need
to reduce it by SD. As Table 10 shown, FR-WRN-94-44-SD

VOLUME 7, 2019

TABLE 10. Test error (%) on CIFAR-10 and CIFAR-100 by FR-WRN with
different widths and depths.

. CIFAR-10 FR- CIFAR-100 FR-
Depth and Width ResNet ResNet
FR-WRN49-2 4.18 21.45
FR-WRN49-4 3.73 19.16
FR-WRN76-2 3.88 20.21
FR-WRN76-4 3.39 18.64
FR-WRN94-4 3.34 17.99

achieved a 3.34% test error on CIFAR-10 and a 17.99% test
error on CIFAR-100. However, we found that the 1202-layer
FR-Pre-ResNet+SD compared with FR-WRN-94-44-SD can
make lower test error on CIFAR-100 with fewer parameters.
It demonstrates that increasing depth is more effective for
feature reuse residual networks on CIFAR-100.

Based on these experiments and analysis, we conclude
that both adding depth and width of feature reuse residual
networks are effective for model learning capability. We have
to carefully choose the tradeoff between the depth and width
to achieve satisfying results.

G. SVHN CLASSIFICATION RESULTS
The Street View House Number (SVHN) dataset is also
a well-known benchmark dataset in computer vision. The
dataset contains 73,257 digits in the training set, 26,032 in the
test set, and 531,131 additional training images respectively.
We used all the training samples but without performing
data augmentation. Mean and standard deviation normal-
ization is also applied to preprocess the data. To demon-
strate the effectiveness of our method on SVHN, we used
WRN40-4 and FR-WRN49-4 with a similar total number
of parameters to train SVHN, and the results are reported
in Table 11. As can be observed, FR-WRN49-4+SD out-
performed WRN40-44-SD by 7.4% on SVHN, and Fig. 10

FR-WRN-49-4 on SVHN

3.0
—— WRN-40-4
FR-WRN-49-4
—— WRN-40-4+5D
—— FR-WRN-49-4+SD
2.5

test error (%)

2.0+

1.5

30 35 a0 as 50
epoch

FIGURE 10. Smoothed test error on CIFAR-10 by WRN40-4, WRN40-4+SD,

FR-WRN49-4 and FR-WRN49-4+SD during training, corresponding to

results in Table 11. FR-WRN49-4+SD (the red curve) has lower test errors
than the other curves.
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showed the testing curves. These experiments showed our
approach could achieve improvement on SVHN dataset too.

V. DISSCUSSION

We found the impact of Feature Reuse Residual unit is
twofold. First, the feature from previous layers is used for
subsequent residual blocks. Second, feature reuse residual
unit has a stronger capacity of representation than the original
residual unit.

A. FEATURE REUSE

From Eqn. 3 the branched residual signal and the input sig-
nal of a residual block are concatenated before summation,
and we realized the Feature Reuse Residual block based on
the original residual bl ock. BN and ReLU are omitted for
simplifying. We can split the identity mapping into two parts.
Therefore, as illustrated in Fig. 11, we could conjecture that
each output of Feature Reuse Residual block contains two
parts: one is from a residual block, and the other is from
the input directly. Through this method of learning half and
reusing half, we enhanced the capacity of the network and
intensified the relationship of the adjacent residual block.
The results of Table 2, Table 3, Table 4, and Table 5 show
our models outperformed the baseline models significantly
with a similar total number of parameters or fewer parameters
and demonstrate our suppose that reuse feature from previous
layers in the residual block can improve the performance on
IP102 dataset.

Input Input

convIxl

[ e
L]
-
L]

| | conv3x3 |

conv3x3

v b 4
Y N Y 3. MY
'I ) ‘
Output Output

() (b)

FIGURE 11. Structure of feature reuse residual unit (a), (b) unraveled
view of (a) showing that the output contains two parts: One is from a
residual block and, the other is from the input directly.

B. STRONGER CAPACITY OF REPRESENTATION

In the case of original ResNet and Pre-ResNet, each residual
block contains two continuous 3x3 convolutional layers.
While Feature Reuse Residual block contains three con-
tinuous 3x3 convolutional layers, as shown in Fig. 1(b),

122766

and the results in Table 4, Table 5 and Table 6 show this
structure can achieve a better performance with a similar
total number of parameters. For each feature reuse residual
block, the increased 3x3 convolutional layer with ReLU
function enhance nonlinearity. However, the total number
of ReLU unit in Feature Reuse Residual networks is less
than the counterpart residual networks with a similar total
number of parameters. In the case of WRN, the capacity of
each wide residual unit is stronger than the pre-activation
residual block [39]. After combined WRN with feature reuse
method, the performance further enhanced with less ReLU
unit, as shown in Table 7, Table 10, and Table 11. So, we can
conclude that Feature Reuse Residual network has a stronger
capacity of representation than their counterparts with less
ReLU unit.

TABLE 11. Test error (%) on SVHN by WRNs and FR-WRNs with different
depths and widths.

0,

SVHN Depth Params Error (%) Errfsr]gﬁ)
WRN 40-4 8.9M 1.69 1.75
FR-WRN 49-4 8.7M 1.78 1.62

VI. CONCLUSION
In our work, we proposed the feature reuse residual net-
work (FR-ResNet) for insect pest recognition. The central
idea of the structure was described in this paper involves
learning half and reuse half feature in each Feature Reuse
Residual block. Based on the simple structure, we con-
structed the FR-ResNet and evaluated the classification per-
formance on IP102 dataset, which is a challenging insect pest
recognition benchmark dataset. The experimental results on
IP102 showed that FR-ResNet could achieve better accuracy
recognition performance compared with the baseline models.
We also demonstrated that our approach could be used by
other residual networks and outperform the original networks
on CIFAR-10, CIFAR-100, and SVHN datasets. Through
these empirical studies, the effectiveness of our approach was
demonstrated, and this approach can be easily implemented
in other residual networks.

In future work, we will try to extend the proposed network
to different technical fields and explore more effective feature
reuse network structure.
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