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Abstract: Considerable attention has been given to the research field of bioorganometallic chemistry,
which is a hybrid chemistry field between biology and organometallic chemistry. The introduction of
biomolecules, which have hydrogen bonding sites and chiral centers, into organometallic compounds
is a promising strategy to construct chirality-organized bioorganometallic conjugates. This feature
paper sketches an outline of induction of helical chirality into bioorganometallic conjugates by the
control of a torsional twist of the organometallic moiety. Topics covered included control of the helical
chirality of 1,n′-disubstituted ferrocene moieties in ferrocene-dipeptide conjugates, and the chirality
induction of the Au(I)–Au(I) axis in the dinuclear organogold(I)-uracil conjugates.

Keywords: chirality induction; helical chirality; bioorganometallic conjugate; dipeptide; nucleobase;
ferrocene; organogold(I); self-assembly; hydrogen bond; Au(I)–Au(I) interaction

1. Introduction

Highly-organized structures as observed in proteins, enzymes, and DNA are created by
self-assembling of biomolecules such as amino acids, peptides, and nucleobases, wherein hydrogen
bonding [1] plays a crucial role in regulating and modulating the organized structures and functional
properties. α-Helices, β-sheets, and β-turns, which are formed by complementary hydrogen bonding,
are important secondary structures in protein folding [2,3]. The double helical DNA is formed by
adenine-thymine and guanine-cytosine complementary base pairing based on hydrogen bonds [4].
In the last two decades, the research field of bioorganometallic chemistry, which is a hybrid chemistry
between biology and organometallic chemistry, has been drawing much attention. A great deal
of effort has been made on conjugation of organometallic compounds with biomolecules, such as
amino acids, peptides, and nucleobases [5–15]. Ferrocene (Fc) is an organometallic compound with
reversible redox properties and two rotatory coplanar cyclopentadienyl (Cp) rings (Figure 1) [16].
The inter-ring distance of about 3.3 Å in ferrocene is appropriate for hydrogen bonding between
attached peptide strands on two Cp rings. In the 1,n′-disubstituted ferrocene, P- and M-helical
conformations, which are interconvertible, based on the presence of a torsional twist about the
Cp(centroid)–Fe–Cp(centroid) axis are possible as shown in Figure 2 [17]. The introduction of
peptide strands, which have hydrogen bonding sites and chiral centers, into a ferrocene unit as
an organometallic scaffold is envisioned to be a potential approach to study the hydrogen bonding
ability of introduced peptide strands and construct chirality-organized bioorganometallic conjugates.
On the other hand, a d10–d10 closed shell aurophilic bonding interaction are known to induce the
aggregation of gold(I) compounds [18–20]. The presence of a torsional twist about the Au(I)–Au(I)
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axis allows for the existence of the conformational enantiomers in the dinuclear gold(I) compounds
with bridging diphosphine ligands as depicted in Figure 3. Rational arrangement of nucleobases by
using Au(I)–Au(I) interaction is a convenient approach to control the organized structure of molecular
assemblies based on the directionality and specificity of hydrogen bonds.
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Figure 3. R- and S-enantiomers of the dinuclear organogold(I) compounds with bridging diphosphine
ligands. The broken line is the mirror plane.

In this feature paper, recent advances in induction of helical chirality into the organometallic
moiety of bioorganometallic conjugates by the control of a torsional twist of the organometallic moiety
are highlighted. Specifically, we focus on control of helical chirality of the 1,n′-disubstituted ferrocene
moiety in the ferrocene-dipeptide conjugates. In addition, the chirality induction of the Au(I)–Au(I)
axis in the dinuclear organogold(I)-uracil conjugates is briefly described.

2. Induction of Helical Chirality into Bioorganometallic Conjugates

2.1. Control of Helical Chirality of Ferrocene Moieties in Ferrocene-Dipeptide Conjugates

Ferrocenylalanine, which is the first example of the introduction of amino acid into a ferrocene
unit, was synthesized in 1957 [21–23]. After its first example of a ferrocene-amino acid conjugate, much
attention has been devoted to the design of ferrocene-amino acid or peptide conjugates to shed light on
the factors affecting the formation of protein secondary structures and to construct highly-organized
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molecular assemblies [24–30]. Ferrocene-1,1′-dicarboxylic acid (Fc-cc), 1′-aminoferrocene-1-carboxylic
acid (Fc-ac), and 1,1′-diaminoferrocene (Fc-aa) scaffold are utilized as an organometallic scaffold
with a central reverse-turn unit as pictured in Figure 4. The ferrocene-amino acid conjugate 1
composed of a valine unit was reported to reveal the capability of ferrocene-1,1′-dicarboxylic acid
(Fc-cc) as a molecular scaffold for a regulated conformation through intramolecular antiparallel
β-sheet-like hydrogen bonding (“Herrick” pattern) as depicted in Figure 5 [31]. The introduction
of the L-Ala-L-Pro homochiral dipeptide chains into the Fc-cc scaffold induces P-helical chirality
with P-1,2′ helical conformation of the ferrocenoyl moiety by restriction of a torsional twist
about the Cp(centroid)-Fe-Cp(centroid) axis based on the chirality organization, through the
formation of interchain intramolecular antiparallel β-sheet-like hydrogen bonds as observed in the
ferrocene-dipeptide conjugate 2 composed of the L-Ala-L-Pro-OEt dipeptide chains (Figure 6) [32–35].
As expected, M-helical chirality with M-1,5′ helical conformation of the ferrocenoyl moiety is formed in
the ferrocene-dipeptide conjugate 3 composed of the D-Ala-D-Pro-OEt dipeptide chains. Consequently,
helical chirality of the ferrocenoyl moiety is easily controlled by changing the chirality of the introduced
dipeptide chains (Figure 6). The ferrocene-dipeptide conjugate 2 shows a positive Cotton effect at
the absorbance region of the ferrocenoyl moiety based on P-helical chirality in the CD spectrum in
acetonitrile and a negative Cotton effect is observed in the CD spectrum of the ferrocene-dipeptide
conjugate 3 with M-helical chirality as shown in Figure 7.

Inorganics 2018, 6, x FOR PEER REVIEW  3 of 14 

 

2. Induction of Helical Chirality into Bioorganometallic Conjugates 

2.1. Control of Helical Chirality of Ferrocene Moieties in Ferrocene-Dipeptide Conjugates 

Ferrocenylalanine, which is the first example of the introduction of amino acid into a ferrocene 

unit, was synthesized in 1957 [21–23]. After its first example of a ferrocene-amino acid conjugate, 

much attention has been devoted to the design of ferrocene-amino acid or peptide conjugates to shed 

light on the factors affecting the formation of protein secondary structures and to construct highly-

organized molecular assemblies [24–30]. Ferrocene-1,1′-dicarboxylic acid (Fc-cc), 1′-aminoferrocene-

1-carboxylic acid (Fc-ac), and 1,1′-diaminoferrocene (Fc-aa) scaffold are utilized as an organometallic 

scaffold with a central reverse-turn unit as pictured in Figure 4. The ferrocene-amino acid conjugate 

1 composed of a valine unit was reported to reveal the capability of ferrocene-1,1′-dicarboxylic acid 

(Fc-cc) as a molecular scaffold for a regulated conformation through intramolecular antiparallel β-

sheet-like hydrogen bonding (“Herrick” pattern) as depicted in Figure 5 [31]. The introduction of the 

L-Ala-L-Pro homochiral dipeptide chains into the Fc-cc scaffold induces P-helical chirality with P-1,2′ 

helical conformation of the ferrocenoyl moiety by restriction of a torsional twist about the 

Cp(centroid)-Fe-Cp(centroid) axis based on the chirality organization, through the formation of 

interchain intramolecular antiparallel β-sheet-like hydrogen bonds as observed in the ferrocene-

dipeptide conjugate 2 composed of the L-Ala-L-Pro-OEt dipeptide chains (Figure 6) [32–35]. As 

expected, M-helical chirality with M-1,5′ helical conformation of the ferrocenoyl moiety is formed in 

the ferrocene-dipeptide conjugate 3 composed of the D-Ala-D-Pro-OEt dipeptide chains. 

Consequently, helical chirality of the ferrocenoyl moiety is easily controlled by changing the chirality 

of the introduced dipeptide chains (Figure 6). The ferrocene-dipeptide conjugate 2 shows a positive 

Cotton effect at the absorbance region of the ferrocenoyl moiety based on P-helical chirality in the CD 

spectrum in acetonitrile and a negative Cotton effect is observed in the CD spectrum of the ferrocene-

dipeptide conjugate 3 with M-helical chirality as shown in Figure 7. 

 

 

Figure 4. Ferrocene-1,1′-dicarboxylic acid (Fc-cc), 1′-aminoferrocene-1-carboxylic acid (Fc-ac), and 

1,1′-diaminoferrocene (Fc-aa) scaffold for the design of chirality-organized ferrocene-peptide 

conjugates. 

Figure 4. Ferrocene-1,1′-dicarboxylic acid (Fc-cc), 1′-aminoferrocene-1-carboxylic acid (Fc-ac), and
1,1′-diaminoferrocene (Fc-aa) scaffold for the design of chirality-organized ferrocene-peptide conjugates.



Inorganics 2018, 6, 111 4 of 14

Inorganics 2018, 6, x FOR PEER REVIEW  4 of 14 

 

 

Figure 5. Ferrocene-amino acid conjugate 1. 

 

 

Figure 6. Ferrocene-dipeptide conjugates 2 and 3. 

 

 

Figure 7. CD spectra of 2 and 3 in acetonitrile (1.0 × 10−4 M). 

Figure 5. Ferrocene-amino acid conjugate 1.

Inorganics 2018, 6, x FOR PEER REVIEW  4 of 14 

 

 

Figure 5. Ferrocene-amino acid conjugate 1. 

 

 

Figure 6. Ferrocene-dipeptide conjugates 2 and 3. 

 

 

Figure 7. CD spectra of 2 and 3 in acetonitrile (1.0 × 10−4 M). 

Figure 6. Ferrocene-dipeptide conjugates 2 and 3.

Inorganics 2018, 6, x FOR PEER REVIEW  4 of 14 

 

 

Figure 5. Ferrocene-amino acid conjugate 1. 

 

 

Figure 6. Ferrocene-dipeptide conjugates 2 and 3. 

 

 

Figure 7. CD spectra of 2 and 3 in acetonitrile (1.0 × 10−4 M). Figure 7. CD spectra of 2 and 3 in acetonitrile (1.0 × 10−4 M).

The ferrocene-dipeptide conjugate 4 composed of the L-Ala-L-Phe-OMe dipeptide chains also
forms the chirality-organized structure through the formation of interchain intramolecular antiparallel
β-sheet-like hydrogen bonds to lead P-helical chirality with P-1,2′ helical conformation of the
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ferrocenoyl moiety as shown in Figure 8 [36]. P-Helical chirality with P-1,2′ helical conformation
of the ferrocenoyl moiety can be induced in the ferrocene-dipeptide conjugate 5 composed of the
Gly-L-Leu-OMe dipeptide chains even though Gly, which is achiral, is used as the adjacent amino acid
(Figure 8) [34]. The Gly-L-Pro-OEt dipeptide chains also allow the induction of P-helical chirality with
P-1,2′ helical conformation of the ferrocenoyl moiety in the ferrocene-dipeptide conjugate 6 composed
of the Gly-L-Pro-OEt dipeptide chains (Figure 8) [37].
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The formation of protein secondary structures can be controlled by changing the absolute
configuration and sequence of amino acids. The simultaneous formation of an antiparallel β-sheet-like
structure and a type II β-turn-like structure is achieved by conjugation of the Fc-cc scaffold as a central
reverse-turn unit with the L-Ala-D-Pro heterochiral dipeptide sequence to induce P-helical chirality
with P-1,2′ helical conformation of the ferrocenoyl moiety in the ferrocene-dipeptide conjugates 7
as depicted in Figure 9 [38]. The helical chirality of the ferrocenoyl moiety is likely to be induced
depending on the absolute configuration of the α-carbon atom of an amino acid adjacent to the
ferrocenoyl moiety [39,40]. On the other hand, the introduction of the L-Pro-L-Ala homochiral dipeptide
chains into the Fc-cc scaffold induces the chirality-organized structure based on the formation of an
antiparallel β-sheet-like structure with a concomitant formation of an inverse γ-turn-like structure as
observed in the ferrocene-dipeptide conjugate 8 (Figure 9) [41].
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Cyclization of ferrocene-dipeptide conjugates to lead to the close proximity of the two peptide
strands is a convenient approach to form a β-sheet structure. The cyclic ferrocene-dipeptide conjugate
9 composed of the cyclic peptide (-Gly-L-Val-cystamine-L-Val-Gly-) forms intramolecular antiparallel
β-sheet-like hydrogen bonds to induce P-helical chirality with P-1,2′ helical conformation of the
ferrocenoyl moiety (Figure 10) [42].
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In general, the helical chirality of the ferrocenoyl moiety in the ferrocene-dipeptide conjugates
composed of the Fc-cc scaffold, depends on the absolute configuration of the α-carbon atom of
an amino acid adjacent to the Fc-cc scaffold as described above. The helical chirality and protein
secondary structures in ferrocene-dipeptide conjugates can be controlled by the regulation of
the conformational flexibility of the dipeptide chains through cyclization of the dipeptide chains.
Interestingly, the cyclic ferrocene-dipeptide conjugate 10 composed of the heterochiral dipeptides
(-L-Ala-D-Pro-cystamine-D-Pro-L-Ala-) shows M-helical chirality with M-1,4′ helical conformation of
the ferrocenoyl moiety by the creation of a type II β-turn-like structure as pictured in Figure 11 [43].
On the contrary, P-helical chirality with P-1,2′ helical conformation of the ferrocenoyl moiety through
the formation of an antiparallel β-sheet-like structure with a concomitant formation of an inverse
γ-turn-like structure is observed in the cyclic ferrocene-dipeptide conjugate 11 composed of the
homochiral dipeptides (-L-Ala-L-Pro-cystamine-L-Pro-L-Ala-) (Figure 11) [43]. From these results,
both P- and M-helical chirality can be induced by control of the absolute configuration of the remote
amino acid without changing the absolute configuration of the adjacent amino acid in the cyclic
ferrocene-dipeptide conjugates. Moreover, the conversion of M-helical chirality into P-helical chirality
of the ferrocenoyl moiety can be controlld by the conversion of a type II β-turn-like structure to
an antiparallel β-sheet-like structure. P-Helical chirality with P-1,2′ helical conformation of the
ferrocenoyl moiety based on the chirality organization through the formation of an antiparallel
β-sheet-like structure is observed in the acyclic ferrocene-dipeptide conjugate 12 composed of the
L-Ala-D-Pro-NHCH2CH2SH dipeptide chains, which is synthesized by the reductive cleavage of
disulfide bonds in cyclic conjugate 10 as shown in Figure 11 [43]. The acyclic ferrocene-dipeptide
conjugate 13 composed of the L-Ala-L-Pro-NHCH2CH2SH dipeptide chains displays P-helical chirality
with P-1,2′ helical conformation of the ferrocenoyl moiety, based on the chirality organization through
the formation of an antiparallel β-sheet-like structure (Figure 11) [43].



Inorganics 2018, 6, 111 7 of 14
Inorganics 2018, 6, x FOR PEER REVIEW  7 of 14 

 

 

Figure 11. Ferrocene-dipeptide conjugates 10–13. 

The organometallic amino acid, 1′-aminoferrocene-1-carboxylic acid (Fc-ac), can be also utilized 

as a reliable molecular scaffold to allow the chirality-organized structure. P-Helical chirality with P-

1,2′ helical conformation of the Fc-ac moiety through the formation of a 12-membered hydrogen-

bonded ring is induced in the ferrocene-amino acid conjugate 14 (Boc-L-Ala-Fc-ac-L-Ala-L-Ala-OMe) 

as illustrated in Figure 12 [44]. The attachment of amino acids to 1,1′-diaminoferrocene (Fc-aa) as a 

molecular scaffold induces the chirality organization. An intramolecular 14-membered hydrogen-

bonded ring is formed in the ferrocene-amino acid conjugate 15 composed of the L-Ala-Boc amino 

acids, resulting in P-helical chirality of the Fc-aa moiety (Figure 12) [45]. The ferrocene-amino acid 

conjugate 16 composed of only one L-Ala-Boc amino acid also forms the chirality-organized structure 

through intramolecular hydrogen bonds (Figure 12) [46]. The DFT studies accompanied with the data 

of CD measurements of the ferrocene-dipeptide conjugate 17 (Ac-L-Ala-L-Pro-NH-Fc-NH-L-Pro-L-

Ala-Boc) indicate P-helical chirality of the Fc-aa moiety (Figure 12) [47]. The formation of 

intramolecular 10-membered and 13-membered hydrogen-bonded rings induces P-helical chirality 

of the Fc-aa moiety in the ferrocene-dipeptide conjugate 18 (Ac-D-Ala-L-Pro-NH-Fc-NH-L-Pro-D-Ala-

Boc) (Figure 12) [47]. 

The ferrocene-dipeptide conjugate 19 composed of the L-Ala-L-Pro-NH-2-PyMe dipeptide 

chains forms the chirality-organized structure with P-helical chirality of the ferrocenoyl moiety, 

through the formation of interchain intramolecular antiparallel β-sheet-like hydrogen bonds, 

wherein two C-terminal amido pyridyl moieties are well arranged for binding of dicarboxylic acids 

through hydrogen bonding (Figure 13) [48]. As a matter of fact, the ferrocene-dipeptide conjugate 19 

can form the 1:1 complex 20 with a series of dicarboxylic acids and serve as a receptor for the size-

selective and chiral recognition of dicarboxylic acids (Figure 13) [48]. 

Figure 11. Ferrocene-dipeptide conjugates 10–13.

The organometallic amino acid, 1′-aminoferrocene-1-carboxylic acid (Fc-ac), can be also utilized as
a reliable molecular scaffold to allow the chirality-organized structure. P-Helical chirality with P-1,2′

helical conformation of the Fc-ac moiety through the formation of a 12-membered hydrogen-bonded ring
is induced in the ferrocene-amino acid conjugate 14 (Boc-L-Ala-Fc-ac-L-Ala-L-Ala-OMe) as illustrated
in Figure 12 [44]. The attachment of amino acids to 1,1′-diaminoferrocene (Fc-aa) as a molecular
scaffold induces the chirality organization. An intramolecular 14-membered hydrogen-bonded ring
is formed in the ferrocene-amino acid conjugate 15 composed of the L-Ala-Boc amino acids, resulting
in P-helical chirality of the Fc-aa moiety (Figure 12) [45]. The ferrocene-amino acid conjugate 16
composed of only one L-Ala-Boc amino acid also forms the chirality-organized structure through
intramolecular hydrogen bonds (Figure 12) [46]. The DFT studies accompanied with the data of CD
measurements of the ferrocene-dipeptide conjugate 17 (Ac-L-Ala-L-Pro-NH-Fc-NH-L-Pro-L-Ala-Boc)
indicate P-helical chirality of the Fc-aa moiety (Figure 12) [47]. The formation of intramolecular
10-membered and 13-membered hydrogen-bonded rings induces P-helical chirality of the Fc-aa moiety
in the ferrocene-dipeptide conjugate 18 (Ac-D-Ala-L-Pro-NH-Fc-NH-L-Pro-D-Ala-Boc) (Figure 12) [47].

The ferrocene-dipeptide conjugate 19 composed of the L-Ala-L-Pro-NH-2-PyMe dipeptide chains
forms the chirality-organized structure with P-helical chirality of the ferrocenoyl moiety, through
the formation of interchain intramolecular antiparallel β-sheet-like hydrogen bonds, wherein two
C-terminal amido pyridyl moieties are well arranged for binding of dicarboxylic acids through
hydrogen bonding (Figure 13) [48]. As a matter of fact, the ferrocene-dipeptide conjugate 19 can
form the 1:1 complex 20 with a series of dicarboxylic acids and serve as a receptor for the size-selective
and chiral recognition of dicarboxylic acids (Figure 13) [48].
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The reaction of the ferrocene-dipeptide conjugate 21 composed of the L-Ala-L-Pro-NH-2-Py
dipeptide chains with PdCl2(MeCN)2 affords the 1:1 trans-palladium complex 22, wherein the
chirality-organized structure through the formation of an antiparallel β-sheet-like structure is stabilized
in both solution and solid states (Figure 14) [49].
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In the case of the ferrocene-dipeptide conjugate 23 composed of only one L-Ala-L-Pro-OEt
homochiral dipeptide chain, a left-handed helically ordered molecular arrangement, wherein two
independent molecules are connected alternately to form an intermolecular hydrogen bonding network,
is observed in the crystal packing as depicted in Figure 15a [33]. A left-handed helically ordered
molecular arrangement through a network of intermolecular hydrogen bonds is also created in the
ferrocene-dipeptide conjugate 24 composed of only one L-Ala-D-Pro-NH-2-Py heterochiral dipeptide
chain (Figure 15b) [38]. The utilization of the D-Ala-L-Pro-NH-2-Py heterochiral dipeptide chain leads
to the formation of an opposite helically ordered molecular assembly; a right-handed helically ordered
molecular arrangement in the crystal packing of the ferrocene-dipeptide conjugate 25 composed of
only one D-Ala-L-Pro-NH-2-Py heterochiral dipeptide chain as shown in Figure 15c [38].
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Figure 15. A portion of a layer containing the helical assembly of crystal packing of the
ferrocene-dipeptide conjugates (a) 23, (b) 24, and (c) 25 (hydrogen atoms, which are not involved
in hydrogen bonding, are omitted for clarity).

The chirality-organized structure depends on the position of the pyridyl nitrogen of the
C-terminal pyridyl moiety. In contrast to assembling properties of 24, an intramolecular type
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II β-turn-like hydrogen bond is created in the ferrocene-dipeptide conjugate 26 composed of
only one L-Ala-D-Pro-NH-4-Py heterochiral dipeptide chain (Figure 16) [50]. Assembling of the
chirality-organized ferrocene-dipeptide conjugate 26 with a β-turn-like structure is demonstrated by
the reaction of 26 with 0.25 molar equivalent amount of [Pd(MeCN)4](BF4)2, giving the 4:1 palladium
complex 27, where the four chirality-organized ferrocene-dipeptide conjugates are arranged in the
same direction to form a chiral pocket as pictured in Figure 16 [50].
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2.2. Chirality Induction of the Au(I)–Au(I) Axis in Dinuclear Organogold(I)-Uracil Conjugates

Gold(I) compounds can aggregate through a d10–d10 closed shell aurophilic bonding interaction,
where the strength is comparable to the strength of a hydrogen bonding [18–20]. G-octamer formation
of the organogold(I)-guanosine conjugates [51,52] and self-organization of the organogold(I)-uracil
conjugate [53] were demonstrated to induce Au(I)–Au(I) interaction. Conversely, the utilization of
Au(I)–Au(I) interaction is a promising strategy for preorganization of the self-assembling nucleobase
moieties. The dinuclear organogold(I)-uracil conjugate 28 shows an intramolecular aurophilic
Au(I)–Au(I) interaction by using Xantphos as a bridging diphosphine ligand for the arrangement of
the phosphorus coordination site on the same side to induce intramolecular Au(I)–Au(I) interaction as
shown in Figure 17 [54]. R- and S-enantiomers based on the presence of a torsional twist about the
Au(I)–Au(I) axis are present in the crystal structure of 28 (Figure 17), wherein the hydrogen-bonded
assembly through intermolecular hydrogen bonding between the uracil moieties is observed [54].
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Figure 17. Crystal structures of the (a) R- and (b) S-enantiomers of the dinuclear organogold(I)-uracil
conjugate 28 (hydrogen atoms and octyl moieties are omitted for clarity).
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The utilization of the bridging diphosphine ligand with axial chirality induces chirality induction
in the Au(I)–Au(I) axis. An intramolecular aurophilic Au(I)–Au(I) interaction is observed in the crystal
structure of the dinuclear organogold(I)-uracil conjugate 29 with (R)-BINAP as a bridging diphosphine
ligand, wherein 29 adopts a R,R-configuration through the chirality induction of the Au(I)–Au(I) axis
as illustrated in Figure 18a [54]. In the crystal packing, a helical molecular assembly is formed by
self-assembling through intermolecular hydrogen bonds between the uracil moieties (Figure 18b) [54].
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Figure 18. (a) Crystal structure of the R-enantiomer and (b) the helical molecular assembly through
intermolecular hydrogen bonds between the uracil moieties of the dinuclear organogold(I)-uracil
conjugate 29 (hydrogen atoms and octyl moieties are omitted for clarity).

3. Conclusions

In the bioorganemetallic ferrocene-dipeptide conjugates, the formation of protein secondary
structures through intramolecular hydrogen bonding induces helical chirality of the 1,n′-disubstituted
ferrocene moiety, wherein the formation of protein secondary structures can be altered by changing
the absolute configuration and sequence of amino acids. The helical chirality of the ferrocenoyl
moiety is also controlled by adjusting the conformational flexibility of the dipeptide chains through
cyclization of the dipeptide chains. Chirality induction in the Au(I)–Au(I) axis of the dinuclear
organogold(I)-uracil conjugate is demonstrated by using (R)-BINAP as a bridging diphosphine ligand
for the arrangement of the phosphorus coordination site on the same side, to induce intramolecular
Au(I)–Au(I) interaction. Directionality and specificity of hydrogen bonding play a crucial role in the
construction of chirality-organized structures. In this sense, amino acids and peptides, which have
hydrogen bonding sites and chiral centers, are promising to serve as chirality induction units through
the formation of hydrogen bonds.
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44. Barišić, L.; Dropučić, M.; Rapić, V.; Pritzkow, H.; Kirin, S.I.; Metzler-Nolte, N. The First Oligopeptide
Derivative of 1′-Aminoferrocene-1-Carboxylic Acid Shows Helical Chirality with Antiparallel Strands.
Chem. Commun. 2004, 2004–2005. [CrossRef]

45. Chowdhury, S.; Schatte, G.; Mahmoud, K.A.; Kraatz, H.-B. Amino Acid Conjugates of 1,1′-Diaminoferrocene.
Synthesis and Chiral Organization. Org. Biomol. Chem. 2005, 3, 3018–3023. [CrossRef] [PubMed]
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