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ABSTRACT: Radical polymerization of N-methylacrylamide (NMAAm), 

N,N-dimethylacrylamide (DMAAm), and N-methyl-N-phenylacrylamide (MPhAAm) 

was investigated in toluene at low temperatures. Atactic, isotactic, and syndiotactic 

polymers were obtained by the polymerization of NMAAm, DMAAm, and MPhAAm, 

respectively, indicating that the stereospecificity of the radical polymerization of 

acrylamide derivatives depended on the N-substituents of the monomer used. From the 

viewpoint of monomer structure, the origin of the stereospecificity of radical 

polymerization of NMAAm derivatives is discussed. 
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INTRODUCTION 

Stereospecific radical polymerization is a challenging topic in polymer synthesis and has 

attracted much attention. In particular in the last decade, stereoregulation of radical 

polymerization has been reported for a wide range of monomers.1-24 It has been revealed 

that stereospecificity of radical polymerization is determined by a combination of several 

factors such as monomer structure, concentration, solvent, temperature, complexation, 

and template effects.  

Radical polymerization of N,N-disubstituted acrylamides is one of the 

representative systems in which stereospecificity depends on monomer structure.4 

N,N-Dimethylacrylamide (DMAAm) tends to afford isotactic polymer, in particular in 

non-polar solvents such as toluene at low temperatures, whereas N,N-diphenylacrylamide 

(DPhAAm) gives syndiotactic polymer regardless of the solvents and temperature.  

Recently, we have reported that hydrogen bonding interactions are useful for 

controlling the stereospecificity of the radical polymerization of acrylamide derivatives. 

In the course of that study,11-16,18 it was found that the N-substituent s-trans to the 

carbonyl group of N-methylacrylamide (NMAAm) derivatives plays an important role in 

determination of stereospecificity of their radical polymerizations. In this paper, the 

mechanism of radical polymerization of NMAAm derivatives is discussed, based on the 

polymerization results and the monomer structures. 
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EXPERIMENTAL 

Materials 

N-Methyl-N-phenylacrylamide (MPhAAm) was prepared according to literature 

methods.25 Toluene was purified by washing with sulfuric acid, water and 5% aqueous 

NaOH, followed by fractional distillation. Tri-n-butylborane (n-Bu3B), purchased as a 

tetrahydrofuran (THF) solution (1.0 M) (Aldrich Chemical Co.), was used without further 

purification.  

 

Polymerization 

A typical polymerization procedure was as follows. MPhAAm (0.426 g, 2.64 mmol) was 

diluted with toluene to a total volume of 5 mL giving a final concentration of 0.528 mol 

L-1. 4 mL of this solution was transferred to a glass ampoule and cooled to 0°C. 

Polymerization was initiated by adding an aliquot of n-Bu3B solution (0.21 mL, 1.0 M) to 

the monomer solution.26 After 24 h, the reaction was terminated by adding 

2,6-di-t-butyl-4-methylphenol in THF (0.5 mL, 1.0 M) at the polymerization temperature. 

The polymerization mixture was poured into methanol (150 mL). The polymer 

precipitated was collected by filtration or centrifugation, and dried in vacuo. The polymer 

yield was determined gravimetrically. 

 

Measurements 

400 MHz 1H NMR spectra were obtained using an EX-400 spectrometer (JEOL Ltd.). 

The tacticity of the polymers obtained was determined from the 1H NMR signals of the 
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methylene groups in the main chain, in deuterated dimethyl sulfoxide (DMSO-d6) at 

150°C. The molecular weights and molecular weight distributions of the polymers were 

determined by size exclusion chromatography (SEC), using polystyrene samples as 

molecular weight standards. SEC was performed with an HLC 8220 chromatograph 

(Tosoh Co.) equipped with TSK gel columns (SuperHM-M (6.5 mm ID × 150 mm) and 

SuperHM-H (6.5 mm ID × 150 mm), Tosoh Co.). Dimethylformamide containing LiBr 

(10 mmol L-1) was used as eluent at 40°C with flow rate 0.35 mL min-1. The initial 

polymer concentration was 1.0 mg mL-1.  

 

RESULTS AND DISCUSSION 

Radical Polymerization of NMAAm Derivatives in Toluene at Low Temperatures 

The radical polymerization of NMAAm, DMAAm, and MPhAAm was carried out in 

toluene at low temperatures (Table 1). Stereoregularity of the polymers obtained varied 

widely with the N-substituents of the monomer used. Figure 1 shows relationships 

between the polymerization temperature and the r dyad content of the polymers obtained. 

NMAAm, a monosubstituted acrylamide, gave atactic polymers regardless of the 

temperature, whereas DMAAm and MPhAAm, disubstituted acrylamides, provided 

polymers rich in m and r dyads, respectively. These results suggest that the second 

N-substituent on the NMAAm derivatives plays an important role in inducing 

stereospecificity of their radical polymerizations. It has previously been shown that the 

radical polymerization of DPhAAm produces syndiotactic polymers.4 This means that the 

stereospecificity of radical polymerization of N,N-disubstituted acrylamides changes 
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from isotactic to syndiotactic when at least one of the two N-methyl groups in DMAAm is 

replaced by a phenyl group. 

 

<Table 1> 

<Figure 1> 

 

  Figure 2 shows the relationship between the stereospecificity of radical 

polymerization and the structure of the monomer. Monosubstituted acrylamides favor the 

s-trans O=C-N-H conformation.27 N-Aryl-N-methylamides favor the s-trans O=C-N-Ar 

conformation, in which the aryl group is perpendicular to the planar amide group.25,28 

Thus, the structure of the N-substituent s-trans to the carbonyl group appears to determine 

the stereospecificity of radical polymerization of NMAAm derivatives. 

 

<Figure 2> 

 

The differences in activation enthalpy (∆Hi
‡–∆Hs

‡) and activation entropy 

(∆Si
‡–∆Ss

‡) between isotactic and syndiotactic propagations for NMAAm, DMAAm and 

MPhAAm polymerizations in toluene are summarized in Table 2.29 It should be noted that 

the absolute value of ∆S i
‡–∆Ss

‡ for MPhAAm polymerization was small, whereas the 

absolute values of both ∆Hi
‡–∆Hs

‡ and ∆Si
‡–∆Ss

‡ increased significantly for DMAAm 

polymerization. This means that the difference in degree of freedom between isotactic 

and syndiotactic propagations is quite small for the polymerization of MPhAAm as 
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compared to the polymerization of DMAAm. 

 

<Table 2> 

 

The Role of the N-Substituent s-trans to the Carbonyl Group of NMAAm 

Derivatives in Stereospecificity of Radical Polymerization  

In the radical polymerization of NMAAm derivatives, the incoming monomer will 

approach the propagating radical center, as shown in Scheme 1, in a way which reduces 

the steric repulsion between the amide moieties of the monomer and the propagating 

chain-end. When NMAAm is used as the monomer, the chain end of the newly formed 

radical (A) is free to rotate, as there is little steric hindrance. The freely rotating radical 

(B) can react with a new incoming monomer via two possible pathways, pathway a 

forming an r dyad and pathway b an m dyad. As the chain end rotates, neither pathway is 

favored and are equally likely, resulting in the formation of an atactic polymer. 

 

<Scheme 1> 

 

 In DMAAm polymerization, the chain end of the newly formed radical (A) can 

rotate as in the NMAAm polymerization. However, the radical adopts a different 

conformation due to steric repulsion between the second methyl groups s-trans to the 

carbonyl groups on the monomeric units near the chain end. This conformationally 

rotated radical (C) also can react with a new incoming monomer via two possible 
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pathways. Propagation via pathway b will be preferred due to the steric hindrance of the 

amide moiety at the penultimate monomeric units, resulting in the formation of an 

isotactic polymer.  

 In MPhAAm polymerization, the conformation of the chain end of the newly 

formed radical (A) will be rotated due to the steric repulsion between the amide moieties 

at the monomeric units near the chain end. However, to keep the phenyl and amide groups 

perpendicular at the antepenultimate and penultimate monomeric units, the radical A will 

not be able to rotate near the chain end. This conformationally constrained radical (D) 

also can react with a new incoming monomer via two possible pathways. The steric 

hindrance of the amide moiety at the penultimate monomeric unit would prevent the 

approach via this side reducing reaction via pathway b, resulting in the formation of a 

syndiotactic polymer. The small absolute value of ∆Si
‡–∆Ss

‡ for MPhAAm 

polymerization would reflect such constraint of conformation near the propagating 

chain-end. 

 

CONCLUSION 

The radical polymerization of NMAAm derivatives was investigated in toluene at low 

temperatures. It was revealed that NMAAm, DMAAm, and MPhAAm gave atactic, 

isotactic, and syndiotactic polymers, respectively. From the viewpoint of monomer 

structure, it was suggested that the N-substituent s-trans to carbonyl group is an important 

factor in the stereospecificity of the radical polymerization of NMAAm derivatives. 

Application of this result to the prediction of stereospecificity of radical polymerization 
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of other acrylamide derivatives is ongoing. 
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Table 1.  Radical Polymerization of NMAAm, DMAAm, and MPhAAm in Toluene at Low 
Temperatures for 24 ha 

Run Monomer Temp. Yield Dyad / %b Mn
c Mw/Mn

 

c 
  °C % m r x 104  

1d,e 
2d,e 
3d,e 
4d,e 
5d,e 
6f 
7f 
8f 
9f 

10f 
11 
12 
13 
14 
15 

NMAAm 
NMAAm 
NMAAm 
NMAAm 
NMAAm 
DMAAm 
DMAAm 
DMAAm 
DMAAm 
DMAAm 
MPhAAm 
MPhAAm 
MPhAAm 
MPhAAm 
MPhAAm 

0 
–20 
–40 
–60 
–80 

0 
–20 
–40 
–60 
–80 

0 
–20 
–40 
–60 
–80 

>99 
>99 

85 
76 

>99 
82 
77 
41 
56 
62 
77 
87 
89 
86 
26 

49 
49 
50 
51 
52 
62 
64 
66 
70 
73 
30 
28 
26 
25 
24 

51 
51 
50 
49 
48 
38 
36 
34 
30 
27 
70 
72 
74 
75 
76 

nd 
nd 
nd 
nd 
nd 

1.21 
1.39 
1.50 
2.21 
5.20 
3.14 
3.78 
4.13 
4.40 
3.72 

nd 
nd 
nd 
nd 
nd 

1.5 
1.5 
1.6 
1.6 
1.8 
1.5 
1.6 
1.5 
1.5 
1.3 

a. [Monomer]0=0.5 mol L–1, [n-Bu3B]0=0.05 mol L-1. 
b. Determined by 1H NMR signals due to methylene group. 
c. Determined by SEC (polystyrene standards). 
d. Monomer, polymer or both were precipitated during polymerization reaction. 
e. Data from ref. 15. 
f. Data from ref. 18b. 
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Table 2.  Activation Parameters for the Radical Polymerization of NMAAm, 
DMAAm or MPhAAm in toluene 

Monomer ∆Hi
‡-∆Hs

‡ 
kJ mol-1 

∆Si
‡-∆Ss

‡ 
J mol-1 K-1 

NMAAm 
DMAAma 
MPhAAm 

0.71±0.07 
–2.84±0.14 
1.64±0.25 

–3.0±0.3 
9.5±0.6 

–1.3±1.1 

a. Data from ref. 18b. 
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Figure 1.  Relationship between the polymerization temperature and r dyad content of 

polymers prepared by radical polymerization of NMAAm, DMAAm or MPhAAm in 

toluene at low temperatures. 
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Figure 2.  Relationship between the N-substituent s-trans to carbonyl group in 

N-methylacrylamide derivatives and the stereospecificity of their radical polymerizations.  
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Scheme 1. Proposed mechanism for the three types of stereospecific radical 

polymerizations of N-methylacrylamide derivatives, in which the N-substituent s-trans to 

carbonyl group plays an important role.  

 

 


