
1 

Synthesis of Heterotactic and Syndiotactic Polyacrylamides via Stereospecific 

Radical Polymerization of N-tert-Butoxycarbonylacrylamide in the Presence of 

Fluorinated Alcohols 

TOMOHIRO HIRANO, TAKAMASA MIYAZAKI, KOICHI UTE 

Institute of Technology and Science, Tokushima University, Minamijosanjima 2-1, 

Tokushima 770-8506, Japan 

Correspondence to : T. Hirano (E-mail: hirano@chem.tokushima-u.ac.jp) 

Keywords: radical polymerization; stereospecific polymers; hydrogen bond; 

syndiotactic; heterotactic; N-tert-butoxycarbonylacrylamide 

INTRODUCTION 

Polyacrylamide [poly(AAm)] has been widely used as a matrix for gel 

electrophoresis.  The improvements in both resolution and reproducibility have 

contributed to the development of proteome analysis.1-3  There are, however, limited 

number of reports on the syntheses of stereoregular poly(AAm)s, although the tacticity 

affects the properties of the polymer materials. 
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Recently, it has been reported that the syntheses of stereocontrolled poly(N-

isopropylacrylamide)s [poly(NIPAAm)s] were achieved via anionic polymerization of 

protected NIPAAm monomers followed by deprotection.4,5  This strategy, however, is 

unsuitable for the syntheses of stereoregular poly(AAm)s, because double protections of 

the two N-H groups of AAm monomer are required before the anionic polymerization.  

To the best of our knowledge, the synthesis of isotactic poly(AAm) (mm = 65 %) by the 

radical polymerization in the presence of Lewis acids is the sole method for the 

preparation of stereoregular poly(AAm),6 except for the amidation of isotactic 

poly(phenyl acrylate).7 

We have reported the stereocontrol in the radical polymerization of NIPAAm, 

which is one of N-monosubstituted acrylamides, utilizing the hydrogen-bond-assisted 

complex formation at low temperatures.8-11  In the present work, we designed a new 

monomer, N-butoxycarbonylacrylamide (NBocAAm), as a protected AAm,12  because the 

Boc groups of poly(NBocAAm)s are expected to be deprotected easily to afford 

poly(AAm)s.  We conducted the radical polymerization of NBocAAm in the presence of 

fluorinated alcohols which induced heterotactic-specificity in the NIPAAm 

polymerization.11(b)  It was found that not only the resultant poly(NBocAAm)s were 

successfully converted into poly(AAm)s, but also the stereospecificity of the NBocAAm 

polymerization depended on the kinds of the added fluorinated alcohols.  Here, we report 

the preliminary results of the syntheses of stereoregular poly(AAm)s via the radical 

polymerization of NBocAAm followed by deprotection. 
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EXPERIMENTAL 

Materials 

Toluene was purified through washing with sulfuric acid, water, and 5% aqueous NaOH; 

this was followed by fractional distillation.  Dimethyl 2,2’-azobisisobutyrate (MAIB) 

(supplied by Otsuka Chemical Co., Ltd) was recrystallized from methanol.  Acrylamide 

(Kanto Chemical Co., Inc.), sodium hydride (60% dispersion in paraffin liquid), and di-

tert-butyl dicarbonate (Tokyo Kasei Kogyo Co.) were used without purification for 

monomer synthesis.  2,2,2-Trifluoroethanol (1) (Aldrich Chemical Co.), 1,1,1,3,3,3-

hexafluoro-2-propanol (2) (supplied by Daikin Industries, Ltd.), and nonafluoro-tert-

butanol (3) (Tokyo Kasei Kogyo Co.) were used without further purification for 

polymerization reactions. 

 

 

Synthesis of NBocAAm13 
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 The THF (500 mL) solution of acrylamide (14.2 g, 200 mmol) was placed in a 

500 mL round-bottom flask equipped with a condenser and was magnetically stirred at 

0 °C for 30 min.  The solution was stirred for further 10 min under N2 after the addition 

of NaH dispersed in paraffin liquid (60 %, 8.0 g, 200 mmol).  To the stirred solution was 

added di-tert-butyl dicarbonate (25.0 g, 115 mmol) and the mixture was stirred at 0 °C 

for 3 h and at room temperature overnight.  After the solvent was evaporated, the mixture 

was dissolved in ethyl acetate, washed with HCl and water, and dried over MgSO4.  After 

filtration, the solvent was evaporated again to yield crude NBocAAm.  Recrystallization 

from ethyl acetate afforded pure NBocAAm (7.35 g, 37 %): m. p. 119-120 °C (decomp.), 

1H NMR (400 MHz, CDCl3 at 35 °C), δ 1.51 (s, 9H), 5.84 (ddd, 1H, 2J = 1.7 Hz, 3J = 

10.4 Hz, 5J = 0.6 Hz), 6.49 (dd, 1H, 2J = 1.7 Hz, 3J = 17.1 Hz), 7.05 (dd, 1H, 3J = 10.4 Hz, 

3J = 17.1 Hz), 7.42 (bs, 1H), 13C NMR (100 MHz, CDCl3 at 35 °C), δ 27.99, 82.77, 128.88, 

130.76, 150.38, 165.88.  

 

Polymerization 

Typical polymerization procedure is as follows; NBocAAm ( 0.481 g, 2.8 mmol) and 1 

(1.694 g, 16.9 mmol) were dissolved in toluene to prepare a 5 mL solution.  MAIB (0.103 

g, 0.40 mmol) was dissolved in toluene to prepare a 1 mL solution.  Four milliliters of the 

former solution and one-half milliliter of the latter solution were transferred to the glass 

ampoule and cooled at –50 °C.  The glass ampoule was degassed and filled with nitrogen 

three times, and sealed under vacuum.  The polymerization was initiated by UV 

irradiation at the polymerization temperature.  After 12 h, the polymerization mixture was 
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poured into a large amount of hexane/diethyl ether mixtures (1:1 vol:vol)14, and the 

precipitated polymer was collected by centrifugation, and dried in vacuo.  The polymer 

yield was determined gravimetrically.   

The NBocAAm monomer alone was insoluble in toluene at the polymerization 

temperatures and the addition of alkyl alcohols such as 3-methyl-3-pentanol, which 

significantly induced syndiotactic-specificity in NIPAAm polymerizations,11(a) hardly 

improved the solubility of the monomer.  The NBocAAm monomer, however, was soluble 

in toluene in the presence of fluorinated alcohols examined in this study.  Monomer, 

polymer or both were precipitated during the polymerization reactions in the presence of 

1 and 2 at –40 °C.   

 

Measurements 

1H and 13C NMR spectra were measured on an EX-400 spectrometer or an 

ECX-400 spectrometer (JEOL, Ltd.).  Triad tacticities were determined from 13C NMR 

signals due to the methine groups in chain of the poly(AAm)s derived from 

poly(NBocAAm)s.  Molecular weights and molecular weight distributions of the 

poly(NBocAAm)s were determined by size exclusion chromatography (SEC) (HLC 8220 

instrument (Tosoh Co.)) equipped with TSK gels (SuperHM-M and SuperHM-H (Tosoh 

Co.)) using dimethylformamide (LiBr 10 mmol/L) as an eluent at 40 °C ([polymer] = 1.0 

mg/mL, flow rate = 0.35 mL/min).  The SEC chromatogram was calibrated with standard 

polystyrene samples.  IR spectra were recorded with FT/IR-460 plus (Jasco Co.). 
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RESULTS AND DISCUSSION 

Radical Polymerization of NBocAAm in the Presence of Fluorinated Alcohols 

The radical polymerization of NBocAAm in toluene at –40 or 0 °C for 12 h was carried 

out in the presence of sixfold amounts of fluorinated alcohols (1-3) to NBocAAm (Table 

1).  The polymers were obtained at relatively high yields.  The molecular weights of the 

obtained polymers decreased as the number of fluorine atom and/or bulkiness of the 

fluorinated alcohols increased.  This result suggests that the added fluorinated alcohols 

affected the stereospecificity of the NBocAAm polymerization through the hydrogen-

bonding interaction. 

 

<Table 1> 

 

The obtained polymers were converted into poly(AAm)s by the deprotection to 

determine the tacticities.15  The details of the deprotection procedure is described later.  

Figure 1 displays the 13C NMR spectra of the main-chain methine carbons of poly(AAm)s 

derived from poly(NBocAAm)s prepared at –40 °C.  The signals were assigned at triad 

levels as in Figure 1, according to the literature.16  In the presence of 1, almost atactic 

polymers were obtained, in particular by lowering the temperature to –40 °C.  

Interestingly, heterotactic and syndiotactic polymers were obtained with the addition of 2 

and 3, and such tendencies were enhanced at lower temperatures.  These results contrast 

with the fact that heterotactic polymers were obtained by the NIPAAm polymerizations 

in the presence of 1-3.  Thus, it is assumed that such difference in the stereospecificities 
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between the NBocAm polymerizations and the NIPAAm polymerizations is attributed to 

the difference in the structures of the hydrogen-bond-assisted complexes between the 

monomers and the added fluorinated alcohols. 

 

<Figure 1> 

 

Deprotection of the tert-Butoxycarbonyl Group 

The 0.1 g of poly(NBocAAm) prepared in toluene at 0 °C in the presence of 1 was 

dissolved in CF3COOH (1 mL) at room temperature with stirring.  After 1 h, the solution 

was poured into methanol (40 mL).  The precipitate was collected by centrifugation.  

Figure 2 shows the IR spectrum of the precipitate together with those of the original 

poly(NBocAAm) and authentic poly(AAm).  The absorbances at 1706 and 1778 cm–1 

(Figure 2c) disappeared after the deprotection (Figure 2b) and the spectrum of the 

deprotected polymer was consistent with that of poly(AAm) (Figure 2a).  Further, the 13C 

NMR signal due to C=O of the deprotected polymer was observed as a single peak and 

agreed with that of poly(AAm).  These results indicate that poly(NBocAAm) can be 

converted quantitatively into poly(AAm) under the acidic conditions, as expected. 

 

<Figure 2> 

 

CONCLUSION 

We designed NBocAAm as a protected monomer and succeeded in indirect synthesis of 
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poly(AAm) by deprotection of poly(NBocAAm).  Furthermore, it was revealed that the 

addition of fluorinated alcohols such as 2 and 3 significantly induced the heterotactic- and 

syndiotactic-specificities.  To the best of our knowledge, these are the first syntheses of 

heterotactic and syndiotactic poly(AAm)s.  Further works on the effect of the added 

amount of the fluorinated alcohols in addition to the structures of the hydrogen-bond-

assisted complexes are in progress to revealed the mechanism of the stereospecific radical 

polymerizations of NBocAAm in the presence of the fluorinated alcohols. 

 

This work was supported in part by a Grant-in-Aid for Young Scientists (B) 

(18750102) from the Ministry of Education, Culture, Sports, Science and Technology.   
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Table 1.  Radical polymerization of NBocAAm in toluene at –40 or 0 °C for 12 h in 
the presence of fluorinated alcoholsa 
Added Temp. Yield Triad tacticity / %b Mn

c Mw
c 

alcohol °C % mm mr rr x 10–4 Mn 

1 
1 
2 
2 
3 
3 

0 
–40 
0 
–40 
0 
–40 

91 
95 
79 
61 
81 
65 

20 
23 
15 
16 
18 
11 

46 
52 
54 
63 
37 
44 

34 
25 
31 
21 
45 
45 

5.68 
10.8 
2.52 
3.24 
1.11 
1.00 

3.4 
4.0 
1.6 
2.0 
2.1 
1.6 

a. [NBocAAm]0 = 0.5 mol/L, [fluorinated alcohol]0 = 3.0 mol/L, [MAIB]0 = 0.05 
mol/L.   
b. Determined by 13C NMR signals due to methine groups of poly(AAm)s derived from 
poly(NBocAAm). 
c. Determined by SEC (polystyrene standards). 
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Figure 1.  100 MHz 13C NMR spectra of the main-chain methine carbons of poly(AAm)s 

derived from poly(NBocAAm)s prepared at –40 °C in the presence of (a) 1, (b) 2, and (c) 

3, as measured in D2O at 80 °C. 
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Figure 2.  Expanded IR spectra of (a) poly(AAm), (b) the polymer derived from 

poly(NBocAAm), and (c) poly(NBocAAm). 

 

 


