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Protein�protein interactions are essential biologic
processes that occur at inter- and intracellular levels.
To gain insight into the various complex cellular
functions of these interactions, it is necessary to
assess them under physiologic conditions. Recent ad-
vances in various proteomic technologies allow to inves-
tigate protein�protein interaction networks in living
cells. The combination of proximity-dependent labelling
and chemical cross-linking will greatly enhance our
understanding of multi-protein complexes that are dif-
ficult to prepare, such as organelle-bound membrane
proteins. In this review, we describe our current under-
standing of mass spectrometry-based proteomics
mapping methods for elucidating organelle-bound mem-
brane protein complexes in living cells, with a focus on
protein�protein interactions in mitochondrial subcellu-
lar compartments.

Keywords: BioID; mass spectrometry; mitochondria;
proteome; XL-MS.

Abbreviations: BioID, proximity-dependent biotin
identification; BirA, Bifunctional ligase/repressor
BirA; BRET, bioluminescence resonance energy
transfer; CCCP, carbonyl cyanide m-chlorophenylhy-
drazone; DSBU, disuccinimidyl dibutyric urea;
DSSO, disuccinimidyl sulfoxide; Fe-NTA, Fe(III)-
nitrilotriacetate; FRET, fluorescence resonance energy
transfer; GFP, green fluorescent protein; HEK293,
human embryonic kidney 293; IMM, inner mito-
chondrial membrane; IMS, intermembrane space;
LC-MS/MS, liquid chromatography coupled with
tandem mass spectrometry; MIB, mitochondrial
intermembrane space bridging; MICOS, mitochon-
drial contact site and cristae organizing system;
OMM, outer mitochondrial membrane; OXPHOS,
oxidative phosphorylation; PHB, prohibitin; PINK1,
PTEN-induced kinase 1; RET, resonance energy
transfer; SAM, sorting and assembly machinery;
TMT, tandem mass tag; XL-MS, cross-linking
coupled with mass spectrometry.

Co-immunoprecipitation, yeast two-hybrid assay, or
surface plasmon resonance approaches are commonly
used to investigate the interactions between proteins of
interest in the fields of cell biology and biochemistry.
These approaches have various advantages and disad-
vantages, and care must be taken to ensure that the
selected methods are optimal for addressing the spe-
cific experimental aims of the study. For analysis of the
interactions between organelle-bound membrane pro-
tein complexes, such as mitochondrial proteins, it is
particularly important to prepare the protein compo-
nents such that the structures, topologies and functions
remain intact. Various kinds of living cells, including
yeasts and tissue culture, are used for studying inter-
actomes among membrane-associated materials.

Rapid progress in the field of bio-imaging has led to
the wide use of fluorescent or bioluminescent proteins
such as green fluorescent protein (GFP) and luciferase
as reporters for monitoring intermolecular inter-
actions, such as by fluorescence resonance energy
transfer (FRET) (1, 2) and bioluminescence resonance
energy transfer (BRET) (3). Although the behaviour of
fluorophore fusion proteins used in resonance energy
transfer (RET) analysis may not precisely reflect that
of the endogenous proteins (validation is needed),
these systems are advantageous for monitoring inter-
action events of interest in living cells without con-
sidering the preparation issues mentioned above.
Several issues regarding these systems, however, must
be considered. For example, FRET requires an exter-
nal light source to excite the fluorescent proteins, and
the laser pulse often causes photobleaching of the cell
materials. The BRET system eliminates this problem
because the light is emitted by a donor moiety and
occurs as a result of a chemical reaction (i.e. a natural
resonance energy transfer process that occurs as a
result of enzymatic activity via luciferase), but the
overall BRET signal can be extremely weak relative
to that of FRET. Another minor issue for FRET is
that the photobleaching causes some intracellular pro-
teins to autofluorescence, thereby increasing the back-
ground noise, which decreases the signal-to-noise ratio.
Finally, another limitation of RET techniques is that
the stoichiometry of the components is less than a few
molecules even when using a split protomer (e.g. split
GFP) (4).

Other approaches are therefore needed to resolve
these issues for the analysis of protein�protein inter-
actions in multi-protein complexes. Here, we describe
several mass spectrometry (MS)-based proteomics
methods that are useful for elucidating organelle-
bound membrane protein complexes in living cells,
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with a focus on protein�protein interactions in mito-
chondrial subcellular compartments.

Proximity-dependent biotin identification

Proximity-dependent labelling methods in living cells
were recently developed to address several of the con-
cerns and limitations mentioned above (5). The tech-
niques are powerful and ideal tools for evaluating a
network of protein�protein interactions under physio-
logic conditions, especially for detecting low-affinity
and/or transient associations, such as interactomes
involved in signal transduction. A proximity-based
biotin labelling method, proximity-dependent biotin
identification (BioID), was established by Roux et al.
(6). The basic principal of the BioID system is that a
protein of interest (termed bait) that harbours a pro-
miscuous biotin ligase (BirA R118G mutant, from
Escherichia coli) catalyses the biotinylation of nearby
endogenous proteins with lysine side chains (within
�10 nm) after the addition of a biotin supplement to
the tissue culture medium (5, 6) (Fig. 1A, specialized
protocol for mitochondrial interactomes). Because bio-
tinylation of the targets is a covalent modification

process, these biotin-labelled proteins are resistant to
stringent cell lysis treatment with the protein extraction
and washing process, and affinity purification (such as
streptavidin beads). As a result, BioID coupled with
MS analysis reveals biotin-labelled proteins and allows
for mapping of protein�protein interaction networks
with high spatial resolution in living cells (6). Further,
targeting of the nearby proteins can be enhanced by
using a smaller type of biotin ligase (from Aquifex
aeolicus; BioID2) to fuse the bait protein, which also
reduces amount of biotin supplementation that is
required (7).

The BioID2 assay was applied to elucidate a mito-
chondrial macromolecular complex in mammalian
cells; BirA from A. aeolicus was fused to the C-ter-
minal of prohibitin 2 (PHB2), an inner mitochondrial
membrane (IMM)-bound protein (8). It is important
to consider the effects of the BirA fusion tag at either
the N- or C-termini on the biologic activity and the
organelle localization in the target protein, particularly
mitochondrial proteins (due to the potential masking
of the mitochondrial targeting sequence). BirA fused
to PHB2 behaved in an almost identical manner to the
intact protein and biotinylated a large number of
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Fig. 1 Applying the BioID assay to elucidate protein interaction in mitochondrial complexes. (A) Schematic view of the BioID method in mito-
chondrial proteins. Cultured cells expressing proteins of interest (Bait) fused with the promiscuous BirA are incubated with biotin for 18 h. The
mitochondrial fraction isolated from the cells is then lysed, and the extracted biotinylated proteins are affinity-purified followed by tryptic
digestion and identification by LC-MS/MS. (B) Volcano plot showing PHB2 versus control (non-bait) plotted against the P-value of quadru-
plicate results. Box in the figure shows significantly increased proteins (abundance ration > 5, P50.0001), and the most enriched proteins are
labelled in the right enlarged view. This figure is reproduced from a previous paper (8). (C) Model of PHB complexes in mitochondria. PHB
complexes localized in IMM seem to assemble with MIB complex that subassemblies with MICOS subcomplex and SAM. The candidates
identified by the BioID assay in (B) are coloured in red. Note that the scheme does not show information on the stoichiometry.
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mitochondrial proteins (8). MS proteomic analysis
mapping revealed significant enrichment of a select
group of mitochondrial proteins, including its PHB1
isoform, mitochondrial contact site and cristae orga-
nizing system (MICOS) subcomplex (9), and sorting
and assembly machinery (SAM) (10) in the PHB2-
BirA fraction (Fig. 1B), showing the assembly of
PHB2 with the mitochondrial intermembrane space
(IMS) bridging (MIB) complex (11, 12) (Fig. 1C).

BioID methods have been successfully applied to
reveal associations between membrane proteins that
exhibit a wide range of subcellular localizations, not
only in the mitochondria but also in the nuclear lamina
(6, 13), cell�cell junctions (14) and endoplasmic

reticulum (15). Although the BioID approach is poten-
tially useful for elucidating subcellular protein�protein
interactions in living cells, the system has some inher-
ent limitations. If the topology of the bait and target
face the opposite direction across the membrane, the
catalytic activity from the BirA may not reach the
target side. Further, if the surface of the target mol-
ecule proximate to the bait lacks lysine residues, the
approach may fail.

Cross-linking coupled with MS

Chemical cross-linking is a classical approach used to
freeze protein complexes, especially for capturing
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Fig. 2 Overview of the XL-MS analysis. (A) Chemical structures and spacer lengths of the MS-cleavable cross-linking reagents DSSO and
DSBU. Collision-induced dissociation-associated cleavage sites in the cross-linkers are indicated by red dotted lines. (B) Schematic view of the
XL-MS method in mitochondrial proteins. Mitochondria are chemically cross-linked with DSBU, followed by extraction of the protein lysates.
The extracted cross-linked proteins are affinity-purified for subsequent analysis and identification by LC-MS/MS. (C) Cross-link (red lines) map
showing all observed Lys-Lys cross-linked pairs between PHB2 and other mitochondrial proteins. Cross-links within PHB1 or PHB2 between
monomers or within one monomer cannot be distinguished in this analysis. The box in the right two panels shows the crystal structure of the
PHB2 homo-dimer (PDB 6IQE; top) and predicted PHB1-PHB2 hetero-dimer model in which observed cross-link pairs are labelled. The cross-
link map on the left was reproduced from a previous paper (8). The structures in the figure were depicted using PyMOL.
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transient protein�protein interactions. The use of
membrane-permeable cross-linkers allows the reagents
to permeate into the cellular compartments, and in
combination with MS (cross-linking coupled with
MS: XL-MS) (16, 17) provides vital insight into the
spatial arrangement of protein complexes in organelles
at the subunit level. XL-MS is challenging, however,

because of the complex fragmentation pattern of
cross-linked peptides, which frequently prevents unam-
biguous identification of the cross-linked peptides.
MS-cleavable cross-linkers, such as disuccinimidyl
sulfoxide (DSSO; containing cleavable C� S bonds)
or disuccinimidyl dibutyric urea (DSBU; containing
cleavable C�N bonds) (Fig. 2A), are recent
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Fig. 3 Example of multiplex quantitative proteomics. (A) Workflow of the TMT/Fe(III)-nitrilotriacetate (Fe-NTA)-based quantitative phos-
phoproteomic analysis. Parental or PINK-knockout HeLa cells (28) were treated with or without carbonyl cyanide m-chlorophenylhydrazone
(CCCP). Cellular proteins were purified by methanol/chloroform precipitation and digested with trypsin. The digested peptides for each sample
were labelled with TMT-10plex reagents, and all TMT-labelled samples were pooled and subjected to phosphopeptide enrichment using Fe-NTA
complexes. After reversed-phase fractionation under high-pH conditions, each fraction was analysed by LC-MS/MS. Right bottom insert shows
a schematic of the TMT reagent structure (top) with its functional regions (reporter and mass-normalizer) and peptide quantitation is accom-
plished by comparing the intensities of the reporter ions in the MS/MS spectra (bottom). (B) A volcano plot showing changes in the phos-
phopeptides of CCCP-treated parental HeLa cells and CCCP-treated PINK1-knockout HeLa cells. Plots of the two ubiquitin-derived peptides
(corresponding to amino acids 55�72 and 64�72) containing phosphorylated Ser65 are shown in red.
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innovations (18). The advantages of these MS-cleav-
able cross-linkers is that their cleavage (in the gas
phase during MS) generates distinguishable ion doub-
lets that enable the cleaved products to be identified
with a database search (16, 19) (Fig. 2B). A number of
dynamic interactions of the ribosome have been suc-
cessfully captured using this method in HeLa cells (16).

Aiming to elucidate at mitochondrial interactomes,
Bruce et al. (20, 21) expanded the XL-MS method in
mitochondria isolated from several murine tissues
and revealed a large-scale mitochondrial proteome,
including MICOS and oxidative phosphorylation
(OXPHOS) complexes. Heck et al. (22) also identified
multiple stoichiometries and conformations of
OXPHOS supercomplexes in intact mitochondria
from murine heart. XL-MS has further provided im-
portant insight into the spatial arrangement of the
PHB complexes in mitochondria (mentioned in the
above section). XL-MS of mitochondria isolated
from human embryonic kidney (HEK) 293 cells with
DSBU revealed a number of unique Lys-Lys cross-
links in the PHB complexes (8). The majority of iden-
tified peptide pairs were homotypic (PHB2-PHB2) and
heterotypic (PHB1-PHB2), and substantial inter-
actions were observed between PHB2 and DIABLO,
or between PHB2 and cytochrome c, both of which are
involved in apoptosis (Fig. 2C, left). Some of the
observed cross-links within PHB complexes show
good agreement with the high-resolution three-dimen-
sional PHB2 crystal structure (8). The linkage dis-
tances between PHB2(Lys216) and PHB2(Lys224) or
between PHB1(Lys208) and PHB2(Lys236) are well
within the empirically derived maximum linkable
length (12.5 Å) of DSBU (Fig. 2C, right).

Although the XL-MS method has provided in-
sight into many protein complexes for mapping
three-dimensional structures at low resolution, the
cross-linking process may cause artefactual pro-
tein�protein contact. A minor limitation of the XL-
MS method is that cross-links within the target
cannot be distinguished as intramolecular or intermo-
lecular, as in the case of PHB complexes.

Isobaric chemical labelling for multiplex
quantitative proteomics

Finally, we briefly describe another type of pro-
tein�protein interaction (kinase-substrate interaction
for phosphorylation) in sub-mitochondrial compart-
ments. Loss-of-function mutations in PTEN-induced
kinase 1 (PINK1), a mitochondrial serine/threonine-
protein kinase, cause early-onset autosomal recessive
Parkinson’s disease (23). Upon the loss of the mito-
chondrial membrane potential, such as in damaged
mitochondria, PINK1 switches the import pathway
from the IMM to the outer mitochondrial membrane
(OMM), where interactions with the translocase of the
outer membrane complex stabilize PINK1, resulting in
an increased the PINK1 concentration at the OMM
(24). PINK1 then forms a large multi-protein complex
on the OMM and is activated through intermolecular
autophosphorylation (25). The activated PINK1

catalyses the phosphorylation of both ubiquitin
(Ser65) and the ubiquitin-like domain of Parkin
(Ser65), leading to mitochondrial translocation and ac-
tivation of Parkin (26). Ubiquitination of various
mitochondrial proteins by the activated Parkin ultim-
ately leads to selective elimination of damaged mito-
chondria via the autophagy pathway. Experimentally,
the phosphorylation of ubiquitin by PINK1 was sub-
stantially confirmed by isobaric tandem mass tag
(TMT) labelling combined with phosphopeptide en-
richment and liquid chromatography-tandem mass
spectroscopy (LC-MS/MS). The TMT method (27)
allows for simultaneous identification and quantifica-
tion of chemically labelled peptides from up to 11 sam-
ples labelled at the peptide level (Fig. 3A).
Phosphoproteomic analysis of parental and PINK1-
deficient HeLa cells quantified 31,286 unique phospho-
peptides and revealed a PINK1-dependent increase in
the ubiquitin peptide containing phosphorylated Ser65
(Fig. 3B). Thus, global large-scale quantitative phos-
phoproteomic analysis is a useful strategy for analys-
ing kinase-substrate interactions (29, 30).

Future perspectives

MS-based proteomic methods are ideal for increasing
the number of molecules analysed in protein�protein
interactions when elucidating multi-protein complexes.
A novel technique, using peroxidase-based proximity
labelling was also developed and one approach, known
as engineered ascorbate peroxidase, generates a snap-
shot of proximate proteins with a rapid labelling time
(within a few minutes) (31, 32).

This review provides several examples of the appli-
cation of proteomic analysis to examine intermolecular
interactions that have been advanced mainly in mito-
chondrial proteins. Applications to other organelle-
bound molecules or cytoplasmic proteins as well as
for studies of complexes in higher organisms (e.g.
mice) are highly anticipated.
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22. Liu, F., Lössl, P., Rabbitts, B.M., Balaban, R.S., and
Heck, A.J.R. (2018) The interactome of intact mitochon-
dria by cross-linking mass spectrometry provides evi-
dence for coexisting respiratory supercomplexes. Mol.
Cell. Proteomics 17, 216�232

23. Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit,
M.M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D.,
Bentivoglio, A.R., Healy, D.G., Albanese, A.,
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