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ABSTRACT 

An archetypical Li-rich layered oxide, Li2MnO3, shows a large initial charge capacity of 

~350 mAh g-1 with little oxidation of the constituent Mn ions, yet, the crystal structure of 

delithiated Li2MnO3 is still unclarified because the structural disorder induced by the 

considerable Li extraction makes the analysis challenging. X-ray pair distribution function 

(PDF) analysis is a powerful tool to experimentally elucidate the structure of the disordered 

phase. Here, we conducted a comprehensive analysis with a focus on PDF analysis in 

combination with the X-ray powder diffraction (XRPD), transmission electron microscopy 

(TEM), and X-ray absorption spectroscopy (XAS) to reveal the disordered crystalline structure 

of the electrochemically delithiated Li2MnO3. The XRPD and TEM analyses clarified the 

formation of a low-crystallinity phase in the light of the average structure. The XAS and PDF 

analyses further revealed that the MnO6–based framework was rearranged with maintaining the 

MnO6 octahedral coordination after the initial charge. The difference pair distribution function 

(d-PDF) technique was therefore employed to extract the structural information of the low-

crystallinity disordered phase. The delithiated phase was found to have a structure similar to 

the cubic spinel, LiMn2O4, rather than that of delithiated LiMn2O4 (λ-MnO2). In addition, the 

middle-range order of the delithiated phase deteriorated after the charge, indicating a decrease 

of coherent domain size to a single nm order. The composite structure formed after the first 

charge, therefore, consists of the disordered cubic spinel structure and unreacted Li2MnO3. The 

formation of the composite structure “activates” the electrode material structurally and 

eventually induces characteristic large capacity of this material. 
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1. INTRODUCTION 

Tremendous efforts have been devoted to studies concerning Li-rich layered oxides, the 

Li2MnO3–LiMeO2 (Me=Ni, Co, and Mn) system, for nearly the past two decades, 1-5 and this 

materials system is still gathering attention as a promising candidate for a high capacity positive 

material for next-generation lithium-ion batteries (LIBs). The most studied Li-rich layered 

oxide is a composite Li2MnO3–LiNi1/3Co1/3Mn1/3O2 material. Compared to the capacities of 

160 mAh g-1 for the conventional layered oxides such as LiCoO2 and LiNi1/3Co1/3Mn1/3O2, the 

Li2MnO3–LiNi1/3Co1/3Mn1/3O2 material shows capacity as high as 250 mAh g-1. Lu and Dahn1 

reported that the large capacity of the Li-rich layered manganese oxide is induced by an 

irreversible reaction that forms an oxygen-deficient material in the initial charging process. 

Namely, it shows a characteristic voltage profile in the 1st charging process: a voltage plateau 

where oxygen anions contribute to the charge compensation. In addition, crystal rearrangement 

is considered to take place by oxygen evolution and cation migration.6-8 After the 1st 

irreversible process, a large amount of Li ions are reversibly extracted and inserted into the 

material, allowing it to show a higher capacity than conventional layered oxides.  

We have reported the charge compensation mechanism of Li1.16Ni0.15Co0.19Mn0.50O2 
9,10 

and Li2MnO3
11 using hard and soft X-ray absorption spectroscopy (XAS). For the 

Li1.16Ni0.15Co0.19Mn0.50O2 electrode, the soft XAS analysis revealed that the Ni, Co, and Mn 

cations stay unchanged in the voltage plateau and O anions participated in the charge 

compensation. In the following reversible cycles, O anions also continued to participate in 

parallel with redox reactions of Ni, Co, and Mn cations.10 In Li2MnO3, we observed the 

reduction of Mn ions even though the delithiation continues in the 1st irreversible charging 

process. In the following reversible cycles, we confirmed the reversible participation of Mn 

cations and O anions, and the differential XAS analysis showed that O K-edge XAS peaks, 

whose energies were similar to peroxide, appeared in and then disappeared during the reversible 
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redox cycles. 11 Tarascon and co-workers12-15 investigated the anion redox reaction in Li2MeO3, 

where the Me ions are 4d and 5d transition metal ions. Those large ions are heavily hybridized 

with O 2p orbitals, thereby preventing the evolution of oxygen ions from the crystal lattice 

during the oxidation process. They insisted that the oxidation of O2- ions to form peroxo-like 

species and oxygen–oxygen (O–O) bonding occur in the layered oxides. These results indicated 

that the reorganization of the O network in the crystal structure occurs during the O anion redox 

reactions. Kubobuchi et al.16 reported, from XAS and ab initio multiplet calculation results of 

Li2MnO3, that Mn4+ states are unchanged (not further oxidized) but the local structure around 

Mn4+ changes after the de-intercalation.  

Since the first report on the composite material system of Li2MnO3–LiCoO2 by Numata 

et al.4 in 1999, there have been many research reports of Li2MnO3-based composite materials, 

and its specific electrochemical reaction mechanism is widely recognized. However, an 

accurate explanation concerning the crystal structure changes that occur during the redox 

reaction of O anions has not been shared among the researchers. This is mostly due to the low 

crystallinity or disordered states of the sample after the crystal rearrangements, i.e. structural 

activation, that occur during the 1st charging process, which prevents detailed structural 

characterization. Many papers have reported spinel-like phases formed by the extraction of Li 

ions from the composite materials.17-26 In particular, the formation of spinel-like phases on the 

particle surface is often reported, but it is open to question since the electrochemical properties 

of Li2MnO3 and LiMn2O4 are different from each other. Therefore, we presume that the newly 

formed solid-solid hetero-interfaces of the composite materials play an important role in these 

electrodes, or the bulk properties of the newly formed phase are significantly different from 

those of the original phase. We have examined the atomic column images of Li2MnO3 using 

scanning transmission electron microscopy (STEM) techniques.27 The electron energy loss 

spectroscopy (EELS) and high-angle annular dark field (HAADF) images indicated the two 
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structural domains of the pristine Li2MnO3 and Li-poor defect spinel phases in a single particle 

of a half-charged electrode. Therefore, we concluded that the electrochemical activation of 

Li2MnO3 involves the formation of the spinel-like phase, which is associated with the oxygen 

loss from the pristine structure and the spontaneous Mn migration into the vacant Li layer site 

that occur with the partial oxidation of the lattice O and the reduction of Mn valences. However, 

detailed structural information of the obtained Li-poor spinel structure was not obtained. This 

was because the obtained structure was highly disordered and its details could not be clarified 

by standard crystal structure analysis.17 In addition, the TEM observation only probes the local 

structure of the observed sample, and hence, the average structural information is still not 

clarified. While pair distribution functional (PDF) analysis by total scattering directly provides 

structural information on the irregular atomic arrangements in amorphous materials as well as 

the ordered atomic arrangements in crystalline materials. Hence, PDF analysis is a powerful 

tool to experimentally elucidate the mixed structure composed of the ordered/disordered phases.  

In this study, we elucidated the mixture of crystalline and amorphous states by the PDF 

analysis in Li2MnO3. The crystal structure changes proceeding during the charging and 

discharging process in Li2MnO3 were evaluated by applying difference PDF (d-PDF) analysis 

to bring to light a spinel-like phase obtained by the structural rearrangements. The details of 

this phase obtained from the structural refinement using the d-PDF profile are further discussed. 

In addition, the electronic structure and local structure were evaluated using X-ray absorption 

spectroscopy (XAS) and TEM to comprehensively elucidate the delithiated states of Li2MnO3. 

 

2. EXPERIMENTAL SECTION 

Li2MnO3 was prepared by the solid phase method from LiOH·H2O (High Purity 

Chemicals, 99%) and MnCO3 (High Purity Chemicals, 99.9%). The powder of each starting 

compound was carefully weighed at an appropriate ratio of Li: Mn = 2: 1, and calcined at 700 °C 
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for 24 hours. A conductive additive and a binder were added to the obtained powder to prepare 

a mixed positive electrode. A battery composed of a positive electrode, a negative electrode, a 

reference electrode (lithium foil), a separator, and an electrolytic solution (1 M LiPF6, 

EC/EMC=3/7 vol.) was prepared. The charge-discharge evaluation was carried out at room 

temperature with a cut-off voltage of 2.0–4.8 V vs. Li+/Li0. The batteries after charging and 

discharging were disassembled in an Ar atmosphere glove box, and the electrodes were washed 

with DMC and dried under vacuum.  

The X-ray powder diffraction (XRPD) experiments (Smart Lab; Rigaku) were performed 

using a Mo Kα source at room temperature. The electrode powders were sealed in glass 

capillary tubes in an Ar-filled glove box for the measurements to avoid exposing the samples 

to an air atmosphere. 

The select area electron diffraction (SAED) patterns were obtained with a field-emission 

transmission electron microscope (FE-TEM, HF-2200; Hitachi). The samples were sliced thin 

by a focused ion beam (FIB, nanoDUET NB5000; Hitachi High-Technologies) and placed on 

a copper mesh and then transferred into the microscope. All these treatments were performed 

under a vacuum or an Ar atmosphere.  

The X-ray absorption spectroscopy (XAS) was performed in a transmission mode at the 

beamline BL28XU of the synchrotron radiation facility SPring-8 (Sayo, Japan). A Si (111) 

double crystal monochromator was used for Mn K-edge XAS measurements. The electrode 

samples were sealed in Al laminates in the glove box.  

The high-energy X-ray total scattering experiments were carried out at the SPring-8 

beamline BL04B2 using a two-axis diffractometer.28, 29 The incident X-ray energy obtained via 

a Si (220) crystal monochromator was 61.4 keV. The electrode powders were sealed in the 

capillary tubes in the glove box under the Ar gas atmosphere. The measurements were 

performed in the transmission geometry with a 2θ angle from 0.3 to 49°, corresponding to a Q-
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range from 0.2 to 25 Å−1. The PDF profiles were obtained using the in-house BL04B2 software. 

The X-ray total structure factor, S(Q), was derived from the scattering intensity. Then, the 

reduced PDF, G(r), was obtained by the Fourier transformation of S(Q): 

𝐺𝐺(r) = 2
𝜋𝜋 ∫ 𝑄𝑄{S(𝑄𝑄) − 1}sin(𝑄𝑄r)d𝑄𝑄.𝑄𝑄max

𝑄𝑄min
          

where Qmax and Qmin are the maximum and minimum Q value observed, respectively. 

 

3. RESULTS 

3.1 X-ray powder diffraction  

Figure 1(a) shows the charge-discharge profiles of the Li2MnO3 electrode. A voltage 

plateau in the 1st charging process is the typical irreversible reaction observed in the Li-rich 

layered oxides. The subsequent cycles after the 1st discharge process indicated the reversible 

reactions. We also examined charge-discharge profiles of the spinel LiMn2O4 under the same 

cut off conditions (Fig.S1). The voltage profiles of Li2MnO3 and LiMn2O4 differed in the 

reversible cycles after the 1st charging process, although the phase transformation of Li2MnO3 

to the spinel phase has been reported.17-27 

Figure 2 shows XRPD profiles of the Li2MnO3 electrodes in the pristine state, and the 

charged and discharged states of the 1st, 2nd, and 5th cycles. All the peaks in the pristine state 

were ascribed by the layered structure with the monoclinic symmetry (space group: C2/m), in 

which Li and transition metal are alternatingly layered with separated by oxygen layers.17 After 

the 1st charge at 4.8 V (1C_4.8 V), all the peaks became drastically weaker and broader, 

indicating disordering of the crystal structure. After the 1st discharge (1D_2.0 V), the peaks 

slightly sharpened and their intensity recovered in comparison with those of the 1st charge 

(1C_4.8 V) whereas they did not completely return to the original pristine state. The peaks in 

9–15° observed in the pristine Li2MnO3 almost disappeared after the 1st charge and slightly 

recovered after the 1st discharge. These peaks are associated with the interlayer Li/Mn ordering 
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in the transition layers. Irreversible structural rearrangements, therefore, proceeded in the 1st 

cycle. After the subsequent cycles, the changes of the XRPD profile were nearly reversible 

between the charged and discharged states while further broadening of the peaks was observed 

in the 5th cycles, indicating the increase of the volume fraction of the disordered phases. 

 

3.2 TEM observation  

Figure 3 shows the SAED patterns from the micro-sized secondary particles of the pristine 

state, charged and discharged states of the 1st cycle (See also Figs.S2–4). The Debye rings of 

the pristine state were sharp, and its pattern was explained by the monoclinic C2/m structure 

(Fig.3(a))). After the 1st charge (1C_4.8 V), the Debye rings became blurred (Fig.3(b)) which 

corresponds to the present XRD observation discussed before. The monoclinic-like pattern was 

again observed in the subsequent 1st discharged state (1D_2.0 V), indicating the partial 

recovery of the Li2MnO3 structure (Fig.3(c)).  

Figure 4 shows the bright field (BF)-STEM images and SAED patterns from hundreds-

nm-sized particles of the pristine, 1st charged and 1st discharged states (See also Figs.S5 FFT 

patterns). The pristine state was the monoclinic structure (C2/m) with stacking faults judging 

from the SAED pattern and its streaks along the [001] direction. According to the TEM-EELS 

analysis, the peak position of the Mn L-edge was close to that of MnO2, implying that Mn in 

the pristine state was the tetravalent state (Fig. S6). The diffraction spots became blurred and 

stretched in the 1st charged state shown in Fig.4(b) while no distinct amorphous phase was 

observed judging from the SAED pattern. The FFT patterns in the nano-sized range suggested 

different bond distances coexisting in the particle. The valence state of Mn was the trivalent 

state judging from the peak position of the Mn L-edge in the TEM-EELS analysis (Fig. S7). 

The SAED pattern of STEM at the 1st discharged state was characterized as the monoclinic 

structure (C2/m) (Fig.4(c)), consistent with the SAED pattern of the secondary particle 
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(Fig.3(c)). The diffraction spots were blurred in comparison with the pristine state, implying a 

distorted crystal structure. The corresponding TEM-EELS indicated that Mn was slightly 

reduced by discharging from a careful comparison of the spectrum of the 1st charged state (Fig. 

S8). 

 

3.3 XAFS measurements 

Figure 5 shows the Mn K-edge X-ray absorption near edge structure (XANES) spectra of 

the pristine Li2MnO3, and the 1st, 2nd, and 5th charged and discharged samples. The spectrum 

shape drastically changed after the 1st charge, implying that the local structure around Mn 

changed significantly during the first charging as the irreversible process. In addition, the 

electronic structure of the 1st charged state is different from the pristine state. However, since 

the spectra shape is different between the two states, it is difficult to discuss the valence changes 

only from these results. The charge compensation reaction in the 1st charge process is discussed 

more in detail with other results in DISCUSSION. On the other hand, the spectrum of the 1st 

discharged state was similar to that of the 1st charge state while its absorption edge shifted to 

lower energy. Thus, Mn was slightly reduced with maintaining the local structure in discharging. 

In the subsequent 2nd and 5th cycles, the Mn ions showed the reversible oxidation and reduction 

in the charging and discharging processes judging from the reversible absorption edge shifts.  

 

3.4 PDF analysis 

X-ray total structure factor profiles, S(Q), of Li2MnO3 samples are shown in Fig. 6. All 

the peaks became weaker and broader after the 1st charge as observed in the conventional 

XRPD in Fig.2, suggesting the deterioration of crystallinity after the 1st charging process. 

Figure 7 shows G(r) profiles of the pristine Li2MnO3, and the 1st charged and discharged 

samples. Note that the interactions of Mn and O were dominantly observed in PDF because of 
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the low scattering ability of Li. The amplitude decreased after the 1st charge process as a whole, 

which suggests structural disordering. The G(r) profiles at short-range distances are shown in 

Fig.7 (b). The distance of the first neighboring Mn–O, which corresponds to the first peak at 

1.9 Å, stayed unchanged with charge, while the distance of the secondary neighboring Mn–Mn 

at r  = 2.8 Å increased with charge. In contrast, both distances of the farther Mn–O at 3.5 Å 

and Mn–Mn distance at 4.9 Å decreased and increased, respectively, after charge. Note that the 

interactions of O–O, r ~ 2.6 Å for example, were barely visible because of the low scattering 

ability. The increase of Mn–Mn distance suggests that the MnO6–based framework was 

rearranged, while constant Mn–O at r = 1.9 Å indicates the local coordination environment 

around Mn is maintained after the 1st charge.  

After the 1st discharge, the amplitude did not completely recover to that of the pristine 

state, indicating the irreversible structural transformation in the 1st cycle. The distance of the 

first neighboring Mn–O stayed unchanged, while these of the farther correlations became long 

with the structural transformation after the 1st cycle. These results indicate that the disordering 

of the MnO6–based framework, induced by the first charge, is irreversible. The peak positions 

were mostly unchanged between the 1st charge and discharge. On the other hand, after the 20th 

cycles, the correlation peaks at r > 4 Å shifted to longer distances with discharge (Fig. 8), 

suggesting the reduction of Mn that accompanies the increase of the ionic radius. The G(r) 

profiles after 20 cycles were similar to that of the 1st cycle in the distances of the nearest- and 

second-nearest neighbors. However, the farther correlations changed after the cycles, which 

indicates the successive charge/discharge cycles yield irreversible structural disordering in the 

crystal host structure. (Fig. S9 (a) and (b)).  

 

4. DISCUSSION 

Our XRPD and SAED results showed that the layered structure of Li2MnO3 was highly 
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disordered after the 1st charge. The decreased diffraction intensity of the 1st charged state 

implies the formation of an amorphous or low-crystallinity phase. Hence, the ordered and 

disordered phases coexist in the charged material and form a composite microstructure after the 

structural activation in the 1st charging process. The ordered phase is attributed to the remaining 

Li2MnO3, and the disordered phase results from the delithiated phase. In the subsequent 

discharge, the crystalline order slightly recovered in comparison with the charged states. 

Namely, the reinsertion of Li would partially recover the crystalline order but the structure does 

not completely return to the pristine state. In the 2nd cycle, the XRPD peak intensities of the 

discharged state were stronger compared to the charged state, which also implies the recovery 

of the ordered phase of Li2MnO3 by the Li reinsertion. Such recovery of the ordered phase was 

not clearly observed in the 5th cycle, because the XRPD intensities were virtually similar 

between the charged and discharged states. This loss of the structural reversibility with cycles 

would be related to the cyclability deterioration of the over the cycles.  

We further extracted the component of the delithiated phase from the PDF profiles in the 

charge material by the d-PDF method.30 The Li2MnO3 electrode prepared for the high-energy 

X-ray total scattering measurements showed 381 mAh g-1 in the 1st charged state at 4.8 V, 

while its theoretical capacity is 459 mAh g-1. Therefore, the difference between the theoretical 

capacity and the actual charge capacity is 78 mAh g-1, which is 17% of the theoretical capacity. 

This corresponds to the unreacted Li2MnO3 phase in the 1st charged state by assuming that the 

contribution from undesirable side reactions is negligible and the charging dominantly proceeds 

as the two-phase reaction. Then, the reduced PDF profile at the 1st charged state at 4.8 V, Gc(r), 

is given as  

Gc(r) = 0.83Gd(r) + 0.17Gp(r)        

 (1) 

where Gd(r) and Gp(r) are reduced PDF profiles of the delithiated and pristine Li2MnO3 phases, 
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respectively. Since Gp(r) is known from the pristine state, the reacted component, Gd(r), can 

be calculated from the present Gc(r) (schematically shown in Fig.9). The Gd(r) profile is 

compared with the PDF profile of the pristine LiMn2O4 (𝐹𝐹𝐹𝐹3�𝑚𝑚) cubic spinel structure in Fig. 

10. The peak positions of the delithiated phase were in excellent agreement with those of 

LiMn2O4, while their amplitude was lower compared to that of LiMn2O4. The interatomic 

distances of the delithiated phase of charged Li2MnO3 are, therefore, similar to those of the 

LiMn2O4 cubic spinel structure. Note that the G(r) profiles of the pristine Li2MnO3 are 

distinctively different from that of LiMn2O4 in the medium range (r > 4 Å) while they are 

apparently similar in the short-range structure (r < 4 Å) (Fig.S10). Also note that the d-PDF 

profile of the delithiated phase was different from that of the delithiated LiMn2O4 (i.e., λ-

MnO2) and pristine Li2MnO3 (Fig. S11). In addition, the intensity of G(r) peaks of the 

delithiated phase gradually decayed with distance, which indicates the disorder in the long-

range region that is potentially associated with both the decrease of crystalline size and the 

formation of amorphous domain. However, no distinct amorphous domain was observed in the 

BF-STEM images and diffraction patterns. In addition, the intensity of G(r) peaks of the 

delithiated phase significantly decreased at r > 20 Å, implying a coherent length of the 

delithiated domain is as small as r < ~2 nm. Hence, the d-PDF result indicates that the delithiated 

domain is a nanoscale crystalline domain of disordered LiMn2O4 structure. 

The lattice parameters of LiMn2O4 normally decrease by the Li extraction as previously 

reported from XRPD 31, 32 because of the smaller ionic radius of oxidized Mn ions in the 

delithiated material. Such decrease of the lattice parameter was also observed in the PDF study 

of LiMn2O4, in which all the peaks shifted toward shorter distance with charge (Fig. S12). The 

correlation distance in the delithiated domain of Li2MnO3 was similar to the stoichiometric 

LiMn2O4 despite the Li-defects. Also, the Mn valence state in the delithiated domain of 

Li2MnO3 was similar to that of the stoichiometric LiMn2O4 (+3.5) rather than that of Li-
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deficient LiMn2O4 (~+4) as seen in the XANES study. Moreover, the reduction of Mn from +4 

in the pristine Li2MnO3 to +3 with delithiation is counterintuitive, indicating that Mn does not 

compensate the electric charge during delithiation. Therefore, the other element in the material, 

O anion instead of Mn, should compensate the charge for the delithiation by changing its 

valance state and oxygen evolution reaction11, 27. Hence, the delithiated domain may possess 

some oxygen vacancies. 

The Fourier transforms of the Mn K-edge EXAFS showed that the first and second peaks 

at ~1.5 and ~2.4 Å reflecting the Mn–O, and the mixture of the Mn–Mn and Mn–Li correlations, 

respectively, decreased after the 1st charge process, which suggested the structural disordering 

(Fig. S13(b)). This is consistent with results obtained in the G(r) profiles already discussed and 

showed in Fig.7(b). The EXAFS was further fit by the structural model proposed by the d-PDF 

analysis, in which the charged material consists of the pristine Li2MnO3 and spinel LiMn2O4 

structures. The EXAFS spectrum was successfully fit by the tow-phase model within the 

reasonable residual factor of 3.84%, which also demonstrates that the delithiated phase has a 

spinel structure with distorted Mn–Mn symmetry and the oxygen defects (Table. S3).  

Our results showed that the Li2MnO3 is electrochemically activated by the crystal 

rearrangements accompanying the Li extraction, Mn migration, and some O2 release, and 

eventually forms the composite microstructure of the ordered Li2MnO3 and disordered spinel-

like phases. The cubic spinel-like structure of the delithiated Li2MnO3 is similar but not exactly 

the same as the LiMn2O4 cubic spinel structure judging from the electrochemical behavior of 

these materials (Fig.S1). During the activation process, the oxygen release and the oxidation of 

the lattice oxygen would also be a source of formation of disordered delithiated phase.33-36 

Furthermore, the G(r) profile of the delithiated phase in the 1st cycle was in good agreement 

with that after the 20th cycle (Fig. S14) in terms of the peak positions and oscillation amplitude. 

This indicates that the ordered Li2MnO3 domain had been disappearing during the 20 cycles of 
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charge and discharge. The capacity degradation of Li2MnO3 after cycles is, therefore, attributed 

to the continuous and irreversible phase transformation from the ordered Li2MnO3 to the 

disordered LiMn2O4-like phase. The G(r) peak intensities of the delithiated phase and 20th 

charged state were compared with those of the crystalline LiMn2O4 cubic spinel structure by 

the following equation: 

 ∆G(r)_peak = Gc(r)_peak / Gspinel(r)_peak         (2) 

where Gc(r)_peak is the G(r) peak intensity of the delithiated phase and 20th charged state, and 

Gspinel(r) peak is that of LiMn2O4. The ∆G(r)_peak values are close to 1 where the correlation 

distance is short, and rapidly approaches 0 as the correlation distance increases (Fig.11). It 

implies that the medium-range correlation is smaller than that of the crystalline LiMn2O4. The 

small correlations are recognized at r > 25 Å for the delithiated phase, while they are observed 

at r > 18 Å at the 20th cycle. It indicates that the size of the ordered domain decreased with the 

cycles. The ∆G(r)_peak values are smaller for the 20th sample compared to the 1st cycle 

implying the larger distortion after the 20 cycles, which corresponds to the irreversible 

structural disordering with the cycles. Note that these structural rearrangements observed in this 

study are phenomena in the bulk rather than a surface reaction because PDF analyses and XAFS 

technique reflects the bulk information of the sample. 

The charged Li2MnO3 should be the Li poor state under the high oxidation states. 

Nevertheless, the interatomic correlations of the disordered phase in the charge Li2MnO3 were 

similar to the pristine LiMn2O4 cubic spinel structure. The Mn K-edge XANES spectrum in the 

1st charged state indicates the little contribution of Mn to the charge compensation. Hence, the 

redox reaction of the O anion would balance the charge in the material during the Li extraction, 

which we reported previously from soft XAS study.11 Since Mn rather than O generally 

compensates the charge during charge/discharge in LiMn2O4, the difference in the charge 

compensation mechanism of Li2MnO3 is related to the coexistence of the unique disordered 
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domain of the cubic spinel-like structure and the unreacted Li2MnO3 domain. Thus, a key to 

designing a large capacity positive material is to maintain this composite matrix in the 

subsequent cycles. We also showed that the d-PDF analysis is a practical and useable tool for 

elucidating the composite material composed of ordered and disordered phases. 

 

5. CONCLUSION 

We examined the structural variations of Li2MnO3 during the irreversible 1st cycle and 

the following reversible cycles. The XRPD and SAED measurements suggested the structural 

disordering of Li2MnO3 and the formation of a low-crystallinity phase in the 1st charge state. 

The structural information of the latter phase was successfully extracted from the d-PDF profile. 

The newly formed phase in the delithiated Li2MnO3 has a local structure similar to that of cubic 

spinel LiMn2O4, and different from that of the Li-poor LiMn2O4 (λ-MnO2). In addition, the 

intensity of G(r) peaks of the delithiated Li2MnO3 gradually decayed with distance, which 

determined the coherent length (domain size) of the disordered spinel phase. Hence, the 

disordered cubic spinel structure is formed after the initial structural activation of Li2MnO3 that 

contributes to the reversible extraction and insertion of the Li-ions. Therefore, a key to 

designing a large capacity positive material is to maintain the composite matrix in the 

subsequent cycles. 
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Figure 1. Charge–discharge profiles of Li2MnO3. 
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Figure 2. XRPD profiles for Li2MnO3 samples at pristine, and after the charged and 

discharged states in 1st, 2nd, and 5th cycles. 
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Figure 3. SAED obtained from TEM measurement for (a) pristine state, (b) 1st charged state, 

and (c) 1st discharged state. 
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Figure 4. BF-STEM images and SAED patterns acquired along the [1-1-0] monoclinic zone 

axis of (a) pristine, (b) 1st charged, and (c) 1st discharged states of Li2MnO3. 

 

 

 

 

 

 

  

(a) (b) 

(c) 



  

 

 5 

6530 6540 6550 6560 6570 6580

 

 

Li2MnO3

 pristine

 1C_4.8 V

 1D_2.0 V

     

 LiMn2O4

N
o
rm

al
iz

ed
 a

b
so

rp
ti

o
n
 (

a.
u
.)

 

Photon energy (eV)

Mn K-edge

 

6530 6540 6550 6560 6570 6580

 

 

Li2MnO3

 2C_4.8 V

 2D_2.0 V

 5C_4.8 V

 5D_2.0 V

N
o

rm
al

iz
ed

 a
b

so
rp

ti
o

n
 (

a.
u

.)
 

Photon energy (eV)

Mn K-edge

 
 

Figure 5. Mn K-edge XAFS spectra of Li2MnO3 at (a) the pristine, charged and discharged 

states of the 1st cycle, and (b) the 1st discharge and reversible 2nd and 5th cycles. 
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Figure 6. S(Q) profiles of Li2MnO3 samples obtained by the X-ray total scattering 

experiments at 61.4 keV.  

  



  

 

 7 

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

G
(r

)

r (Å)

Li2MnO3

 pristine

 1C_4.8 V

 1D_2.0 V

0 1 2 3 4 5 6
-10

-5

0

5

10

Mn–O

G
(r

)

r (Å)

Li2MnO3

 pristine

 1C_4.8 V

 1D_2.0 V

Mn–Mn

Mn–O

O–O

Mn–Mn
Mn–O

 
Figure 7. G(r) profiles for the Li2MnO3 powder at (a) the pristine state, charged and 

discharged states of the 1st cycle, and (b) enlarged profiles in short-range region． 
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Figure 8. G(r) profiles at the charged and discharged states in the 20th cycle.  

  



  

 

 9 

 
 

 
 

Figure 9. Schematic diagram of differential PDF analysis. The G(r) spectra of delithiated 

domain is obtained by extracting G(r) of pristine from that of 1st charged state.  

 

  

1st charged 

Delithiated 

domain 
Pristine 



  

 

 10 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
-10

-5

0

5

10

G
(r

)

r (Å)

 delithiated domain

 LiMn2O4 pristine

 
Figure 10. G(r) profiles of delithiated domain and the LiMn2O4 cubic spinel structure.  
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Figure 11. The DG(r)_peak for the delithiated phase and 20th charge state, respectively, shown 

as a function of correlation distance, r.  

 


