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Abstract: Baculovirus-infected silkworms are promising bioreactors for producing recombinant
glycoproteins, including antibodies. Previously, we developed a method for isotope labeling
of glycoproteins for nuclear magnetic resonance (NMR) studies using silkworm larvae reared
on an artificial diet containing 15N-labeled yeast crude protein extract. Here, we further develop
this method by introducing a technique for the expression of isotope-labeled glycoproteins by silkworm
pupae, which has several potential advantages relative to larvae-based techniques in terms
of production yield, ease of handling, and storage. Here, we fed fifth instar larvae an artificial diet with
an optimized composition containing [methyl-13C]methionine, leading to pupation. Nine-day-old
pupae were then injected with recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid
for expression of recombinant human immunoglobulin G (IgG). From the whole-body homogenates
of pupae, 0.35 mg/pupa of IgG was harvested, which is a yield that is five times higher than
can be obtained from larvae. Recombinant IgG, thus prepared, exhibited mainly three kinds
of pauci-mannose-type oligosaccharides and had a 13C-enrichment ratio of approximately 80%.
This enabled selective observation of NMR signals originating from the methionyl methyl group
of IgG, confirming its conformational integrity. These data demonstrate the utility of silkworm pupae
as factories for producing recombinant glycoproteins with amino-acid-selective isotope labeling.

Keywords: silkworm pupa; isotope labeling; recombinant glycoprotein; artificial diet;
immunoglobulin G
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1. Introduction

Recombinant proteins are widely used as research tools in every aspect of life science and,
moreover, as pharmaceuticals, catalysts, and biomaterials in industrial applications. To date, a variety
of options are available for producing recombinant proteins, especially in terms of choice of expression
vehicles, which include bacteria, yeast, plants, insects, mammals, and even cell-free systems, according
to purposes [1,2]. In making one’s choice, production cost, yield, and ease of handling both in culture
and during genetic manipulation are generally considered.

Recombinant proteins are often expressed with modifications, as exemplified by mutational
modifications such as tagging, truncation, and/or amino-acid substitution and by post-translational
modifications such as glycosylation. Isotope enrichment is also a useful modification, and is
especially important for recombinant proteins subjected to structural analyses such as nuclear magnetic
resonance (NMR) spectroscopy. At the laboratory level, Escherichia coli is one of the most widely used
expression vehicles because of its innate advantages, i.e., fast growth, well-characterized genetics,
cost-effectiveness, and high yield [3,4]. However, this conventional expression vehicle is not equipped
with a glycosylation system. Therefore, eukaryotic vehicles are alternatively used for production
of recombinant glycoproteins [1,2].

Several groups have developed stable-isotope labeling protocols to produce recombinant
glycoproteins using eukaryotic expression systems [5–11]. Our group has reported protocols
for the stable-isotope labeling of recombinant glycoproteins by transgenic tobacco, and silkworm
larvae as well as mammalian cells, using immunoglobulin G (IgG) glycoproteins as models [12–15].
Recombinant IgG glycoproteins have been used as therapeutic antibodies and NMR spectroscopy has
been considered as a useful tool for assessing their higher-order structural integrity [16].

In this context, a baculovirus-infected silkworm system serves as a highly efficient and cost-effective
bioreactor for the production of heterologous glycoproteins including IgGs [17–19]. In this system,
a Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid containing the gene sequences of target proteins
is injected into a silkworm larva. Several attempts have been made to improve production yield
and to remodel functional glycosylation of B. mori-derived IgG glycoproteins. In our previous paper,
we demonstrated that recombinant IgG with approximately 80% 15N enrichment could be produced
in maintaining structural integrity by silkworm larvae reared with an isotope-labeled artificial diet [14].

Here, we explore the possibility of exploiting silkworm pupae—instead of larvae—to produce
isotope-labeled recombinant glycoproteins. Pupae possess potential advantages relative to larvae [17].
Pupae do not require feeding and do not move, and so are easier to maintain than larvae. Unlike larvae,
pupae can be stored at a temperature of 4 ◦C for up to two weeks prior to bacmid injection, and can
also produce higher yields of recombinant proteins than larvae.

In this study, we attempt to optimize a silkworm rearing condition so as to maximize
production yield of recombinant IgG by the use of B.mori pupae. Since we have already achieved
full 15N labeling [14], our trial in this study is designed to perform amino-acid selective 13C labeling
of IgG.

2. Materials and Methods

2.1. Artificial Diets for Silkworm Rearing

Artificial diets used for rearing silkworms consisted of the components described previously
with modified compositions [20–22] (Table 1). Here, an artificial diet containing 40% amino acid
and 10% mulberry leaf powder is termed as A40M10. Similar notation will be used for other
compositions of artificial diets. For amino-acid-selective isotope labeling, a protein mixture derived
from the yeast strain, Candida utilis NBRC 0396, was replaced by an amino-acid mixture (Table 2)
containing [methyl-13C]methionine.
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Table 1. Compositions of artificial diets used to cultivate silkworm larvae.

Substances % of Dry Diet

Artificial diet A40M10 A30M10 A20M20

Yeast protein 40.0 - 4 - 4

Amino acid mixture - 4 30.0 20.0
Mulberrry leaf powder 10.0 10.0 20.0

Glucose 12.0 15.0 15.0
Soybean oil 3.0 3.0 3.0
Phytosterol 0.3 0.3 0.3

Ascorbic acid 2.0 2.0 2.0
Sorbic acid 0.2 0.2 0.2

Agar 10.0 10.0 10.0
Salt mixture 1 4.2 4.2 4.2

Vitamin B mixture 2 0.4 0.4 0.4
Cellulose powder 17.9 24.9 24.9

(Total) 100.0 100.0 100.0

Antiseptics 3 Added Added Added
Distilled water 3 mL/g diet 3 mL/g diet 3 mL/g diet

1 See Reference [22]. 2 See Reference [21]. 3 Antiseptics consisted of chloramphenicol (0.015% in diet) and propionic
acid (0.75% in diet). 4 Absent compound.

Table 2. Amino-acid compositions of the yeast protein/amino-acid mixture contained in the artificial diets.

Yeast Protein Amino Acid Mixture 1

Amino Acids mol%

Alanine 9.30 10.75
Arginine 4.23 3.90

Aspartic acid 11.09 9.48
Cysteine 2.82

Glutamic acid 11.45 9.71
Glycine 7.23 8.20

Histidine 2.10 1.78
Isoleucine 5.20 5.74
Leucine 8.55 8.86
Lysine 7.45 4.49

Methionine 1.39 2.28
Phenylalanine 4.06 4.56

Proline 4.21 5.94
Serine 7.11 4.56

Threonine 6.60 5.74
Tryptophan 2.68

Tyrosine 3.29 1.51
Valine 6.77 7.01

Total 100.0 100.0
1 See Reference [20].

2.2. Expression and Purification of Recombinant IgG

Recombinant human IgG1 directed against bovine serum albumin [23] was produced in silkworms
using rBmNPV bacmid systems using protocols described previously [14,18,19,24]. Fifth-instar hybrid
Kinsyu×Syowa silkworm larvae (Funakoshi Co., Ltd. Tokyo, Japan) were fed on an artificial diet
every 12 h, and were kept at 27 ◦C with a 12 h/12 h light/dark cycle. To produce recombinant
IgG1, genes for the heavy and light chains were cloned into a cysteine protease-deficient and
chitinase-deficient B. mori nucleopolyhedrovirus (BmNPV-CP--Chi-) bacmid, yielding a recombinant
virus (BmNPV bacmid/29IJ6 IgG) used to infect silkworms. With proper feeding, the fifth-instar larvae
pupated typically nine days later, which were subsequently incubated at 27 ◦C in dark for another nine
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days. To express recombinant IgG1, BmNPV bacmid/29IJ6 IgG was injected into nine-day-old pupae
or two-day-old fifth instar larvae, together with 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethyl
ammonium bromide (DMRIE-C, Life Technologies Japan, Tokyo, Japan). Bacmid-injected larvae and
pupae were maintained at 27 ◦C for 6 and 7 days, respectively, for protein expression. Timeline and
procedure of the protein expression in silkworm pupae are summarized in Figure 1.
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Purification of IgG was performed as previously described [14,18]. The bacmid-injected pupae
were homogenized with Tris-buffered saline containing Tween-20, and were then centrifuged
(20,000× g, 40 min) after which the sediments were removed. From the bacmid-injected larvae,
the hemolymph was collected and centrifuged (19,000× g for 30 min). The supernatant was filtered
using a 0.45-µm nitrocellulose membrane filter (Merck Millipore, Burlington, MA, USA) and then
loaded onto an Affi-Gel protein A column (GE Healthcare Life-Sciences, Marlborough, MA, USA).
IgG was further purified by gel-filtration chromatography using a Superose 12 column (GE Healthcare
Life-Sciences, Marlborough, MA, USA).

Chinese hamster ovary (CHO) cell line producing rituximab, anti-CD20 mouse-human chimeric
IgG1, was prepared in-house. Briefly, heavy-chain and light-chain genes of rituximab were ligated
into the Mammalian PowerExpress system® vector (Toyobo, Otsu, Japan). Suspension-adapted
CHO-K1 cells (ATCC CRL-9618) were transfected with the vector and the stable cell lines were
established by single colony picking. Isotope labeling of rituximab was made as described previously
with slight modifications [12,13]. For methionine-specific 13C labeling, the CHO cell line was cultivated
with a modified Nissui NYSF 404 medium (supplemented with 2% dialyzed fetal bovine serum and
7.5µg/mL puromycin) in which L-methionine was replaced by [methyl-13C]methionine. Following
the growth of these cells, IgG proteins were purified from the supernatant of the medium using protein
A affinity chromatography and gel filtration as described above. In this study, 2.5 mg of recombinant
IgG glycoprotein was subjected to NMR measurements, which was produced with 7 pupae fed with
82 g of artificial diet containing 200 mg of [methyl-13C]methionine.

2.3. Limited Proteolysis of IgG

The Fab and Fc fragments of IgG were prepared as previously described [25,26]. IgG was cleaved
by papain digestion, performed at 37 ◦C for 12 h in 75 mM sodium phosphate buffer [pH 7.0, containing
75 mM NaCl and 2 mM ethylenediaminetetraacetic acid (EDTA)]. The IgG concentration was 10 mg/mL
and the papain: IgG ratio was 1:50 (w/w). The digestion products were loaded onto an Affi-Gel protein
A column. Fc and Fab fragments were then collected from the bound and unbound fractions,
respectively. Both fragments were further purified by a Superose 12 gel-filtration column.
Purity of each of the protein preparations was checked by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE).
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2.4. Mass Spectrometric Measurement of Stable-Isotope Enrichment

Prior to amino-acid analysis, samples of isotope-labeled artificial diet, crude protein extract,
and IgG purified from silkworm pupae were hydrolyzed by HCl for 24 h at 110 ◦C. After cooling
to room temperature, the hydrolyzate was filtered through a polytetraflouroethylene (PTFE)
membrane filter (0.45-µm pore size, Millipore, Burlington, MA, USA). The solution was transferred
into an eggplant-shaped flask, and unreacted HCl was removed by evaporation under a vacuum
at 40 ◦C. The dried residue was dissolved in Milli-Q water. Liquid chromatography-mass spectrometry
(LC-MS) system used in this study was composed of an ACQUITY UPLC (Waters Corporation, Milford,
MA, USA) coupled to a Xevo G2-XS QTOF mass spectrometer (Waters Corporation) with a heated
electrospray ionization (ESI) source. Amino acids were separated on a Discovery HSF5 column
(Merck, Kenilworth, NJ, USA) with dimensions of 2.1 i.d. × 150 mm and a particle size of 3-µm. A set
of mobile phases was used: 0.1% (v/v) formic acid (A) and 0.1% (v/v) formic acid in acetonitrile (B).
The gradient conditions were as follows: t = 0–5 min, 0% B, t = 5–15 min, 0–40% B, t = 15–16 min,
40–100% B, t = 16–20 min, 100% B, t = 20–20.1 min, 100–0% B, t = 20.1–25 min, 0% B. The flow rate
was set at 0.25 mL/min and the column oven temperature was 45 ◦C. The injection volume was 1µL.
The ESI-MS conditions were as follows: Source Temperature, 120 ◦C, Desolvation Temperature, 450 ◦C,
Desolvation Gas Flow, 800 L/h, Cone Gas Flow, 50 L/h, and capillary voltage, 1.5 kV for positive mode.

2.5. Glycosylation Profiling

N-glycosylation profiling of IgG was performed based on the high-performance liquid
chromatography (HPLC) mapping technique described previously [27]. Isotope-labeled
IgG-Fc glycoprotein (0.2 mg) was used as a starting material. N-glycans of the pupa-derived
IgG glycoprotein were released by hydrazinolysis [28,29], tagged with 2-aminopyridine, and loaded
onto an amide column (Tosoh Co., Tokyo, Japan). Next, each fraction separated on the amide column
was subjected to an octadecylsilyl ODS column (Shimadzu Co., Kyoto, Japan). The elution time
on each HPLC column was expressed in the glucose units (G.U.), in reference to the pyridylamino
(PA) derivatized isomalto-oligosaccharide mixture. Structural identification was based on the elution
position on the HPLC column in the GALAXY database (http://www.glycoanalysis.info) [27].

2.6. NMR Measurements

For NMR measurements, Fab/Fc fragments and full-length IgG glycoproteins were dissolved
in 0.5 mL of 5 mM sodium phosphate buffer [pH 6.0, containing 50 mM NaCl and 10% (v/v) D2O]
at a protein concentration of 10 mg/mL. Two-dimensional methyl-transverse relaxation optimized
spectroscopy(TROSY) spectral data were acquired at 37 ◦C using an AVANCE 800 spectrometer equipped
with a cryogenic probe (Bruker BioSpin, Fällanden, Switzerland). Assignments for the methionyl methyl
resonances of Fc were made based on the previously reported backbone assignments [30] by analyzing
nuclear Overhauser effect (NOE) connectivities observed using AVANCE 800 and AVANCEIII
900 spectrometers equipped with cryogenic probes (Bruker BioSpin, Fällanden, Switzerland). Chemical
shifts of 1H were referenced to 4,4-dimethyl-4-silapentane-1-sulfonic acid (0 ppm), and 13C chemical
shifts were referenced indirectly using the gyromagnetic ratios of 13C and 1H (γ13C/γ1H = 0.25144952).
All NMR data were processed using NMR Pipe [31] and were analyzed using CCPNMR [32].

3. Results and Discussion

3.1. Optimization of Artificial Diet Composition

In our previous study, 15N-labeled IgG was produced by silkworm larvae fed the artificial diet
A40M10 in which amino acids were supplied as yeast crude protein extract [14]. However, the larvae
fed this artificial diet did not grow enough to pupate. In addition, amino-acid selective labeling is
difficult in this protocol. To solve these problems, we adopted the A30M10 and A20M20 artificial
diets in which the yeast extract was replaced by an amino-acid mixture. These recipes allowed

http://www.glycoanalysis.info
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the larvae to grow into pupae at day 9 (Figure 2). Comparison of the two growth curves indicate
that a higher amount of mulberry powder enhances larval appetite and growth. Hence, we used
A20M20 for expression of recombinant IgG.
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3.2. Production of IgG in Silkworm Pupae

IgG production yields were compared between larvae and pupae from identical A20M20-fed
rearing environments. The only difference between treatments was the time point of bacmid injection,
i.e., 2-day-old fifth instar larvae and 9-day-old pupae. Larval growth significantly slowed after bacmid
injection (Figure S1). Recombinant IgG yields purified from the hemolymph fluids of larvae and
whole-body homogenates of pupae were 0.07 mg/larva and 0.35 mg/pupa, respectively. Thus, pupae
extracts showed a five-fold greater yield than larval extracts.

BmNPV infects blood cells and fat body cells in silkworms. Pupal body tissues primarily
consist of fat body cells, which can express recombinant proteins. For this reason, recombinant
IgG can be harvested from pupal whole-body homogenates. In contrast, because the larval midgut
contains a large amount of proteases, it is necessary to extract body fluid prior to recombinant
protein purification [33–35]. It is possible that this is the reason for the higher recombinant IgG yield
of pupae relative to larvae. There have been several reports of glycoprotein production in silkworm
pupae including porcine lactoferrin (0.2 mg/pupa) [36] and human granulocyte macrophage colony
stimulating factor (0.1 mg/pupa) [37], suggesting that our method can be applicable for isotope-labeling
of other proteins in high yields.

Recombinant IgG purified from pupae was subjected to HPLC-based glycosylation profiling
(Figure S2 and Table 3). The N-glycans mainly consisted of three kinds of pauci-mannose-type
oligosaccharides [Manα1-6Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc, Manα1-6(Manα1-3)Manβ1-
4GlcNAcβ1-4(Fucα1-6)GlcNAc, and Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-
6)GlcNAc]. These results are consistent with those of previous reports [18,24], confirming that
the pupa-derived IgG retained the nonreducing terminal GlcNAcβ1-2 moiety, unlike the larva-derived
IgG. This difference may be due to reduced β-N-acetylhexosaminidase activity in pupae.
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Table 3. N-glycosylation profile of IgG expressed by silkworm pupae reared on artificial diet A20M20.

G.U.
(ODS)

G.U.
(Amide)

Relative
Quantity (%) Structure

10.4 3.5 36.1
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The recombinant IgG contains three and two methionine residues in the Fab and Fc regions,
respectively [23]. This was confirmed by spectral data for the Fab and Fc fragments, which exhibited
additivity so as to reproduce the full-length IgG spectrum (Figure 5B,C). Furthermore, the Fc spectrum
was compared with that of an authentic human IgG1-Fc preparation produced in CHO cells,
thereby confirming the conformational integrity of the Fc region (Figure 5C,D).

These data indicate that silkworm pupae are capable of producing stable-isotope labeled
recombinant IgG in much higher yields than larvae. We have previously demonstrated that antibody
production yield in silkworm can be improved by a factor 5 upon co-expression with molecular
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chaperones [18]. When compared with the mammalian expression systems taking this into account,
the cost for producing the isotope-labeled IgG glycoproteins are comparable in silkworm pupae, which,
however, do not require any expensive equipment such as the CO2 incubator. Therefore, the total
cost will be less expensive in the silkworm-based method, which also does not take up much space,
enabling production of different proteins with different labeling modes in parallel. In terms of the time
period for obtaining the products, both the mammalian and pupa systems require approximately three
to four weeks from the start of culture with isotope-labelled metabolic precursors to harvest. However,
it generally takes a couple of months to establish a mammalian cell line that can produce a recombinant
antibody at a high expression level. Thus, the pupa expression system is excellent in terms of flexibility
and efficiency in contrast to large-scale culture of mammalian cells.

4. Conclusions

In this study, we demonstrate the utility of silkworm pupae as factories for producing
isotope-labeled recombinant glycoproteins. This is a significant improvement over previous work using
silkworm larvae since pupae are easier to handle and store and show an increased IgG yield. Moreover,
the protocol developed here enables amino-acid selective labeling of glycoproteins, which complements
the non-selective labeling technique we established previously [14]. Efficiency of amino-acid selective
labeling depends on metabolic pathways. In silkworm, essential amino acids are arginine, histidine,
isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine, while aspartic
and glutamic acids are interconverted by transaminases in larval tissues [38]. These have to be taken
into account in order to improve labeling efficiency.

Recombinant IgG glycoproteins are currently used as biopharmaceuticals [39,40]. NMR is expected
to offer a useful tool for assessing conformational integrity of therapeutic antibodies. In particular,
NMR signals originating from methyl groups can be useful spectroscopic probes for monitoring local
conformations in larger glycoproteins, such as IgG [41,42]. Our pupa-based protocol can be useful
for preparing a series of glycoprotein samples in which different amino-acid residues are selectively
labeled because it can save time, space, and effort relative to those using larvae or other eukaryotic
expression vehicles. Several attempts have been made not only for increasing yields of recombinant
glycoproteins produced by silkworms, e.g., by co-expression with molecular chaperones [18]
but also to engineer their glycoforms, e.g., by co-expression with human glycosyltransferases [24].
Our pupae-based approach combined with these techniques opens the possibility of recombinant
glycoproteins with functional modifications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/11/1482/s1.
Figure S1: Effects of bacmid injection on silkworm larvae growth. Growth curve of silkworm larvae (n = 6)
reared on artificial diet A20M20 with (closed circle) or without (open circle) bacmid injection on the second
day. Means ± s.e.m. values are shown. * p < 0.0005 by Student’s t-test. Figure S2: N-glycosylation profile
of IgG expressed by silkworm pupae reared on artificial diet A20M20. Key symbols: Fuc (triangle), GlcNAc
(square), Man (circle). Asterisk represents a contaminating signal.
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