
55J. Math. Tokushima Univ. 
Vol. 53 (2019), 55−66

Upper Decay Estimates for Non-Degenerate
Kirchhoff Type Dissipative Wave Equations

By

Kosuke Ono

Department of Mathematical Sciences,

Tokushima University, Tokushima 770-8502, JAPAN

e-mail : k.ono@tokushima-u.ac.jp

(Received September 30, 2019)

Abstract

We study on the Cauchy problem for non-degenerate Kirchhoff
type dissipative wave equations ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0

and (u(0), u′(0)) = (u0, u1), where u0 ̸= 0 and the nonlocal nonlin-
ear term a(M) = 1+Mγ with γ > 0. Under the suitably smallness
condition, we derive the upper decay estimates of the solution u(t)
for the case of 0 < γ < 1 in addition to γ ≥ 1.

2010 Mathematics Subject Classification. 35B40, 35L15

1 Introduction

Let H be a real Hilbert space with inner product (·, ·) and norm ∥ · ∥.
In this paper we investigate on the upper decay estimates of the solution

u(t) for the non-degenerate Kirchhoff type dissipative wave equations :

{
ρu′′ + a

(
∥A1/2u(t)∥2

)
Au+ u′ = 0 , t ≥ 0

(u(0), u′(0)) = (u0, u1) ∈ D(A)×D(A1/2) ,
(1.1)

where u = u(t) is an unknown real value function, ρ is a positive constant,
′ = d/dt, A is a linear operator on H with dense domain D(A).

We assume that the operator A is self-adjoint and nonnegative such that
(Av, v) ≥ 0 for v ∈ D(A). The α-th power of A with dense domain D(Aα) is
denoted by Aα for α > 0, and the graph-norm of Aα is denoted by ∥v∥α =(
∥v∥2 + ∥Aαv∥2

) 1
2 for v ∈ D(Aα). We use that ∥A1/2v∥2 = (Av, v) for v ∈

D(A1/2).
For the non-local nonlinear term a(M) ∈ C0([0,∞)) ∩ C2((0,∞)), we as-

sume that as follows :
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Hyp.1 K1 ≤ a(M) ≤ K2 +K3M
γ for M ≥ 0

Hyp.2 0 ≤ a′(M)M ≤ K4a(M) for M > 0

Hyp.3 a′(M)M + |a′′(M)|M2 ≤ K5M
γ for M > 0

with γ > 0 and Kj > 0 (j = 1, 2, 3, 4, 5).

From Hyp.1, we see that

K1M ≤
∫ M

0

a(µ) dµ ≤
(
K2 +

K3

γ + 1
Mγ

)
M . (1.2)

For typical examples, we have that

a(M) = 1 +Mγ with γ > 0 .

When the dimension is one, (1.1) describes small amplitude vibrations of
an elastic string (see [3], [6]).

We denote the energy E(t) for (1.1) by

E(t) = ρ∥u′(t)∥2 +
∫ M(t)

0

a(µ) dµ with M(t) = ∥A1/2u(t)∥2 . (1.3)

By fundamental calculation, we have the energy identity

d

dt
E(t) + 2∥u′(t)∥2 = 0 (1.4)

and

E(t) + 2

∫ t

0

∥u′(s)∥2 ds = E(0) (1.5)

with

E(0) = ρ∥u1∥2 + 2

∫ ∥A1/2u0∥2

0

a(µ) dµ .

Moreover, we introduce the quantities G(0) and B(0) on the initial data
(u0, u1) :

G(0) =
∥Au0∥2

∥A1/2u0∥2
+ ρ

∥A1/2u0∥2∥A1/2u1∥2 − |(A1/2u0, A
1/2u1)|

a(∥A1/2u0∥2)∥A1/2u0∥4

and

B(0) = max{ ∥u1∥2

∥A1/2u0∥2
,
1 +K4

K4
(K2 +K3(K

−1
1 E(0))γ)2G(0)} .

In the previous paper [12], we have proved the following the global existence
theorem (see [1], [2], [9], [13] for local solutions).

Theorem 1.1 Suppose that Hyp.1 and Hyp.2 are fulfilled. If the initial data
(u0, u1) belong to D(A)×D(A1/2) and u0 ̸= 0, and moreover, the coefficient ρ
and the initial data (u0, u1) satisfy

2ρG(0)
1
2B(0)

1
2 <

1

K4 + 1
,

then the problem (1.1) admits a unique global solution u(t) in the class

C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩ C2([0,∞);H)

and the solution u(t) satisfies

∥u(t)∥2 ≤ C(∥u0∥2 + E(0)) , (1.6)

K1M(t) ≤ E(t) ≤ E(0) , (1.7)

ρ
|M ′(t)|
M(t)

≤ 1

K4 + 1
, (1.8)

∥Au(t)∥2

M(t)
≤ G(0) ,

∥u′(t)∥2

M(t)
≤ B(0) , (1.9)

and M(t) ≥ Ce−αt with some α > 0 for t ≥ 0.

We do not need the assumption that γ ≥ 1 in our argument (see [4] for
γ ≥ 1 that is, a(·) ∈ C1([0,∞)), and a′(M) ≥ K0 > 0 for γ > 0 (see [11] for
a(M) = (1 +M)γ with γ > 0).

The purpose of this paper to derive upper decay estimates of the solution
u(t) of (1.1) for the case of 0 < γ < 1 in addition to γ ≥ 1, under Hyp.1, Hyp.2,
Hyp.3.

Our main result is as follows.

Theorem 1.2 Suppose that the assumption of Theorem 1.1 and Hyp.3 are
fulfilled. Then, the solution u(t) of (1.1) satisfies

∥A1/2u(t)∥2 ≤ C(1 + t)−1 ,

∥u′(t)∥2 + ∥Au(t)∥2 ≤

{
C(1 + t)−(1+2γ) if 0 < γ < 1

2 ,

C(1 + t)−2 if γ ≥ 1
2 ,

∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤

{
C(1 + t)−(1+γ)(1+2γ) if 0 < γ < 1

2 ,

C(1 + t)−3 if γ ≥ 1
2

for t ≥ 0.

The proof of Theorem 1.2 will be given by Propositions 2.2–2.5 in the next
section.

The notations we use in the paper are standard. Positive constants will be
denoted by C and will change from line to line.
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2 Decay Rates

The following generalized Nakao type inequality is useful to derive decay
estimates of energies (see [5], [7], [8], [10] for the proof).

Lemma 2.1 Let ϕ(t) be a non-negative function on [0,∞) and satisfy

sup
t≤s≤t+1

ϕ(s)1+α ≤ (k0ϕ(t)
α + k1(1 + t)−β)(ϕ(t)− ϕ(t+ 1)) + k2(1 + t)−γ

with certain constants k0, k1, k2 ≥ 0, α > 0, β > −1, and γ > 0. Then, the
function ϕ(t) satisfies

ϕ(t) ≤ C0(1 + t)−θ , θ = min{1 + β

α
,

γ

1 + α
}

for t ≥ 0 with some constant C0 depending on ϕ(0).

Using Lemma 2.1, we obtain the following energy decay for the energy E(t).

Proposition 2.2 Under the assumption of Theorem 1.1, the energy E(t) sat-
isfies

E(t) = ρ∥u′(t)∥2 +
∫ M(t)

0

a(µ) dµ ≤ C(1 + t)−1 , (2.1)

and the solution u(t) satisfies

∥A1/2u(t)∥2 + ∥Au(t)∥2 + ∥A1/2u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−1 (2.2)

for t ≥ 0.

Proof. Integrating (1.4) over [t, t+ 1], we have

2

∫ t+1

t

∥u′(s)∥2 ds = E(t)− E(t+ 1) (≡ 2D(t)2) . (2.3)

Then there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥u′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (2.4)

On the other hand, taking the inner product of (1.1) with u(t), we have

a(M(t))M(t) = ρ

(
∥u′(t)∥2 − d

dt
(u′(t), u(t))

)
− (u′(t), u(t)) . (2.5)

Integrating (2.5) over [t1, t2], we have that

∫ t2

t1

a(M(s))M(s) ds

≤ ρ

∫ t+1

t

∥u′(s)∥2 ds+ ρ

2∑
j=1

∥u′(tj)∥∥u(tj)∥+
∫ t+1

t

∥u′(s)∥∥u(s)∥ ds

and from (2.3), (2.4), and Hyp.1 that

K1

∫ t2

t1

M(s) ds ≤ ρD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 = ∥u(t)∥2, (2.6)

and from (1.2), (1.3), (1.7), (2.3), (2.6) that

∫ t2

t1

E(s) ds ≤ ρ

∫ t+1

t

∥u′(s)∥2ds+
∫ t2

t1

(
K2 +

K3

γ + 1
M(s)γ

)
M(s) ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) . (2.7)

Integrating (2.3) over [t, t2], we have (2.3) and (2.7) that

E(t) = E(t2) + 2

∫ t2

t

∥u′(s)∥2 ds

≤ 2

∫ t2

t1

E(s) ds+

∫ t+1

t

∥u′(s)∥2 ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) .

Since it holds that 2D(t)2 = E(t)− E(t+ 1) ≤ E(t) by (2.3), we observe

E(t)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2

≤ C

(
E(t) + sup

t≤s≤t+1
g(s)2

)
(E(t)− E(t+ 1)) . (2.8)

Thus, using E(t) ≤ E(0) and g(t) = ∥u(t)∥2 ≤ C by (1.6) and (1.7), we have

E(t)2 ≤ C(E(t)− E(t+ 1)) , (2.9)

and hence, applying Lemma 2.1 to (2.9), we obtain (2.1).
Moreover, we obtain thatM(t) ≤ K−1

1 E(t) ≤ C(1+t)−1 by (1.7), ∥Au(t)∥2+
∥u′(t)∥2 ≤ CM(t) ≤ C(1 + t)−1 by (2.4), and furthermore, ∥u′′(t)∥2 ≤ C(1 +
t)−1 by (1.1), that is, the desired estimate (2.2) holds true. □
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a(M(t))M(t) = ρ

(
∥u′(t)∥2 − d

dt
(u′(t), u(t))

)
− (u′(t), u(t)) . (2.5)

Integrating (2.5) over [t1, t2], we have that

∫ t2

t1

a(M(s))M(s) ds
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∫ t+1

t

∥u′(s)∥2 ds+ ρ

2∑
j=1
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∫ t2
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M(s) ds ≤ ρD(t)2 + CD(t) sup
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∫ t2

t1

E(s) ds ≤ ρ

∫ t+1

t

∥u′(s)∥2ds+
∫ t2

t1

(
K2 +

K3

γ + 1
M(s)γ

)
M(s) ds
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t

∥u′(s)∥2 ds
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t1

E(s) ds+

∫ t+1

t

∥u′(s)∥2 ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) .

Since it holds that 2D(t)2 = E(t)− E(t+ 1) ≤ E(t) by (2.3), we observe

E(t)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2

≤ C

(
E(t) + sup

t≤s≤t+1
g(s)2

)
(E(t)− E(t+ 1)) . (2.8)

Thus, using E(t) ≤ E(0) and g(t) = ∥u(t)∥2 ≤ C by (1.6) and (1.7), we have

E(t)2 ≤ C(E(t)− E(t+ 1)) , (2.9)

and hence, applying Lemma 2.1 to (2.9), we obtain (2.1).
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1 E(t) ≤ C(1+t)−1 by (1.7), ∥Au(t)∥2+
∥u′(t)∥2 ≤ CM(t) ≤ C(1 + t)−1 by (2.4), and furthermore, ∥u′′(t)∥2 ≤ C(1 +
t)−1 by (1.1), that is, the desired estimate (2.2) holds true. □
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Proposition 2.3 Under the assumption of Theorem 1.2, it holds that

F (t) ≡ ρ∥A1/2u′(t)∥2 + a(M(t))∥Au(t)∥2 ≤ C(1 + t)−ω for t ≥ 0 (2.10)

with ω = min{2 , 1 + 2γ}.

Proof. Taking the inner product of (1.1) with 2Au′(t), we have that

d

dt
F (t) + 2∥A1/2u′(t)∥2 = a′(M(t))M ′(t)∥Au(t)∥2 (2.11)

≤ CM(t)γ+
1
2
∥Au(t)∥2

M(t)
∥A1/2u′(t)∥

and from the Young inequality that

d

dt
F (t) + ∥A1/2u′(t)∥2 ≤ Cf(t)2 with f(t)2 = M(t)2γ+1 ∥Au(t)∥4

M(t)2
. (2.12)

Integrating (2.12) over [t, t+ 1], we have

∫ t+1

t

∥A1/2u′(s)∥2ds = F (t)− F (t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ D(t)2) . (2.13)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥A1/2u′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (2.14)

On the other hand, taking the inner product of (1.1) with Au(t), we have

a(M(t))∥Au(t)∥2 = ρ

(
∥A1/2u′(t)∥2 − d

dt
(A1/2u′, A1/2u)

)
− (A1/2u′, A1/2u)

and hence

F (t) = 2ρ∥A1/2u′(t)∥2 − ρ
d

dt
(A1/2u′, A1/2u)− (A1/2u′, A1/2u) . (2.15)

Integrating (2.15) over [t1, t2], we have from (2.13) and (2.14) that

∫ t2

t1

F (s) ds

≤ 2ρ

∫ t+1

t

∥A1/2u′(s)∥2 ds+ ρ

2∑
j=1

∥A1/2u′(tj)∥∥A1/2u(tj)∥

+

∫ t+1

t

∥A1/2u′(s)∥∥A1/2u(s)∥ ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 = M(t) . (2.16)

Moreover, there exists t∗ ∈ [t1, t2] such that

F (t∗) ≤ 2

∫ t2

t1

F (s) ds . (2.17)

For τ ∈ [t, t + 1], integrating (2.11) over [τ, t∗] (or [t∗, τ ]), we have from
(2.12) and (2.17) that

F (τ) = F (t∗) +

∫ t∗

τ

(
2∥A1/2u′(s)∥2 − a′(M(s))M ′(s)∥Au(s)∥2

)
ds

≤ 2

∫ t2

t1

F (s) ds+ C

∫ t+1

t

∥A1/2u′(s)∥2ds+ C

∫ t+1

t

f(s)2ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 .

Since it holds that

D(t)2 = F (t)− F (t+ 1) + C sup
t≤s≤t+1

f(s)2 ≤ F (t) + sup
t≤s≤t+1

f(s)2

by (2.13), we observe

sup
t≤s≤t+1

F (s)2

≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4

≤ C

(
F (t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ CF (t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

and hence

sup
t≤s≤t+1

F (s)2

≤ C

(
F (t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (2.18)

Since it holds that

f(t)2 =





M(t)2γ+1 ∥Au(t)∥4

M(t)2
≤ CM(t)2γ+1 ≤ C(1 + t)−(1+2γ)

M(t)2γ
∥Au(t)∥2

M(t)
∥Au(t)∥2 ≤ CM(t)2γ∥Au(t)∥2 ≤ C(1 + t)−2γF (t)
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Proposition 2.3 Under the assumption of Theorem 1.2, it holds that

F (t) ≡ ρ∥A1/2u′(t)∥2 + a(M(t))∥Au(t)∥2 ≤ C(1 + t)−ω for t ≥ 0 (2.10)

with ω = min{2 , 1 + 2γ}.

Proof. Taking the inner product of (1.1) with 2Au′(t), we have that

d

dt
F (t) + 2∥A1/2u′(t)∥2 = a′(M(t))M ′(t)∥Au(t)∥2 (2.11)

≤ CM(t)γ+
1
2
∥Au(t)∥2

M(t)
∥A1/2u′(t)∥

and from the Young inequality that

d

dt
F (t) + ∥A1/2u′(t)∥2 ≤ Cf(t)2 with f(t)2 = M(t)2γ+1 ∥Au(t)∥4

M(t)2
. (2.12)

Integrating (2.12) over [t, t+ 1], we have

∫ t+1

t

∥A1/2u′(s)∥2ds = F (t)− F (t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ D(t)2) . (2.13)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥A1/2u′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (2.14)

On the other hand, taking the inner product of (1.1) with Au(t), we have

a(M(t))∥Au(t)∥2 = ρ

(
∥A1/2u′(t)∥2 − d

dt
(A1/2u′, A1/2u)

)
− (A1/2u′, A1/2u)

and hence

F (t) = 2ρ∥A1/2u′(t)∥2 − ρ
d

dt
(A1/2u′, A1/2u)− (A1/2u′, A1/2u) . (2.15)

Integrating (2.15) over [t1, t2], we have from (2.13) and (2.14) that

∫ t2

t1

F (s) ds

≤ 2ρ

∫ t+1

t

∥A1/2u′(s)∥2 ds+ ρ

2∑
j=1

∥A1/2u′(tj)∥∥A1/2u(tj)∥

+

∫ t+1

t

∥A1/2u′(s)∥∥A1/2u(s)∥ ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 = M(t) . (2.16)

Moreover, there exists t∗ ∈ [t1, t2] such that

F (t∗) ≤ 2

∫ t2

t1

F (s) ds . (2.17)

For τ ∈ [t, t + 1], integrating (2.11) over [τ, t∗] (or [t∗, τ ]), we have from
(2.12) and (2.17) that

F (τ) = F (t∗) +

∫ t∗

τ

(
2∥A1/2u′(s)∥2 − a′(M(s))M ′(s)∥Au(s)∥2

)
ds

≤ 2

∫ t2

t1

F (s) ds+ C

∫ t+1

t

∥A1/2u′(s)∥2ds+ C

∫ t+1

t

f(s)2ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 .

Since it holds that

D(t)2 = F (t)− F (t+ 1) + C sup
t≤s≤t+1

f(s)2 ≤ F (t) + sup
t≤s≤t+1

f(s)2

by (2.13), we observe

sup
t≤s≤t+1

F (s)2

≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4

≤ C

(
F (t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ CF (t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

and hence

sup
t≤s≤t+1

F (s)2

≤ C

(
F (t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (2.18)

Since it holds that

f(t)2 =





M(t)2γ+1 ∥Au(t)∥4

M(t)2
≤ CM(t)2γ+1 ≤ C(1 + t)−(1+2γ)

M(t)2γ
∥Au(t)∥2

M(t)
∥Au(t)∥2 ≤ CM(t)2γ∥Au(t)∥2 ≤ C(1 + t)−2γF (t)
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and g(t)2 = M(t) ≤ C(1 + t)−1, we have

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1))

+ C(1 + t)−(1+2γ) sup
t≤s≤t+1

F (s)

and hence

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1))

+ C(1 + t)−2(1+2γ) . (2.19)

Thus, applying Lemma 2.1 to (2.19), we obtain

F (t) ≤ C(1 + t)−ω with ω = min{2 , 1 + 2γ}

which implies the desired estimate (2.10). □

Proposition 2.4 Under the assumption of Theorem 1.2, it holds that

∥u′(t)∥ ≤ C(1 + t)−ω for t ≥ 0 (2.20)

with ω = min{2 , 1 + 2γ}.

Proof. Taking the inner product of (1.1) with 2u′(t), we have

ρ
d

dt
∥u′(t)∥2 + 2∥u′(t)∥2 = −2a(M(t))(Au(t), u′(t)) ,

and by the Young inequality we observe

ρ
d

dt
∥u′(t)∥2 + ∥u′(t)∥2 ≤ a(M(t))2∥Au(t)∥2 .

Thus, from (1.7) and (2.10) we drive the desired estimate (2.20). □

Proposition 2.5 Under the assumption of Theorem 1.2, it holds that

L(t) ≡ ρ∥u′′(t)∥2 + a(M(t))∥A1/2u′(t)∥2 + a′(M(t))

2
|M ′(t)|2

≤ C(1 + t)−σ for t ≥ 0 (2.21)

with σ = min{3 , (1 + γ)(1 + 2γ)}.

Proof. Taking the inner product of (1.1) differentiated with respect to t with
2u′′(t), we have

d

dt
L(t) + 2∥u′′(t)∥2

= 3a′(M(t))M ′(t)∥A1/2u′(t)∥2 + a′′(M(t))

2
(M ′(t))3 (2.22)

≤ Cf(t)2 with f(t)2 = M(t)γ
|M ′(t)|
M(t)

∥A1/2u′(t)∥2 . (2.23)

Integrating (2.23) over [t, t+ 1], we have

2

∫ t+1

t

∥u′′(s)∥2ds ≤ L(t)− L(t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ 2D(t)2) . (2.24)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥u′′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (2.25)

On the other hand, taking the inner product of (1.1) differentiated with
respect to t with u′(t), we have

a(M(t))∥A1/2u′(t)∥2 + a′(M(t))

2
|M ′(t)|2

= ρ

(
∥u′′(t)∥2 − d

dt
(u′′(t), u′(t))

)
− (u′′(t), u′(t))

and hence

L(t) = 2ρ∥u′′(t)∥2 − ρ
d

dt
(u′′(t), u′(t))− (u′′(t), u′(t)) . (2.26)

Integrating (2.26) over [t1, t2], we observe from (2.24) and (2.25) that

∫ t2

t1

L(s) ds

≤ 2ρ

∫ t+1

t

∥u′′(s)∥2ds+ ρ

2∑
j=1

∥u′′(tj)∥∥u′(tj)∥+
∫ t+1

t

∥u′′(s)∥∥u′(s)∥ ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 = ∥u′(t)∥2 . (2.27)

Moreover, there exists t∗ ∈ [t1, t2] such that

L(t∗) ≤ 2

∫ t2

t1

L(s) ds . (2.28)

For τ ∈ [t, t + 1], integrating (2.22) over [τ, t∗] (or [t∗, τ ]), we have from
(2.23) and (2.28) that

L(τ) = L(t∗)

+

∫ t∗

τ

(
2ρ∥u′′(s)∥2 − 3a′(M(t))M ′(s)∥A1/2u′(s)∥2 + a(M(s))

2
(M ′(s))3

)
ds

≤ 2

∫ t2

t1

L(s) ds+ C

∫ t+1

t

∥u′′(s)∥2ds+ C

∫ t+1

t

f(s)2ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 .
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and g(t)2 = M(t) ≤ C(1 + t)−1, we have

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1))

+ C(1 + t)−(1+2γ) sup
t≤s≤t+1

F (s)

and hence

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1

)
(F (t)− F (t+ 1))

+ C(1 + t)−2(1+2γ) . (2.19)

Thus, applying Lemma 2.1 to (2.19), we obtain

F (t) ≤ C(1 + t)−ω with ω = min{2 , 1 + 2γ}

which implies the desired estimate (2.10). □

Proposition 2.4 Under the assumption of Theorem 1.2, it holds that

∥u′(t)∥ ≤ C(1 + t)−ω for t ≥ 0 (2.20)

with ω = min{2 , 1 + 2γ}.

Proof. Taking the inner product of (1.1) with 2u′(t), we have

ρ
d

dt
∥u′(t)∥2 + 2∥u′(t)∥2 = −2a(M(t))(Au(t), u′(t)) ,

and by the Young inequality we observe

ρ
d

dt
∥u′(t)∥2 + ∥u′(t)∥2 ≤ a(M(t))2∥Au(t)∥2 .

Thus, from (1.7) and (2.10) we drive the desired estimate (2.20). □

Proposition 2.5 Under the assumption of Theorem 1.2, it holds that

L(t) ≡ ρ∥u′′(t)∥2 + a(M(t))∥A1/2u′(t)∥2 + a′(M(t))

2
|M ′(t)|2

≤ C(1 + t)−σ for t ≥ 0 (2.21)

with σ = min{3 , (1 + γ)(1 + 2γ)}.

Proof. Taking the inner product of (1.1) differentiated with respect to t with
2u′′(t), we have

d

dt
L(t) + 2∥u′′(t)∥2

= 3a′(M(t))M ′(t)∥A1/2u′(t)∥2 + a′′(M(t))

2
(M ′(t))3 (2.22)

≤ Cf(t)2 with f(t)2 = M(t)γ
|M ′(t)|
M(t)

∥A1/2u′(t)∥2 . (2.23)

Integrating (2.23) over [t, t+ 1], we have

2

∫ t+1

t

∥u′′(s)∥2ds ≤ L(t)− L(t+ 1) + C sup
t≤s≤t+1

f(s)2 (≡ 2D(t)2) . (2.24)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥u′′(tj)∥2 ≤ 4D(t)2 for j = 1, 2 . (2.25)

On the other hand, taking the inner product of (1.1) differentiated with
respect to t with u′(t), we have

a(M(t))∥A1/2u′(t)∥2 + a′(M(t))

2
|M ′(t)|2

= ρ

(
∥u′′(t)∥2 − d

dt
(u′′(t), u′(t))

)
− (u′′(t), u′(t))

and hence

L(t) = 2ρ∥u′′(t)∥2 − ρ
d

dt
(u′′(t), u′(t))− (u′′(t), u′(t)) . (2.26)

Integrating (2.26) over [t1, t2], we observe from (2.24) and (2.25) that

∫ t2

t1

L(s) ds

≤ 2ρ

∫ t+1

t

∥u′′(s)∥2ds+ ρ

2∑
j=1

∥u′′(tj)∥∥u′(tj)∥+
∫ t+1

t

∥u′′(s)∥∥u′(s)∥ ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) with g(t)2 = ∥u′(t)∥2 . (2.27)

Moreover, there exists t∗ ∈ [t1, t2] such that

L(t∗) ≤ 2

∫ t2

t1

L(s) ds . (2.28)

For τ ∈ [t, t + 1], integrating (2.22) over [τ, t∗] (or [t∗, τ ]), we have from
(2.23) and (2.28) that

L(τ) = L(t∗)

+

∫ t∗

τ

(
2ρ∥u′′(s)∥2 − 3a′(M(t))M ′(s)∥A1/2u′(s)∥2 + a(M(s))

2
(M ′(s))3

)
ds

≤ 2

∫ t2

t1

L(s) ds+ C

∫ t+1

t

∥u′′(s)∥2ds+ C

∫ t+1

t

f(s)2ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

f(s)2 .
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Since it holds that

D(t)2 = L(t)− L(t+ 1) + C sup
t≤s≤t+1

f(s)2 ≤ L(t) + sup
t≤s≤t+1

f(s)2

by (2.24), we observe

sup
t≤s≤t+1

L(s)2

≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4

≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ CL(t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

and hence

sup
t≤s≤t+1

L(s)2

≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (2.29)

(i) When 0 < γ < 1
2 , we put ω = 1 + 2γ. Since it holds that

f(t)2 ≤ 2
∥Au(t)∥
M(t)

1
2

∥u′(t)∥1−2γ

M(t)
1
2

∥u′(t)∥2γ∥A1/2u′(t)∥2

≤ C∥u′(t)∥2γ∥A1/2u′(t)∥2 ≤

{
C(1 + t)−(1+γ)ω

C(1 + t)−γωL(t)

and g(t)2 = ∥u′(t)∥2 ≤ C(1 + t)−ω, we have

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−(1+γ)ω sup
t≤s≤t+1

L(s)

and hence

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−2(1+γ)ω . (2.30)

Thus, applying Lemma 2.1 to (2.30), we obtain

L(t) ≤ C(1 + t)−σ with σ = {ω + 1 , (1 + γ)ω} = (1 + γ)(1 + 2γ)

which implies the desired estimate (2.21) for 0 < γ < 1
2 .

(ii) When γ ≥ 1
2 , we put ω = 2. Since it holds that

f(t)2 ≤ 2M(t)γ−
1
2
∥Au(t)∥
M(t)

1
2

∥u′(t)∥∥A1/2u′(t)∥

≤ CM(t)γ−
1
2 ∥u′(t)∥∥A1/2u′(t)∥ ≤

{
C(1 + t)−(γ+ 3ω−1

2 )

C(1 + t)−(γ+ω−1
2 )L(t)

and g(t)2 = ∥u′(t)∥2 ≤ C(1 + t)−ω, we have

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−(γ+ 3γ−1
2 ) sup

t≤s≤t+1
L(s)

and hence

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−2(γ+ 3γ−1
2 ) . (2.31)

Thus, applying Lemma 2.1 to (2.31), we obtain

L(t) ≤ C(1 + t)−σ with σ = {ω + 1 , γ +
3γ − 1

2
} = 3

which implies the desired estimate (2.21) for γ ≥ 1
2 . □

Proof of Theorem 1.2. Gathering Propositions 2.2–2.5, we conclude Theorem
1.2. □
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Since it holds that

D(t)2 = L(t)− L(t+ 1) + C sup
t≤s≤t+1

f(s)2 ≤ L(t) + sup
t≤s≤t+1

f(s)2

by (2.24), we observe

sup
t≤s≤t+1

L(s)2

≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
f(s)4

≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ CL(t) sup
t≤s≤t+1

f(s)2 + C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2

and hence

sup
t≤s≤t+1

L(s)2

≤ C

(
L(t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(L(t)− L(t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 . (2.29)

(i) When 0 < γ < 1
2 , we put ω = 1 + 2γ. Since it holds that

f(t)2 ≤ 2
∥Au(t)∥
M(t)

1
2

∥u′(t)∥1−2γ

M(t)
1
2

∥u′(t)∥2γ∥A1/2u′(t)∥2

≤ C∥u′(t)∥2γ∥A1/2u′(t)∥2 ≤

{
C(1 + t)−(1+γ)ω

C(1 + t)−γωL(t)

and g(t)2 = ∥u′(t)∥2 ≤ C(1 + t)−ω, we have

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−(1+γ)ω sup
t≤s≤t+1

L(s)

and hence

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−2(1+γ)ω . (2.30)

Thus, applying Lemma 2.1 to (2.30), we obtain

L(t) ≤ C(1 + t)−σ with σ = {ω + 1 , (1 + γ)ω} = (1 + γ)(1 + 2γ)

which implies the desired estimate (2.21) for 0 < γ < 1
2 .

(ii) When γ ≥ 1
2 , we put ω = 2. Since it holds that

f(t)2 ≤ 2M(t)γ−
1
2
∥Au(t)∥
M(t)

1
2

∥u′(t)∥∥A1/2u′(t)∥

≤ CM(t)γ−
1
2 ∥u′(t)∥∥A1/2u′(t)∥ ≤

{
C(1 + t)−(γ+ 3ω−1

2 )

C(1 + t)−(γ+ω−1
2 )L(t)

and g(t)2 = ∥u′(t)∥2 ≤ C(1 + t)−ω, we have

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−(γ+ 3γ−1
2 ) sup

t≤s≤t+1
L(s)

and hence

sup
t≤s≤t+1

L(t)2 ≤ C
(
L(t) + (1 + t)−ω

)
(L(t)− L(t+ 1))

+ C(1 + t)−2(γ+ 3γ−1
2 ) . (2.31)

Thus, applying Lemma 2.1 to (2.31), we obtain

L(t) ≤ C(1 + t)−σ with σ = {ω + 1 , γ +
3γ − 1

2
} = 3

which implies the desired estimate (2.21) for γ ≥ 1
2 . □

Proof of Theorem 1.2. Gathering Propositions 2.2–2.5, we conclude Theorem
1.2. □
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