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Abstract

In this paper, we define the RS-measure onRd, (d ≥ 1) by prescribing
the complete system of axioms. Then we prove the existence theorem of
the RS-measure and determine all the RS-measures. This is a new result.

2000 Mathematics Subject Classification. Primary 28Axx.

Introduction

This paper is the part V of the series of papers on the axiomatic method of
measure and integration on the Euclidean space. As for the details, we refer to
Ito [6], [14]. Further we refer to Ito [1]∼[5], [7]∼[13] and [15]∼ [21].

In this paper, we study the definition of the Riemann-Stieltjes measure on
the d-dimensional Euclidean space and prove its existence theorem and study
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the fundamental properties of the d-dimensional Riemann-Stieltjes measurable
sets. Here we assume d ≥ 1.

For simplicity, we say that the d-dimensional Riemann-Stieltjes measure on
the d-dimensional Euclidean space is the d-dimensional RS-measure. Further,
for simplicity, we say that a d-dimensional Riemann-Stieltjes measurable set is
a d-dimensional RS-measurable set.

In this paper, in the sequel, we happen to omit the adjective “d-dimensional”.
A RS-measure is conditionally completely additive real-valued measure and

all conditionally completely additive real-valued measure are the RS-measures.
Thereby the set of all conditionally completely additive real-valued measure

on the Euclidean space is determined.
Namely this set is the set of all RS-measures on the Euclidean space.
The most fundamental property of the measure considered here is the fact

that this measure is an additive set function defined on a certain family of sets.
We can characterize the whole of such measures by the complete system

of axioms which is the conditions of defining the RS-measure and prove the
existence theorem of such a RS-measure.

Thereby we have succeeded in characterizing the RS-measures on Rd on
the whole.

We prove that a RS-measure is determined by the corresponding distribu-
tion function. Thereby we give the characterization of the RS-measure.

A Jordan measure is an additive set function defined on the ring of all
Jordan measurable sets and is characterized by the conditions such as the
positivity, the conditionally complete additivity and the invariance with respect
to the congruence transformation. Therefore the value of the Jordan measure
is determined by deciding the measure of the unit figure as a unit quantity.

The RS-measure considered in this paper is an additive set function on the
ring of all RS-measurable sets and it is the measure characterized by only two
conditions such as the real-valuedness and the conditionally complete additiv-
ity. Further the Jordan measure is the special example of the RS-measure.

Here I express my heartfelt gratitude to my wife Mutuko for help of type-
setting this manuscript.

1 Intervals and blocks of intervals

In this section, we prepare the terminology which is necessary for giving the
system of axioms of this d-dimensional RS-measure.

At first we study the intervals and the blocks of intervals as the fundamental
subsets of the d-dimensional Euclidean space Rd.
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We define a subset E of Rd is an interval if E is a direct product set

E =
d∏

j=1

Ij .

Here I1, I2, · · · , Id are the intervals of R and each one of them is a subset of
R which is equal to either one of the intervals of R of the forms:

(a, b) = {x; a < x < b}, [a, b) = {x; a ≤ x < b},

(a, b] = {x; a < x ≤ b}, [a, b] = {x; a ≤ x ≤ b}.
(1.1)

Here a and b are equal to a real number or −∞ or ∞. Then −∞ and ∞
are not a point of the intervals Ij , (1 ≤ j ≤ d).

Then we denote the interior of E as

E◦ =

d∏
j=1

I◦j . (1.2)

Here I◦j denotes the interior of Ij , (1 ≤ j ≤ d) and we consider that the empty
set ∅ is the interval.

We define that a subset E of Rd is a block of intervals if E is equal to
the direct sum

E =

n∪
p=1

Ep =

n∑
p=1

Ep = E1 + E2 + · · ·+ En (1.3)

of a certain family of mutually disjoint intervals E1, E2, · · · , En. We say that
the formula (1.3) is a division of E with the intervals.

In general, the choice of the division of a block of intervals has infinitely
many varieties.

Here we denote the family of all blocks of intervals of Rd as R. Then R is
the smallest ring which includes all intervals of Rd.

Namely R is a ring of sets generated by the family P of all intervals of Rd.
Then we have the following theorem.

Theorem 1.1 Assume that R is the family of all blocks of intervals of
Rd. Then we have the following conditions (1)∼(3):

(1) ∅ ∈ R holds.

(2) For A ∈ R, we have

Ac = {x ∈ Rd; x ̸∈ A} ∈ R.

(3) For A, B ∈ R, we have A ∪B ∈ R.

3
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Corollary 1.1 Assume that R is the same as in Theorem 1.1. Then we
have the following (1)∼(3):

(1) Rd ∈ R holds.

(2) For A, B ∈ R, we have A − B ∈ R. Here the difference A − B = A\B
of the sets A and B is defined by the formula

A\B = A ∩Bc = {x ∈ Rd; x ∈ A, x ̸∈ B}.

(3) For Ap ∈ R, (1 ≤ p ≤ n), we have

n∪
p=1

Ap ∈ R,

n∩
p=1

Ap ∈ R.

Therefore, since R satisfies the condition (1) of Corollary 1.1, the ring of
sets R is an algebra of sets.

2 Function of locally bounded variation

In this section, we prepare the notations and the concepts necessary for the
study of RS-measures.

For that purpose, we prepare the notation.
We consider a variable-wise left continuous function f(x) = f(x1, x2, · · · ,

xd) defined on Rd .
Now, for an interval in Rd

E =
d∏

j=1

Ij , (Ij = [aj , bj), (1 ≤ j ≤ d)),

we put

∆Ijf(x) = f(x1, · · · , xj−1, bj , xj+1, xj+1, · · · , xd)

−f(x1, · · · , xj−1, aj , xj+1, · · · , xd),

for j, (1 ≤ j ≤ d) and

∆Ef(x) = ∆I1∆I2 · · ·∆Idf(x) = ∆I1(∆I2(· · · (∆Idf(x))).

Especially, for Ij = {aj}, (1 ≤ j ≤ d),

∆Ijf(x) = f(x1, · · · , xj−1, aj + 0, xj+1, · · · , xd)

−f(x1, · · · , xj−1, aj , xj+1, · · · , xd).

4

Here we happen to denote Ij = {aj} = [aj , aj + 0), (1 ≤ j ≤ d). Further,
when either one of aj , bj , (1 ≤ j ≤ d) is equal to ∞ or −∞, we consider the
limit such as aj → −∞ or bj → ∞ in the symbol in the above.

When we consider a variable-wise right continuous function f(x) = f(x1, x2,
· · · , xd) defined on Rd, we use the similar notation ∆Ef(x) for an interval in
Rd

E =

d∏
j=1

Ij .

Here Ij = (aj , bj ] or Ij = {aj} = (aj − 0, bj ], (i = 1, 2, · · · , d).
We say that a real-valued function f(x) = f(x1, x2, · · · , xd) of the real

variables on Rd is of locally bounded variation if, for an arbitrary natural
number n ≥ 1 and an arbitrary bounded interval E, the set of values

n∑
p=1

|∆Epf(x)|

is bounded for an arbitrary family

{
Ep =

d∏
j=1

(apj , b
p
j ); p = 1, 2, · · · , n

}

of mutually disjoint n bounded open intervals included in E.
Further a real-valued function f(x) = f(x1, x2, · · · , xd) of the real vari-

ables on Rd is absolutely continuous if, for an arbitrary positive number ε,
there exists some positive number δ such that the condition

n∑
p=1

d∏
j=1

(bj − aj) < δ

holds for an arbitrary natural number n and an arbitrary family of mutually
disjoint n bounded open intervals

{
Ep =

d∏
j=1

(apj , b
p
j ); p = 1, 2, · · · , d

}
,

the estimate ���
n∑

p=1

∆Epf(x)
���< ε

holds.
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3 Definition of the d-dimensional RS-measure

In this section, we define the concept of the d-dimensional RS-measure.
Here we assume d ≥ 1.

Since a d-dimensional RS-measure is a set function, it is defined by the
following three conditions:

(i) Its domain is a family of sets M0.

(ii) Its range is a subset of R = R ∪ {±∞}.

(iii) We determine the rule of correspondence such that we define the value
µ(A) in R for an element A in M0.

We say that the system of the conditions of the definition of a d-dimensional
RS-measure is the system of axioms of the d-dimensional RS-measure.

In the sequel, we define the concept of the RS-measure.
Then we define the concepts of the RS-measure space and the RS-measure

in the following Definition 3.1.
Here we prepare the terminology which is used in the definition of the RS-

measure.
In general, we consider a certain σ-finite completely additive measure space

(X, F , µ). Here we may consider the case of a σ-finite conditionally completely
additive measure space. We assume that the range of µ is a subset of R. Here
we assume that the range of µ does not include ∞ and −∞ at the same time.

Then, for A ∈ F , we put

|µ|(A) = sup
n∑

j=1

|µ(Aj)|.

Here sup is taken for all choices of the finite division of A such as

A = A1 +A2 + · · ·+An, (Aj ∈ F , (1 ≤ j ≤ n))

holds. Then we say that the set function |µ| is the total variation of µ.
Further, for A ∈ F , we put

µ+(A) = sup
E⊂A

{µ(E), 0},

µ−(A) = − inf
E⊂A

{µ(E), 0}.

Here sup and inf are considered for all E ∈ F such as E ⊂ A holds.
Then we say that the set functions µ+ and µ− are the positive variation

and the negative variation respectively. Then we have the following theorem
for these variations.

6

Theorem 3.1 We use the notation in the above. Then |µ|, µ+ and µ−

are the completely additive positive measures and we have the equalities

µ(A) = µ+(A)− µ−(A), |µ|(A) = µ+(A) + µ−(A)

for A ∈ F .

Definition 3.1(RS-measure) We define that the triplet (Rd, M0, µ)
is a d-dimensional RS-measure space if the family of sets M0 on the d-
dimensional Euclidean space Rd and the set function µ on M0 satisfy the
following axioms (I)∼(IV).

Then we say that an element in M0 is a RS-measurable set and µ is a
d-dimensional RS-measure.

Now we assume that ν is the total variation µ and µ+, µ− are the positive
variation and the negative variation respectively.

(I) R ⊂ M0 holds.

(II) We have the following (i)∼(ii):

(i) One of the following (a) or (b) holds:

(a) For A ∈ M0, we have −∞ < µ(A) ≤ ∞.

(b) For A ∈ M0, we have −∞ ≤ µ(A) < ∞.

(ii) If at most countable elements A1, A2, · · · , An, · · · of M0 are
mutually disjoint and their direct sum

A =

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap

belongs to M0, we have the equality

µ(A) =

(∞)∑
p=1

µ(Ap).

(III) A ∈ M0 holds if and only if, for an arbitrary bounded set E ∈ R, we
have the equality

ν∗(A ∩ E) = ν∗(A ∩ E).

Here ν∗ and ν∗ are the outer measure and the inner measure respectively
which are defined by using the restricted measure ν on R of ν on M0.

Namely ν∗(A ∩ E) and ν∗(A ∩ E) are defined by the formulas

ν∗(A ∩ E) = inf {ν(B); B ⊃ A ∩ E, B ∈ R},

ν∗(A ∩ E) = sup {ν(B); A ∩ E ⊃ B, B ∈ R}.
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(IV) For A ∈ M0, we have the equalities

µ(A) = µ+(A)− µ−(A), ν(A) = µ+(A) + µ−(A).

Especially we say that a RS-measure is the positive RS-measure if its range
is included in [0, ∞]. Then ν, µ+ and µ− are all the positive RS-measures.

For simplicity, we say that a d-dimensional RS-measure space is the RS-
measure space and a d-dimensional RS-measure is the RS-measure.

The symbol used in the axiom (III), (ii)

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap

denotes the finite or countable direct sum of the sets Ap, (p ≥ 1) and the
symbol

(∞)∑
p=1

µ(Ap)

denotes the finite or countable sum of µ(Ap), (p ≥ 1).
Every RS-measure satisfies only one of the conditions (a) or (b) in the axiom

(II), (i) of Definition 3.1. This means that the range of a RS-measure does not
contain ∞ and −∞ simultaneously. Therefore at least one of µ+ or µ− has the
finite total measure. Then we say that the measure with the finite total measure
is a finite measure. The condition (ii) of the axiom (II) means that a d-
dimensional RS-measure is the conditionally completely additive measure. For
simplicity, we happen to say that this d-dimensional RS-measure is completely
additive. Then, since M0 is a ring, we can understand that a d-dimensional
RS-measure on M0 is not a completely additive measure in the primitive sense
and it is a conditionally completely additive measure.

Further, by virtue of the condition (ii) of the axiom (II), a conditionally
completely additive measure is of course a finitely additive measure.

Corollary 3.1 We use the notation in Definition 3.1. Then, for A ∈ M0,
we have the equalities

ν(A) = ν∗(A) = sup{ν∗(A ∩ E); E ∈ R is bounded}

= ν∗(A) = sup{ν∗(A ∩ E); E ∈ R is bounded}.

8

4 Existence theorem of the d -dimensional RS-
measure

In this section, we prove the existence theorem of the d-dimensional RS-
measure defined in Definition 3.1.

For that purpose, we have only to determine the familyM0 of RS-measurable
sets in Rd and the RS-measure µ concretely.

At first, assuming that there exists a RS-measure space (Rd, M0, µ) sat-
isfying the system of axioms in Definition 3.1, we have to determine what kind
of the set should be an element of M0 and how should we define the value of
µ for an arbitrary element A ∈ M0.

Further, by virtue of the axiom (IV) of Definition 3.1, we see that we have
to determine the two positive RS-measure µ+ and µ− on M0. Therefore we
prove the existence theorem of the positive RS-measure satisfying the system
of axioms of Definition 3.1 in the following.

Here we prove the following two Lemmas.

Lemma 4.1 We use the notation in the above. Assume that a real-valued
function f(x) = f(x1, x2, · · · , xd) defined on Rd satisfies the following con-
ditions (i) and (ii):

(i) f(x) is a variable-wise left continuous function.

(ii) For an arbitrary interval

E =
α∏

j=1

Ij , (4.1)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we denote

Ij = [xj , yj) or Ij = {xj} = [xj , xj + 0),

(xj , yj ∈ R, xj < yj , (1 ≤ j ≤ d)).

We assume that P is the family of all intervals in Rd. Then there exists
one and only one conditionally completely additive positive measure µ such that
we have the following condition (1):

(1) For the interval E in the formula (4.1), we have the formula

µ(E) = ∆Ef(x).
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(IV) For A ∈ M0, we have the equalities

µ(A) = µ+(A)− µ−(A), ν(A) = µ+(A) + µ−(A).

Especially we say that a RS-measure is the positive RS-measure if its range
is included in [0, ∞]. Then ν, µ+ and µ− are all the positive RS-measures.

For simplicity, we say that a d-dimensional RS-measure space is the RS-
measure space and a d-dimensional RS-measure is the RS-measure.
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(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap

denotes the finite or countable direct sum of the sets Ap, (p ≥ 1) and the
symbol

(∞)∑
p=1

µ(Ap)

denotes the finite or countable sum of µ(Ap), (p ≥ 1).
Every RS-measure satisfies only one of the conditions (a) or (b) in the axiom

(II), (i) of Definition 3.1. This means that the range of a RS-measure does not
contain ∞ and −∞ simultaneously. Therefore at least one of µ+ or µ− has the
finite total measure. Then we say that the measure with the finite total measure
is a finite measure. The condition (ii) of the axiom (II) means that a d-
dimensional RS-measure is the conditionally completely additive measure. For
simplicity, we happen to say that this d-dimensional RS-measure is completely
additive. Then, since M0 is a ring, we can understand that a d-dimensional
RS-measure on M0 is not a completely additive measure in the primitive sense
and it is a conditionally completely additive measure.
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= ν∗(A) = sup{ν∗(A ∩ E); E ∈ R is bounded}.
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4 Existence theorem of the d -dimensional RS-
measure

In this section, we prove the existence theorem of the d-dimensional RS-
measure defined in Definition 3.1.

For that purpose, we have only to determine the familyM0 of RS-measurable
sets in Rd and the RS-measure µ concretely.

At first, assuming that there exists a RS-measure space (Rd, M0, µ) sat-
isfying the system of axioms in Definition 3.1, we have to determine what kind
of the set should be an element of M0 and how should we define the value of
µ for an arbitrary element A ∈ M0.

Further, by virtue of the axiom (IV) of Definition 3.1, we see that we have
to determine the two positive RS-measure µ+ and µ− on M0. Therefore we
prove the existence theorem of the positive RS-measure satisfying the system
of axioms of Definition 3.1 in the following.

Here we prove the following two Lemmas.

Lemma 4.1 We use the notation in the above. Assume that a real-valued
function f(x) = f(x1, x2, · · · , xd) defined on Rd satisfies the following con-
ditions (i) and (ii):

(i) f(x) is a variable-wise left continuous function.

(ii) For an arbitrary interval

E =
α∏

j=1

Ij , (4.1)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we denote

Ij = [xj , yj) or Ij = {xj} = [xj , xj + 0),

(xj , yj ∈ R, xj < yj , (1 ≤ j ≤ d)).

We assume that P is the family of all intervals in Rd. Then there exists
one and only one conditionally completely additive positive measure µ such that
we have the following condition (1):

(1) For the interval E in the formula (4.1), we have the formula

µ(E) = ∆Ef(x).
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Lemma 4.2 We use the notation in Lemma 4.1. Let R be the ring of sets
composed of all blocks of intervals in Rd. Then R is a ring of sets generated
by P.

Then there exists one and only one conditionally completely additive positive
measure µ on R such that we have the following conditions (1) and (2):

(1) For an interval E in the formula (4.1), we have the equality

µ(E) = ∆Ef(x).

(2) If E ∈ R has a division by using the finite number of mutually disjoint
intervals E1, E2, · · · , En as follows:

E = E1 + E2 + · · ·+ En,

we have the equality

µ(E) = µ(E1) + µ(E2) + · · ·+ µ(En).

Further the value of µ(E) is determined uniquely and independently with
the choice of the division of E by using the intervals.

Then, for E ∈ P, µ(E) coincides with the value of the interval functions
defined in Lemma 4.1.

Theorem 4.1(Existence theorem of the RS-measure) Assume that
a function f(x) is the same as in Lemma 4.1. Then there exists one and only
one positive RS-measure space (Rd, M0, µ) such that the following condition
(1) is satisfied:

(1) For an interval E in the formula (4.1), we have the equality

µ(E) = ∆Ef(x).

Further the converse is also true.

We say that the function f(x) considered in Theorem 4.1 is the distribu-
tion function of the positive RS-measure µ.

Corollary 4.1 We use the notation in Corollary 3.1 and Theorem 4.1.
Let A be a subset of Rd. Then, for the outer measure µ∗(A) and the inner
measure µ∗(A) of A, we have the following (1) and (2):

(1) µ∗(A) = sup{µ∗(A ∩ E); E ∈ R is bounded }.

(2) µ∗(A) = sup{µ∗(A ∩ E); E ∈ R is bounded }.
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Corollary 4.2 We use the notation in Corollary 4.1. Then, if a subset A
of Rd is a RS-measurable set, we have the equality

µ(A) = µ∗(A) = µ∗(A).

Theorem 4.2 Assume that a real-valued function f(x) is the same as in
Theorem 4.1.

Further we assume that µ is a positive RS-measure on Rd and the function
f(x) in the above is the distribution function of µ. Then f(x) is continuous if
and only if, for each point xj ∈ R, we have µ({xj} × Ex′) = 0, (1 ≤ j ≤ d).
Here we put x′ = (x1, · · · , xj−1, xj+1, · · · , xd) and Ex′ is an interval in

Rd−1
x′ . 　

In the same way as Theorem 4.1, we can prove the following theorem.

Theorem 4.3(Existence theorem of the RS-measure) Assume that
a real-valued function f(x) defined on Rd satisfies the following conditions (i)
and (ii):

(i) f(x) is a variable-wise right continuous function.

(ii) For an arbitrary interval

E =
d∏

j=1

Ij , (4.2)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we put

Ij = (xj , yj ] or Ij = {xj} = (xj − 0, xj ],

(xj , yj ∈ R and xj < yj , (1 ≤ j ≤ d)).

Then there exists one and only one positive RS-measure space (Rd, M0. µ)
such that we have the following condition (1):

(1) For an interval E in the formula (4.2), we have the equality

µ(E) = ∆Ef(x).

Further the inverse is also true.

We have the similar results as in Theorem 4.1 if f(x) and µ satisfy the
conditions of Theorem 4.3.

Theorem 4.4(Existence theorem of the RS-measure) Assume that
a real-valued function f(x) defined on Rd satisfies the following conditions (i)
and (ii):

11



29Axiomatic Method of Measure and Integration (V)

Lemma 4.2 We use the notation in Lemma 4.1. Let R be the ring of sets
composed of all blocks of intervals in Rd. Then R is a ring of sets generated
by P.

Then there exists one and only one conditionally completely additive positive
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(1) For an interval E in the formula (4.1), we have the equality

µ(E) = ∆Ef(x).

Further the converse is also true.

We say that the function f(x) considered in Theorem 4.1 is the distribu-
tion function of the positive RS-measure µ.

Corollary 4.1 We use the notation in Corollary 3.1 and Theorem 4.1.
Let A be a subset of Rd. Then, for the outer measure µ∗(A) and the inner
measure µ∗(A) of A, we have the following (1) and (2):

(1) µ∗(A) = sup{µ∗(A ∩ E); E ∈ R is bounded }.

(2) µ∗(A) = sup{µ∗(A ∩ E); E ∈ R is bounded }.
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Corollary 4.2 We use the notation in Corollary 4.1. Then, if a subset A
of Rd is a RS-measurable set, we have the equality

µ(A) = µ∗(A) = µ∗(A).

Theorem 4.2 Assume that a real-valued function f(x) is the same as in
Theorem 4.1.

Further we assume that µ is a positive RS-measure on Rd and the function
f(x) in the above is the distribution function of µ. Then f(x) is continuous if
and only if, for each point xj ∈ R, we have µ({xj} × Ex′) = 0, (1 ≤ j ≤ d).
Here we put x′ = (x1, · · · , xj−1, xj+1, · · · , xd) and Ex′ is an interval in

Rd−1
x′ . 　

In the same way as Theorem 4.1, we can prove the following theorem.

Theorem 4.3(Existence theorem of the RS-measure) Assume that
a real-valued function f(x) defined on Rd satisfies the following conditions (i)
and (ii):

(i) f(x) is a variable-wise right continuous function.

(ii) For an arbitrary interval

E =
d∏

j=1

Ij , (4.2)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we put

Ij = (xj , yj ] or Ij = {xj} = (xj − 0, xj ],

(xj , yj ∈ R and xj < yj , (1 ≤ j ≤ d)).

Then there exists one and only one positive RS-measure space (Rd, M0. µ)
such that we have the following condition (1):

(1) For an interval E in the formula (4.2), we have the equality

µ(E) = ∆Ef(x).

Further the inverse is also true.

We have the similar results as in Theorem 4.1 if f(x) and µ satisfy the
conditions of Theorem 4.3.

Theorem 4.4(Existence theorem of the RS-measure) Assume that
a real-valued function f(x) defined on Rd satisfies the following conditions (i)
and (ii):
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(i) f(x) is a variable-wise left continuous function of locally bounded varia-
tion.

(ii) The two functions f+(x) and f−(x) satisfy the same conditions as in
Theorem 4.1 and the equality

f(x) = f+(x)− f−(x)

holds.

Then there exists one and only one RS-measure space (Rd, M0, µ) such
that we have the following condition (1):

(1) For an interval

E =
d∏

j=1

Ij ,

we have the equality
µ(E) = ∆Ef(x).

Here we put

Ij = [xj , yj) or Ij = {xj} = [xj , xj + 0),

(xj , yj ∈ R, xj < yj , (1 ≤ j ≤ d).

Further the inverse is also true,

We consider the two functions f+(x) and f−(x) as in Theorem 4.3. Then
these functions satisfy the conditions of Theorem 4.1. Therefore we can de-
fine the positive RS-measures µ+ and µ− corresponding to f+(x) and f−(x)
respectively. Then, if we put

µ = µ+ − µ−,

we can define the RS-measure space (Rd, M0, µ) and it is evident that it
satisfies the conditions of Theorem 4.4.

The inverse can be proved by the similar way.
By the similar way to Theorem 4.4, we can characterize the RS-measure

space by using a variable-wise right continuous function of locally bounded
variation.

Theorem 4.5(Existence theorem of RS-measure) Assume that a
real-valued function f(x) defined on Rd satisfics the following conditions (i)
and (ii):

(i) f(x) is a variable-wise right continuous function of locally bounded varia-
tion.
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(ii) Two functions f+(x) and f−(x) satisfy the same conditions as in Theorem
4.3 and the equality

f(x) = f+(x)− f−(x)

holds.
Then there exists one and only one RS-measure space (Rd, M0, µ) such that
it satisfies the following condition (1):

(1) For an interval

E =
d∏

j=1

Ij ,

we have the equality
µ(E) = ∆Ef(x).

Here we put

Ij = (xj , yj ] or Ij = {xj} = (xj − 0, xj ],

(xj , yj ∈ R, xj < yj , (1 ≤ j ≤ d)).

Further the inverse is also true.

Remark 4.1 We see that the positive RS-measure on Rd corresponding
to the function f(x) = x1x2 · · ·xd is the d-dimensional Jordan measure. Fur-
ther the positive RS-measure on Rd corresponding to the function which is a
multiplication of f(x) = x1x2 · · ·xd by an arbitrary positive constant is the
d-dimensional Riemann-Haar measure.

Theorem 4.6 If µ is a RS-measure on Rd, there exist two positive RS-
measures µ+ and µ− such that we have the unique expression

µ = µ+ − µ−.

We say that the result of Theorem 4.6 is the Jordan decomposition.

Theorem 4.7 Assume that µ is a RS-measure on Rd and λ is the Jordan
measure on Rd. Further, assume that f(x) is a continuous function of locally
bounded variation which defines the RS-measure µ. Then f(x) is absolutely
continuous if and only if µ is absolutely continuous with respect to λ.

If f(x) is absolutely continuous, f(x) is continuous. Thus, we may assume,
as the precondition in Theorem 4.7, that f(x) is a continuous function of locally
bounded variation.

13
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(i) f(x) is a variable-wise left continuous function of locally bounded varia-
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that we have the following condition (1):

(1) For an interval

E =
d∏

j=1

Ij ,

we have the equality
µ(E) = ∆Ef(x).
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The inverse can be proved by the similar way.
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variation.
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and (ii):
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(ii) Two functions f+(x) and f−(x) satisfy the same conditions as in Theorem
4.3 and the equality
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holds.
Then there exists one and only one RS-measure space (Rd, M0, µ) such that
it satisfies the following condition (1):

(1) For an interval

E =
d∏

j=1

Ij ,

we have the equality
µ(E) = ∆Ef(x).

Here we put

Ij = (xj , yj ] or Ij = {xj} = (xj − 0, xj ],

(xj , yj ∈ R, xj < yj , (1 ≤ j ≤ d)).

Further the inverse is also true.

Remark 4.1 We see that the positive RS-measure on Rd corresponding
to the function f(x) = x1x2 · · ·xd is the d-dimensional Jordan measure. Fur-
ther the positive RS-measure on Rd corresponding to the function which is a
multiplication of f(x) = x1x2 · · ·xd by an arbitrary positive constant is the
d-dimensional Riemann-Haar measure.

Theorem 4.6 If µ is a RS-measure on Rd, there exist two positive RS-
measures µ+ and µ− such that we have the unique expression

µ = µ+ − µ−.

We say that the result of Theorem 4.6 is the Jordan decomposition.

Theorem 4.7 Assume that µ is a RS-measure on Rd and λ is the Jordan
measure on Rd. Further, assume that f(x) is a continuous function of locally
bounded variation which defines the RS-measure µ. Then f(x) is absolutely
continuous if and only if µ is absolutely continuous with respect to λ.

If f(x) is absolutely continuous, f(x) is continuous. Thus, we may assume,
as the precondition in Theorem 4.7, that f(x) is a continuous function of locally
bounded variation.
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5 d-dimensional RS-measurable sets

In this section, we characterize the d-dimensional RS-measure defined in
Theorem 4.1. And we prove that the family M0 of all RS-measurable sets
is a ring of sets or an algebra of sets. Then we study their relation with the
RS-measure µ.

We restrict the RS-measure µ in Definition 3.1 to the family R of all blocks
of intervals. Thereby we obtain the concept of the RS-measure of the blocks of
intervals in the following.

Definition 5.1 Let R be the ring of all blocks of intervals in Rd. Then
we say that a set function µ on R is a RS-measure of the blocks of intervals
in Rd if we have the following conditions (i) ∼ (iii):

(i) We have either one of the following (a) or (b):

(a) For A ∈ R, we have −∞ < µ(A) ≤ ∞.

(b) For A ∈ R, we have −∞ ≤ µ(A) < ∞.

(ii) If at most countable elements A1, A2, · · · , An, · · · in R are mutually
disjoint and the direct sum

A =

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap

belongs to R, we have the equality

µ(A) =

(∞)∑
p=1

µ(Ap).

(iii) For A ∈ R, we have the following equalities

µ(A) = µ+(A)− µ−(A), ν(A) = µ+(A) + µ−(A).

Here ν is the total variation of µ and µ+, µ− are the positive variation
and the negative variation of µ respectively.

Then we say that the value µ(E) of µ at E ∈ R is the RS-measure of the
block of intervals.

Corollary 5.1 For the RS-measure µ of the blocks of intervals, we have
the following (1) ∼ (4):
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(1) If the elements A1, A2, · · · , An of R are mutually disjoint, we have the
condition

A =
n∪

p=1

Ap =
n∑

p=1

Ap ∈ R

and we have the equality

µ(A) =

n∑
p=1

µ(Ap).

(2) ForA, B ∈ R withA ⊃ B, we have the inequalities µ±(A) ≥ µ±(B), ν(A)
≥ ν(B). Especially, if ν(B) < ∞ holds, we have the equality µ(A\B) =
µ(A)− µ(B). Especially we have the equality µ(ϕ) = 0.

(3) If at most countable elements A1, A2, · · · , An, · · · of R satisfy the
condition

A =

(∞)∪
p=1

Ap ∈ R,

we have the inequality

λ(A) ≤
(∞)∑
p=1

λ(Ap).

Here λ denotes either one of the measures ν, µ+ and µ−.

(4) If at most countable intervals I1, I2, · · · , In, · · · are mutually disjoint
and their direct sum

I =

(∞)∪
p=1

Ip =

(∞)∑
p=1

Ip

is also an interval, we have the equality

µ(I) =

(∞)∑
p=1

µ(Ip).

Proposition 5.1 Assume that µ is the RS-measure of the blocks of inter-
vals in R.

Then, for the finite division

E = I1 + I2 + · · ·+ In (5.1)

of the block of intervals E by using the mutually disjoint intervals I1, I2, · · · , In,
we have the equality

µ(E) = µ(I1) + µ(I2) + · · ·+ µ(In). (5.2)

15
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5 d-dimensional RS-measurable sets
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We restrict the RS-measure µ in Definition 3.1 to the family R of all blocks
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Then we say that the value µ(E) of µ at E ∈ R is the RS-measure of the
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Corollary 5.1 For the RS-measure µ of the blocks of intervals, we have
the following (1) ∼ (4):
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(1) If the elements A1, A2, · · · , An of R are mutually disjoint, we have the
condition

A =
n∪
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p=1
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and we have the equality

µ(A) =

n∑
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µ(Ap).

(2) ForA, B ∈ R withA ⊃ B, we have the inequalities µ±(A) ≥ µ±(B), ν(A)
≥ ν(B). Especially, if ν(B) < ∞ holds, we have the equality µ(A\B) =
µ(A)− µ(B). Especially we have the equality µ(ϕ) = 0.
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condition

A =
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p=1

Ap ∈ R,

we have the inequality
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λ(Ap).

Here λ denotes either one of the measures ν, µ+ and µ−.

(4) If at most countable intervals I1, I2, · · · , In, · · · are mutually disjoint
and their direct sum

I =

(∞)∪
p=1

Ip =

(∞)∑
p=1

Ip

is also an interval, we have the equality

µ(I) =

(∞)∑
p=1

µ(Ip).

Proposition 5.1 Assume that µ is the RS-measure of the blocks of inter-
vals in R.

Then, for the finite division

E = I1 + I2 + · · ·+ In (5.1)

of the block of intervals E by using the mutually disjoint intervals I1, I2, · · · , In,
we have the equality

µ(E) = µ(I1) + µ(I2) + · · ·+ µ(In). (5.2)
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Here the value of the right hand side of the formula (5.2) does not depends on
the choice of the finite division of E by using the intervals.

Conversely, we have the theorem concerning the existence of the RS-measure
of the blocks of intervals. By virtue of Definition 5.1, we have only to prove
the existence theorem of the positive RS-measure.

Theorem 5.1 Assume that a real-valued function f(x) = f(x1, x2, · · · ,
xd) is the same as in Theorem 4.1.

Further we assume that, for an arbitrary interval

E =
d∏

j=1

Ij , (5.3)

we have the condition
∆Ef(x) ≥ 0.

Here we denote

Ij = [xj , yj) or Ij = {xj} = [xj , xj + 0),

(xj , yj ∈ R, xj < yj , (1 ≤ j ≤ d)).

Then we define the set function µ on R in the following:

(i) For an interval E in the formula (5.3), we put

µ(E) = ∆Ef(x).

(ii) If we have a finite division

A = E1 + E2 + · · ·+ En (5.4)

of the block of intervals A by using the intervals E1, E2, · · · , En, we put

µ(A) = µ(E1) + µ(E2) + · · ·+ µ(En).

(iii) If at most countable intervals E1, E2, · · · , En, · · · are mutually dis-
joint and the direct sum

E =

(∞)∪
p=1

Ep =

(∞)∑
p=1

Ep

is also an interval, we have the equality

µ(E) =
∞∑
p=1

µ(Ep).

Then µ is the positive RS-measure of the blocks of intervals.
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Next, we determine the d-dimensional positive RS-measure µ concretely
and we prove the existence theorem of the d-dimensional positive RS-measure.

For that purpose, we make some preparation.
We have only to prove the existence of the d-dimensional positive RS-

measure by virtue of Definition 3.1, (IV). Therefore we assume that the RS-
measure µ on R is positive.

Definition 5.2 Assume that µ is the positive RS-measure on R. We
define that, for an arbitrary subset A in Rd,

µ∗(A) = inf {µ(B); B ⊃ A, B ∈ R},

µ∗(A) = sup {µ(B); A ⊃ B, B ∈ R}.

are the outer measure and the inner measure of A respectively.

Corollary 5.2 For A ∈ R, we have the equalities

µ∗(A) = µ∗(A) = µ(A).

Here the third side is the positive RS-measure of the blocks of intervals in the
sense of Theorem 5.1.

We have the following three propositions immediately from the definitions
of the outer measure and the inner measure. In the following, assume that
A, A1 and A2 are some subsets of Rd.

Proposition 5.2 We have the inequalities 0 ≤ µ∗(A) ≤ µ∗(A) ≤ +∞.
Especially, we have the equalities µ∗(∅) = µ∗(∅) = 0.

Proposition 5.3 If A1 ⊂ A2 holds, we have the following:

(1) µ∗(A1) ≤ µ∗(A2). (2) µ∗(A1) ≤ µ∗(A2).

Proposition 5.4 We have the following inequality

µ∗(A1 ∪A2) ≤ µ∗(A1) + µ∗(A2).

Proposition 5.5 For at most countable subsets A1, A2, , · · · of Rd, we
put

A =

(∞)∪
p=1

Ap.
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Here the value of the right hand side of the formula (5.2) does not depends on
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j=1
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Then we have the inequality

µ∗(A) ≤
(∞)∑
p=1

µ∗(Ap).

Proposition 5.6 If a most countable sets A1, A2, · · · , An, · · · of Rd

are mutually disjoint, we put

A =

(∞)∑
p=1

Ap.

Then we have the inequality

µ∗(A) ≥
(∞)∑
p=1

µ∗(Ap).

Proposition 5.7 Choose an arbitrary subset A of Rd. Then, for an ar-
bitrary bounded set E ∈ R, we have the equality

µ∗(A ∩ E) = µ(E)− µ∗(Ac ∩ E).

Here µ is the positive RS-measure of the blocks of intervals defined in Theorem
5.1.

Proposition 5.8 Choose an arbitrary subset A of Rd. Assume that
E1, E2, · · · are some bounded blocks of intervals of Rd such that we have
the following conditions:

E1 ⊂ E2 ⊂ · · · ,
∞∪

n=1

En = Rd.

Then we have the equalities

µ∗(A) = lim
n→∞

µ∗(A ∩ En),

µ∗(A) = lim
n→∞

µ∗(A ∩ En).

Definition 5.3 We use the notation in Definition 5.2. We define that an
arbitrary subset A of Rd is RS-measurable if, for an arbitrary bounded set
E ∈ R, we have the equality µ∗(A ∩ E) = µ∗(A ∩ E). Then we say that

µ(A) = sup{µ∗(A ∩ E); E is a bounded block of intervals }

18

is the positive RS-measure of A.

Remark 5.1 In Definition 5.3, the RS-measurability of a subset A of Rd

means that, for any bounded part A∩E of A, the outer measure µ∗(A∩E) and
the inner measure µ∗(A∩E) coincide. Here the outer measure µ∗(A∩E) is the
approximation of A∩E by using the measures of the bounded blocks of intervals
from the outer side and the inner measure µ∗(A ∩ E) is the approximation of
A∩E by using the measures of the bounded blocks of intervals from the inner
side.

Corollary 5.3 We use the notation in Definition 5.3. Then, for an arbi-
trary RS-measurable set A of Rd, we have the equalities

µ∗(A) = µ∗(A) = µ(A).

In the following, we prove that the set function µ defined in Definition 5.3
satisfies the conditions of the positive RS-measure in Definition 5.1.

By virtue of Corollary 5.2, we see that the concept of the positive RS-
measure of a measurable set coincides with the positive RS-measure of a block
of intervals for the block of intervals.

Theorem 5.2 Assume that A is an arbitrary subset of Rd. Then A is
measurable if and only if, for any E ∈ R, we have the following equality

µ∗(A ∩ E) + µ∗(Ac ∩ E) = µ(E).

Theorem 5.3 Assume that A is an arbitrary subset of Rd. Then A is
measurable if and only if, for an arbitrary subset B of Rd, we have the following
equality

µ∗(A ∩B) + µ∗(Ac ∩B) = µ∗(B).

Theorem 5.4 Assume that A is an arbitrary subset of Rd. Then A is
measurable if and only if, for two arbitrary subsets A1 and A2 with A1 ⊂ A and
A2 ⊂ Ac, we have the following equality

µ∗(A1 +A2) = µ∗(A1) + µ∗(A2).

Theorem 5.5 We assume that µ is the positive RS-measure on R. As-
sume that A is an arbitrary subset of Rd. Then A ∈ M0 holds if and only if,
for an arbitrary ε > 0, there exist A1, A2 ∈ R such that we have the following
conditions (1) and (2):
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(1) A1 ⊂ A ⊂ A2 holds. (2) µ(A2\A1) < ε holds.

Theorem 5.6 If M0 is the family of all RS-measurable subsets, then M0

satisfies the following (1) ∼ (3):

(1) R ⊂ M0 holds. Especially ∅ ∈ M0 holds.

(2) For A ∈ M0, we have Ac ∈ M0.

(3) For A, B ∈ M0, we have A ∪B ∈ M0.

Corollary 5.4 Let M0 be as same as in Theorem 5.6. Then we have the
following (1) ∼ (3):

(1) Rd ∈ M0 holds.

(2) For A, B ∈ M0, we have A−B ∈ M0.

(3) For Ap ∈ M0, (1 ≤ p ≤ n), we have

n∪
p=1

Ap ∈ M0,
n∩

p=1

Ap ∈ M0.

Therefore M0 is the algebra of sets.

Theorem 5.7 For A, B ∈ M0 with A ∩B = ∅, we have the equality

µ(A ∪B) = µ(A) + µ(B).

Theorem 5.8 If at most countable elements A1, A2, · · · , An, · · · of M0

are mutually disjoint and we have the condition

A =

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap ∈ M0,

we have the equality

µ(A) =

(∞)∑
p=1

µ(Ap).

Theorem 5.9 For the algebra M0 of all RS-measurable sets of Rd and
the set function µ defined in Definition 5.3, the measure space (Rd, M0, µ) is
the d-dimensional positive RS-measure space.

20

Since the measure space (Rd, M0, µ) in Theorem 5.9 satisfies the system
of axioms of the d-dimensional positive RS-measure space in Definition 5.1, we
prove the existence theorem of the d-dimensional positive RS-measure space.

At the same time, we prove the existence theorem of the general d-dimensional
RS-measure space.

Namely we have the following theorem.

Theorem 5.10 There exists a d-dimensional RS-measure space (Rd, M0,
µ).
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Abstract

In this paper, we define the RS-integral of the RS-measurable func-
tions on Rd, (d ≥ 1).

Then we study the fundamental properties of the RS-integral. These
facts are the new results.
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Introduction

This paper is the part VI of the series of the papers on the axiomatic method
of measure and integration on the Euclidean space. As for the details, we refer
to Ito [6], [14]. Further we refer to Ito [1] ∼ [5], [7] ∼ [13] and [15] ∼ [22].

In this paper, we study the definition of the d-dimensional RS-integral on the
d-dimensional Euclidean space Rd and their fundamental properties. Here we
assume d ≥ 1. In the sequel, we happen to omit the adjective “d-dimensional”.
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