Inequalities for the Difference $A^{-1} g(A)-B^{-1} g(B)$ when g is

 Operator Monotone on $[0, \infty)$By
Silvestru Sever DRAGOMIR
College of Engineering \mathcal{F} Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. e-mail address: sever.dragomir@vu.edu.au

(Received June 11, Revised September 14, 2020)

Abstract

In this paper we show that, if $g:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$ with $g(0)=0, A \geq 0$ and there exist positive numbers $d>c>0$ such that the condition $d 1_{H} \geq B-A \geq c 1_{H}>0$ is satisfied, then

$$
\begin{aligned}
A^{-1} g(A)-B^{-1} g(B) & \geq\left[\frac{g(\|A\|)}{\|A\|}-\frac{g(\|A\|+c)}{\|A\|+c}\right] 1_{H} \\
& \geq\left[\frac{g(\|B\|-c)}{\|B\|-c}-\frac{g(\|B\|)}{\|B\|}\right] 1_{H}>0
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{-1} g(A)-B^{-1} g(B) \\
& \geq c\left(\frac{g(\|A\|)}{(d+\|A\|)\|A\|}-\frac{g(d+\|A\|)-g(\|A\|)}{d(d+\|A\|)}\right) 1_{H} \geq 0
\end{aligned}
$$

Some applications for particular functions of interest are also given.
2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A60.

1 Introduction

Consider a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible. A real valued continuous function $f(t)$ on $[0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B>0$.

In 1934, K. Löwner [6] had given a definitive characterization of operator monotone functions as follows, see for instance [1, p. 144-145]:

Theorem 1 A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$ if and only if it has the representation

$$
\begin{equation*}
f(t)=f(0)+b t+\int_{0}^{\infty} \frac{t s}{t+s} d m(s) \tag{1}
\end{equation*}
$$

where $b \geq 0$ and a positive measure m on $[0, \infty)$ such that

$$
\int_{0}^{\infty} \frac{s}{1+s} d m(s)<\infty
$$

We recall the important fact proved by Löwner and Heinz that states that the power function $f:[0, \infty) \rightarrow \mathbb{R}, f(t)=t^{\alpha}$ is an operator monotone function for any $\alpha \in[0,1],[5]$. Also the function \ln is operator monotone on the open interval $(0, \infty)$. Let $f(t)$ be a continuous function $(0, \infty) \rightarrow(0, \infty)$. It is known that $f(t)$ is operator monotone if and only if $g(t)=t / f(t)=: f^{*}(t)$ is also operator monotone, see for instance [3] or [7].

Let A and B be strictly positive operators on a Hilbert space H such that $B-A \geq m 1_{H}>0$. In 2015, [4], T. Furuta obtained the following result for any non-constant operator monotone function f on $[0, \infty)$

$$
\begin{align*}
f(B)-f(A) & \geq[f(\|A\|+m)-f(\|A\|)] 1_{H} \tag{2}\\
& \geq[f(\|B\|)-f(\|B\|-m)] 1_{H}>0 .
\end{align*}
$$

If $B>A>0$, then

$$
\begin{align*}
f(B)-f(A) & \geq\left[f\left(\|A\|+\frac{1}{\left\|(B-A)^{-1}\right\|}\right)-f(\|A\|)\right] 1_{H} \tag{3}\\
& \geq\left[f(\|B\|)-f\left(\|B\|-\frac{1}{\left\|(B-A)^{-1}\right\|}\right)\right] 1_{H}>0
\end{align*}
$$

The inequality between the first and third term in (3) was obtained earlier by H. Zuo and G. Duan in [9].

By taking $f(t)=t^{r}, r \in(0,1]$ in (3) Furuta obtained the following refinement of the celebrated Löwner-Heinz inequality

$$
\begin{align*}
B^{r}-A^{r} & \geq\left[\left(\|A\|+\frac{1}{\left\|(B-A)^{-1}\right\|}\right)^{r}-\|A\|^{r}\right] 1_{H} \tag{4}\\
& \geq\left[\|B\|^{r}-\left(\|B\|-\frac{1}{\left\|(B-A)^{-1}\right\|}\right)^{r}\right] 1_{H}>0
\end{align*}
$$

provided $B>A>0$.

With the same assumptions for A and B, we have the logarithmic inequality [4]

$$
\begin{align*}
\ln B-\ln A & \geq\left[\ln \left(\|A\|+\frac{1}{\left\|(B-A)^{-1}\right\|}\right)-\ln (\|A\|)\right] 1_{H} \tag{5}\\
& \geq\left[\ln (\|B\|)-\ln \left(\|B\|-\frac{1}{\left\|(B-A)^{-1}\right\|}\right)\right] 1_{H}>0
\end{align*}
$$

Notice that the inequalities between the first and third terms in (4) and (5) were obtained earlier by M. S. Moslehian and H. Najafi in [8].

Motivated by the above results, in this paper we show that, if $g:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$ with $g(0)=0, A \geq 0$ and there exist positive numbers $d>c>0$ such that the condition $d 1_{H} \geq B-A \geq c 1_{H}>0$ is satisfied, then

$$
\begin{aligned}
A^{-1} g(A)-B^{-1} g(B) & \geq\left[\frac{g(\|A\|)}{\|A\|}-\frac{g(\|A\|+c)}{\|A\|+c}\right] 1_{H} \\
& \geq\left[\frac{g(\|B\|-c)}{\|B\|-c}-\frac{g(\|B\|)}{\|B\|}\right] 1_{H}>0
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{-1} g(A)-B^{-1} g(B) \\
& \geq c\left(\frac{g(\|A\|)}{(d+\|A\|)\|A\|}-\frac{g(d+\|A\|)-g(\|A\|)}{d(d+\|A\|)}\right) 1_{H} \geq 0
\end{aligned}
$$

Some applications for particular functions of interest are also given.

2 Main Results

We start with the following lemma that is of interest in itself.
Lemma 2 Assume that $g:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$. Then the function $f:(0, \infty) \rightarrow \mathbb{R}$,

$$
\begin{equation*}
f(t):=\frac{g(0)-g(t)}{t} \tag{6}
\end{equation*}
$$

is operator monotone on $(0, \infty)$. If $g(0)=0$, then $f(t)=-g(t) t^{-1}$ is operator monotone on $(0, \infty)$.

Proof. Since g is operator monotone on $[0, \infty)$, then there exists $b \geq 0$ and w is a positive measure satisfying

$$
\int_{0}^{\infty} \frac{\lambda}{1+\lambda} d w(\lambda)<\infty
$$

such that [1, p. 144-145]

$$
\begin{equation*}
g(t)=g(0)+b t+\int_{0}^{\infty} \frac{\lambda t}{t+\lambda} d w(\lambda) \tag{7}
\end{equation*}
$$

We have for $t>0$ that

$$
h(t):=\frac{g(t)-g(0)}{t}-b=\int_{0}^{\infty} \frac{\lambda}{t+\lambda} d w(\lambda)
$$

Therefore for all $A, B>0$

$$
\begin{equation*}
h(B)-h(A)=\int_{0}^{\infty} \lambda\left[\left(B+\lambda 1_{H}\right)^{-1}-\left(A+\lambda 1_{H}\right)^{-1}\right] d w(\lambda) \tag{8}
\end{equation*}
$$

Let $T, S>0$. The function $g(t)=-t^{-1}$ is operator monotonic on $(0, \infty)$, operator Gâteaux differentiable and the Gâteaux derivative is given by

$$
\begin{equation*}
\nabla g_{T}(S):=\lim _{t \rightarrow 0}\left[\frac{g(T+t S)-g(T)}{t}\right]=T^{-1} S T^{-1} \tag{9}
\end{equation*}
$$

for $T, S>0$.
Consider the continuous function g defined on an interval I for which the corresponding operator function is Gâteaux differentiable and for C, D selfadjoint operators with spectra in I we consider the auxiliary function defined on $[0,1]$ by

$$
g_{C, D}(t):=g((1-t) C+t D), t \in[0,1]
$$

Then we have, by the properties of the Bochner integral, that

$$
\begin{equation*}
g(D)-g(C)=\int_{0}^{1} \frac{d}{d t}\left(g_{C, D}(t)\right) d t=\int_{0}^{1} \nabla g_{(1-t) C+t D}(D-C) d t \tag{10}
\end{equation*}
$$

If we write this equality for the function $g(t)=-t^{-1}$ and $C, D>0$, then we get the representation

$$
\begin{equation*}
C^{-1}-D^{-1}=\int_{0}^{1}((1-t) C+t D)^{-1}(D-C)((1-t) C+t D)^{-1} d t \tag{11}
\end{equation*}
$$

Now, if we replace in (11) $C=B+\lambda 1_{H}$ and $D=A+\lambda 1_{H}$ for $\lambda>0$, then we get

$$
\begin{align*}
& \left(B+\lambda 1_{H}\right)^{-1}-\left(A+\lambda 1_{H}\right)^{-1} \tag{12}\\
& =\int_{0}^{1}\left((1-t) B+t A+\lambda 1_{H}\right)^{-1}(A-B)\left((1-t) B+t A+\lambda 1_{H}\right)^{-1} d t
\end{align*}
$$

Therefore, by (8),

$$
\begin{align*}
h(B)-h(A) & =\int_{0}^{\infty} \lambda\left(\int_{0}^{1}\left((1-t) B+t A+\lambda 1_{H}\right)^{-1}(A-B)\right. \tag{13}\\
& \left.\times\left((1-t) B+t A+\lambda 1_{H}\right)^{-1} d t\right) d w(\lambda) \\
& =-\int_{0}^{\infty} \lambda\left(\int_{0}^{1}\left((1-t) B+t A+\lambda 1_{H}\right)^{-1}(B-A)\right. \\
& \left.\times\left((1-t) B+t A+\lambda 1_{H}\right)^{-1} d t\right) d w(\lambda) .
\end{align*}
$$

If $B \geq A>0$, then

$$
\left((1-t) B+t A+\lambda 1_{H}\right)^{-1}(B-A)\left((1-t) B+t A+\lambda 1_{H}\right)^{-1} \geq 0
$$

for all $t, \lambda>0$, which implies that

$$
\begin{aligned}
& \int_{0}^{\infty} \lambda\left(\int_{0}^{1}\left((1-t) B+t A+\lambda 1_{H}\right)^{-1}(B-A)\right. \\
& \left.\times\left((1-t) B+t A+\lambda 1_{H}\right)^{-1} d t\right) d w(\lambda) \geq 0
\end{aligned}
$$

namely

$$
\begin{aligned}
f(B)-f(A) & =h(A)-h(B) \\
& =\int_{0}^{\infty} \lambda\left(\int_{0}^{1}\left((1-t) B+t A+\lambda 1_{H}\right)^{-1}(B-A)\right. \\
& \left.\times\left((1-t) B+t A+\lambda 1_{H}\right)^{-1} d t\right) d w(\lambda) \\
& \geq 0 .
\end{aligned}
$$

Therefore, the function f is operator monotone on $(0, \infty)$.
Theorem 3 Assume that $g:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$. If $A>0$ and there exists $c>0$ such that $B-A \geq c 1_{H}>0$, then

$$
\begin{align*}
& A^{-1} g(A)-B^{-1} g(B)-g(0)\left(A^{-1}-B^{-1}\right) \tag{14}\\
& \geq\left[\frac{g(\|A\|)}{\|A\|}-\frac{g(\|A\|+c)}{\|A\|+c}-g(0) \frac{c}{(\|A\|+c)\|A\|}\right] 1_{H} \\
& \geq\left[\frac{g(\|B\|-c)}{\|B\|-c}-\frac{g(\|B\|)}{\|B\|}-g(0) \frac{c}{(\|B\|-c)\|B\|}\right] 1_{H}>0 .
\end{align*}
$$

If $g(0)=0$, then

$$
\begin{align*}
A^{-1} g(A)-B^{-1} g(B) & \geq\left[\frac{g(\|A\|)}{\|A\|}-\frac{g(\|A\|+c)}{\|A\|+c}\right] 1_{H} \tag{15}\\
& \geq\left[\frac{g(\|B\|-c)}{\|B\|-c}-\frac{g(\|B\|)}{\|B\|}\right] 1_{H}>0
\end{align*}
$$

Proof. If we write the inequality (2) for $f(t)=\frac{g(0)-g(t)}{t}, t>0$, which, by Lemma 2, is operator monotone, then we have

$$
\begin{align*}
& B^{-1}[g(0)-g(B)]-A^{-1}[g(0)-g(A)] \tag{16}\\
& \geq\left[\frac{g(0)-g(\|A\|+c)}{\|A\|+c}-\frac{g(0)-g(\|A\|)}{\|A\|}\right] 1_{H} \\
& \geq\left[\frac{g(0)-g(\|B\|)}{\|B\|}-\frac{g(0)-g(\|B\|-c)}{\|B\|-c}\right] 1_{H}>0
\end{align*}
$$

Observe that

$$
\begin{aligned}
& B^{-1}[g(0)-g(B)]-A^{-1}[g(0)-g(A)] \\
& =A^{-1} g(A)-B^{-1} g(B)-g(0)\left(A^{-1}-B^{-1}\right) \\
& \frac{g(0)-g(\|A\|+c)}{\|A\|+c}-\frac{g(0)-g(\|A\|)}{\|A\|} \\
& =\frac{g(\|A\|)}{\|A\|}-\frac{g(\|A\|+c)}{\|A\|+c}-g(0) \frac{c}{(\|A\|+c)\|A\|}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{g(0)-g(\|B\|)}{\|B\|}-\frac{g(0)-g(\|B\|-c)}{\|B\|-c} \\
& =\frac{g(\|B\|-c)}{\|B\|-c}-\frac{g(\|B\|)}{\|B\|}-g(0) \frac{c}{(\|B\|-c)\|B\|}
\end{aligned}
$$

and by (16) we get (14).
Its is well known that, if $P \geq 0$, then

$$
|\langle P x, y\rangle|^{2} \leq\langle P x, x\rangle\langle P y, y\rangle
$$

for all $x, y \in H$.
Therefore, if $T>0$, then

$$
\begin{aligned}
0 & \leq\langle x, x\rangle^{2}=\left\langle T^{-1} T x, x\right\rangle^{2}=\left\langle T x, T^{-1} x\right\rangle^{2} \\
& \leq\langle T x, x\rangle\left\langle T T^{-1} x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle
\end{aligned}
$$

for all $x \in H$.
If $x \in H,\|x\|=1$, then

$$
1 \leq\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle \leq\langle T x, x\rangle \sup _{\|x\|=1}\left\langle x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\|T^{-1}\right\|
$$

which implies the following operator inequality

$$
\begin{equation*}
\left\|T^{-1}\right\|^{-1} 1_{H} \leq T \tag{17}
\end{equation*}
$$

Corollary 4 Assume that $g:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$. If $A>0$ and $B-A>0$, then

$$
\begin{aligned}
& A^{-1} g(A)-B^{-1} g(B)-g(0)\left(A^{-1}-B^{-1}\right) \\
& \geq\left[\frac{g(\|A\|)}{\|A\|}-\frac{g\left(\|A\|+\left\|(B-A)^{-1}\right\|^{-1}\right)}{\|A\|+\left\|(B-A)^{-1}\right\|^{-1}}\right] 1_{H} \\
& -g(0) \frac{\left\|(B-A)^{-1}\right\|^{-1}}{\left(\|A\|+\left\|(B-A)^{-1}\right\|^{-1}\right)\|A\|} 1_{H} \\
& \geq\left[\frac{g\left(\|B\|-\left\|(B-A)^{-1}\right\|^{-1}\right)}{\|B\|-\left\|(B-A)^{-1}\right\|^{-1}}-\frac{g(\|B\|)}{\|B\|}\right] 1_{H} \\
& -g(0) \frac{\left\|(B-A)^{-1}\right\|^{-1}}{\left(\|B\|-\left\|(B-A)^{-1}\right\|^{-1}\right)\|B\|} 1_{H} \\
& >0
\end{aligned}
$$

If $g(0)=0$, then

$$
\begin{align*}
& A^{-1} g(A)-B^{-1} g(B) \tag{19}\\
& \geq\left[\frac{g(\|A\|)}{\|A\|}-\frac{g\left(\|A\|+\left\|(B-A)^{-1}\right\|^{-1}\right)}{\|A\|+\left\|(B-A)^{-1}\right\|^{-1}}\right] 1_{H} \\
& \geq\left[\frac{g\left(\|B\|-\left\|(B-A)^{-1}\right\|^{-1}\right)}{\|B\|-\left\|(B-A)^{-1}\right\|^{-1}}-\frac{g(\|B\|)}{\|B\|}\right] 1_{H}>0 .
\end{align*}
$$

We have the following lower bound as well:
Theorem 5 Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$. Let $A \geq 0$ and assume that there exist positive numbers $d>c>0$ such that

$$
\begin{equation*}
d 1_{H} \geq B-A \geq c 1_{H}>0 \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
f(B)-f(A) \geq c \frac{f(d+\|A\|)-f(\|A\|)}{d} 1_{H} \geq 0 \tag{21}
\end{equation*}
$$

Proof. Since the function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$, then f can be written as in the equation (1) and for $A, B \geq 0$ we have the representation

$$
\begin{align*}
& f(B)-f(A) \tag{22}\\
& =b(B-A)+\int_{0}^{\infty} s\left[B\left(B+s 1_{H}\right)^{-1}-A\left(A+s 1_{H}\right)^{-1}\right] d m(s) .
\end{align*}
$$

Observe that for $s>0$

$$
\begin{aligned}
& B\left(B+s 1_{H}\right)^{-1}-A\left(A+s 1_{H}\right)^{-1} \\
& =\left(B+s 1_{H}-s 1_{H}\right)\left(B+s 1_{H}\right)^{-1}-\left(A+s 1_{H}-s 1_{H}\right)\left(A+s 1_{H}\right)^{-1} \\
& =\left(B+s 1_{H}\right)\left(B+s 1_{H}\right)^{-1}-s 1_{H}\left(B+s 1_{H}\right)^{-1} \\
& -\left(A+s 1_{H}\right)\left(A+s 1_{H}\right)^{-1}+s 1_{H}\left(A+s 1_{H}\right)^{-1} \\
& =1_{H}-s 1_{H}\left(B+s 1_{H}\right)^{-1}-1_{H}+s 1_{H}\left(A+s 1_{H}\right)^{-1} \\
& =s\left[\left(A+s 1_{H}\right)^{-1}-\left(B+s 1_{H}\right)^{-1}\right] .
\end{aligned}
$$

Therefore, (22) becomes, see also [4]

$$
\begin{equation*}
f(B)-f(A)=b(B-A)+\int_{0}^{\infty} s^{2}\left[\left(A+s 1_{H}\right)^{-1}-\left(B+s 1_{H}\right)^{-1}\right] d m(s) \tag{23}
\end{equation*}
$$

Now, if we replace in (11) $C=A+s 1_{H}$ and $D=B+s 1_{H}$ for $s>0$, then we get

$$
\begin{align*}
& \left(A+s 1_{H}\right)^{-1}-\left(B+s 1_{H}\right)^{-1} \tag{24}\\
& =\int_{0}^{1}\left((1-t) A+t B+s 1_{H}\right)^{-1}(B-A)\left((1-t) A+t B+s 1_{H}\right)^{-1} d t
\end{align*}
$$

By the representation (23), we derive the following identity of interest

$$
\begin{align*}
f(B)-f(A) & =b(B-A) \tag{25}\\
& +\int_{0}^{\infty} s^{2}\left[\int_{0}^{1}\left((1-t) A+t B+s 1_{H}\right)^{-1}\right. \\
& \left.\times(B-A)\left((1-t) A+t B+s 1_{H}\right)^{-1} d t\right] d m(s)
\end{align*}
$$

for $A, B>0$.
From the representation (25) we get for $B=x 1_{H}, A=0$ that

$$
f(x)-f(0)-b x=\int_{0}^{\infty} s^{2}\left(\int_{0}^{1}\left(t x+s 1_{H}\right)^{-1} x\left(t x+s 1_{H}\right)^{-1} d t\right) d m(s)
$$

which gives for $x>0$ that

$$
\begin{equation*}
\frac{f(x)-f(0)}{x}-b=\int_{0}^{\infty} s^{2}\left(\int_{0}^{1}(t x+s)^{-2} d t\right) d m(s) \tag{26}
\end{equation*}
$$

Since $0<c 1_{H} \leq B-A$, hence

$$
\begin{aligned}
& c\left((1-t) A+t B+s 1_{H}\right)^{-2} \\
& \leq\left((1-t) A+t B+s 1_{H}\right)^{-1}(B-A)\left((1-t) A+t B+s 1_{H}\right)^{-1}
\end{aligned}
$$

for $t \in[0,1]$ and $s>0$ and by (25) we get

$$
\begin{align*}
& c \int_{0}^{\infty} s^{2}\left(\int_{0}^{1}\left((1-t) A+t B+s 1_{H}\right)^{-2} d t\right) d m(s) \tag{27}\\
& \leq f(B)-f(A)-b(B-A)
\end{align*}
$$

Observe that for $t \in[0,1]$ and $s>0$, we have

$$
\begin{aligned}
(1-t) A+t B+s 1_{H} & =A+t(B-A)+s 1_{H} \leq A+t d 1_{H}+s 1_{H} \\
& =(1-t) A+t\left(d 1_{H}+A\right)+s 1_{H} .
\end{aligned}
$$

Since $A \leq\|A\| 1_{H}$ then

$$
(1-t) A+t\left(d 1_{H}+A\right)+s 1_{H} \leq((1-t)\|A\|+t(d+\|A\|)+s) 1_{H}
$$

which implies that

$$
(1-t) A+t B+s 1_{H} \leq((1-t)\|A\|+t(d+\|A\|)+s) 1_{H}
$$

for $t \in[0,1]$ and $s>0$.
This implies that

$$
\left((1-t) A+t B+s 1_{H}\right)^{-1} \geq((1-t)\|A\|+t(d+\|A\|)+s)^{-1} 1_{H}
$$

and

$$
\left((1-t) A+t B+s 1_{H}\right)^{-2} \geq((1-t)\|A\|+t(d+\|A\|)+s)^{-2} 1_{H}
$$

for $t \in[0,1]$ and $s>0$.
Therefore

$$
\begin{aligned}
& \int_{0}^{\infty} s^{2}\left(\int_{0}^{1}\left((1-t) A+t B+s 1_{H}\right)^{-2} d t\right) d m(s) \\
& \geq \int_{0}^{\infty} s^{2}\left(\int_{0}^{1}((1-t)\|A\|+t(d+\|A\|)+s)^{-2} d t\right) d m(s) 1_{H}(\geq 0) \\
& =\frac{1}{d} \int_{0}^{\infty} s^{2}\left(\int_{0}^{1}((1-t)\|A\|+t(d+\|A\|)+s)^{-1}(d+\|A\|-\|A\|)\right. \\
& \left.\times((1-t)\|A\|+t(d+\|A\|)+s)^{-1} d t\right) d m(s) 1_{H} \\
& =\frac{1}{d}[(f(d+\|A\|)-f(\|A\|)-b d)] 1_{H}(\text { by identity }(26)) \\
& =\left(\frac{f(d+\|A\|)-f(\|A\|)}{d}-b\right) 1_{H} \geq 0
\end{aligned}
$$

By (27) we get

$$
\begin{align*}
& f(B)-f(A)-b(B-A) \tag{28}\\
& \geq c \int_{0}^{\infty} s^{2}\left(\int_{0}^{1}\left((1-t) A+t B+s 1_{H}\right)^{-2} d t\right) d m(s) \\
& \geq c\left(\frac{f(d+\|A\|)-f(\|A\|)}{d}-b\right) 1_{H} \geq 0
\end{align*}
$$

From (28) we derive

$$
\begin{aligned}
f(B)-f(A) & \geq b(B-A)+c\left(\frac{f(d+\|A\|)-f(\|A\|)}{d}-b\right) 1_{H} \\
& =b[(B-A)-c]+c \frac{f(d+\|A\|)-f(\|A\|)}{d} 1_{H} \\
& \geq c \frac{f(d+\|A\|)-f(\|A\|)}{d} 1_{H} \geq 0
\end{aligned}
$$

since $b[(B-A)-c] \geq 0$ and the inequality (21) is obtained.
Corollary 6 Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$. If $A \geq 0$ and $B-A>0$, then

$$
\begin{align*}
f(B)-f(A) & \geq \frac{f(\|B-A\|+\|A\|)-f(\|A\|)}{\left\|(B-A)^{-1}\right\|\|B-A\|} 1_{H} \tag{29}\\
& \geq \frac{f(\|B\|)-f(\|A\|)}{\left\|(B-A)^{-1}\right\|\|B-A\|} 1_{H} \geq 0
\end{align*}
$$

The first inequality follows by (21) for $d=\|B-A\|$ and $c=\left\|(B-A)^{-1}\right\|^{-1}$. The second and third inequalities are obvious.

Theorem 7 Assume that $g:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$. If $A>0$ and there exist positive numbers $d>c>0$ such that the condition (20) is satisfied, then

$$
\begin{align*}
& g(0)\left(B^{-1}-A^{-1}\right)+A^{-1} g(A)-B^{-1} g(B) \tag{30}\\
& \geq c\left(\frac{g(\|A\|)-g(0)}{(d+\|A\|)\|A\|}-\frac{g(d+\|A\|)-g(\|A\|)}{d(d+\|A\|)}\right) 1_{H} \geq 0
\end{align*}
$$

If $g(0)=0$, then

$$
\begin{align*}
& A^{-1} g(A)-B^{-1} g(B) \tag{31}\\
& \geq c\left(\frac{g(\|A\|)}{(d+\|A\|)\|A\|}-\frac{g(d+\|A\|)-g(\|A\|)}{d(d+\|A\|)}\right) 1_{H} \geq 0
\end{align*}
$$

Proof. Since g is operator monotone, then by Lemma 2 the function $f(t):=$ $\frac{g(0)-g(t)}{t}$ is operator monotone on $(0, \infty)$ and by (21) we obtain

$$
\begin{equation*}
\frac{g(0)-g(B)}{B}-\frac{g(0)-g(A)}{A} \geq c \frac{\frac{g(0)-g(d+\|A\|)}{d+\|A\|}-\frac{g(0)-g(\|A\|)}{\|A\|}}{d} 1_{H} \geq 0 \tag{32}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
& \frac{g(0)-g(B)}{B}-\frac{g(0)-g(A)}{A} \\
& =g(0)\left(B^{-1}-A^{-1}\right)+A^{-1} g(A)-B^{-1} g(B)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{g(0)-g(d+\|A\|)}{d+\|A\|}-\frac{g(0)-g(\|A\|)}{\|A\|} \\
& =\frac{[g(0)-g(d+\|A\|)]\|A\|-[g(0)-g(\|A\|)](d+\|A\|)}{(d+\|A\|)\|A\|} \\
& =\frac{g(0)\|A\|-g(d+\|A\|)\|A\|-g(0) d+g(\|A\|) d-g(0)\|A\|+g(\|A\|)\|A\|}{(d+\|A\|)\|A\|} \\
& =\frac{g(\|A\|) d-g(0) d+g(\|A\|)\|A\|-g(d+\|A\|)\|A\|}{(d+\|A\|)\|A\|} \\
& =d \frac{g(\|A\|)-g(0)}{(d+\|A\|)\|A\|}-\frac{g(d+\|A\|)-g(\|A\|)}{(d+\|A\|)}
\end{aligned}
$$

which gives

$$
\frac{\frac{g(0)-g(d+\|A\|)}{d+\|A\|}-\frac{g(0)-g(\|A\|)}{\|A\|}}{d}=\frac{g(\|A\|)-g(0)}{(d+\|A\|)\|A\|}-\frac{g(d+\|A\|)-g(\|A\|)}{d(d+\|A\|)} .
$$

Then by (32) we get (30).
Corollary 8 Assume that $g:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$. If $A>0$ and $B-A>0$, then

$$
\begin{align*}
& g(0)\left(B^{-1}-A^{-1}\right)+A^{-1} g(A)-B^{-1} g(B) \tag{33}\\
& \geq\left\|(B-A)^{-1}\right\|^{-1} \\
& \times\left(\frac{g(\|A\|)-g(0)}{(\|B-A\|+\|A\|)\|A\|}-\frac{g(\|B-A\|+\|A\|)-g(\|A\|)}{\|B-A\|(\|B-A\|+\|A\|)}\right) 1_{H} \\
& \geq 0
\end{align*}
$$

$$
\text { If } \begin{align*}
g(0) & =0, \text { then } \\
& A^{-1} g(A)-B^{-1} g(B) \tag{34}\\
& \geq\left\|(B-A)^{-1}\right\|^{-1} \\
& \times\left(\frac{g(\|A\|)}{(\|B-A\|+\|A\|)\|A\|}-\frac{g(\|B-A\|+\|A\|)-g(\|A\|)}{\|B-A\|(\|B-A\|+\|A\|)}\right) 1_{H} \\
& \geq 0
\end{align*}
$$

3 Some Examples

Consider the function $g(t)=t^{r}, r \in(0,1]$. This function is operator monotone and by (15) we have

$$
\begin{align*}
A^{r-1}-B^{r-1} & \geq\left[\|A\|^{r-1}-(\|A\|+c)^{r-1}\right] 1_{H} \tag{35}\\
& \geq\left[(\|B\|-c)^{r-1}-\|B\|^{r-1}\right] 1_{H}>0
\end{align*}
$$

provided that $A>0$ and $B-A \geq c 1_{H}>0$.
If $A>0$ and $B-A>0$, then

$$
\begin{align*}
A^{r-1}-B^{r-1} & \geq\left[\|A\|^{r-1}-\left(\|A\|+\left\|(B-A)^{-1}\right\|^{-1}\right)^{r-1}\right] 1_{H} \tag{36}\\
& \geq\left[\left(\|B\|-\left\|(B-A)^{-1}\right\|^{-1}\right)^{r-1}-\|B\|^{r-1}\right] 1_{H}>0
\end{align*}
$$

From (21) we obtain

$$
\begin{equation*}
B^{r}-A^{r} \geq c \frac{(d+\|A\|)^{r}-\|A\|^{r}}{d} 1_{H} \geq 0 \tag{37}
\end{equation*}
$$

provided that there exist positive numbers $d>c>0$ such that condition (20) is satisfied.

If $A>0$ and $B-A>0$, then

$$
\begin{align*}
B^{r}-A^{r} & \geq\left\|(B-A)^{-1}\right\|^{-1} \frac{(\|B-A\|+\|A\|)^{r}-\|A\|^{r}}{\|B-A\|} 1_{H} \tag{38}\\
& \geq\left\|(B-A)^{-1}\right\|^{-1} \frac{\|B\|^{r}-\|A\|^{r}}{\|B-A\|} 1_{H} \geq 0
\end{align*}
$$

From (30) we have

$$
\begin{align*}
& A^{r-1}-B^{r-1} \tag{39}\\
& \geq c\left(\frac{\|A\|^{r-1}}{d+\|A\|}-\frac{(d+\|A\|)^{r}-\|A\|^{r}}{d(d+\|A\|)}\right) 1_{H} \geq 0
\end{align*}
$$

provided that there exist positive numbers $d>c>0$ such that condition (20) is satisfied.

If $A>0$ and $B-A>0$, then

$$
\begin{align*}
A^{r-1}-B^{r-1} & \geq\left\|(B-A)^{-1}\right\|^{-1} \tag{40}\\
& \times\left(\frac{\|A\|^{r-1}}{\|B-A\|+\|A\|}-\frac{(\|B-A\|+\|A\|)^{r}-\|A\|^{r}}{\|B-A\|(\|B-A\|+\|A\|)}\right) 1_{H} \\
& \geq 0
\end{align*}
$$

Consider the function $g(t)=\ln (t+1)$, which is operator monotone on $[0, \infty)$ and $g(0)=0$. By Lemma 2 we get that the function $f(t)=-t^{-1} \ln (t+1)$ is operator monotone on $(0, \infty)$.

From (15) we get

$$
\begin{aligned}
& A^{-1} \ln \left(A+1_{H}\right)-B^{-1} \ln \left(B+1_{H}\right) \\
& \geq\left(\frac{\ln (\|A\|+1)}{\|A\|}-\frac{\ln (\|A\|+1+c)}{\|A\|+c}\right) 1_{H} \\
& \geq\left(\frac{\ln (\|B\|+1-c)}{\|B\|-c}-\frac{\ln (\|B\|+1)}{\|B\|}\right) 1_{H}>0
\end{aligned}
$$

provided that $A>0$ and $B-A \geq c 1_{H}>0$.
If $A>0$ and $B-A>0$, then

$$
\begin{align*}
& A^{-1} \ln \left(A+1_{H}\right)-B^{-1} \ln \left(B+1_{H}\right) \tag{42}\\
& \geq\left(\frac{\ln (\|A\|+1)}{\|A\|}-\frac{\ln \left(\|A\|+1+\left\|(B-A)^{-1}\right\|^{-1}\right)}{\|A\|+\left\|(B-A)^{-1}\right\|^{-1}}\right) 1_{H} \\
& \geq\left(\frac{\ln \left(\|B\|+1-\left\|(B-A)^{-1}\right\|^{-1}\right)}{\|B\|-\left\|(B-A)^{-1}\right\|^{-1}}-\frac{\ln (\|B\|+1)}{\|B\|}\right) 1_{H}>0
\end{align*}
$$

From (21) we derive

$$
\begin{equation*}
\ln \left(B+1_{H}\right)-\ln \left(A+1_{H}\right) \geq c \frac{\ln (d+\|A\|+1)-\ln (\|A\|+1)}{d} 1_{H} \geq 0 \tag{43}
\end{equation*}
$$

provided that there exist positive numbers $d>c>0$ such that the condition (20) is satisfied.

If $A>0$ and $B-A>0$, then

$$
\begin{align*}
& \ln \left(B+1_{H}\right)-\ln \left(A+1_{H}\right) \tag{44}\\
& \geq\left\|(B-A)^{-1}\right\|^{-1} \frac{\ln (\|B-A\|+\|A\|+1)-\ln (\|A\|+1)}{\|B-A\|} 1_{H} \\
& \geq\left\|(B-A)^{-1}\right\|^{-1} \frac{\ln (\|B\|+1)-\ln (\|A\|+1)}{\|B-A\|} 1_{H} \geq 0
\end{align*}
$$

From (30) we have

$$
\begin{align*}
& A^{-1} \ln (A+1)-B^{-1} \ln (B+1) \tag{45}\\
& \geq c\left(\frac{\ln (\|A\|+1)}{(d+\|A\|)\|A\|}-\frac{\ln (d+\|A\|+1)-\ln (\|A\|+1)}{d(d+\|A\|)}\right) 1_{H} \geq 0
\end{align*}
$$

provided that there exist positive numbers $d>c>0$ such that the condition (20) is satisfied.

Finally, from (34) we derive

$$
\begin{aligned}
& A^{-1} \ln \left(A+1_{H}\right)-B^{-1} \ln \left(B+1_{H}\right) \\
& \geq\left\|(B-A)^{-1}\right\|^{-1} \\
& \times\left(\frac{\ln (\|A\|+1)}{(\|B-A\|+\|A\|)\|A\|}-\frac{\ln (\|B-A\|+\|A\|+1)-\ln (\|A\|+1)}{\|B-A\|(\|B-A\|+\|A\|)}\right) 1_{H} \\
& \geq 0
\end{aligned}
$$

provided $A>0$ and $B-A>0$.

References

[1] R. Bhatia, Matrix Analysis. Graduate Texts in Mathematics, 169. SpringerVerlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.
[2] J. I. Fujii, Y. Seo, On Parametrized Operator Means Dominated by Power Ones, Sci. Math. 1 (1998) 301-306.
[3] T. Furuta, Concrete Examples of Operator Monotone Functions Obtained by an Elementary Method Without Appealing to Löwner Integral Representation, Linear Algebra and its Applications 429 (2008) 972-980.
[4] T. Furuta, Precise Lower Bound of $f(A)-f(B)$ for $A>B>0$ and Nonconstant Operator Monotone Function f on $[0, \infty)$. J. Math. Inequal. 9 (2015), no. 1, 47-52.
[5] E. Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann. 123 (1951) 415-438.
[6] K. Löwner, Über Monotone MatrixFunktionen, Math. Z. 38 (1934) 177-216.
[7] F. Kubo, T. Ando, Means of Positive Linear Operators, Math. Ann. 246 (1980) 205-224.
[8] M. S. Moslehian, H. Najafi, An Extension of the Löwner-Heinz Inequality, Linear Algebra Appl., 437 (2012), 2359-2365.
[9] H. Zuo, G. Duan, Some Inequalities of Operator Monotone Functions. J. Math. Inequal. 8 (2014), no. 4, 777-781.

