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Abstract 

 

Intention detection is an essential task for the spoken language understanding (SLU) 

module in the dialogue system which further illustrates vital information for managing 

and generating future action and response. The spoken language understanding module 

aims to transform the spoken language into a specific semantic template that human 

language can be effectively well-understood by the dialogue system. After that, the 

dialogue management module can facilitate future actions according to output from the 

SLU module. The SLU module of the pipeline dialogue system contains domain detection, 

intention detection, and slot filling. The intention detection task is crucial to improve the 

performance of the SLU module in the dialogue system.  

With the development of research, intention detection task is also different according 

to the different dialogue datasets. In terms of dialogue data types, it can be divided into 

intention detection task (ID) for single-turn dialogue dataset and dialogue act 

classification task (DAC) for multi-turn dialogue dataset. The main difference between 

the two tasks is whether there is contextual relevance in utterances. Therefore, this thesis 

aims to investigate the problem of the intention detection for the single-turn task-oriented 

dialogue datasets and its application for the zero-shot intent detection. Besides, we also 

conduct the dialogue act classification for the multi-turn dialogue datasets. Based on the 

previous studies, the main difficulties on this subject are data acquisition, the particularity 

of natural spoken language, and the cold start problem. Under these circumstances, it is 

this thesis’s goal to improve the ability to understand and express spoken language with 

single-turn and multi-turn dialogue datasets through deep learning modeling, and further 

to use transferring learning to explore the cold start problem in small sample scenarios. 

Therefore, this thesis conducts task-oriented intention detection by proposing an utterance 

feature embedding model, and conduct zero-shot intention detection by combining an 

attentive capsule neural network. 

The traditional intention detection task is regarded as a classification problem where 

utterances are associated with predefined intents. For the single-turn task-oriented 

dialogue datasets, we propose a triplet training framework based on the multiclass 



 

 

classification approach to conduct intention detection task. Precisely, we utilize a Siamese 

neural network architecture with metric learning to construct a robust and discriminative 

utterance feature embedding model. We modified the RMCNN model and fine-tuned 

BERT model as siamese encoders to train utterance triplets from different semantic 

aspects. The triplet loss can effectively distinguish the details of two input data by 

learning a mapping from sequence utterances to a compact Euclidean space. After 

generating the mapping, the intention detection task can be easily implemented using 

standard techniques with pre-trained embeddings as feature vectors. Besides, we use the 

fusion strategy to enhance utterance feature representation in the downstream of intention 

detection task. 

In terms of the cold start intention detection problem, the various expressions of 

user’s intents and constantly emerging novel intents make the annotating is time-

consuming and laborious, which build huge obstacle for extending the model to new tasks. 

Therefore, we study the zero-shot intent detection problem, which aims to detect the 

unknown intents of utterances without the predefined label. In this experiment, we 

propose an attentive Bert capsule network with label embedding as a feature extractor. 

Specifically, we fine-tune the BERT model as a pre-trained embedding model and 

enhance the semantic utterance feature by jointly learn label embedding to measures the 

compatibility of embeddings between utterances and intents. Afterward, we leverage the 

process of attentive capsule network and routing-by-agreement mechanism to aggregate 

the utterance semantic feature into fixed-size encoding vector as abstract intent 

representation. The self-attention mechanism in the capsule improves the model to learn 

the different contributions of the capsules, which can be obtained by dynamic routing. 

Then, the large margin cosine loss function can identify sophisticated and interleaved 

utterance features by optimizing the network to minimize inter-class variance and to 

minimize intra-class variance. Finally, we inference the unknown intents by leveraging 

the transferring capability of the proposed model because it can bridge the knowledge gap 

between the source and target filed.  

In terms of the multi-turn dialogue dataset, intent detection task of multi-turn 

dialogue is called dialogue act classification. The dialogue act as an intent label associate 

with utterance can be viewed as a sequence labeling problem. Considering this situation, 



 

 

this thesis utilizes two approaches to conduct dialogue act classification, which are a 

traditional pipeline approach with a pre-designed feature templates with traditional 

machine learning algorithm and an end-to-end deep learning approach with the context-

aware hierarchical neural network. 

For the traditional pipeline approach with a pre-designed feature template, we 

provide a word-level sequence annotation method, which annotates dialogue structural 

information and semantic information to each word of utterance. Meanwhile, Linear-CRF 

is employed to natively capture constraints of hidden state sequence and obtain optimal 

probability, which is perfectly suited for sequence labeling task. Moreover, we propose a 

hierarchical learning structure to learn the conversation features from different levels than 

words, utterances and conversation levels. Specifically, we concatenate word2vec 

embedding model and fine-tuned BERT model to obtain rich semantic word information 

in word embedding layer. Then, we incorporate the multi-heads self-attention mechanism 

coupled with hierarchical RNN models in conversational feature learning level to learn 

conversational information that incorporates contextual history memory. Then, we set the 

linear-chain CRF at the final layer to consider the correlations between dialogue acts and 

contextual utterances, which can be treated as sequence labeling.  

We conduct experiments on several benchmark datasets to verify the effectiveness of 

proposed models. For the intention detection task, the results illustrate that the triplet 

feature fusion model can effectively improve the recognition performance of these 

datasets and achieves new state-of-the-art results on single-turn task-oriented datasets 

(Snips dataset, Facebook dataset), and a multi-turn dataset (Daily Dialogue dataset). For 

zero-shot learning of intent detection task, extensive experiments demonstrate that the 

proposed model can obtain competitive performance that not only can better discriminate 

existing intents but is also able to detect unknown intents. The IE-BertCapsNet obtain the 

state-of-the-art results based on benchmark dataset (SNIPS) and several multi-lingual 

datasets (SMP-Chinese, Facebook Multilingual datasets). For the dialogue act 

classification, compared with the traditional feature template, the end-to-end attentive 

hierarchical neural network can achieve competitive results on the SWDA dataset. 
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Chapter 1 

1. Introduction 

Introduction 

1.1 Background and Significant 

Recently, human-machine intelligence dialouge system have attracted much attention 

because of their huge potential and their attractive commercial value. With the advent of 

AI technology, the fantasy of an intelligent interaction system has become a reality. 

People can speak naturally to speak with the virtual personal assistants to finish some 

basic tasks efficiently. In the industrial field, lots of popular virtual personal assistants, 

like Siri of Apple, Google Home [1], Amazon Alexa [2], and Microsoft’s Cortana [3] 

have been integrated into human life. These dialogue systems are carried on various 

devices to interact with a human. With the explosion of big data recently, we can easily 

obtain the dialouge data on the internet, which allows us to build a data-driven, open-

domain human-machine dialogue system. Moreover, deep learning has been proven to be 

effective in recognizing the complex patterns in big data, and also achieved huge success 

in computer vision, natural language processing, and recommendation system [20]. The 

massive data with deep learning can promote the development of dialogue systems have 

emerged. 

The dialogue system we are discussing now can be generally divided into two 

categories: task-oriented dialogue and open-domain dialogue (small chat dialogue 

system). The task-oriented dialogue systems are mostly used in the vertical field. This 

type of system has clear task objectives to complete, such as setting alarms and booking 

tickets. Traditional conversational systems have rather complex and modular pipelines. 

Specifically, the system first understands the information conveyed by human beings as 

an internal state, then takes a series of corresponding actions according to the strategy of 
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the dialogue state, and finally transforms the actions into natural language expressions. 

Although language understanding is handled through statistical models, most of the 

dialog systems that have been deployed still use manual features or manual rules for state 

and action space representation, intent detection, and slot filling. The advancement of 

deep learning technologies has recently risen the applications of neural models to 

dialogue modeling. The chat dialogue systems usually communicate with a human in an 

open-domain with entertainment functions. Although this dialogue system carries 

entertainment function, the small chat in the conversation occupies a large proportion and 

the way to deal with these problems is closely related to the user experience. The existing 

mainstream methods for non-task-oriented dialogue systems are dialogue generation or 

retrieval-based approach. The generation method like the deep neural network (Sequence-

to-sequence model) generates appropriate responses during the dialogue. However, it also 

has shortcomings that generating some meaningless replies or sometimes generating 

utterances with grammatical errors. For the retrieval method, the system should learn 

from the pre-defined templates and select replies from the current conversation. This 

approach is widely applied in the industry because it can achieve high accuracy and it 

performs stable. The disadvantage of the retrieval method is that it relies too much on the 

quality of the data. This will undoubtedly lead to a lot of manual work in the early stage.   

The research objects of this thesis are mainly for the task-oriented dialogue system. 

Thus, this section starts with an overview of the standard pipeline framework for the task-

oriented dialogue systems. The key technologies in the task-oriented dialogue system 

include automatic speech recognition, spoken language understanding (domain 

 

Figure 1.1  The Pipeline framework of task-oriented spoken dialogue system. 
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identification, intention detection, slot filling), dialogue management (dialogue state 

tracking, dialogue policy optimization), natural language generation. When the system 

receives the text input and fills the semantic slot, it recognizes such a result. After the 

input language understanding state is processed by the middle dialog management, a 

dialog action is obtained. For example, we can conclude that an action is to ask the place 

of departure. The dialogue action of asking the place of departure will be input to the 

natural language generation module, and the natural language generation module will 

generate a natural language text reply based on this action “Where do you start from?”, 

which we illustrate in Fig 1.1. As we can see, the spoken language understanding (SLU) 

module is an indispensable component in the dialogue system.  

 

 

Table 1.1  The utterance samples of single-turn dialogue dataset (SNIPs). 

Intents Utterance 

Agree Oh, yeah. 

Yes/No Question You never think about that, do you? 

Yes Answer Yeah 

Statement Opinion I would think it would be harder to get up than it would 

be. 

Backchannel Yeah 

Table 1.2  The utterance samples of multi-turn dialogue dataset (SWDA). 

ID DA Caller Utterance 

index 

Sub 

Utterance 

Text 

1 b B 1 utt1 Uh-huh.  

2 sd A 2 utt1 I work off and on just temporarily 

and usually find friends to babysit. 

3 sd A 2 utt2 I don't envy anybody who's in that 

situation to find day care.  

4 b B 3 utt1 Yeah.  
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1.2 Research Content and Motivation 

As stated above, a typical spoken language understanding (SLU) module is designed to 

transform the spoken language into a specific semantic template that human language can 

be well-understood by the dialogue system. After that, the dialogue management module 

can facilitate future actions according to detection results in the SLU module. The role of 

the intention detection task in SLU is to discriminate the implicit intention by recognizing 

the intents of received utterances. Therefore, the intention detection task is crucial to 

enhance the spoken language understanding performance in the dialogue system.  

First of all, we introduce the basic definition of intention detection task. From the 

perspective of data structure, the dialogue categories can be divided into single-turn 

dialogue and multi-turn dialogue. Table 1.1 and Table 1.2 show the utterance samples 

belong to the single-turn dialogue dataset and the multi-turn dialogue dataset, respectively. 

For the single-turn dialogue, each intent is a semantic label attached with each utterance in 

dialogue, which represents the user’s intention and concise utterance interpretation [4]. The 

intention detection of the single-turn dialogue dataset can be regarded as a classification 

task that each sentence corresponding with each intent label, which can be seen in Table 

1.1. For the multi-turn dialogue dataset, some previous studies flatten the conversation 

structure as single-turn dialogue, and some other researchers still treat the whole 

conversation as a training object and combine the conversation structure in the training 

process. From Table 1.2, we can not only know the utterances and dialogue acts but also 

understand some other knowledge (speakers preference, the relative position of utterance 

in the whole conversation, current emotions, etc.) In a multi-turn dialogue dataset, a 

conversation will correspond to a sequence of dialogue act tags, which can be treated as a 

sequence labeling task. In this thesis, we have conducted modeling studies for both dialogue 

data types. The specific mathematical concepts will be analyzed in detail in the following 

experiments.  

The intention detection and dialogue act classification in spoken language 

understanding has been developed for a long time. Recently, the deep learning methods 

have been achieved state-of-the-arts results in intention detection and dialogue act 

classification tasks. some practical reasons bring challenges to spoken language 

understanding, which are illustrated as following: 
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➢ Dialogue data acquisition  

The potential problem in the intention detection task is the dialogue data acquisition, the 

existing dataset mainly rely on the annotated dialogue dataset, which is very time-

consuming. Moreover, the need for expert knowledge of the vertical domain will impede 

quick and wide development of intention recognizer. Thus, a model that has been trained in 

a fixed domain will be difficult to expand to new fields, and it is difficult to identify 

unknown intentions. 

➢ The irregularity of spoken languages 

Firstly, the sparsity of semantic information and obscure slang in spoken language 

makes the model difficult to interpret thoroughly [5]. For instance, the average length of 

some utterances is no more than 20 words. Secondly, the same underlying utterances have 

different tags or multiple tags, which gives rise to ambiguity in classifying intention labels. 

We use the utterance ‘Yeah’ as an example showed in Table 1.1 that the ‘Yeah’ has three 

tags, which are ‘Backchannel,’ ‘Agree,’ and ‘Yes/No Answer,’ respectively. 

➢ The limitation of traditional intention classifier 

The prior works of multi-class classification of intention detection exploit SoftMax to 

train an encoder on labeled training data. The learned features are optimized under the 

supervision of SoftMax, which cannot be sufficiently distinguished because it does not 

consider the intra-class compactness of features. The categories prediction was only 

focusing on finding a decision boundary, which results in poor generalization capabilities. 

Inspired by these observations, we assume that the intention recognition performance can 

benefit from constructing the robust and discriminative feature representations of the 

short-length utterances.  

➢ Code start problem 

With the explosive growth of interaction data, constantly emerging unacquainted 

intents and diverse intent expressions make annotating intents of dialogue more difficult 

and complicated. It is hard to obtain prior knowledge of unseen intents because of the 

lack of utterance samples in training. Based on this dilemma, the unknown intent 

detection task is indispensable for the developers to accelerate system development. The 

learning method specially designed for the unknown intent detection is still in infancy. 

Therefore, the zero-shot learning of spoken understanding also arise attention in industrial 

and academic fields. 
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Under this circumstance, we delicate to improve the performance of intent detection 

results based on the spoken language feature embedding learning in task-oriented dialogue 

and the knowledge transfer in zero-shot intention detection task.  

1.3 Review of the Research Dataset 

The research object of this thesis is mainly for these two types of dialogue data. A single-

turn dialogue is that one question and one answer, regardless of context. The multi-turn 

dialogue, that is, multiple dialogues, revolves around intent, and contact context until the 

task is completed. Previous studies have defined different task names for the intent 

understanding of these two different dialogue data. In particular, the intention of 

understanding in single-turn dialogue is named by intent detection, which can be regarded 

as a multiclass classification task. For the multi-turn dialogue dataset, the intention 

understanding is named by dialogue act classification, which can be treated as a sequence 

labeling task. Therefore, this thesis has conducted research on the intent detection of these 

two kinds of datasets. Specifically, we introduce three single-turn task-oriented dialogue 

datasets and three multi-turn dialogue datasets, which are listed below: 

➢ Single-turn dialogue dataset 

1) The SNIPS dataset [100] is collected from the Snips personal voice assistant and 

contains 7 intent types. The number of samples for each intention label is 

approximately the same.  

2) The ATIS [46] dataset is the audio recording of making the flight reservation. The 

training set includes utterances, and the test set contains 893 utterances. We follow 

the previous experiment and set the validation set with 500 utterances from the 

training set. There are 21 intention labels in the dataset. 

3) The SMP-2018 dataset [116] is a Chinese version dialogue corpus for user intention 

detection. It contains 30 intent types related to a series of instructions commonly used 

in daily life.  

4) Facebook’s multilingual dataset [47] contains annotated utterances with the English 

version, Spanish version, and the Thai version. It covers the weather, alarm, and 
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reminder domains in English, Spanish, and Thai language. There are 12 intention 

labels in the training set. 

➢ Multi-turn dialogue dataset 

1) The SWDA corpus [20] contains audio recordings and transcripts of the telephone 

conversations between speakers. For each conversation, a total of 66 topics are 

provided to speakers for communication. Overall, there are 42 dialogue act labels in 

the corpus, and all are annotated by DAMSL taxonomy [21]. This paper adopts the 

data split of 1115 training dialogue.  

2) The Daily Dialogue dataset [48] is a high-quality multi-turn dialogue dataset, which 

mainly records dialogue in terms of people’s everyday life. Each utterance of the 

Daily Dialogue dataset is manually labeled with the topic tag, intention tag, and 

emotion tag.  

3) The ICSI Meeting Recording Dialogue Act (MRDA) [49] dataset contains 72 hours 

of multi-party meeting speech dialogue from 75 naturally happened meetings. The 

original tag sets of MRDA included 11 general tags and 39 specific tags. Based on 

the previous experiments, we utilize the most widely used class-map to cluster all 

tags into 5 groups of intention categories. 

1.4 Organization Structure 

This thesis mainly studies and analysis the research with intention detection task. The whole 

paper covers the basic theories, methodology, experiment, and discussions about intent 

detection and zero-shot intention detection, which is organized in the rest chapters as 

follows: 

Chapter 1 talks about the background and significance of the intention detection task. 

Then, we introduce the main research contents and potential problems in this task. In the 

end, we represent the organizational structure of this thesis. 

Chapter 2 proposes a novel triplet utterance fusion feature learning embedding model 

to learn the utterances in dialogue. We utilize a Siamese neural network architecture with 

metric learning to construct a robust and discriminative utterance feature embedding 
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model. 

Chapter 3 introduces a semantic-enhanced attentive Bert capsule network to extract 

and aggregate high-level utterance features, and we inference zero-shot unknown intents 

based on the proposed method. 

Chapter 4 expands the scope of intention detection to a multi-turn dialogue dataset. 

In this section, we combine the hierarchical structure and utilize a multi-head self-

attention mechanism to learn the importance of dialogue context. 

Chapter 5 concludes the whole thesis and discuss future works. 

 



 

6 

Chapter 2  

2. Related works 

Related Works 

As we mentioned above, the intention detection task is a core component of the dialogue 

system whether it is a single-dialogue dataset or multi-turn dataset. Research on the 

intention detection (ID) and dialogue act classification (DAC) has been continuing for 

many years, focusing on searching for effective features and appropriate machine learning 

methods. In the following chapters, we illustrate the related research in detail we 

mentioned and the strategies we employed in this thesis. 

The current task-oriented multi-turn dialogue implementation is mainly based on a 

finite state architecture, framework-based architecture, information state architecture 

based on Markov decision process, and end-to-end (deep neural network) architecture. 

The framework-based architecture and finite-state architecture are also the current 

commercial mainstream. The finite state-based architecture and the framework-based 

architecture are mainly based on the scripting method. This approach frames people's life 

scenes with a dynamic memory approach. For example, when we go to a restaurant to eat, 

the framework of the general order activity (script): enter restaurants, seating, order, 

dining, paying bills, leaving. Therefore, the dialogue system can extract information 

according to the intention understanding, and filling the corresponding slots, and then 

give corresponding feedback.  

However, the restriction of dialogue management architecture based on finite state 

structure is quite high that requiring users to accurately answer the question, which makes 

the conversation clumsy. The initiative is a hybrid initiative that switches between the 



2.1  INTENTION DETECTION  7 

 

 

 

 

system and the user. Therefore, a currently commonly used hybrid active dialogue 

architecture relies on the structure of the framework itself to guide the dialogue, that is, 

the framework-based architecture. 

2.1 Intention Detection 

In the dialogue system, the previous studies mainly relied on non-lexical features like 

rhythm and acoustic to study spoken language understanding tasks [12]. In this thesis, the 

research object is written language. However, it seems that the phonological features are 

not effective enough for written language. In terms of feature learning methods, some 

earlier research applied keywords [13], vocabulary pairs [13], and designed templates as 

feature representation in the DAC task. These features have been achieved some 

improvement in ID and DAC tasks. Besides, some non-language feature set also very 

promising in ID and DAC tasks. For example, the utterance length and the word order are 

also can be another valid feature for ID and DAC tasks [12][19]. For example, the 

intention label of the utterance ‘This is wrong’ and ‘Is this wrong’ are different, which 

are ‘Statement’ and ‘Question’ respectively. Although the word is the same, the purpose 

of this utterance is different. Furthermore, in a multi-turn dialogue dataset, the 

information related to speakers also plays a critical role in the detection process. For 

instance, the speaker’s identification, personality, speaking preference, and emotional 

state at that time also had shown its utility to detect user’s intents [14]. Moreover, the 

structure information also had an impact on growth in accuracy for the DAC task. For 

example, the utterance position and the similarity between the utterance also can be 

treated as valid features used in the ID and DAC task [8]. After that, several basic 

language models like the N-gram model have been verified the validation on spoken and 

textual conversations on Map Task Corpus [15]. The Bag-of-word combined with the N-

gram model showed improvement in the one-to-one MSN online shopping assistant 

conversation [16]. The Gaussian distribution of short text could capture the latent state 

by using a weighted sum of word vectors based on GloVe [17]. In traditional research, 

the experiments are conducted in the pipeline manner, so that the feature learning and 
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classification operation are divided into two parts. The learning methods for the intention 

detection task are divided into two categories: multi-class classification and sequence 

labeling. The multi-class classification models are SVM [8], Naive Bayes [10], and 

Maximum entropy [11] in experiments. The sequence labeling methods are HMM [8] and 

SVM-HMM [12]. Previous studies used handcrafted feature sets along with contextual 

and lexical information, which reported 71% accuracy by HMM in SWDA corpus [8] and 

82% by Naive Bayes in MRDA corpus [9]. However, the traditional approaches for 

intention detection relied on hand-crafted features that were time-consuming and labor-

intensive. 

Nowadays, the emergence of deep learning methods effectively alleviated the 

constraints of researchers employ deep learning method in DAC task and then obtained 

significant improvement. Blunsom and Kalchbrenner [20] proposed a sentence feature 

representation and followed with hierarchical CNNs to classify these sentences into DA 

tags. Lee and Dernoncourt [22] proposed a model based on CNNs and RNNs to 

incorporate preceding contextual text to classify the current DA tags. More specifically, 

the feature produced by CNNs is better than the feature based on RNNs in both SWDA 

and MRDA corpus. In another work, Shen et al. [23] used RNNs in combination with the 

attention mechanism to emphasize the weight of useful information in the entire sequence, 

and the result showed some improvement in intent detection. Besides, some research 

utilized the joint learning approach to conducting the intention detection and slot 

filling[54][55]. Kumar et al. [24] utilized hierarchical Bi-LSTM to capture utterance 

granularity and inherent properties from multi-levels of conversation and predicted 

sequential dialogue act with the CRF model. Tu et al. [25] build a hybrid neural network-

based ensemble model for Chinese multi-turn dialogue. Notably, this paper incorporated 

the speaker changing as a feature to illustrate utterance peculiarity. However, the 

representation of features and their operations in neural network experiment are 

uninterpretable and vagueness. Furthermore, some other features were useful to generate 

more discriminative predictions in detecting the user’s intention. For examples, the 

location of the comment in web forum [26], speaking preference of users [27], dialogue 

topic context of same user [28], emotion transition trait of user’s blog [29], the rating and 
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comments of products in shopping website were treated as the weak label to learn the 

sentence representation [40]. Therefore, we still use traditional learning methods along 

with interpretable features as the basis for the DAC task. 

2.2 Zero-shot Intent Detection 

The intention detection task is a core component of the dialogue system. Deep learning 

methods have shown promising results in previous studies. The combination of deep 

learning and distance has also been integrated into text modeling and achieved good 

results. The metric learning has been successfully applied to various tasks like face 

recognition [32], speech recognition [33] [34], and unknown intent detection [59]. Metric 

learning can address some shortcomings of conventional classification. The reason is that 

the distance metric learning can further force the model to maximize inter-class variance 

and minimize intra-class variance. 

The conventional intent detection task trains a discriminative classifier in a supervised 

manner, which requires a considerable amount of labeled data. However, the numerous 

intent expression approaches and the continuous emergence of new intents mean that the 

cost and difficulty of labeling are pretty high. The appearance of zero-shot learning is 

very helpful for dealing with these problems because it can generalize the knowledge and 

concept learned from known filed to unknown filed. Therefore, the application of zero-

shot learning has aroused a strong interest in the academic and industrial fields.  

The zero-shot intent detection addresses the problem that not all intent categories are 

seen during the training phase, which is an important task in natural language 

understanding as novel intents may continuously emerge in dialogue systems. The 

research on zero-shot intent detection is still in its infancy. Previous zero-shot learning 

methods for intent detection utilize external resources such as label ontologies [60] [61] 

or manually defined attributes that describe intents to associate existing and emerging 

intents, which require extra annotation. Recently, IntentCapsNet-ZS extends capsule 

networks [87] for zero-shot intent classification by transferring the prediction vectors 

from seen classes to unseen classes. The ReCapsNet [67] shows that IntentCapsNet-ZS 



2.3  LANGUAGE REPRESENTATION MODEL  10 

 

 

 

 

[87] hardly recognizes utterances from unseen intents in the generalized zero-shot 

classification scenario and proposes to solve this issue by transferring the transformation 

matrices from seen intents to unseen intents.  

2.3 Language Representation Model 

Recently, the language representation model improved significantly in many NLP tasks, 

such as textual entailment, semantic similarity, reading comprehension, and question 

answering [29]. The language representation models can provide powerful context-

dependent representations by pre-training on a large scale unlabeled data, such as 

Contextualized Word Representations (ELMo) [30], Generative Pre-trained Transformer 

(GPT) [31] and Bidirectional Encoder Representations from Transformers (BERT) [6]. 

Besides, these models can be easily applied to different downstream tasks with minimum 

parameters. Therefore, we exploited the concept of language model representation to 

construct a novel utterance feature embedding model. 

2.4 Metric Learning  

Utilizing the deep neural network with a distance metric to learn the feature embedding 

had been successfully applied to many tasks, such as face recognition [32], speech 

recognition [33][34], and speaker identification. For example, FaceNet [32] of Google 

utilized a random semi-head triplet mining approach to make up facial picture triplets, 

which obtained excellent performance. He et al. [35] achieved outstanding performance 

on 3D object retrieval by proposing triplet loss and center loss. Huang et al. [36] applied 

triplet loss in training to automatically recognize the emotional state in spoken language. 

To deal with the spoken language, Zhang et al. [37] presented a system that directly 

learned mapping from speech features to a compact fixed-length speaker discriminative 

embedding. The triplet loss function focuses on fine-grained identification and adds the 

measurement of the latent state, which can help the model distinguish the details. Thus, 

we first tried to use the matric learning approach in the intention detection task of the 
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natural language processing field. 

2.5 Downstream Fusion Strategy 

Generally, the exceptional performance of the classification model depended on sufficiently 

large training corpora to a great extent. To comprehensively understand sentences, the 

fusion strategy can aggregate multiple sources to enriching the features and boost learning 

performance [37]. Majumder et al. [38] fused multimodal resources like audio, video, and 

text for sentiment analysis. Tay et al. [39] generated sentence representations by using a 

gating mechanism to combine the sentence token features and sentiment lexicon features. 

Sun et al. [41] detected emotional elements by using a mixed model to extract sentimental 

objects and their tendencies from product reviews. Specifically, the multi-stream 

architecture is prevalent in data fusion. For example, Simonyan et al. [42] designed a model 

with two-stream ConvNet architecture to illustrate spatial feature and temporal features, 

which can achieve significant performance under the condition of limited training data by 

the two-stream model. Inspired by these experiments, we use the fusion strategy in the 

downstream task to enhance the utterance feature representation. 

2.6 Capsule Network with Dynamic Routing 

Capsule Network has been proposed to improve the limitation of pooling strategy in the 

CNN model in the computer vision field since the max-pooling strategy might discard 

some valuable information. To improve this limitation, the capsule network and routing 

agreement method had been proposed to address the shortcoming of the polling strategy 

in CNN. The capsule network with routing-by-agreement process enables to learn the 

part-whole invariant relationship consecutively of the research object. The capsule holds 

an activation vector of a group of neurons, which represent a specific type of entity’s 

instantiation parameters. Specifically, the orientation of the activity vector indicates the 

attributes of objects and the length of the activity vector reflects the probability of 

existence. The capsule network is a feature extractor that detecting low-level features and 
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then aggregating the information into the high-level feature by utilizing a dynamic 

agreement mechanism. 

Recently, some studies utilized the capsule network method in the natural language 

processing field and achieved impressive performance. However, the research of capsule 

networks in the NLP field still in infancy. For example, Yang et al. [68] first attempted 

to use a capsule network for text-classification. The author experimented with two capsule 

networks, named Capsule A and Capsule B. The difference between them is that Capsule 

A utilizes the single filter size and Capsule B used multiple filter sizes at the CNN layer. 

Gong et al. proposed an aggregation mechanism to obtain a fixed-size encoding with a 

dynamic routing mechanism. Zheng et al. [70] proposed a novel attentive capsule network 

with a dynamic routing process to process hierarchical structure text data. Wang et al. 

[90] proposed a sentiment aspect-based capsule network to detect emotion. Chen et al. 

[77] leverage the transferring ability of capsule networks to transfer the knowledge of 

document-level to aspect-level sentiment detection. Geng et al. [92] adopted a dynamic 

routing mechanism with a relation network for few-shot text classification. Zhang et al. 

[91] proposed an attention-based capsule network for multi-label relation extraction. 

2.7 Label Embedding Learning  

Recently, there has been plenty of works utilizing label embedding achieved promising 

results in image classification [63], multimodal learning [64], text detection in images 

[65], text classification [65], and zero-shot learning fields [62]. The researchers treat the 

text classification as a label-word joint embedding problem in that each label can be 

embedded in the same space of the word vector. The author proposed a model to learn 

the representation of words and label in the same space which can be used to measure the 

compatibility of embedding between text sequence and label. The attention is learned on 

the training set of labeled samples to ensure that in a given text sequence, the weight of 

related words is higher than that of unrelated words. Du et al. [69] used an interactive 

mechanism to explicitly calculate the word-level interactive signal for text classification. 

The key idea behind the interaction mechanism is to explicitly calculate the matching 
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score between words and classes. From the word-level representation, it calculates an 

interaction matrix, where each entry is a match score between a word and a category. 

Moreover, the label embedding model also shows its effectiveness for zero-shot learning. 

Previous studies illustrated that the label correlation in the embedding space can explicitly 

facilitate information transform knowledge from seen labels to unseen labels. For instance, 

Ma et al. [78] presented a label embedding method that incorporates prototypical and 

hierarchical information to learn pre-trained label embeddings for fine-grained named 

entity typing. The proposed method can easily adapt a zero-shot framework to predict 

both seen and previously unseen entity types. In brief, the research of zero-shot learning 

on intention detection with capsule network is at an early stage. To our best knowledge, 

this paper first investigates the label embedding in capsule network. 
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Chapter 3  

3. Intention Detection based on Fusion Triplet Feature Embedding Model 

Intention Detection based on Fusion Triplet 

Feature Embedding Model 

3.1 Introduction 

The prior works of multi-class classification of intention detection exploit SoftMax to train 

an encoder on labeled training data. The learned features are optimized under the 

supervision of SoftMax, which cannot be sufficiently distinguished because it does not 

consider the intra-class compactness of features. The categories prediction was only 

focusing on finding a decision boundary, which results in poor generalization capabilities. 

Inspired by these observations, we assume that the intention recognition performance can 

benefit from constructing the robust and discriminative feature representations of the short-

length utterances. To this end, we improve the conventional method by proposing a novel 

triplet training framework based on multi-class classification learning.  

Pre-trained language models are proved to be very useful and efficient in learning 

universal language representations recently. For instance, the BERT model is conceptually 

simple and empirically powerful in enormous natural language processing tasks [6]. 

Inspired by the pre-trained language model learning approach and transfer learning 

techniques, we reference the conception of the unsupervised pre-training method with 

triplet loss to learn a structured space of interpretable utterance representations. 
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Specifically, we design a two-stage process for intent classification, which includes 

feature embedding learning and intention prediction. In the first stage, we develop the R-

MCNN model and BERT model as Siamese encoder with metric learning to obtain robust 

and discriminative feature embeddings by minimizing the intra-class variations.  In the 

second stage, we fuse the features from pre-trained feature embedding models and add 

additional relevant information as completed feature sets to predict intention labels in the 

downstream task. 

We summarize the contributions of this experiment as follows: 

➢ The proposed triplet training framework learns discriminative utterance feature by 

using the same weights on different inputs. The triplet loss function infers a non-linear 

mapping in the resulting latent space, and the inter-class sample distances are 

maximized based on a certain margin [7] .  

➢ We utilize CNN, RMCNN (Bi-GRU-MCNN), and BERT as Siamese encoders to 

train the utterance triplets. Precisely, the RMCNN model can generate structural 

information, in which the RNN model can extract the global context, and a wide range 

of kernels of CNN can capture the fine-grained local components of utterance. 

Besides, we leverage the power of the BERT model by facilitating deep bidirectional 

representations on enormous unlabeled data to obtain sentence-level context-

dependent features. 

➢ The triplet selection turns out to be crucial for model convergency. By considering 

the strong correlations between dialogue context, we propose a sequential sampling 

strategy to keep the intention transition traits into the triplet sampling process. 

➢ In the downstream task, we predict the probability distribution of each intent based 

on multi-class classification learning. We use the fusion strategy to fuse the features 

from different pre-trained feature embedding models as utterance features. Besides, 

we extent features with relevant information as external knowledge.  

 

 

 



3.2  THE TRIPLET SIAMESE NEURAL NETWORK 16 

 

 

 

 

3.2 The Triplet Siamese Neural Network 

3.2.1 Whole Framework 

This section mainly introduces the whole framework of the proposed model. The entire 

structure consists of three parts, which are triplet sample selection, triplet training section, 

and the downstream task of intention classification. Firstly, the system needs a sampling 

strategy to generate valid triplet data (𝑥𝑖
𝑎, 𝑥𝑖

𝑝, 𝑥𝑖
𝑛) as training objects. One triplet sample 

consists of an anchor sample 𝑥𝑖
𝑎, a positive sample 𝑥𝑖

𝑝
, and a negative sample 𝑥𝑖

𝑛. Then, 

we input all the triplet samples into the Siamese encoder and train the model with a triplet 

loss function. The triplet training model uses the same weights on different inputs to 

compute variables and accomplish a better separation between two positive related 

samples of the same class (𝑥𝑖
𝑎 , 𝑥𝑖

𝑝
) and one negative sample (𝑥𝑖

𝑛). To avoid meaningless 

calculation in the training process, we need to verify whether triplet samples are valid by 

setting up a particular margin parameter to observe Euclidean distance between 

embedding triplets in the test section. After the training, we can obtain a robust pre-trained 

 

Figure 3.1  The framework of feature embedding learning model. 
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feature embedding features, which can better reflect the specific characteristics of 

utterance. Secondly, given the well-defined feature embedding model with parameters, 

we exploit it mapping utterances in the downstream task. The critical components for 

triplet training are the Siamese model selection and triplet data composition. Therefore, 

the related information of essential components and modifications are illustrated in the 

following subsections. 

3.2.2 Siamese RMCNN Neural Network 

We modify the RMCNN model as a Siamese encoder to train the utterance triplets and 

generate a fixed-dimension representation. Firstly, we have the number of n utterances 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛} in the dialogue. Each utterance contains variable-length word tokens 𝑥𝑖 =

{𝑤1, 𝑤2, … , 𝑤𝑗}.  After triplet sampling, we obtain utterance triplet samples. For each 

utterance sample in triplet, we embed word tokens into vector 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} through 

a trainable embedding matrix pre-trained on enormous unlabeled data. The bidirectional 

GRU model encodes sequence token embedding to produce sequences of corresponding 

hidden vectors 𝐻 = {ℎ1, ℎ2, … , ℎ𝑖} , which extracts the context information by 

concatenating the hidden states from forward and backward directions. The operation of 

bidirectional GRU is formulated as follows: 

 

Figure 3.2  The framework Siamese RMCNN model. 
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ℎ𝑡
→ =  𝑓𝐺𝑅𝑈(ℎ𝑡+1, 𝑒𝑡)                              (3.1) 

ℎ𝑡
← = 𝑓𝐺𝑅𝑈(ℎ𝑡−1, 𝑒𝑡)                                 (3.2) 

ℎ𝑡  =  [ℎ𝑡
→, ℎ𝑡

←]                                  (3.3) 

in which ℎ𝑡 maintains the sequence information of the utterance. Then, we feed the output 

from Bi-GRU layer into the CNN layer. The CNN model can capture fine-grained local 

features inside a multi-dimensional filed. The convolutional operation includes a filter 

𝑊𝑐  ∈ ℝ, which is utilized to a window of 𝑙 continuous word vectors to produce a new 

feature map. A scalar feature 𝑐𝑖 is generated from a window of words ℎ𝑖:𝑖+𝑙  by: 

𝑐𝑖 = 𝑓( 𝑊𝑐  ∘  ℎ𝑖:𝑖+𝑙 + 𝑏𝑐)                                                            (3.4) 

where the symbol ∘  indicates the dot product operation,  𝑙  refers to the width of the 

convolutional kernel, 𝑓 is a non-linear function (ReLU), 𝑊𝑐 is the convolutional matrix, 

and 𝑏𝑐 is a bias term. Each kernel corresponds to an utterance detector to extract specific 

n-gram patterns at various granularities. The kernel applied to each possible region matrix 

to produce a valuable feature map: 

  𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑚]                              (3.5)  

in which m is the number of the channels. The pooling layer can extract local dependencies 

in different regions to preserve the most useful information. Then, we apply the pooling 

layers to capture the most valuable feature from each feature map, which includes the global 

maximum pooling layer and global average pooling layer. The outputs from two pooling 

layers are concatenated together as the local phrase feature of dialogue: 

        ĉ = [𝑔𝑚𝑝 (𝑐𝑖) ⊕  𝑔𝑎𝑝(𝑐𝑖)]                          (3.6) 

where the ‘gmp’ indicates the global maximum pooling layer and the ‘gap’ indicates the 

global average pooling layer.  Then, the outputs of the pooling layers with different widths 

are concatenated. Finally, three fully connected layers with ‘tanh’ activation are stacked 

together, and an L2-normalization layer is followed behind to form final utterance 

embedding. The Siamese RMCNN neural network optimized by minimizing the triplet loss 

and Adam optimizer is used during training. 
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3.2.3 Siamese BERT Neural Network 

Here is the process that we train utterance triplet samples with the Siamese BERT model. 

In this section, we fine-tune the pre-trained BERT model as Siamese encoder to train 

utterance triplet samples. Given sequence utterances 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, and we sample 

valid triplets for training. For each utterance sample in a triplet, BERT model construct 

token embeddings of this utterance 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} by concatenating the word piece 

embeddings, the positional embeddings, and the segment embeddings. Then, the token 

vectors are feed into encoder block and are encoded by stack layers. The encoder block 

includes multi-attention sublayers and the position-wise fully connected sublayers. The 

input data of the encoder block is a sequence hidden states 𝐻 = {ℎ1, ℎ2, … , ℎ𝑖}, so the 

output of encoder 𝑆 =  {𝑠1, 𝑠2, … , 𝑠𝑖} is illustrated as follows: 

𝑎𝑖𝑗
(𝑘) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ((

1

√𝑑𝑠
(𝑊𝑄

(𝑘)ℎ𝑖)
𝑇

(𝑊𝐾
(𝑘)ℎ𝑗)))           (3.7) 

𝑠𝑖
(𝑘) = ∑ 𝑎𝑖

(𝑘)(𝑤𝑣
(𝑘)ℎ�̇�)

𝑁
𝜈=1                              (3.8) 

  

Figure 3.3  The framework of Siamese BERT model. 
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𝑠𝑖 = 𝑊𝑂[𝑠𝑖
(1), 𝑠𝑖

(2), … , 𝑠𝑖
(𝑘)]                      (3.9) 

in which k is the number of attention heads, h is the dimension of hidden states, and 𝑑𝑠 

is the parameter of scale dot-production. The 𝑊𝑄 ,𝑊𝐾,𝑊𝑣 and 𝑊𝑂 indicate the model 

parameters. The output of the residual connection and the normalization module �̃�  =

{s̃1, s̃2, … , s̃N } are denoted below: 

�̃� = LayerNorm (H+S)                      (3.10) 

The output of the position-wise fully connected sublayer 𝑂 =  {𝑜1, 𝑜2, … , 𝑜𝑁}  is 

calculated as follows: 

𝑜𝑖 = 𝑊2𝑅𝑒𝐿𝑈(𝑊1s̃i + 𝑏1) + 𝑏2                     (3.11) 

in which 𝑊1,𝑊2, 𝑏1 and 𝑏2 are the model parameters. The residual connection layer 

and the normalization layer are followed the encoder block. The final contextual 

representation �̃�  =  {�̃�1, �̃�2, … , �̃�N} is illustrated below. 

�̃�  = LayerNorm (O+�̃�)                       (3.12) 

We feed the final contextual representation into three fully connected layers with ‘tanh’ 

activation and an L2-normalization layer to get final utterance token embedding. The 

Siamese BERT encoder is optimized by triplet loss function by end-to-end propagation, and 

Adam optimizer is utilized during training. 

3.2.4 Triplet Loss and Triplet Sampling Strategy 

Triplet loss function is calculated on the triplet data (𝑥𝑖
𝑎 , 𝑥𝑖

𝑝, 𝑥𝑖
𝑛), where the (𝑥𝑖

𝑎 , 𝑥𝑖
𝑝) 

are extracted from the same intention category. We obtain the negative sample (𝑥𝑖
𝑛) in 

different intention category from the (𝑥𝑖
𝑎, 𝑥𝑖

𝑝). We exploit the feature embedding model 

𝑓𝜃(𝑥) ∈ ℝ
𝑑 to map utterance triplets to d-dimension Euclidean space, and the distances 

are measured in resulting latent space. 

𝐷𝑎𝑝 =  ∥ 𝑓𝜃(𝑥𝑖
𝑎) − 𝑓𝜃(𝑥𝑖

𝑝) ∥2
2                        (3.13) 

𝐷𝑎𝑛 =  ∥ 𝑓𝜃(𝑥𝑖
𝑎) − 𝑓𝜃(𝑥𝑖

𝑛) ∥2
2                       (3.14) 
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∀ (𝑓𝜃(𝑥𝑖
𝑎), 𝑓𝜃(𝑥𝑖

𝑝), 𝑓𝜃(𝑥𝑖
𝑛)) ∈  𝑇                      (3.15) 

The 𝑓𝜃( ) refers to the Siamese encoder. The 𝑓𝜃(𝑥𝑖
𝑎), 𝑓𝜃(𝑥𝑖

𝑝), 𝑓𝜃(𝑥𝑖
𝑛) are outputs 

from the Siamese encoder.  T is the set of all possible triplets in the training set. The 

triplet loss optimizes model by minimizing the distance between 𝑓𝜃(𝑥𝑖
𝑎) and 𝑓𝜃(𝑥𝑖

𝑝)and 

maximizing distance between 𝑓𝜃(𝑥𝑖
𝑎) and 𝑓𝜃(𝑥𝑖

𝑛) by at least a margin parameter 𝛼 ∈

ℝ+. The triplet loss 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 is illustrated as follow: 

∑ [ ∥ 𝑓𝜃(𝑥𝑖
𝑎) − 𝑓𝜃(𝑥𝑖

𝑝) ∥2
2−  ∥ 𝑓𝜃(𝑥𝑖

𝑎) − 𝑓𝜃(𝑥𝑖
𝑛) ∥2

2+ 𝛼]
+

𝑁

𝑖
       (3.16) 

where N stands for the number of triplets in the training set, and i denotes the i-th triplet 

sample. During the triplet training, generating all possible triplets can easily be satisfied 

but results in slower convergence. Therefore, it is vital to select valid triplet samples to 

improve training efficiency. The following section is about triplet sampling strategies. 

3.2.5 Downstream Fusion Strategy 

Fine-tuning the pre-trained language model can save expensive pre-computing. The pre-

trained feature representation can be easily testified on many experiments with cheaper 

models on top of this representation [43]. Therefore, there is no need to train complex 

afterward. In this paper, we verify our pre-trained feature embedding model by utilizing 

the feature-based strategy for the downstream task. Feature-based strategy collects 

 

 

 
 

 

Figure 3.4  The feature-based strategy of 

downstream task. 
 

Figure 3.5  The model of fusion strategy of 

downstream task. 
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utterance features from the well-defined pre-trained language model to different 

downstream tasks.  

 The intention detection task in our experiment is based on the multi-class 

classification learning method, which can be seen in Fig. 3.4 The pre-trained feature 

embedding models (𝑓𝑅𝑀𝐶𝑁𝑁 , 𝑓𝐵𝐸𝑅𝑇) can form two robust utterance representations from 

different semantic aspects, which are denoted below. 

𝑈𝑅𝑀𝐶𝑁𝑁  = 𝑓𝑅𝑀𝐶𝑁𝑁 (𝑥𝑖)                       (3.17) 

𝑈𝐵𝐸𝑅𝑇 = 𝑓𝐵𝐸𝑅𝑇(𝑥𝑖)                         (3.18) 

Then, we feed the utterance feature  𝑈𝐵𝐸𝑅𝑇  and  𝑈𝑅𝑀𝐶𝑁𝑁  into the fully-connect 

layers, respectively. We use the Softmax classifier to predict the probability distribution 

of intention labels, which is defined as follows: 

𝑄 = 𝑡𝑎𝑛ℎ(𝑊𝑈𝑈 + 𝑏𝑈)                        （3.19) 

�̂� =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑄Q+ 𝑏𝑄)                      （3.20) 

where 𝑊𝑈 ,  𝑏𝑈 , 𝑊𝑄 , and  𝑏𝑄  are model parameters. We take cross-entropy as the loss 

function and Adam as an optimizer during training. The end-to-end backpropagation is 

employed in the training process.  

The multi-source fusion strategy can effectively improve the performance of natural 

language learning by various relevant resources [44]. Inspired by this conception, we 

employ a fusion strategy to accumulate semantic information of utterance from several 

aspects, such as utterance granularity, dialogue structure, and speaker information, which 

can be seen in Fig. 3.5 The same sentence may express different aspects concerning 

different aspects. To be specific, the RMCNN model can capture the global structural 

features of the input sentence. The BERT model remedies the limitation of the insufficient 

training corpora and provides more external knowledge about common utterance words. 

Otherwise, the participants have different roles and speaking preferences in various 

domains in multi-turn conversation, which also can be regarded as a distinctive feature to 

enhance utterance differences. We indicate speaker information in the model as ‘C’. 

Specifically, we use numerical values to represent different speakers. 
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We unified a two-stream fusion model to integrate the utterance features from different 

models to show its different aspects. Firstly, we set two pre-trained feature embedding 

models as two streams to encode utterances from different aspects. We feed the sequence 

word tokens into the models independently and obtain the optimal parameters of each 

model. In this section, we compose the utterance encoder using two models with optimal 

settings. After the optimal parameters are trained in each stream, the outputs from each 

stream are concatenated together and then input to the classifier. Then, we extend the 

utterance representation to 𝑈𝑎𝑙𝑙 = [𝑈𝑅𝑀𝐶𝑁𝑁,  𝑈𝐵𝐸𝑅𝑇 ,  𝑈𝑆𝑝𝑒𝑎𝑘𝑒𝑟].  Precisely,  𝑈𝑅𝑀𝐶𝑁𝑁 

refers to the structural feature learned from the Siamese RMCNN model, 𝑈𝐵𝐸𝑅𝑇 refers to 

the fine-grained contextual feature learned from the BERT triplet model and the 𝑈𝑆𝑝𝑒𝑎𝑘𝑒𝑟 

as an additional feature refers to the speaker's role aligned with each utterance. Then, all 

the features are concatenated together to be a comprehensive utterance representation. The 

SoftMax function is connected to the encoders to calculate the probability distribution, and 

the output is P = {𝑝1, 𝑝2, … , 𝑝𝑛}, in which n is the number of the intention labels, and 𝑝𝑖 

is the predicted probability that utterance belongs to the corresponding intent tag ⅈ, and the 

final predicted tag: �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃). The model optimization is to minimize the cross-

entropy loss, and Adam optimizer is used during training. 

3.3 Experiment  

3.3.1 Dataset 

We evaluate the proposed model on several benchmark datasets. We find that the 

evaluation object of the intention detection task includes not only task-oriented dialogues 

but also multi-turn dialogues. In the previous studies, the intention detection task of multi-

turn conversation is regarded as a multi-task classification. Therefore, we transfer the 

multi-turn conversation from the nested dialogue structure into a flat structure, so that the 

utterance triplets can be properly sampled. Besides, we also performed a series of pre-
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processing steps by utilizing Stanford’s CoreNLP tool [45] to avoid text noise, such as 

utterance tokenization and word lemmatization. 

In this experiment, we utilize three single-turn task-oriented dialogue datasets and two 

multi-turn dialogue datasets. Three single-turn task-oriented dialogue datasets are the 

Snips dataset, ATIS dataset, and Facebook’s multilingual dataset. The Snips dataset is 

collected from personal voice assistant with English version contains 7 intents. The ATIS 

dataset is collected from the audio recording related to flight reservations. The Facebook 

multilingual dataset covers three different domains with English, Spanish, and Thai 

language version. Besides, we also introduce two multi-turn dialogue datasets which are 

the Daily Dialogue dataset [43] and the ICSI Meeting Recording Dialogue Act (MRDA) 

dataset contains 72 hours of multi-party meeting speech dialogue from 75 naturally 

happened meetings. The dataset overview is illustrated in Table 3.1. The number of the 

classes of each corpus is tag #Intention, the vocabulary size of each corpus is tag 

#Vocabulary.  

3.3.2 Hyper-parameter Selection 

In this section, we illustrate the related parameters in model training, which is associated 

with the triplet training process and downstream task. All the work is implemented under 

the TensorFlow framework.  

Table 3.1  The Dataset overviews. 

 

Dataset # Intention # Vocabulary #Train # Validation # Test 

ATIS 21 722 4778 500 893 

Snips 7 11241 13084 700 700 

FB (EN) 12 3983 30521 4181 8621 

FB (SP) 12 1849 3617 1983 3043 

FB (TH) 12 1894 2156 1235 1962 

DYDA 4 25000 87170 8069 7740 

MRDA 5 10000 77900 15800 15500 
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In terms of the triplet training with the Siamese RMCNN model, we pad each 

utterance to the maximum length for training. We initialized word vectors with the 300-

dimensional word2vec word vectors. We set the dropout as 0.3 after the embedding layer 

to avoid over-fitting. The hidden size of Bi-GRU is 512 in one direction. We apply 

multiple kernel size [1, 2, 3] in the CNN layer to encode different utterance granularity, 

and the filter size is 256. The three fully-connect layers and an L2-normalization layer are 

followed behind. We set the Adam optimizer with a learning rate of 2e-4 and a weight 

decay of 1e-6. 

In terms of the Siamese BERT model, we fine-tuned the BERT model with metric 

learning to obtain utterance features. The pre-trained BERT encoder is trained on the 

unlabeled data, which are Books corpus (800M words) and English Wikipedia (2500M 

words). The maximum length of an utterance is 50. The BERT-base model has 12-layers, 

768- hidden states, and 12-heads. The hidden dim of the token embedding is 50.  We set 

the Adam optimizer with a learning rate of 3e-5 and a weight decay of 1e-6. For the other 

parameters, we follow the original BERT paper [6]. 

Furthermore, we utilize the feature-based strategy in downstream intention detection 

tasks. The pre-trained RMCNN and BERT feature embedding model is employed as 

different encoders in single stream, respectively. In this section, we set the hidden size as 

64, Adam optimizer is used with a learning rate is 2e-4, and the batch size is 256.  

3.4 Results Comparison and Discussion 

3.4.1 Baseline Comparison 

We compare the proposed model with several state-of-the-art baseline models. For the 

single-turn task-oriented dataset, it includes the following: 

➢ Attention-BiRNN [50] utilizes the encoder and decoder model for joint learning the 

intention detection task and slot-filling task. An attention weighted sum of all encoded 

hidden states is used to recognize intention. 

➢ Slot-Gated Attention [51] uses slot-gated LSTM to learn context vector, which 

improves the performance of intention classification. 
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➢ Capsule-NLU [53] accomplishes the intention detection by exploiting the hierarchical 

semantic information. They propose a re-routing schema to synergize further the slot 

filling performance using the inferred intention representation. 

➢ Joint BERT [54] uses joint intention classification and slot filling based on the pre-

trained BERT model. 

➢ BERT-SLU [55] provides a novel encoder-decoder framework based on a multi-task 

classification method to joint learn intention detection and slot-filling. The model uses 

BERT as an encoder to train utterance and then design a decoder to detect intention 

label. 

➢ Cross-Lingual transfer [47] uses a novel method of using a multilingual machine 

translation encoder as contextual word representations to predict intents. 

According to previous studies, there are several multi-turn dialogue datasets contain the 

intention detection task. In particular, we also verify the model on the multi-turn dialogue 

dataset to evaluate the model generalization capability. Therefore, we compare our model 

with the existing baselines, which includes: 

➢ SVM [10] is a simple baseline model, which applies the text feature and multi-

classification algorithm on the dialogue act classification. 

➢ LSTM-SoftMax [80] method applies a deep LSTM model to classify dialogue acts 

via the SoftMax classifier.  

➢ CNN [22]method utilizes the CNN model to encode the utterance with the Softmax 

classifier. The encoder considers two preceding utterances as context information in 

the experiment. 

➢ Bi-LSTM-CRF [24] method constructs a hierarchical bidirectional LSTM as an 

encoder to learn the conversation representation and the conditional random field as 

the top layer to predict intention label. 

➢ CRF-ASN [55] incorporates hierarchical semantic inference with memory 

mechanism on utterance modeling at multiple levels and uses a structured attention 

network on the linear-chain CRF to dynamically separate the utterance into cliques. 

➢ Dual-Attention [56] utilizes a novel dual task-specific attention mechanism to 
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capture interaction information between intents and conversation topics for 

Table 3.2  The recognition results on the Snips, ATIS and Facebook (EN) datasets. 

 Snips ATIS Facebook 

Attention-BiRNN [45] 96.7 91.1 97.3 

Slot-Gated Full-Attention [46] 96.7 93.6 93.75 

Slot-Gated Intent-Attention [46] 96.8 94.1 95.43 

Capsule-NLU [52] 97.3 95.0 - 

Joint BERT [48] 97.3 97.5 - 

Joint BERT+CRF [48] 98.6 97.9 - 

BERT-SLU [49] 98.96 99.76 98.88 

Cross-Lingual [42] - - 99.11 

RAN-CNN 97.43 97.23 99.13 

RAN-RMCNN 99.14 98.79 99.12 

RAN-BERT 98.71 96.75 98.68 

SEQ-CNN 98.43 98.21 99.18 

SEQ-RMCNN 99.29 99.32 99.22 

SEQ-BERT 99.00 97.31 98.97 

Fusion Feature 99.31 99.56 99.28 

 

Table 3.3  The recognition results on the DYDA and MRDA datasets. 

 DYDA MRDA 

SVM [5] 75.9 82.0 

LSTM-SoftMax [9] 79.6 84.6 

CNN [10] 79.1 86.8 

Bi-LSTM-CRF [24] 85.7 90.9 

CRF-ASN [54] - 91.7 

Self-Attn-CRF [55] - 91.1 

Dual-Attn [59] 88.1 92.2 

RAN-CNN 84.5 83.4 

RAN-RMCNN 85.5 87.6 

RAN-BERT 85.6 89.2 

SEQ-CNN 88.7 83.6 

SEQ-RMCNN 91.0 88.0 

SEQ-BERT 89.6 89.6 

Fusion Feature 91.3 91.0 
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utterances.  

➢ Self-attention-CRF [57] proposes a hierarchical deep neural network to model 

different levels of utterance and dialogue act and use CRF to predict dialogue acts. 

Table 2.2 and Table 2.3 show the intention detection accuracy on different datasets. 

Precisely, the prefix RAN means random triplet sampling strategy, and SEQ refers to the 

sequential triplet sampling strategy. The RAN-BERT means the random sampling 

strategy with the BERT model as Siamese encoder, and the SEQ-BERT means the 

sequential sampling strategy with the BERT model as a Siamese encoder. The rest model 

name is the same meaning.  

As we can see from the results shown in Table 2.3 and Table 2.4, the proposed model 

significantly outperforms baseline models and achieve state-of-the-art performance on 

Snips, Facebook (EN), and DYDA datasets. Although the proposed model does not obtain 

the-state-of-the-art results on ATIS and MRDA datasets, it still can show that the feature 

learning ability of the proposed model is useful. For the task-oriented dialogue dataset, 

the proposed feature learning model achieves the recognition accuracy of 99.29% (from 

98.96%) on the Snips dataset, 99.22% (from 99.11%) on Facebook (EN) dataset. The 

fusion features also improve the performance slightly that obtain 99.31% on the Snips 

dataset, 99.56% on the ATIS dataset, 99.28% on Facebook (EN) dataset. For the multi-

turn dialogue dataset, the model SEQ-CNN, SEQ-RCNN, and SEQ-BERT of the DYDA 

dataset improve the accuracy over the-state-of-the-art model by 0.6%, 2.9%, and 1.5%, 

respectively. The multi-source data fusion compensates for the lack of data-sparse to a 

certain extent. It boosts the performance of other methods because it integrates a wide 

range of available features, which achieves 91.3% on the DYDA dataset and 91.0% on 

MRDA.  

However, the gains on the ATIS dataset and MRDA dataset are slight. One of the 

reasons for this phenomenon is that the data distributions in these two datasets are both 

imbalanced. In the MRDA dataset, the class ‘Statement’ is occupied more than 50% of 

the intention category. In the ATIS dataset, the intention label “flight” also accounts for 

almost half of the total training data. Based on the sampling strategy, the sampled 

utterances can be affected by the proportion of intent categories in the database. It is 
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difficult for the model to learn the exact features for very few classes. Another reason is 

that the ambiguity of label correlation and label annotation is harmful to triplet feature 

learning. Besides, the MRDA dataset was found to have a high negative correlation 

between previous label entropy and accuracy, indicates the impact of label noise. Some 

utterances in ATIS dataset contains more than one label. In this experiment, we only study 

the single intent of utterance, which affects the results to some extent. The last reason is 

that the triplet training method adopts the flat dialogue structure to compose utterance 

triplets and predict the intents based on the multi-task learning approach in the 

downstream task. The multi-task learning model only focuses on the current utterance 

ignoring the hierarchical context structure information that damages the recognition 

performance of multi-turn conversation. In the future, we also need to consider how to be 

more effectively integrated triplet training with the nested structured dialogue. 

3.4.2 Ablation Studies 

We can observe the improvement of the proposed model in the last section, and then we 

explore the contribution of each part in this section. We first perform ablation studies to 

verify the proposed feature embedding models, whether to contribute to the intention 

classification task. Then, we explore the details about the effect of BERT model selection. 

Table 3.4  The results comparison of basic model and proposed model for different dataset. 

 SNIPS ATIS FB(EN) FB(SP) FB(TH) DYDA MRDA 

CNN 97.14 96.98 98.10 - - 79.62 81.05 

RMCNN 98.57 98.77 98.13 - - 82.14 83.54 

BERT 98.63 96.62 98.42 97.08 95.80 84.21 88.05 

RAN CNN 97.43 97.23 99.13 - - 84.56 83.47 

RAN RMCNN 99.14 98.79 99.12 - - 85.47 87.65 

RAN BERT 98.71 96.75 98.68 96.91 94.39 85.66 89.25 

SEQ CNN 98.43 98.21 99.18 - - 88.69 83.66 

SEQ RMCNN 99.29 99.32 99.22 - - 91.03 88.07 

SEQ BERT 99.00 97.31 98.97 97.67 96.39 89.61 89.69 
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Next, we study the impact of the sampling strategy selection. Besides, the margin 

parameter selection also is vital for model optimization. We test the wide-range margin 

parameters in the experiment. Finally, we exploit the T-SNE visualization method to 

verify the feature embeddings of the pre-trained feature learning models. 

3.4.3 The Effect of the Encoder Selection 

Table 3.5 shows the comparison between the basic models and the proposed triplet 

training model of different dialogue datasets. To validate the generation ability of the 

proposed model, we also add the other multilingual Facebook data (Spain version and 

Thai version) in the experiment. The CNN and RCNN models require particular text 

preprocessing for different languages, so there is no comparability in this experiment. 

Hence, we fine-tune the pre-trained multilingual BERT model to evaluate the two datasets. 

We implement comparative experiments under fixed hyperparameters and parameters. 

The results shown in Table 3.5 can prove that the pre-trained feature learning models 

are sufficient to learn more discriminative feature representation for the intention 

classification task. Precisely, the fine-tuned BERT model performed better than RMCNN 

model in basic models. However, we can see the triplet training can significantly improve 

the learning ability of RMCNN. From Table 3.5 the SEQ-RMCNN model performs better 

than the BERT and CNN encoder on Snips datasets, ATIS dataset, Facebook dataset, and 

DYDA dataset. We attribute this to the fact that the combination of Wikipedia embedding 

and RMCNN model can effectively capture granular semantic details locally. Also, the 

Siamese BERT encoder improves the results of the intention classification because the 

pre-trained BERT model can provide rich semantic information by unsupervised trained 

with enormous external knowledge. The results demonstrate that the pre-trained feature 

embedding model can effectively improve conventional multi-task classification by 

supplementing utterance triplet training.  
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3.4.4 The Effect of Sampling Strategy 

In this section, we discuss the effect of sampling strategy on classification results. Based 

on the results of Table 3.5, it can illustrate that two sampling strategies can effectively 

improve the results of the basic models (without triplet training). To be specific, the 

sequential method is slightly better than the random method. Besides, the multilingual 

dataset also shows the sequential strategy is better than the random strategy. The SEQ-

BERT improved by 0.76% over RAN-BERT in the Facebook dataset (Spain) and 2% in 

the Facebook dataset (Thai). The reason for these results is that the feature learning model 

might learn the useless context information because of random selection.  

Furthermore, we make a comparison between each intention label of the DYDA 

dataset to show the effect of different strategies on context-sensitive data in detail. As we 

can see in Fig. 3.6, the DYDA dataset has four intention labels, which are Inform (1), 

Commissive (2), Question (3), and Directive (4). The proposed models generally perform 

great on label “Inform” and “Question” because these two intents often appears in spoken 

language. Although it performs poorly in tag “Commissive” because of the lack of data, 

we still can find the sequential strategy can improve features to be more distinguished. 

 

 

Figure 3.6  The effect of different encoders and sampling strategies on MRDA. 
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Specifically, the result of SEQ-CNN grew by 0.25 over RAN-CNN, the result of SEQ-

RMCNN improved by 0.26 over RAN-RMCNN. The “Directive” label promotes 0.24 on 

CNN, 0.28 in RMCNN, only 0.08 in BERT. Therefore, the sequential sampling strategy 

can effectively select valid utterance triplets for spoken language objects.  

Table 3.5  The comparison of pre-trained BERT models with triplet training. 

 Snips ATIS Facebook 

BERT cased base 97.29 95.30 98.52 

RAN-BERT cased base 96.43 95.58 98.28 

SEQ-BERT cased base 98.14 95.63 98.53 

BERT uncased base 98.43 95.52 98.36 

RAN-BERT uncased base 97.86 95.75 98.63 

SEQ-BERT uncased base 98.97 97.20 98.90 

Table 3.6  The comparison of BERT token embedding. 

 Snips ATIS FB (EN) FB (SP) FB (TH) 

BERT 97.43 95.52 98.36 95.27 89.48 

RAN-BERT 97.86 95.75 98.63 96.94 93.97 

SEQ-BERT 98.97 97.20 98.90 97.47 95.15 

T-BERT 98.63 96.62 98.42 97.08 95.80 

T-RAN-BERT 98.71 96.75 98.68 96.91 94.39 

T-SEQ-BERT 99.00 97.31 98.97 97.67 96.39 

Table 3.7  The comparison of RMCNN token embedding. 

 Snips ATIS Facebook 

RMCNN 97.32 96.30 97.49 

RAN-RMCNN 97.42 96.58 97.88 

SEQ-RMCNN 98.14 96.74 98.63 

T-RMCNN 98.57 98.77 98.13 

T-RAN-RMCNN 99.14 98.79 99.12 

T-SEQ-RMCNN 99.29 99.32 99.22 
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3.4.5 The Effect of the BERT Model Selection 

In this section, we study the influence of the choice of the pre-trained BERT models based 

on the single-turn dialogue datasets. The pre-trained BERT models are publicly released 

on Google’s GitHub website1. The BERT model includes a monolingual version and a 

multilingual version. According to the results, we find the monolingual models benefit 

the English dataset, but it improves less on Facebook (Spain) and Facebook (Thai) 

datasets. The multilingual model can effectively improve the performance of the cross-

language datasets. Therefore, we use monolingual models to deal with English datasets 

and use multilingual models to train other language datasets. Besides, the BERT models 

contain two uncased versions and two cased versions. Therefore, we conduct a 

comparison of basic BERT and BERT triplet training on the English version dataset. To 

keep the parameters to a minimum in the interaction system, we only verify the model on 

the base model. From Table 3.5, we can see the uncased model is better than the cased 

model for the short text spoken language. The random sampling strategy might inferior 

the performance of the cased model on Snips and Facebook dataset. In the following 

experiments, we finally adopt the result of the Bert uncased base model as Siamese BERT 

encoder to train utterance triplets.  

Moreover, we verified the effect of token embedding on the task-oriented dialogue 

dataset. We assume the token embedding might provide finer-grained semantic 

information of utterances compared with sentence embedding. Therefore, we facilitate 

the comparison between sentence embedding and token embedding on all task-oriented 

dialogue dataset. We indicate the T as the token embedding in Table 3.6 and Table 3.7. As 

we can see in Table 3.6 and Table 3.7, the token embedding can enhance the semantic 

information of utterance and improve the performance of intention detection. Therefore, 

we choose token embedding as feature embedding in this experiment. 

 

 
1 https://github.com/google-research/bert 
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3.4.6 The Effect of the Margin Parameter Selection 

As we mentioned in formula 3.16, the margin parameter controls the relative distance 

between the feature embeddings to its positive samples and negative samples. Therefore, 

the margin parameter selection is essential for model convergency and optimization. From 

Fig. 3.7, we can observe that the triplet loss optimization is sensitive to the margin 

parameters. The margin parameter is too large or too small, both result in inferior 

performance. The large margin parameter may cause over-fitting, and the small margin 

parameter may impair the strength of the triplet loss because the small value not enough 

to distinguish between details. Therefore, we conduct different margin parameters under 

fixed hyperparameters in the experiment to observe the impact of margin parameters on 

recognition performance. We evaluate the margin parameters on wide-ranged values from 

0.1 to 20. We list the final choices of the margin parameter for each dataset. To be specific, 

we use 5 for the Snips dataset, 1 for the ATIS dataset, 1.5 for the Facebook dataset, and 

15 for DYDA and MRDA dataset. Therefore, we set the fixed margin parameter in the 

following experiments.  

3.4.7 The Visualization of Feature Embeddings 

 

Figure 3.7  The results comparison of different margin parameter based on different dataset. 
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In this section, we apply the T-SNE [58] method to visualize 2D feature embedding of 

test data learned from triplet learning models. Based on the T-SNE visualization method, 

we can intuitively observe the impacts of feature learning models on different datasets in 

Fig. 3.8. The first column is the original data distribution of each dataset, and the second 

column is the embedding features of the SEQ-BERT model. As we can see in Fig. 3.8, 

the feature embedding of the same intention category is visibly getting closer to each 

other and gain distinct clusters at the same time. Hence, the proposed models are benefits 

for extracting more discriminative features through utterance triplet training. The triplet 

loss training results in a better feature embedding since the margin parameter is 

considered appropriately.  

However, the feature embedding of the MRDA corpus is not as explicit as the DYDA 

dataset cause the data distribution of the MRDA dataset is imbalanced. The “Statement” 

tags are occupied approximately 50% in test data, so the rest of the four intents are not 

clear enough in visualization. Therefore, this visualization reveals the intuition that better 

underlying feature embedding for short utterance can be obtained by Siamese neural 

network architecture with metric learning.  
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 Original distribution of ATIS T-SNE visualization of SEQ-BERT 

  

Original distribution of SNIPS T-SNE visualization of SEQ-BERT 

  

Original distribution of Facebook Original distribution of DYDA 

  

T-SNE visualization of SEQ-BERT T-SNE visualization of SEQ-BERT 

  

Original distribution of MRDA T-SNE visualization of SEQ-BERT 

  

Figure 3.8  The T-SNE visualization of original data distribution and feature embeddings. 
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Chapter 4 

4. Zero-shot Intention Detection with Intention-enhanced Bert Capsule Neural Network 

Zero-shot Intent Detection with Intent-

enhanced BertCapsNet 

4.1 Introduction 

Previous studies [59][61] for unknown intent detection use external source like label 

ontologies or predefined attributes. However, such resources also require extra time to 

annotate and some external information are not available in dataset. The paper augment 

the training data by utilizing adversarial learning method to generate positive and negative 

samples for zero-shot intent detection. However, unlike the continuous data in visual 

recognition task, the data augmentation method may not work well for discrete data. 

Moreover, some researches learn a high-quality mapping function to project the similarity 

between intent and utterance. However, the attributes of spoken language that we 

mentioned above increase the learning difficulty and effect.  

Recently, the capsule network achieved in image classification filed, and it also be 

testified the advantages for NLP filed. The capsule network can capture the inherent 

spatial relationship between a part and a whole, thereby automatically generalized to 

novel new points. This attribute shows the potential of capsule network in the zero-shot 

intent detection task. The semantic compositionality that the meaning of the whole is 

composed of partial meanings can be learned by using capsule network via dynamic 

routing mechanism, which means the routing-by-agreement mechanism determine the 
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connection strength between lower-level capsule layer and upper-level capsule layer and  

detection as example, low-level utterance semantic feature (mucis_name, get_action) 

contribute to a more abstract intent (play_music). The IntentCapsNet model obtain 

impressive results in zero-shot intention detection by utilizing the capsule network to 

extract the utterance semantic features and transfer the knowledge from existing intention 

to emerging intention.  

In this section, we propose a novel semantic-enhanced capsule network structure for 

zero-shot intention detection. First, we obtain powerful context-dependent utterance 

feature embedding by fine-tuning the BERT model. The pre-trained language model is 

unsupervised trained by using unlabeled corpora and can be easily applied to downstream 

tasks. Then, we implement intent-guided semantic enhancement by making full use of the 

highly meaningful label information. It has been shown that the label correlation in 

embedding space can improve the recognition performance of zero-shot learning [76]. 

The label embedding method injects attentive weights of label samples into utterance 

representation by learning the shared joint space of utterance and intents [62]. Next, the 

semantic utterance features can be fed into an attentive capsule network to learn the 

abstract intent representation. The conventional intent detection task optimizes the model 

with SoftMax loss. For network optimization, the margin loss is effective for intention 

detection task [33]. The learned feature optimized with the supervision of SoftMax in 

conventional intention classification is limited. It only focuses on a decision boundary 

instead of considering the intra-class compactness and inter-class separation. Thus, we 

 

 

Figure 4.1  The pipeline of unknown intent detection. 
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replace the SoftMax loss with margin loss to learn more distinguishing features. Then, we 

optimize the proposed model with large margin cosine loss. It formulates the SoftMax 

loss into cosine loss with L2 norm and further maximized the decision margin in the 

angular space. Finally, we conduct zero-shot intent detection by utilizing the similarities 

of an unseen intent to seen intents and semantic feature extracted by the proposed feature 

extractor layer.  

The contributions of this paper are summarized as follow: 

➢ We propose a semantic-enhanced attentive Bert capsule network to extract and 

aggregate high-level utterance features, and we inference zero-shot unknown intents 

based on the proposed method. 

➢ We make the use of the label embedding attentive framework to enhance the semantic 

information by leveraging the compatibility of embeddings between utterances and 

intents. 

➢ We improve loss function based on the metric learning approach to obtain a 

discriminative feature by optimizing the network to minimize inter-class variance 

and to minimize intra-class variance. 

➢ The experiment conducts on several standard datasets to verify the effectiveness of 

the proposed method. 

4.2 The Attentive Capsule Neural Network 

First of all, we formally elaborate concept and definition of the problem. The traditional 

intention detection task is regarded as a classification problem. The intention label is 

associated with the utterance. This paper focuses on the inductive zero-shot learning that 

we do not consider the unseen classes during the training process. Given the set of intent 

labels Y =  𝑌𝑠 ∪ 𝑌𝑢,  𝑌𝑠 is the set of seen intents and 𝑌𝑢 is the set of unseen intents, 

respectively. The number of K seen intents and the number of L unseen intents are no 

overlap, i.e.𝑌𝑠 ∩ 𝑌𝑢 =  ∅. The label embedding of seen intents and unseen intents are 

illustrated as  𝐶𝑠 = {𝑐1
𝑠, 𝑐2

𝑠, … , 𝑐𝐾
𝑠 }  and 𝐶𝑢 = {𝑐1

𝑢, 𝑐2
𝑢, … , 𝑐𝑍

𝑢}  respectively. Suppose 
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given the number of training set {(𝑥, 𝑦)} of pair-wise data, where 𝑥 ∈ 𝑋𝑠 is the sequence 

utterances and 𝑦 ∈ 𝑌𝑠  is its corresponding known intentions. The zero-shot intention 

detection task aims to find a robust classifier to identify the unknown intention of an 

utterance which belongs to one of the unseen intentions. 

4.2.1 Encoder Module with Fine-tuned BERT 

In the beginning, we briefly introduce the pre-trained BERT model. Given the number of 

N input utterances with the number of L tokens  𝑥 = {𝑤1, 𝑤2, … , 𝑤𝐿},  we encode the 

tokens into embedding layers including word embedding, position embeddings, and 

segment embeddings. Then, the embedding layer is followed by the stack encoding layer, 

which is composed of a multi-attention sublayer and the position-wise fully connected 

sublayer. Therefore, we input a sequence of word vector E = {𝑒1, 𝑒2, … , 𝑒𝐿 } into the 

encoding layer, the output 𝑆 =  {𝑠1, 𝑠2, … , 𝑠𝑖} can be calculated as follows: 

𝑎𝑖𝑗
(𝑤)
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ((

1

√𝑑𝑠
(𝑊𝑄

(𝑤)
𝑒𝑖)

𝑇

(𝑊𝐾
(𝑤)
𝑒𝑗)))                (4.1) 

 

 

Figure 4.2  The framework of IE-BertCapsNet for unknown intent detection. 
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𝑠𝑖
(𝑤) = ∑ 𝑎𝑖

(𝑤)(𝑤𝑣
(𝑤)ℎ�̇�)

𝑁
𝜈=1                       (4.2) 

𝑠𝑖 = 𝑊𝑂[𝑠𝑖
(1), 𝑠𝑖

(2), … , 𝑠𝑖
(𝑤)]                      (4.3) 

where w is the number of attention heads, 𝑑𝑠  is the scale parameter. The 

𝑊𝑄 ,𝑊𝐾, 𝑊𝑉 and 𝑊𝑂 are model parameters and can be learned during training. Then, the 

output �̃�  = {�̃�1, �̃�2, … , �̃�𝑖 } of the residual connection and the normalization module are 

denoted below: 

�̃� =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐸 + 𝑆)                     (4.4) 

The output 𝐻 =  {ℎ1, ℎ2, … , ℎ𝑖}  of the position-wise fully connected sublayer is 

calculated as follows: 

ℎ𝑖 = 𝑊2𝑅𝑒𝐿𝑈(𝑊1�̃�𝑖 + 𝑏1) + 𝑏2                  (4.5) 

in which 𝑊1,𝑊2, 𝑏1, 𝑏2 are the model parameters. The residual connection and the layer 

normalization are applied to the output of the encoder block. The final representation 

�̃�  =  {ℎ̃1, ℎ̃2, … , ℎ𝑖} of the BERT model is: 

�̃� = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐻 + �̃�)                   (4.6) 

the fixed dimensional pooled token representation �̃� ∈ ℝ𝐿×𝐷𝐻  can be directly utilized in 

the downstream tasks, where L is the max length and H is the number of hidden units. 

4.2.2 Intent-Enhanced Semantic Feature with Label Embedding  

Different from feature learning in traditional classification tasks, word embeddings are 

aggregated into feature representations and then directly input into the classifier. We 

assume that the interaction of word-intent pair is of great help to model the knowledge 

transfer between classes. Therefore, we implement intent-guided semantic enhancement 

by combining the label embedding attention mechanism in the primary capsule layer. We 

encode the tokens in utterance and its corresponding intention in the same joint space and 
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measures the compatibility of token-intent pairs to attend to the utterance representations. 

Specifically, the label embeddings are 𝐶𝑠 = {𝑐1
𝑠, 𝑐2

𝑠, … , 𝑐𝐾
𝑠 }  where K is the number of 

seen intents. Then, we employ cosine similarity to calculate the compatibility between 

word embedding and label embedding: 

G = (C𝑇�̃� ) ⊘ Ĝ                         (4.7) 

where �̂�  is a normalized matrix of size 𝐾 × 𝐿 , and each element in  �̂�  is the 

multiplication of L2 normalized k-th label embedding and l-th word embedding: �̂�𝑘𝑙 =

‖𝑐𝑘‖‖𝑜𝑙‖ . Subsequently, we introduce the non-linearity operation in the word-intents 

compatibility by using the convolutional neural network and activation functions to better 

obtain the relative spatial information. For a text phase of length 2𝑟+1  centered at l, the 

local matrix 𝐺𝑙−𝑟:𝑙+𝑟 in G measures the label to token compatibility. The convolutional 

operation produces high-level compatibility semantic feature 𝑢𝑙 ∈ ℝ
𝑘  between l-th 

words and all labels. The filter is applied to each possible window over the compatibility 

measures to produce a valuable feature map: 

 𝑢𝑙 = 𝑅𝑒𝑙𝑢(𝑊3 𝐺𝑙−𝑟:𝑙+𝑟 + 𝑏3)                    (4.8)                                                                                    

where 𝑊3 ∈ ℝ
2𝑟+1 and  𝑏3 ∈ ℝ

𝐾 are parameters to be learned in the training. Next, we 

apply an average pooling layer to capture the most valuable feature from each feature 

map. Therefore, we add a global average pooling layer over each feature map and take 

the global maximum compatibility value: 

𝑝𝑙 = 𝐴𝑣𝑔𝑀𝑎𝑥𝑝𝑜𝑜𝑙ⅈ𝑛𝑔(𝑢𝑙)                   (4.9) 

The attention score 𝛽𝑙 ∈ ℝ
𝐿 of the l-th elements of an utterance is 

𝛽𝑙 = SoftMax(𝑝𝑙)                         (4.10) 

Then, the averaging weighted word embeddings 𝑄 ∈ ℝ𝐿×𝐷𝐻    as intent-enhanced 

utterance representation: 
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𝑄 = ∑ 𝛽𝑙�̃�𝑙𝑙
                          (4.11) 

4.2.3 Attentive Capsule Neural Network for Intent Detection 

In previous learning, we obtain semantic features based on the intent-enhanced feature 

learning model. Then, we further learn the semantic and syntactic information of each 

token by utilizing the capsule neural network. The capsules are a group of neurons that 

use activity vectors to represent the instantiation parameters of entities of an object and 

improve feature aggregation performance by using a dynamic routing mechanism. The 

orientation of the activity vector is used to represent the semantic properties of utterance, 

and the length of the vector is utilized to describe its existence probability. In theory, the 

capsule network transmits information from the lower-layer capsule to the upper-layer 

capsule through a dynamic routing strategy, which can be regarded as a bottom-up routing 

process. In the previous zero-shot learning studies, the attention mechanism has shown 

its effectiveness. For example, the IntentCapsNet [87] utilizes the self-attention 

mechanism to extract each utterance's semantic features. The ResCapsNet [85] uses a 

self-attention mechanism on the word embedding level to alleviate the polysemy problem 

to some extent. Therefore, after obtaining the intent-enhanced semantic feature 

embedding, we use the self-attention mechanism to learn the contribution weights of 

different dimensions of feature embedding. This process enables capsule networks to 

 

Algorithm 1 Dynamic Routing Algorithm 

1 Procedure Dynamic Routing (𝑝𝑘|𝑟 , 𝑛𝑟𝑜𝑢𝑡𝑒) 

2 Initialize the coupling coefficients 𝑏𝑘|𝑟 ← 0 

3 For r iterations do 

4 for all capsule i in L layer and capsule j in layer (L+1): 𝑐𝑟 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑟) 

5    for capsule j in layer L+1: 

𝑣𝑘 = 𝑠𝑞𝑢𝑎𝑠ℎ (∑ 𝑐𝑘𝑟 𝑝𝑘|𝑟
𝑅

𝑟=1
) 

6 for all capsule i in L layer and capsule j in layer (L+1): 𝑏𝑘𝑟 = 𝑏𝑘𝑟 + 𝑝𝑘|𝑟 ∙ 𝑣𝑘 

7 end for 

8 return 𝑣𝑘 
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determine what and how much information needs to be transferred, as well as to identify 

sophisticated and interleaved features. Theoretically, the capsule network's bottom-up 

routing process transmits information from the source capsule node to the target capsule 

node via a dynamic routing strategy. The detail of the attentive capsule layer is shown in 

Fig.3. Thus, a dimensional matrix 𝐴𝑟 is computed as: 

𝐴𝑟 =   𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (𝐹2𝑡𝑎𝑛ℎ(𝐹1𝑄))                  (4.12) 

where 𝐹1 ∈ ℝ
𝐷𝑎×𝐷𝐻  𝑎𝑛𝑑 𝐹2 ∈ ℝ

𝐷𝐻×𝐷𝑎  are trainable parameters. The 𝐴𝑟 (ⅈ, 𝑙) 

illustrates the importance weights of the i-th dimension of the l-th words with respect to 

the r-th semantic feature. It can comprehensively capture the fine-grained semantic 

feature by selecting the meaningful dimensional attention of a word embedding. Then, 

the r-th semantic feature 𝑚𝑟 is: 

𝑚𝑟 = ∑ (𝐴𝑟⊙𝑄)𝑟𝑜𝑤                         (4.13) 

where the ⊙ is the element-wise multiplication and the ∑ ( )𝑟𝑜𝑤  sum up all elements 

of each row. The utterance semantic feature can be written as M = [𝑚1, 𝑚2, … ,𝑚𝑅] ∈

ℝ𝑅×𝐷𝐻. Then, the learned semantic features can be input to a capsule network to form the 

intent representation by using an unsupervised routing-by agreement mechanism. Firstly, 

we encode each semantic feature 𝑚𝑟 ∈ ℝ
𝐷𝐻. to prediction vector corresponds with each 

intent: 

𝑝𝑘|𝑟 = 𝑊𝑘,𝑟𝑚𝑟                          (4.14) 

where 𝑝𝑘|𝑟 ∈ ℝ
𝐷𝑝 is the prediction vector of the r-th semantic feature with respect to the 

seen intent k, and 𝑊𝑘,𝑟 ∈ ℝ
𝐷𝑝×𝐷𝐻 is a weighted matrix. For the training of seen intention 

detection, the number of K intents corresponding to the number of K output capsules. The 

𝑜𝑘 is the weighted sum of all the prediction vector:   

𝑜𝑘 = ∑ 𝑐𝑘𝑟𝑝𝑘|𝑟
𝑅
𝑟=1                        (4.15) 
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in which 𝑐𝑘𝑟  is the coupling coefficient that shows how much information the r-th 

semantic feature is to k-th seen intent, which can be calculated by the dynamic routing 

mechanism. The summarized dynamic routing process is illustrated in Algorithm 1. 

Afterward, we apply a squashing function to obtain an activation vector 𝑣𝑘 for the seen 

intent class k: 

𝑣𝑘 = 
‖𝑜𝑘‖

2

0.5+ ‖𝑜𝑘‖
2

𝑜𝑘

‖𝑜𝑘‖
                       (4.16) 

As we mentioned before, the probability of the exist intent k can be treated as the norm 

of activation vector 𝑣𝑘. 

4.2.4 Improved Margin Loss Function 

In the IE-BertCapsNet model structure, each top-level capsule corresponds to an intent. 

The activation probability of each top-level capsule represents the probability that the 

input utterance belongs to the corresponding intent. We jointly optimize the model with 

two parts loss function to train the attentive capsule network, which includes a margin 

loss and a regularization term. In the conventional intent classification task, The SoftMax 

cross-entropy loss is widely utilized. However, the SoftMax loss cannot learn 

discriminative utterance feature because it only considers the boundary whether the label 

classifies correctly. Therefore, we use the margin loss to replace the SoftMax loss to detect 

intents. The margin loss function performs well in previous studies, not in the face 

recognition field, and natural language process filed. It compensates for the shortcoming 

of SoftMax loss by forcing the model to maximize intra-class and minimize inter-class 

separation. We define large margin cosine loss (LCML) [59] as the following: 

𝐿𝑙𝑐𝑚𝑙 = 
1

𝑁
∑ −𝑙𝑜𝑔𝑖

𝑒
𝑠∙(𝑐𝑜𝑠(𝜃𝑦𝑖

)−𝑑)

𝑒
𝑠∙(𝑐𝑜𝑠(𝜃𝑦𝑖

)−𝑑)
+∑ 𝑒

𝑠∙𝑐𝑜𝑠𝜃𝑗,𝑖
𝑗≠𝑦𝑖

                      (4.17) 

The loss is constrained by  
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𝑐𝑜𝑠(𝜃𝑗 , ⅈ) =  𝑊𝑗
𝑇𝑥𝑖                     (4.18) 

𝑊 =
‖𝑊∗‖

‖𝑊∗‖
 

𝑥 =  
𝑥∗

‖𝑥∗‖
 

where 𝑦𝑖 is the ground-truth intent label of the i-th utterance, s is the scaling factor, d is 

the cosine margin parameter, 𝑤𝑗  is the weight vector of the j-th intent label, and 𝜃𝑗  is 

the angle between 𝑤𝑗 and 𝑥𝑖. With normalization and cosine margin, the LMCL loss 

function converts SoftMax loss into cosine loss by utilizing L2 normalization on feature 

and weighted vector. 

The second part is a regularization term that shows the importance of each word to 

the r-th semantic capsule. It can be demonstrated by the average value of each column of 

the attention matrix 𝐴𝑟: 

𝑠𝑟 = 
1

𝐻
∑ 𝐴𝑟𝑐𝑜𝑙                           (4.19) 

where 𝑠𝑟 ∈  ℝ
1×𝐿  and then we sum up elements of each column. Therefore, the S = 

[𝑠1
𝑇 , 𝑠2

𝑇 , . . , 𝑠𝑅
𝑇] illustrates the attentive weight of each word to all R semantic capsules. We 

constrain the column of S to be orthogonal with attention loss 𝐿𝑎𝑡𝑡 to ensure the semantic 

diversity, which demonstrated as follow 

𝐿𝑎𝑡𝑡 =  ∥ 𝑆
𝑇𝑆 − 𝐼 ∥𝐹

2                        (4.20) 

Finally, we optimize the whole model by minimizing total loss, which proposed as follow: 

𝐿 =  𝐿𝑙𝑐𝑚𝑙 +  𝛼𝐿𝑎𝑡𝑡                         (4.21) 

where 𝛼  is a trade-off parameter that shows discrepancies among different semantic 

attention heads. 
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4.2.5 Zero-shot Intent Detection 

In this section, we detect unknown intents by using the proposed model to transfer 

knowledge from seen intents to unseen intents. Specifically, we obtain the similarity 

matrix 𝑄 ∈  ℝ𝐾×𝑍of the number of K seen intents and the number of Z unseen intents by 

𝑞𝑧𝑘 = 
𝑒𝑥𝑝 {−𝑑(𝑐𝑧

𝑢,𝑐𝑘
𝑠)}

∑ 𝑒𝑥𝑝 {−𝑑(𝑐𝑧
𝑢,𝑐𝑘

𝑠)}𝐾
𝐾=1

                    (4.22) 

where 𝑐𝑧
𝑢, 𝑐𝑘

𝑠 ∈ ℝ𝐷𝐼  are intent embeddings computed by the sum of word embedding of 

the intent label. The d is squared Mahalanobis distance metric measures the relationship 

between the number of K seen embedding and the number of Z unseen intent embedding, 

which is computed as: 

𝑑𝑀(𝑐𝑧
𝑢, 𝑐𝑘

𝑠) = (𝑐𝑧
𝑢, 𝑐𝑘

𝑠)𝑇𝛺−1(𝑐𝑧
𝑢, 𝑐𝑘

𝑠)               (4.23) 

where Ω is a covariance matric that models the correlation between embedding of seen 

and unseen intents. We obtain the correlation among intent embedding use a squared 

Euclidean distance, which is computed as: 

Table 4.1  Data statistics for zero-shot intent detection. 

Dataset Snips SMP-2018 FB-EN FB-TH FB-SP 

Vocab size 11641 2928 4641 1849 1849 

Number of Sample 13802 2460 42841 8643 5353 

Number of seen Intents 5 24 9 9 9 

Number of unseen Intents 2  6 3 3 3 

Table 4.2  Hyper-parameter Selection in zero-shot intent detection. 

Dataset 𝐷𝑎 𝐷𝑝 R 𝑁 σ Lr 

SNIPS 10 10 8 3 1 1e-3 

SMP 30 10 8 3 4 5e-4 

FB (EN) 30 10 8 3 1 5e-3 

FB (TH) 12 10 3 3 1 1e-3 

FB (SP) 10 10 3 3 1 1e-3 
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𝛺 =  𝜎2𝐼                          (4.24) 

4.3 Experiment 

4.3.1 Dataset 

In this section, we conduct the proposed model on several benchmark datasets for intent 

detection. We introduce four real task-oriented dialogue datasets with different language 

versions, which are Snips dataset with English language version [99], SMP-2018 dataset 

with Chinese language version [101], Facebook’s multilingual dataset with English, 

Spanish and Thai language version [100]. The more detailed information about the corpus 

can be seen in the research dataset section of Chapter 1. 

For the inductive zero-shot intention detection, we take the known intents as the 

training set and the unknown intents as the test set. In principle, all unknown data should 

be randomly selected. To facilitate the comparison with the previous studies, we still refer 

to the data division of the ReCapsNet on the SNIPs dataset and the SMP dataset. For the 

rest of the datasets, we randomly take utterances of 70% intents as the training set and 

utterance samples from the rest of 30% intents as the test set. 

4.3.2 Implementation Details  

In this experiment, we illustrate the implementation details of the training process. For 

the input embedding, we use the pre-trained language model to replace the original 

bidirectional LSTM model in IntentCapsNet. In the previous studies, we have already 

testified the effectiveness of the Bert base model on the spoken language understanding 

[52]. Therefore, we fine-tune the BERT model to obtain fixed dimensional token 

embedding, 𝐷𝐻 = 768. The pre-trained BERT model has 12-layers, 12-heads, and 768-

dims. The utterances are padded to the length of L = 50 for each dataset. Regarding label 

embedding learning, we use 𝐷𝐼 = 300 word embedding trained by English Wikipedia as 

input intent embedding. In terms of CNN in label attention learning, the filter window 

sizes of CNN are selected in the range [1, 2, 3]. Accordingly, the number of filters 
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corresponding to each window is still the same as 768. In the self-attention layer, we set 

the self-attention hops R = 8 for SNIPS, SMP, Facebook (English), and R = 3 for 

Facebook (Thai) and Facebook (Spain). We set self-attention hidden units𝐷𝑎 = 10 for 

Snips, Facebook (Thai) and Facebook (Spain). The main hyperparameters used in the 

attentive capsule network for different datasets are shown in Table 4.2. After applying 

the affiliation transformer, we set the dimension of the prediction vector 𝐷𝑝 = 10. We 

set iteration number N as 3 for both datasets because it can effectively optimize the model 

to lower loss. For the loss function, we set the margin as d = 0.35 and the similarity scale 

as S = 30. The dropout is adopted in each dataset as 0.5 to avoid overfitting. Moreover, 

we set Adam optimizer [108] with different learning rates for different datasets, and the 

batch size is 128.  

4.3.3 Evaluation Metric 

Following the previous studies, we also evaluate our proposed model with accuracy and 

F1-value. Due to the data imbalance when randomly selecting unknown intents, all the 

metrics are reported using the average value weighted by their support per class. 

4.4 Results and Discussion 

4.4.1 Performance Comparison  

In this section, we compare our proposed method with several other state-of-the-art 

baseline models. The zero-shot learning of intent detection is still in infancy, we mainly 

take the related models from the IntentCapsNet-ZS and ReCapsNet-ZS as the baseline. It 

includes the followings: 

➢ DeVise [95] proposes a new deep visual semantic embedding model, which can be 

trained to recognize visual objects using labeled image data and semantic 

information collected from the unannotated text. 

➢ CMT [103] delicate to build a high-quality mapping from utterance to known 

intents, so this mapping can be further used to measure the compatibility between 
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utterances and unknown intents. 

➢ CDSSM [72] focus on the intent expansion. It jointly learns the intents and 

utterance with character-level and bridge the semantic relationship between known 

intents and unknown intents. 

➢ Zero-shot DNN [73] uses the different encoders to learn the intent and utterance 

separately, further improving the CDSSM model. 

➢ IntentCapsNet-ZS [87] leverages the advantage of the compatibility of utterance 

and intents and directly model the correlation between utterances and intents. 

➢ ReCapsNet-ZS [85] proposes a reconstructing capsule network to further improve 

IntentCapsNet by dealing with polysemy problems and generalized zero-shot intent 

classification problems. 

We illustrate the zero-shot intent detection results of our proposed model in Table 3 

and we highlight the top results in bold. Based on the IntentCapsNet, it also shows the 

detection performance on the known intents. Therefore, we also present the result of intent 

detection both on the known intents and unknown intents. Based on the results, we have 

the following observations. Based on Table 3, the proposed model achieves state-of-the-

art results on the English dataset (SNIPS) and Chinese dataset (SMP-2018). In the English 

Snips dataset, the proposed model achieves 92.39% and 92.27% in Accuracy and F1-

value. In the Chinese dataset (SMP-2018), the proposed model obtains 61.17% and 53.93% 

in Accuracy and F1-value, respectively. The results indeed indicate its advantage of the 

proposed model in handling zero-shot learning of task-oriented dialogue and achieving 

state-of-the-art results of the intent detection task. Furthermore, we also take the baseline 

results from IntentCapsNet on the Snips dataset's 5 known intents for comparison. As we 

can see in Table 4, the proposed model improved 3.06% and 3.07% over the 

IntentCapsNet model on the Snips dataset for accuracy and F1-score, respectively.  

The improvement is mainly attributed to several aspects. Firstly, the pre-trained 

BERT model has a strong background knowledge to generate powerful context-
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dependent utterance representations. The Bi-LSTM model might perform poorly on 

bridging the semantic gap between known and unknown intents. Secondly, the label 

embedding learning provides more granular lexical information to capture the correlation 

between utterances and intents. Thirdly, the capsule attention method can learn a part-

whole spatial relationship to aggregate the invariant knowledge for new intents. The 

iteration routing mechanism in the capsule network furthermore improves the feature 

clustering by updating on coupling coefficients. In the following section, we illustrate the 

impact of each part of the proposed framework.  

Table 4.3  The zero-shot intent detection using IE-BertCapsNet on two datasets. 

Method Snips SMP-2018 

Acc. F1. Acc. F1. 

DeVise 0.7447 0.7446 0.5456 0.3875 

CMT 0.7396 0.7206 0.4452 0.4245 

CDSSM 0.7588 0.7580 0.4308 0.3765 

Zero-shot DNN 0.7165 0.7116 0.4615 0.3897 

IntentCapsNet 0.7752 0.7750 0.4864 0.4227 

ReCapsNet 0.7996 0.7980 0.5418 0.4769 

IE-BertCapsNet 0.9239 0.9227 0.6117 0.5393 

 

Table 4.4  The intent detection results on the known intents of Snips dataset. 

Method Snips-NLU (on 5 known intents) 

Acc. Precision Recall F1 

CNN 0.9595 0.9596 0.9595 0.9595 

RNN 0.9516 0.9522 0.9516 0.9518 

GRU 0.9535 0.9535 0.9535 0.9534 

LSTM 0.9569 0.9573 0.9569 0.9569 

Bi-LSTM 0.9501 0.9502 0.9501 0.9502 

Att-BiLSTM 0.9524 0.9522 0.9524 0.9522 

IntentCapsNet 0.9621 0.9620 0.9621 0.9620 

IE-BertCapsNet 0.9927 0.9927 0.9926 0.9927 
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4.4.2 Ablation Studies 

In this section, we perform the ablation studies better to understand each module's 

importance in detail. In this section, we start ablation research along with the structure of 

the capsule network.  Moreover, we added some other task-oriented benchmark datasets 

to verify the model generalization of zero-shot-intention-detection learning. The results 

in Table 4.5 indicates: 

1) "o/w Pre-trained LM" means that we exclude the pre-trained Bert model, we still use 

the same method of IntentCapsNet and ReCapsNet (Bi-LSTM and attention mechanism) 

as the feature encoder.  

2) "o/w attention" means that we only utilize BertCapsNet without attentive function to 

replace the Bi-LSTM to learn the feature.  

3) "o/w Intent Enhanced" shows the contribution of joint label embedding learning on 

intent detection.  

4) "o/w LCML" uses the original max-margin loss to replace the large margin cosine loss 

in the proposed method.  

In general, all components contribute to the final detection performance. Specifically, 

the pre-trained language model plays a vital role in performance improvement for both 

datasets. The IE-BertCapsNet is superior to IntentionCapsNet because the BERT model 

Table 4.5  The ablation study by varying different components of IE-BertCapsNet. 

 SNIPs 

(English) 

SMPs 

(Chinese) 

Facebook 

（English） 

Facebook 

（Thai） 

Facebook 

（Spain） 

 Acc. F1. Acc. F1. Acc. F1. Acc. F1. Acc. F1. 

o/w Pre-trained LM 0.7752 0.7750 0.4864 0.4227 0.8042 0.8139 0.6984 0.6831 0.7453 0.7168 

o/w Attentive Aggregation 0.8960 0.8965 0.4961 0.4587 0.8577 0.8574 0.7765 0.7349 0.7724 0.7359 

o/w Intent Enhancement 0.9128 0.9127 0.5228 0.4671 0.8695 0.8440 0.7818 0.7401 0.7703 0.7302 

o/w LCML 0.9266 0.9266 0.5960 0.5102 0.9316 0.9224 0.8039 0.7802 0.7680 0.7357 

IE-BertCaps 0.9239 0.9227 0.6117 0.5393 0.9398 0.9354 0.8122 0.7846 0.8131 0.7545 
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can learn the rich semantic information and help transfer knowledge from known intents 

to unknown intents. When we exclude the intent embedding learning from IE-

BertCapsNet, the zero-shot detection accuracy drops 1.11% in the Snips dataset, 8.89% 

in the SMP dataset,7.03% in the Facebook English dataset, 3.04% in the Facebook Thai 

dataset, 4.28% in Facebook Spanish dataset. The result means that intent learning has 

enlightening instructive significance for the following iteration process because the 

tokens that more meaningful to intent can develop the model to learn more fine-grained 

features. After that, we apply the attentive capsule network structure for feature clustering 

and selection. We eliminate the attention mechanism from the Bert capsule network to 

evaluate its capability. As shown in Table 4.5, excluding the attention mechanism in the 

capsule network impairs the performance both on accuracy and F1 value. In the following 

discussion, we will also use visualization to analyze the role of the attention mechanism. 

At last, we use max-margin loss instead of large margin cosine loss to testify its 

effectiveness. We can find the accuracy rate is reduced on the SMP dataset and all 

Facebook datasets. LCML loss function initially from CosFace [107]. The application in 

zero-shot intent detection elaborates its effectiveness in the NLP field. The LCML 

combined with intent supervised learning to learn more prominent features in the training 

 

Figure 4.3  The results of different routing iteration numbers. 

 

 

Figure 4.4  The attention visualization of utterance with seen intents and unseen 

intents. 
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process by maximizing the distance between classes and minimizing the distance within 

categories.  

4.4.3 The Effects of Routing Iteration 

In some natural language processing articles about capsule networks, we have seen that 

routing iterative mechanisms will have different effects on the results. There are various 

studies in the natural language processing field to evaluate the impact of dynamic routing 

iteration on detection performance. Previous studies show the multiple iterations can 

furthermore aggregate part-whole features. However, Kim [93] proposed that the static 

routing mechanism is better in calculating efficiency and classification accuracy than 

dynamic routing. Therefore, we report the impact of the iteration parameter selection from 

1 to 5. The F1 score is the weighted average value over five runs with random 

initialization. From Fig.4, we can observe that the best results are achieved when the 

number of iterations is 3. We also verify the static routing mechanism in this paper, when 

the number is 1, the result tends to decline significantly. The reason the two cases are 

different because the objects of the two experiments are different. In our paper, the word 

order's influence or the insertion of an untrained word vector of spoken language is less 

than in a lengthy document. The routing-by-agreement mechanism can better help 

aggregate utterances into useful information in the intent.  

4.4.4 Visualization Feature Learning and  nowledge Transferability 

In this paper, we make extensive use of attention mechanisms to learn feature expression. 

Therefore, we visualize the attention matrix to observe the model’s semantic extraction 

ability and knowledge transferability. This section envisions the attentive utterances of 

known and unknown intents of Snips and Facebook (English) datasets as examples. 

Firstly, we can observe that the intent labels of the Snips dataset contain multiple 

meanings. For instance, there is a known intent named "SearchCreativeWork", which 

includes searching action and creative work property. From Fig.5, the model can both 

capture these two semantic aspects of an intent label in known intent utterances. The 
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phrases "look for" and "search for" have a high correlation with the searching action. 

Apart from this, we can see the creative work also contain high concentration. For 

example, the word "photograph," "creativity," and "phantom horse" can increase the 

proportion of "CreativeWork" attributes in feature learning. Moreover, the same 

phenomenon can be discovered on Facebook (English) dataset, which is also illustrated 

in Fig. 4.4. We take the "WeatherFind" as an example, the model can not only observe 

the words directly related to the weather to infer intent but also build implicit relation 

between utterance and intent based on some related items.  

Based on these observations, we intend to verify semantic extracting ability from 

unknown intents. From Fig. 4.4, we observe that the proposed model has a strong 

generalization that transferring this knowledge to the inferencing part for unknown intent 

detection. As we can see the unknown intents from Snips dataset, the intent “RateBook” 

will pay attention to vocabulary related to rate action, book names, and writer names. The 

utterance of intent “AddToPlaylist” focuses on the word related to add action and other 

 

 

 

 

Figure 4.5  Comparison of the word attention score between the intent “Book Restaurant” 

(left) and “Play Music” (right) with their corresponding utterance learned by proposed 

model without label attention(above) or with label attention(below). 
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information with music. The unknown intent from Facebook (English) dataset verified 

this situation. The intent “SetReminder” considers setting behavior and pays attention to 

related events after setting behavior. These observations can prove that the proposed 

model can transfer knowledge and extract fine-grained features between known and 

unknown intents.  

Furthermore, we also visualize the effect of the label embedding attention 

mechanism. We leverage the token information by utilizing the label embedding learning 

method. As we can see in Fig. 4.5, the model combined with the label embedding attention 

mechanism can extract more distinguished tokens based on intention, which improve the 

capsule network better aggregates the activation vector towards its intents.  

4.4.5 The Discriminative  tterance Feature Visualization  

In this section, we utilize the T-SNE visualization tool to evaluate the effectiveness of the 

proposed model, which is illustrated in Fig 4.6, we utilize the normalized activation vector 

of known intents and unknown intents to observe the feature learning ability. Based on 

the visualization of known intents, we can intuitively observe the features of the same 

intents are visibly clustering together. As illustrated in the figure of unknown intents, we 

can see the proposed model can effectively capture the discriminative feature of unknown 

intents for zero-shot intent learning.  

Meanwhile, we also find some confusing parts contained in the T-SNE visualization. 

For the visualization of unknown intents, some data is incorrectly clustered into other 

categories and the category boundaries of unknown intent are not clear. Several reasons 

can explain this phenomenon: 1) Since the text length is short, different intentions will 

have the same expression method, vice versa. 2) In the zero-shot intent detection phrase, 

the relatively small amount of data in random allocation will cause some confusion in 

classification. 3) Some intents closed to each other in feature visualization owing to their 

inherent similarity, such as intents "Bus" and "Flight" in the SMP dataset both belong to 

transportation. The dialogue will involve some terms related to transportation. 
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 Seen intents distribution of Snips Unseen intents distribution of Snips 

  

Seen intents distribution of SMP Unseen intents distribution of SMP 

  

Seen intents distribution of FB (EN) Unseen intents distribution of FB (EN) 

  

Seen intents distribution FB (TH) Unseen intents distribution FB (TH) 

  

Seen intents distribution FB (SP) Seen intents distribution FB(SP) 

  

Table 4.6  The utterance feature visualization of known intents and unknown intents. 
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 Chapter 5 

5. Dialogue Act Recognition based on Sequence Labeling Method 

Dialogue Act Recognition Based on Sequence 

Labeling Method 

5.1 Introduction 

Research on DA recognition has been continuing for many years, and mainly focus on 

defining taxonomies of dialogue acts, searching effective features for the classification 

task, and discovering the appropriate machine learning methods. For the feature learning 

approach, there are various features that have been proposed such as dialogue cues, 

speech characteristics, and n-gram features. These features have been achieved huge 

success in previous studies. In this section, we treat the multi-turn dialogue dataset as a 

sequence labeling problem. Therefore, we leverage the conversation’s framework as 

structure features to obtain more useful features  

The dialogue act (DA) is a kind of semantic label attached to each utterance, which 

could help to understand the conversation, ease the interpretation of utterance, and 

discriminate the user’s intension. The DA tags are associated with utterances in a 

sequential way, so the DA recognition task also can be regarded as a sequence labeling 

problem. The purpose of sequence labeling is to assign a label to each element in sequence 

respectively. Based on sequence learning, we could capture the hidden relationship 

between utterances as features based on observable information, such as utterance 

position in the entire dialogue and some correlations among consecutive utterances. For 
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instance, in real conversation, people always start a conversation with ‘Greeting’, and it 

most likely going to be the same type for the next utterance to respond，i.e. ‘Greeting’ or 

‘Question’. At the end of the conversation, people are likely to apply ‘Greeting’ to 

farewell. Therefore, this experiment takes these implicit elements into feature designing.  

Considering the negative effects of natural language and the consecutive 

characteristic of conversation, this paper is dedicated to finding effective features and 

suitable classifiers for the study of DA recognition. Therefore, the contribution of this 

experiment is: 

➢ We propose a word-level sequence annotation approach to represent structural 

feature and semantic features of dialogue and followed by the Linear-CRFs model to 

recognize DA tags in the open domain.  

➢ We extend the hierarchical models and combined several recent feature learning 

techniques to propose a context-aware hierarchical neural network for dialogue act 

classification. Specifically, we use the fine-grained feature learning approach to 

encode word embeddings with token, characteristic, speakers. Then, we utilize the 

multi-heads self-attention mechanism to aggregate high-level feature representations. 

Finally, we operate the CRF on the conversation representations to decode the 

sequence dialogue act. 

5.2 Dialogue Act Classification with Token-level Sequence 

Labelling 

5.2.1 Feature Extraction 

In this section, we firstly utilize the traditional approach to conduct dialogue act 

classification. The CRFs is an algorithm for sequence labeling problems, cannot directly 

be used in the classification task. Hence, this experiment supposes to convert feature 

representation from sentence-level into word-level, which help CRFs obtain more 

information about utterance and avoid sparse text. Therefore, we provide a feature 

representation based on word-level sequence annotation.  

➢ Lexical features 
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In this section, Bag-of-word as a feature showed promising results and is wildly used in 

the previous studies. Therefore, the utterance vectorization realized by the Bag of N-gram 

method will still be applied as a baseline in this paper. Based on this simple and effective 

text representation, this paper tests three different Bag of N-gram sets (1-gram, 2-gram ,3-

gram) respectively, as well as the 2 groups of gram combinations, 1gram+2gram and 

1+2+3gram respectively. Moreover, Kim et al. [16] tested the Boolean features to classify 

the MSN online shopping assistant dialogue, which also is testified in this paper. Besides, 

this paper also experiments with TF, TFIDF, and information gain as the feature weight. 

Moreover, this section also represents the utterance by using the distribution 

representation method as well. 

➢ Structure features 

According to actual conversation, we could find out the position of the utterance 

throughout the entire dialogue also have impacts on distinguishing the DA tags. For 

instance, the greeting will often appear at the begging of the conversation, then followed 

with the question to continue, and there will be farewell words such as ‘good-bye’ or 

‘have a nice day’ in the end to mark the end. Moreover, the position of an utterance in a 

turn also is an influential factor to discriminate the DA tag. The utterance from a speaker 

who initiates the conversation until the end is one ‘Turn’. Due to ‘Turn’, the speaker of 

the next turn can catch the ending of the last speaker and continue the conversation from 

another start. Hence, the structural features are:  

 The speaker information  

 The speaker information  

 The position of the utterance in the entire dialogue  

 The position of the utterance in a turn  

 The relative position of the utterance in the entire dialogue 

 The relative position of the utterance in a turn  

Except these, there are a total of 11 feature sets in this section, and the rest features consist 

of combinations of these five elements noticed above. 
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➢ Dependency features 

According to the frequency of co-occurring dialogue pair analysis, we understand that 

there are certain correlations among two adjacent utterances, as well as DA tags. For 

example, ‘Question’ followed by ‘Affirmative’ is frequently appearing together. ‘Request’ 

will always connect with ‘’Repeat Response. In other words, preceding DA tags could be 

useful to predict the next DA tags. From this point of view, this paper identifies the current 

utterance by using cosine distance to extract its most similar utterance in content and 

represent its relative location to the current position. Moreover, the natural conversation 

contains strong logic within the utterance sequence. These utterances from the same 

author seem to share the content in each other. Combined with this idea, we add utterance 

similarity from the same author into the feature set. Therefore, this part will be included 

by: 

 The utterance similarity  

 The DA tag similarity  

 The utterance similarity from the same speaker  

 The DA tag similarity from the same speaker  

5.2.2 Sequence Labelling with Linear-Chain CRF 

 

 

Figure 5.1  The example of word-level sequence annotation approach. 
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In this experiment, the selected classifier is the Linear-chain CRF, which could be able to 

capture the dependency among utterance contexts. In a sequence tagging task, predicting 

labels in each time step in a greedy way may not obtain an optimal result, so we can utilize 

jointly feature derived from the identity of surrounding utterance as a feature, instead of 

only focusing on the current position. The CRFs is a form of an undirected graph model 

that uses a chained undirected graph structure to defines the conditional probability 

distribution over label sequences given a particular observation sequence. Suppose that 

each conversation contains sequence utterances, i.e., 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}  with 

corresponding DA tags 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} . Each utterance is made up of sequence 

words stringed together, i.e., 𝑥𝑖 = {𝑤1, 𝑤2, . . . , 𝑤𝑚} . Therefore, the goal of the DA 

recognition task is to specify a DA tag for an utterance, the conditional probability to 

predict optimal DA tags sequence can be written as: 

𝑃(𝑌|𝑋; 𝜃) =
1

𝑧(𝑥)
𝑒𝑥𝑝(∑ ∑ 𝜆𝑘𝑓𝑘(𝑦𝑖−1, 𝑦𝑖 , 𝑥, ⅈ)

𝑀
𝑘

𝑇
𝑖 )             (5.1) 

where 𝜆𝑘 is the parameter for defining each feature function 𝑓𝑘. The parameter ⅈ is the 

position of the current token, 𝑥 is the observation state sequence and y is the hidden state 

sequence. The purpose of this model is to predict the probability of hidden state sequence, 

given observation state sequence X. To learn the parameters of CRFs, we use L-BFGS to 

train estimation. The model uses L1 and L2 as penalty functions to limit the parameters 

and setting bias to 1.0 to prevent overfitting during training. Given the parameters of the 

CRF and predicting the optimal probability, the dynamic programming algorithm (Verbit) 

can be used in this paper to divide the global optimal calculation process into several stages. 

To be specific, given an utterance Xi and its corresponding DA tag Yi, each word that 

existed in utterance   is annotated with the DA tag Yi. Therefore, the representation of 

the utterance Xi is consisting of sequence words with the same number of corresponding 

tag Yi. Besides, the feature representation of the utterance also considers not only the 

words sequence but also needs to reflect the character of the dialogue structure and 

utterance dependency in it. Subsequently, the CRFs model is followed to training the 

defined feature set to predicting the target DA tags in the test set. LSMR sequence labeling 
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method is a very common method in the word segmentation field, it can segment words 

by marking a token position in the phrase to segment words and obtained promising 

results. Therefore, this paper assumes that sequence labeling based on word-level could 

improve accuracy on the DA recognition task. The simulative sample in Fig. 5.1 illustrates 

the concept of the proposed methods. 

5.3 Attentive Contextual Hierarchical Neural Network for 

Dialogue Act Classification 

From the feature learning in the previous section, we can see that the features we designed, 

and the Linear-CRF model has played a role. In this section, we consider the problem of 

the dialogue act classification (DAC) problem from the viewpoint of extending the 

handcrafted features to the end-to-end training process. We incorporate the recent 

advanced deep learning approaches to learn the latent semantic features and structural 

dependency features in the conversation.  

In this experiment, we propose a hierarchical learning approach to learn the 

conversation from different levels. Regarding the DAC task as a structure prediction, 

some good performance of previous works has been obtained. Kalchbrenner and Blunsom 

[80] proposed a mixture model with CNNs and RNNs to encode utterance-level semantic 

features and discourse-level structure features, which achieved great performance on the 

DAC task. After understanding the effectiveness of the hierarchical network, lots of recent 

works have been established. For instance, Li and Wu proposed multi-level gated RNNs 

to learn the multi-level semantic features and dialogue act dependency. Except for 

learning the utterance-level feature with deep learning methods, some studies coupled 

with CRF as a decoder model to discriminate the dialogue act. The CRF model can 

combine the knowledge of dialogue act transmit pattern in the decoding process, which 

further improves the classification performance. For example, Kumar et.al [24] employed 

the hierarchical RNNs model to learn sentence-level and conversation-level semantic 
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information. Chen et. al [114] concatenate rich word embedding information (token, 

characteristic, POS, and NER) to produce fine-grained utterance representation. Besides, 

the conversation-level encoder uses a self-attention mechanism to measure the relevance 

of input utterance and contextual latent representation. Then, the CRF model is applied 

to decode the sequence utterance features. Based on the previous studies, we conduct the 

DAC task from the viewpoint of extending these hierarchical models and leverage recent 

useful feature learning techniques.  

5.3.1 Methodology  

Before the training, we need to introduce the problem formulation for the dialogue act 

classification. The DAC task take the number of N conversation as the training object 

𝐷 =  (𝐶1, 𝐶2, . . . , 𝐶𝑁) . Each conversation 𝐶𝑖  is composed of a sequence of utterances 

𝐶𝑖 = {𝑢1, 𝑢2, . . . , 𝑢𝐿}  and a sequence of dialogue act 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝐿} . Each 

utterance 𝑢𝑖 = {𝑤𝑖
1, 𝑤𝑖

2, . . . , 𝑤𝑖
𝑁𝑖}  has corresponding dialogue act 𝑦𝑖 ∈  𝑌.  Fig. 5.2 

shows the whole framework of the proposed hierarchical neural network. In this 

 

 

 

Figure 5.2  The model structure of end-to-end hierarchical neural network. 
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experiment, we consider the conversation to be a hierarchical structure with word-level, 

utterance-level, and conversation-level feature learning. Each component we will 

illustrate in detail in the next section.  

5.3.2 The Hierarchical Conversation Feature Learning  

To learn the fine-grained utterance feature representations, we concatenate two-word 

embedding models to learn the utterance semantic features. In this part, we separately 

learn the word embedding based on Word2Vec and fine-tuned BERT model. These two 

models both trained on huge word knowledge and have shown excellent performance in 

various NLP tasks. Then the word embedding is followed by a Bi-GRU layer to capture 

temporal information, and the hidden states we define as follows: 

ℎ𝑡
𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 [ℎ𝑡

𝑖→, ℎ𝑡
𝑖←]                       (5.2) 

where the concat operation combines the forward and backward hidden states. Then, we 

regard the last hidden state as the utterance representation. Then, we add the speaker 

information into the utterance representation, because the previous studies point out that 

speaker information can add discriminative features in utterance, which can be written as 

𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝐿} and  𝑢𝑖 ϵ ℝ
 1× 2𝑑. We concatenate the utterance representation and 

speaker information to show the final sequence of utterance representation. Therefore, the 

sequence of L utterances in conversation can be written as H = {ℎ1
𝑁1𝑢1, ℎ2

𝑁2𝑢1, . . . , ℎ𝐿
𝑁𝐿𝑢𝐿}. 

Then, we consider the dialogue history into the model to learn the global conversation 

feature representation. Therefore, we utilize a 2-layer MLP layer to combine history 

information and current dialogue hidden state. The operation can be written as follow： 

𝑅𝑖 = 𝑊1 tanh (𝑊2𝐻𝑖
𝑇 +𝑊3 𝑔𝑖−1 + 𝑏)             (5.3) 

where 𝑊1, 𝑊2, and 𝑊3 are weight parameters can be obtained in the training process. 

( 𝑊1𝜖 ℝ
 𝑢×2𝑑 and 𝑊2𝜖 ℝ

 2𝑑×𝑢) The parameter u we can set arbitrarily. 𝑊3𝜖 ℝ
 2𝑑×𝑑𝑐, 

the hyperparameter dc is the size of the hidden state in the conversation level, and b is a 
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vector illustrating bias. The sequence utterance representation is fed into multi-head 

attention layers to aggregate the high-level information. The multi-heads self-attention is 

an effective method of leveraging context-aware features over variable-length sequences 

for natural language processing tasks. Based on the self-attention mechanism, we firstly 

conduct different linear transformation on the input vector 𝑅𝑖ϵ ℝ
𝐿 × 2𝑑: 

[
𝑄
𝐾
𝑉
] =  [

𝑤𝑞𝑅

𝑤𝑘𝑅
𝑤𝑣𝑅

]                           (5.3) 

𝑤𝑞 , 𝑤𝑘, 𝑤𝑣  are the parameters we can learn in the training process. Then, we can obtain 

sequence utterance representations 𝑚𝑖 ϵ ℝ
𝐿 × 2𝑑: 

𝑚𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡ⅈ𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
  𝑄𝐾𝐿

√𝑑𝑠
)𝑉            (5.4) 

the attention weights are calculated by the dot production between Q, K and self-attention 

output 𝑚𝑖 is a weighted sum of value V. 𝑑𝑠 is a scaling vector. With the number of R 

multi heads, we concatenate all the outputs with different attention heads. Therefore, the 

final sequence utterances representation M = {𝑚1,𝑚2,, . . . , 𝑚𝑅}. Then, we project the 2-

dimensional representation into 1d-dimensional feature representation by using a fully 

connected layer, which denoted as 𝑚𝑖ϵ ℝ
2𝑑 . In the conversation level, we employ 

conversational-level Bi-GRU to encode across the utterance sequences: 

𝑔𝑖
→ = 

𝐺𝑅𝑈
→   (𝑚𝑖,

𝑔𝑖−1
→  )                       (5.5) 

𝑔𝑖
← =  

𝐺𝑅𝑈
→  (𝑚𝑖,

𝑔𝑖+1
→  )                       (5.6) 

𝑔𝑖  =  𝑐𝑜𝑛𝑐𝑎𝑡 (
𝑔𝑖
→ ,

𝑔𝑖
←)                      (5.7) 

𝑔𝑖 provides the conversation-level context, which is further propagated to a linear chain 

CRF layer. The CRF layer considers the transition probabilities between dialogue acts in 

context and jointly decodes the optimal sequences of dialogue acts, instead of decoding 
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each dialogue act independently. For the testing, we adopt Viterbi algorithm to obtain the 

optimal sequence by using dynamic programming techniques. 

5.4 Experiment Setting  

5.4.1 Dataset  

In this section, we evaluate the proposed model on the same benchmark dataset for the 

DAC task. The SWDA corpus contains audio recordings and transcripts of a telephone 

conversation between speakers. For each conversation, a total of 66 topics are provided 

to speakers for communication. Overall, there are 42 dialogue act labels in the corpus, 

and all are annotated by DAMSL taxonomy [110]. This paper adopts the data split of 1115 

training dialogue. Table 5.1 is a simple structure of the SWDA dialogue. Specifically, ‘Id’ 

notes the index number of each utterance. ‘DA’ tag is a dialogue act corresponding to 

utterance. ‘Caller’ is the identification of the speaker. ‘Utt’ number means the position of 

the utterance in the entire dialogue text, ‘Sub-Utt’ represents the position of the utterance 

in a turn, and text is the content of the utterance.  

Table 5.2  The samples of SWDA dialogue dataset. 

ID DA Caller U_Idx Sub-Utt Text 

1 b B 1 utt1 Uh-huh. 

2 sd A 2 utt1 I work off and on just temporarily and usually find 

friends to babysit. 

3 sd A 2 utt2 I don't envy anybody who's in that situation to find 

day care. 

4 b B 3 utt1 Yeah. 

 

Table 5.1  The dataset statistic for dialogue act classification based on end-to-end training. 

Dataset C V Training Validation Testing 

SWDA 42 19k 1003(173k) 112(22k) 19(4k) 
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5.4.2 Hyperparameter  

For the experiment with handcrafted features, this thesis employs different feature 

extraction algorithms to obtain structure features and then followed by three basic 

machine-learning methods, Naive Bayes, support vector machines, and conditional 

random fields. Naive Bayes and support vector machines are both come from the Scikit-

learn toolkit, and Conditional Random Field (CRF) come from the Pycrfsuite toolkit. In 

order to testify the stability of the model, this paper also uses the average result of 10-fold 

cross-validation. 

In the end-to-end training, we combine two pre-trained word embedding models to 

train word embedding. Firstly, we exploit the pre-trained word embedding trained by 

English Wikipedia dataset with 300 dimensions. Then, we fine-tune the BERT model (12-

layers, 12-heads, and 768-dimensions) to obtain fixed dimensional token embedding. The 

Bi-GRU is applied throughout our model, and the hidden size is 128. Then, we utilize the 

multi-head self-attention mechanism to aggregate high-level semantic information. 

Specifically, we set the self-attention hops as 3. Early stopping is also employed on the 

training set with the patience of 50 epochs. During training, we adopt Adam optimizer for 

training with an initial learning rate of 0.005. All the hyperparameter were selected by 

tuning one hyper-parameter while keeping the other parameters fixed. 

5.5 Result and Discussion  

5.5.1 The Result and Discussion of Pre-defined Features 

Table 5.3 shows the best results of different classifiers by using a variety of Bag-of-gram 

feature sets. During the experiment, TFIDF (1+2+3 gram) combined with SVM obtain 

the best results (69%). Besides, this section uses the CRF classifier combined with Bag-

of-gram (1- and 2-gram) to carry out experiments respectively, and BOW with unigram 

achieved 64%, which is slightly higher than bigram. It indicates that CRFs is more useful 

for Naive-Bayes in this task because the CRFs is capable to consider the relationship 

among token, words, and part of speech comprehensively. Whereas the Naive Bayes 
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classify utterances into DA tags independently, the correlation among context has not 

been considering in this approach. Besides, Table 5.3 also shows the result of using word 

vectors as lexical features of utterances, and then followed by CRFs as a final layer for 

classification, achieving an accuracy of 71%. The distribution representation could reduce 

the dimension disaster by converting the words into a smaller dimension space and 

discriminate the similarity of the words by calculating the distance between these words. 

Compared with distributed representation, the insufficient of sparse representation is that 

the parameters will increase exponentially during the training process, which means it is 

time-consuming and hardly catches the dependency among long sentences.  

Table 5.4 shows the result of different feature representations and weighting methods 

for SVM. Compared with the other two classifiers, the result of SVM is more promising. 

Table 5.3  Accuracy of different feature representations and weighting methods. 

Learners Feature Accuracy 

NB 1+2+3gram/Boolean 0.58 

SVM 1gram+2gram+3gram/TFIDF 0.69 

CRF 1gram/Bow 0.66 

Word Embedding 0.71 

Table 5.4  The result of different feature with SVM classifier. 

N-gram Boolean TF TFIDF IG 

1 0.54 0.65 0.65 0.66 

2 0.49 0.59 0.60 0.55 

3 0.44 0.51 0.53 0.43 

1+2 0.56 0.65 0.67 0.63 

1+2+3 0.58 0.65 0.69 0.63 
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Be specifically, when using 1-, 2-, 3-gram along, the result of the feature with simple 1-

gram shows the stability in each classifier. In contrast, the result of 2- and 3-gram leads 

to a decrease in accuracy, because 2- and 3-grams might lead to the sparse in the training 

set. Moreover, this section also considers the information gain to select a feature. 

Information gain can be understood as a decrease in uncertainty of the result. For example, 

from the actual conversation, ‘Declarative’ action always connects with some question 

words, ‘Acknowledge’ often collaborates with some modal particles. Based consideration 

above, we hypotheses that the part of speech of a word in utterance might contain certain 

effects on determining DA tags. The feature selection through information gain achieves 

66% in F1-score. By analyzing the result, it can be figured out that part of speech of the 

words are only meant for a small part of utterances rather than all categories, like 

Table 5.5  Accuracy with structural feature with CRF. 

Feature Accuracy 

 1-gram 2-gram 

BOW 0.66 0.65 

Word+Caller 0.76 0.74 

Word+Pos_dialogue 0.77 0.77 

Word+Pos_turn 0.79 0.80 

Word+Caller+Pos_dialogue 0.57 0.75 

Word+Caller+Pos_turn 0.68 0.68 

Word+Caller+Pos_dialogue+ pos_turn 0.73 0.80 

Word+R_Pos_dialgoue 0.72 0.72 

Word+R_Pos_turn 0.78 0.77 

Word+Caller+R_Pos_dialogue 0.77 0.76 

Word+Caller+R_Pos_turn 0.74 0.72 

Word+Caller+R_Pos_dialgoue+ R_Pos_turn 0.78 0.76 
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Statement-opinion and other common DA tags will have limitations. Some utterances 

related to Statement-opinion tags consist of plenty of types of words, which is difficult to 

use part of speech alone to express all utterances.  

Table 5.5 shows the result of structural features by using the word-level annotation 

approach combined with CRFs. In particular, “Caller” means the speaker's information, 

“Pos_dialogue” represents the position of the utterance throughout the entire conversation, 

“Pos_turn” represents the position of the utterance in a turn. Besides, “R_Pos_dialogue” 

represents the relative position of the utterance through the whole conversation, and 

“R_Pos_turn” represents the relative position of the utterance in a turn. 

Based on the results of this section, we could figure out that all feature sets 

outperform Bag-of-Ngram in the baseline. Thus, the word-level annotation approach 

combined with structural feature sets indeed works well in the DA recognition task. To 

be specific, the most effective feature set obtained 80% in F1 score is 

“Word+Caller+Pos_dialogue+Pos_turn”. The reason feature combination works well in 

this task due to comprehensively annotates the local and global information of the 

utterance. Besides, this section testifies both unigram and bigram with the structural 

feature. The result shows the average accuracy of the bigram is higher than the unigram 

1.1 absolute point, which indicates the bigram could capture more information. 

Furthermore, the feature sets “Word+Pos_turn” and “Word+R_pos_turn” exceed the 

results of “Word+Pos” dialogue and “Word+R_pos_dialogue” respectively. According to 

the result, we believe that the position in a turn is more significant than the position of the 

entire dialogue.  

However, we randomly combine the feature sets in pairs to reduce inaccuracy. The 

result of “Caller+Pos_dialogue” is only 57% and “Word+Caller+Pos_turn” is only 

achieved by 65%. By further analyzing the result of the “Caller+Pos_dialogue” feature 

set, we find that the F1 value of these labels is very low, like ‘Hedge, self-talk, Affirmative 

non-yes answers, Downplayer, Summarize/reformulate, Rhetorical-Questions, Other 

answers, Offers-Options-Commits, Quotation, Dispreferred answers, Declarative Wh-

Question, Declarative Yes-No-Question’. In particular, the total numbers of these 

utterances in the corpus are less than Statement and Opinion. It could show that there is 
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a serious imbalance situation in the corpus and the manual annotation score of the SWDA 

corpus is just 84%. For the result of “Pos_turn”, we consider that using the position in a 

turn with the word-level annotation leads to not inspiring results. The reason might be 

that using the position of each utterance in a turn as a feature is not representative in the 

DA recognition task.  

According to the linguistic phenomenon, there is relevance contained in consecutive 

utterances in terms of topic and content if the utterance from the same speaker [10]. 

Therefore, this section will utilize the utterance similarity combined with the proposed 

method as a dependency feature. Table 5.6 indicates the accuracy of utterance 

dependency by using CRFs. “C_utt” represents the similarity of utterance context from 

the same speaker. “C_utt_act” represents the similarity of DA tags context from the same 

speaker. “Pre_utt” will not consider whether the utterance from the same speaker, only 

consider the similarity between utterance, “Pre_utt_act” indicates the similarity between 

DA tags. 

In this part, the result shows the dependency feature sets are beneficial to DA 

recognition tasks and obtain almost similar results compared with baseline, but the 

improvement of this result is limited. Through the comparison of several group features, 

it could see that the result of the similarity between dialogue acts is slightly lower than 

the utterance. The reason might be the length of the dialogue act is too short to provide 

effective information, so it is hard to capture dependency information between similar 

utterances. 

Table 5.6  Accuracy with utterance dependency by using CRF. 

Feature Accuracy 

BOW 0.65 

Word + C_utt 0.67 

Word + C_utt_act 0.66 

Word + Pre_utt 0.68 

Word + Pre_utt_act 0.68 
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5.5.2 The Result and Discussion of Hierarchical Neural Network 

We compare the classification performance of the proposed model against several other 

recent approaches. Except for the feature template method, the rest of the methods in 

Table 5.7 treat the dialogue act classification as structure prediction with end-to-end deep 

learning manner. We illustrate each method as follow:  

➢ HCNN: This method introduces an utterance model and a discourse model. The 

utterance model adopts hierarchical CNN to learn the semantic vectors. The discourse 

model combines the RNN model to extend the sentence model that is conditioned in 

a novel way both on the current sentence and on the current speaker. 

➢ RCNN: This method proposes hierarchical CNN on sentence model and RNN on the 

contextual discourses.  

➢ DRLM-Conditional: This method combines positive aspects of neural network 

architectures with probabilistic graphical models. The model combines a recurrent 

neural network language model with a latent variable model over the shallow 

discourse structure. 

Table 5.7  The dialogue act classification performance with different approaches. 

Model SWDA 

Feature Template (2018)  78.2 

HCNN (2013) [20] 73.9 

RCNN (2016) [22] 73.9 

DRLM-Conditional (2016) [115] 77.0 

LSTM-SoftMax (2016) [80] 75.8 

H-AM-RNN (2017) [112] 79.4 

HA-RNN (2017) [113] 73.8 

Bi-LSTM-CRF (2018) [24] 79.2 

CRF-ASN (2018) [114] 81.3 

Proposed methods 82.9 

 



5.5  RESULT AND DISCUSSION 74 

 

 

 

 

➢ LSTM-SoftMax: This method utilizes LSTM to learn the utterance feature 

representation and classify dialogue act via SoftMax operation. 

➢ H-AM-RNN: This method explores the context representation learning methods for 

dialogue act classification. It combines RNN architectures and attention mechanisms 

at different context levels. 

➢ HA-RNN: This method proposes a novel hierarchical Recurrent Neural Network 

(RNN) for learning sequences of dialogue acts. This model utilizes two hierarchical 

RNN models with an attention mechanism to capture the temporal dependency at the 

utterance level and conversation level. The attention mechanism is used to learn the 

salient tokens in utterances. 

➢ Bi-LSTM-CRF: This approach learns the conversation representations with multiple 

levels: word, utterance, and conversation level. It constructs a hierarchical 

bidirectional LSTM as an encoder to learn the conversation representation and the 

conditional random field as the top layer to predict intention label.  

➢ CRF-ASN: This method employed hierarchical semantic inference with memory 

mechanism on utterance feature learning, and then extend the attention network to 

CRF layer to predict sequence dialogue acts.  

Among them, the former five methods utilize the SoftMax operation in the final layer 

for sequence labeling and the last three methods use linear-CRFs in the final layer. 

Compared with other methods, Table 5.13 shows that the proposed model outperforms 

the best baseline method by 1.8% on SWDA. We conduct the testing evaluation based on 

the hyperparameters which achieved the best results on the validation dataset. The results 

prove that the attentive hierarchical feature learning structure can effectively learn the 

conversation feature representation. Moreover, the CRF-based model can achieve better 

results than SoftMax, because the transition pattern between dialogue acts recorded by 

the CRF model can improve the model prediction performance. Among the compared 

models, some methods utilize the attention mechanism for conversation feature learning. 

All three models, H-AM-RNN, HA-RNN, and CRF-ASN utilize the attention mechanism 

in their utterance feature learning process to measure the relevance between current 
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utterance representation and the contextual hidden state.  

Based on the results, we would like to know the reasons for performance improvement. 

Therefore, we perform the ablation studies to understand the effects of each component 

on performance. In this section, we perform several ablation experiments based on the 

SWDA dataset and the results are shown in Table 5.8. We will describe the detailed 

illustration in the following paragraph:  

(1) w/o Word2Vector word embedding and w/o Fine-tuned Bert model: we utilize the 

w2v and fine-tuned Bert model to provide rich knowledge background for utterance 

feature representation. To testify its’ effectiveness, we remove the W2vV from word 

embedding learning models, and the results decay 1.2%. Besides, we remove the fine-

tuned Bert model from the proposed model, the performance decreases by 3.6%. Based 

on the results, we can observe that the fine-tuned BERT model can provide more 

background knowledge for spoken language with shot length, compared with the W2v 

language model.  

(2) w/o Multi-heads Self-attention: we remove the multi-head self-attention 

mechanism from the proposed model and the results show a significant drop in 

performance. Based on the results, we can confirm that the multi-head self-attention 

mechanism can effectively capture the conversation level context information. 

Table 5.8  The ablation studies of the proposed method. 

Method SWDA 

w/o Word2Vec Embedding 81.7 

w/o Fine-tune BERT 79.3 

w/o Multi-heads Self-attention Mechanism 

w/o Multi-heads operation 

78.6 

79.4 

w/o Speaker Information 82.7 

w/o CRF 80.4 

Proposed Model 82.9 
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Furthermore, we remove the multi-heads attention operation from this part and only use 

self-attention to model the context information. We can observe that when the multi-heads 

operation is removed, the accuracy of the model is reduced by 79.4%, which further 

demonstrates the contributes of this operation in the self-attention mechanism.  

(3) w/o Speaker Information: we add the speaker information in the model to enhance 

the utterance discriminative feature. We remove the speaker information to testify its 

effects. Although the performance only slightly reduces 0.2%, we still can see user 

information can enhance the specificity of the utterance feature representation. The result 

did not change much mainly because we have too little user information available. If the 

user's information can be richer, then we can further increase the particularity of the 

utterance representation, which can be treated as a future research object.  

(4) w/o CRF: in this paper, we treat the DAC problem as a sequence labeling task. It 

is a natural choice to choose the Linear-CRF model to assign sequence dialogue acts to 

sequence utterances. The CRF can model dependencies among labels by encoding the 

transition pattern of each dialogue acts. In this setting, we replace the CRF with SoftMax 

to classify the dialogue acts. Based on the results, the performance is decreased by 1.5%, 

which illustrates that it is necessary to explore the dialogue act dependencies at the label 

level. 
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Chapter 6 

6. Conclusion and Future works 

Conclusion and Future works 

6.1 Conclusion 

This thesis has done a series of related studies on the subject of intent detection. These 

experiments show some enlightening conclusions based on each experiment. Thus, we 

summarize each experiment in the following sections. 

6.1.1 Fusion Triplet Feature Embedding Learning Method for 

Intention Detection 

For intention detection, we formulated the intention detection task from the perspective 

of enriching semantic information of utterances. In the first stage, we proposed a novel 

feature embedding model by utilizing the fine-tune BERT model and RMCNN model as 

Siamese encoders with a triplet loss function. The RMCNN and BERT as Siamese 

encoders were employed to train utterance triplets, and the triplet loss function can 

optimize the embedding model end-to-end. Then, we can obtain two well-trained feature 

embedding models to illustrate discriminative utterance features from different aspects. 

Moreover, we introduced the sequential sampling strategy in triplet selection to capture 

context within the dialogue. In the second stage, we used a multi-source fusion strategy 

to boost the recognition performance of the downstream intention detection task. Given 

the pre-trained models, we predict intention labels by fusing discriminative pre-trained 

and other relevant features within the dialogue. The extensive experiments demonstrated 
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the effectiveness of the proposed model for intention detection on several benchmark 

datasets. The results illustrate that the proposed method can effectively improve the 

recognition accuracy of these datasets. For single-turn task-oriented dialogue, the model 

achieves 99.31% in the Snips dataset, 99.56% in the ATIS dataset, 99.28% in Facebook 

(English) dataset, 97.67% in the Facebook (Spain), and 96.39% in the Facebook (Thai). 

For multi-turn conversation, the recognition accuracy achieves 91.3% in the DYDA 

dataset and 91.0% in the MRDA dataset. 

For our proposed feature embedding model, there is still much space for 

improvements in our system. Firstly, we can verify different neural network architectures, 

loss functions, and distance metrics based on the pre-training framework. Secondly, the 

multi-class classification learning approach may inferior the results because the model 

predicts intents only consider the current time step. Except for the single-turn dialogue 

and multi-turn dialogue, there are more complicated dialogue structures, such as multi-

party and multi-modal dialogue. Therefore, the combination of intricate dialogue 

structures and metric learning could be a new direction. Furthermore, the triplet loss 

training also can be employed in other NLP tasks like emotion detection and topic 

adaptation in the dialogue system field, which are also promising for future research.  

6.1.2 Zero-shot Intention Detection with IE-BertCapsNet 

For zero-shot learning of intention detection, we formulated the zero-shot intention 

detection task with the attentive capsule network. We leverage the transfer learning ability 

of capsule neural networks for text modeling in a hierarchical manner. Firstly, we extract 

word token embeddings with self-attention and aggregate the utterance features to intent 

semantic features by the dynamic routing mechanism. Besides, we find out that the label 

plays a central role in intent recognition. We embed the words and labels in the same joint 

space to capture the dependencies that make significant contributions, which can further 

improve the learning ability of the proposed model and maintain low computational cost. 

Moreover, most previous works treat intent detection as a classification problem where 

utterances are labeled with predefined intents. The conventional intent detection methods 

train classifiers with SoftMax in a supervised fashion which only focuses on finding the 
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boundaries between classes, without considering the compactness of intra-class and inter-

class. Therefore, we replace SoftMax with large margin cosine loss (LCML) in this model 

to learn more discriminative deep features. The loss can force the features directly by 

minimizing the intra-class variance while also maximizing the inter-class variance at the 

same time. In the future, we would like to improve the performance of intent detection 

with higher stability and scalability and expand our work to meet real-life requirements 

like generalized zero-shot intention detection and improve its performance. Besides, we 

would like to explore more variants of capsule network structure to satisfy the pressing 

needs of other natural language processing tasks. 

6.1.3 Dialogue Act Classification with Hierarchical Neural Network 

In this experiment, we conducted the dialogue act classification task based on two 

approaches, which are pipeline method with feature design and end-to-end manner with 

a hierarchical neural network. The first method explored a sequence annotation method 

based on word-level for classifying DA tags in the open domain, which can greatly reduce 

the feature sparseness of short utterances and capture detailed information of the utterance 

locally and globally. Specifically, this paper uses this method to annotate word sequence 

in utterance and supplement dialogue structural information and semantic information 

into utterance as feature representation. Then, Linear-CRF as the main algorithm 

comprehensively captures the constraints of hidden variables in the utterance context to 

predict DA tags. According to the comparison between baseline and the proposed method, 

we find out all the designed feature sets outperform baseline. It indicated that the proposed 

method combined with dialogue structure information and utterance dependency 

information could perform remarkably well in the DA recognition task. The second 

method extended the previous hierarchical neural network with a multi-head self-

attention mechanism for the DAC problem. Based on the baseline comparison and 

ablation studies, we can observe that each component of the proposed model both have a 

positive impact on the classification performance. 
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6.2 Future Works 

At present, intent detection is not only applied in e-commerce, voice assistant, online 

medical treatment, but also applied to network intrusion, network fraud, and other 

network security problems. The traditional dialogue system treats intention detection as 

a multi-class classification problem, which means one utterance corresponds with one 

intent. With the development of the dialogue system, the requirements for intelligent 

intention detection have also become more complex. For instance, the user’s discourse 

expression is not limited to only one intent. Multiple intents detection will become a trend. 

Furthermore, the intentions and emotions arise together, conversations are intrinsically 

determined by direct, exquisite, and subtle emotions. In a multi-turn conversation with 

different modalities, the interaction of emotion and intention will affect the direction of 

the conversation. Therefore, the next step of the dialogue system will inevitably move 

towards a multi-modal interaction method. Through the unification of vision, voice, 

language, knowledge, etc., the communication between humans and machines will 

become unlimited. 
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