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Abstract 

Textual emotion recognition (TER) is the process of automatically identifying 

emotional states in textual expressions. It is a more in-depth analysis than sentiment 

analysis. Owing to its significant academic and commercial potential, TER has become 

an essential topic in the field of NLP. Over the past few years, although considerable 

progress has been conducted in TER, there are still some difficulties and challenges 

because of the nature of human emotion complexity. This thesis explores emotional 

information by incorporating external knowledge, learning emotion correlation, and 

building effective TER architectures. The main contributions of this thesis are 

summarized as follows:  

(1) To make up for the limitation of imbalanced training data, this thesis proposes a 

multi-stream neural network that incorporates background knowledge for text 

classification. To better fuse background knowledge into the basal network, different 

fusion strategies are employed among multi-streams. The experimental results 

demonstrate that, as the knowledge supplement, the background knowledge-based 

features can make up for the information neglected or absented in basal text classification 

network, especially for imbalance corpus. 

(2) To realize contextual emotion learning, this thesis proposes a hierarchical network 

with label embedding. This network hierarchically encodes the given sentence based on 

its contextual information. Besides, an auxiliary label embedding matrix is trained for 

emotion correlation learning with an assembled training objective, contributing to final 

emotion correlation-based prediction. The experimental results show that the proposed 

method contributes to emotional feature learning and contextual emotion recognition.  

(3) To realize multi-label emotion recognition and emotion correlation learning, this 

thesis proposed a Multiple-label Emotion Detection Architecture (MEDA). MEDA 

comprises two modules: Multi-Channel Emotion-Specified Feature Extractor (MC-ESFE) 

and Emotion Correlation Learner (ECorL). MEDA captures underlying emotion-

specified features with MC-ESFE module in advance. With underlying features, emotion 



  

 

correlation learning is implemented through an emotion sequence predicter in ECorL 

module. Furthermore, to incorporate emotion correlation information into model training, 

multi-label focal loss is proposed for multi-label learning. The proposed model achieved 

satisfactory performance and outperformed state-of-the-art models on both RenCECps 

and NLPCC2018 datasets, demonstrating the effectiveness of the proposed method for 

multi-label emotion detection. 
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Chapter 1 
1 Introduction 

Introduction 

1.1 Motivation 

Emotion interaction is a common psychological phenomenon in human’s daily life. 

Accurate emotion recognition is the premise of effective human communication, 

interaction, and decision making. With the development of big data technology and 

artificial intelligence, the research of emotion recognition systems has become a typical 

project in both academia and industry. 

As the most basic and direct carrier, textual data in emotional communication is 

commonly utilized to infer emotional states such as joy, sadness, and anger. Moreover, in 

recent decades, with the rapid development of social media, mobile networks, and smart 

terminals, online social networks (such as Facebook, Twitter, Weibo, and Line) have 

become an unprecedented global phenomenon. Through these platforms, humans express 

their thoughts, connect, and communicate with each other. In this way, a large amount of 

data is generated, including posted ideas, feelings, and even photos and videos. These 

resources contain rich emotional information and provide a data foundation for emotion-

related research. On the other hand, people’s demands for mental health care and 

emotional management are continually increasing, helping to understand themselves 

better and find a more effective way to learn, work, and live. These facts have accelerated 

the need for fine-grained emotion recognition.  

Emotion recognition task has gained considerable interest from the research 

community, aiming to point out the subtle differences in emotional content. Textual 
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emotion recognition (TER) automatically identifies human emotions in their textual 

expression, such as Happy, Sad, Angry, Fearful, Excited, Bored, or anything else. This 

task can be easily complete by humans based on their subjective feelings. Nevertheless, 

for automated TER systems, computational methodologies need to be continuously 

developed and optimized to achieve more accurate emotion prediction. 

1.2 Significance of Research 

The term of emotion recognition and sentiment analysis are often used interchangeably 

[1]. In fact, there are apparent differences between these two concepts [2]. Sentiment 

analysis mainly measures subjective attitudes to entities from the perspective of sentiment 

polarities, such as positive-negative dimensions or sentiment intensity. In contrast, 

emotion recognition involves identifying more detailed and explicit emotional states, 

referring to a wide range of mental states, such as happiness, anger, sadness, and fear. 

As an essential element in human nature, emotions have been widely studied in 

psychology [3]. TER aims to classify a textual expression into one or several emotion 

classes depending on the underlying emotion theories employed [4], such as Ekman’s six 

basic emotions, including fear, anger, joy, sadness, disgust, and surprise. 

Current and potential applications of automatic TER systems have been entered various 

aspects in daily human life, including public opinion monitoring and mental health 

monitoring. In emotional management, according to the emotional rhythm displayed by 

Twitter users in different periods, the mood curve could be drawn to facilitate 

understanding of people’s work status and mental state [5 ], [6 ], [7 ]. In marketing 

communications, it can help to improve business strategies based on consumer 

preferences [8]. In Social networks, emotion analysis can also be applied in sinister tone 

analysis, helping detect potential criminals or terrorists [9 ]. Emotion detection during 

crisis or disaster situations helps understand peoples’ feelings towards a particular 

situation, useful to crisis management and critical decision-making [10]. During elections, 

public emotions can be tracked and predicted based on their speeches and comments 

online [11 ], [12 ]. In human-computer interaction systems, such as dialog systems, 

automatic question-answering systems, and companion robots, emotion recognition 
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technology is conducive to improving user experience. In an effective e-learning system, 

real-time emotion tracking improves students’ motivation and effectiveness [13]. Text is 

the fundamental modality, and TER is the most convenient way to understand the 

emotional conversation, making human-computer interaction more accurate and 

intelligent. The nature of emotion indicates the potential applications of emotion 

recognition in various fields. More detailed information is shown in Table 1.1. The 

resulting market demand has greatly promoted TER in the field of NLP. 

Table 1.1  Applications of emotion recognition 

Domain Applications Details 

Marketing  

 Product marking 

By conducting emotion analysis of product reviews 

online, companies can further understand 

consumers’ attitudes and reviews on the product, 

thereby provide more relevant services to users and 

promoting marketing [14], [15], [16]. 

 Prediction of 

purchase intentions 

Purchase intention prediction by analyzing 

customers’ emotional states [17]. 

 Brand management 

Brand merchants gain a competitive advantage by 

analyzing consumers’ mental states and 

formulating effective marketing strategies [18]. 

 Text-to-speech 

synthesis 

Realize proper expressive rendering of text-to-

speech synthesis in children’s fairy tales [19]. 

Information 

prediction 

 Financial prediction 

Leverage emotional signals in financial materials to 

suggest trading decisions and forecast the economic 

climate [20], [21]. 

 Election prediction  

Emotion recognition of election tweets helps to 

understand how public emotion is formed and can 

further predict elections [22]. 

Personalized 

recommendations 

 Music 

recommendation 

Improve the availability of online music streaming 

services by developing emotion-based access 

methods and creating emotion-based playlists [23], 

[24], [25]. 

 Children’s 

information 

retrieval systems 

Optimize children’s information retrieval systems 

by analyzing children’s information-seeking 

behavior and affective state, [26], [27]. 
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Social networks 

 Self-emotional 

management 

Analyze people’s personality characteristics and 

emotional states based on user’s expression on 

social networks. This will help users better 

understand themselves and find more suitable ways 

to learn work and life [6], [7]. 

 Public opinion 

monitoring 

Through continuous monitoring of Internet public 

opinion trends, learn about users’ different views 

on popular social issues. Maintain social security 

management by guiding the direction of online 

public opinion timely and correctly [28]. 

 Disaster response 

Information from bystanders and eyewitnesses in 

social media platforms can help law enforcement 

agencies obtain firsthand and credible information 

about an ongoing situation, thereby gaining 

situational awareness and other potential uses. [29]. 

Healthcare 

 Emotional 

monitoring and 

guidance 

According to user's expression, detect dangerous 

emotions, such as stress, pain, fear, and panic. 

When there is a dangerous emotional tendency, 

guide the user’s emotions through intervention, 

especially for patients with autism or depression. 

 Suicide intervention 

Conduct large-scale automated surveillance of 

social networking sites to identify people who may 

be at risk for suicide. Once discovered, suicide can 

be prevented through intervention and other 

measures [30]. 

Human-Computer 

Interaction 

 Emotional Chatting 

Machine 

Emotional dialogue system can generate 

appropriate responses with a particular emotion and 

increase user satisfaction [31], [32], [33]. 

 Emotional care 

robot 

Emotional care robots can mitigate stress, anxiety, 

and pain in hospital care [34]. 

 Spoken tutoring 

systems 

Improve online learning experience and increase 

the learning rate through real-time emotional 

feedback from students [35]. 

1.3 Main Research Contents 

TER task brings some open challenges for NLP researchers, including the shortage of 

high-quality data, the complex nature of textual emotion expression, and of course, how 
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to design an effective TER system.  

TER task is a classification problem aiming to predict all possible emotion labels for a 

given textual data. Although many public emotion-related databases have been proposed, 

the imbalanced data distribution between each category largely influences the 

classification performance. Besides, with the development of big data, the resources 

available online have shown explosive growth. How to effectively use these data, whether 

labeled or unlabeled, is a considerable challenge in the NLP field. 

Human emotion expression and understanding are complex and subjective. The same 

expression may produce different emotional feelings in different scenes. Therefore, how 

to effectively recognize emotions according to the contextual information is worthy of 

attention. Furthermore, the nature of human emotional expression is complex. Many 

emotional categories have a particular connection, and there is no distinct boundary, such 

as love and happiness. In this way, the emotional classification task cannot be regarded 

as a simple single-label classification problem but a more complex multi-label 

classification task. Besides, emotions are related to and influenced by each other. How to 

improve emotion recognition performance by effectively emotion correlation learning is 

a core problem in this task. 

This thesis revolves around the above challenges. The main research contents mainly 

include three parts. 

(1) Text Classification with External Background Knowledge 

TER task is a particular text classification task aiming to assign all possible emotion 

labels for a given textual data. As a fundamental and typical NLP task, the quality of 

datasets guarantees the performance of the model. However, most of the existing labeled 

databases are inevitably limited by data imbalance, resulting in the classifier tending its 

performance to those categories with more texts.  

This thesis tries to incorporate external background knowledge in classification model 

to alleviate the problem of data imbalance. Therefore, a background knowledge-based 

multi-stream neural network is proposed, aiming to make up for the limitations of 

imbalance or insufficient information in training data. The multi-stream network mainly 

consists of the basal stream for retaining original sequence information and background 
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knowledge-based streams for information supplement. Background knowledge is 

composed of categorical keywords and co-occurred words, which are extracted from 

external corpora. Different fusion strategies are also proposed to fuse the features 

extracted from different streams effectively. 

(2) Hierarchical Network with Label Embedding for Contextual Emotion 

Recognition 

Recent researches about TER mainly conducted on sentence-level, which aimed to 

recognize subtle emotions based on word and concept-based features extracted from the 

given sentence. However, emotional expression is complicated, and the same sentence 

could present different emotions in different contexts. In the absence of contextual 

information, even humans cannot give confident emotional judgments. Therefore, it is 

necessary to utilize contextual information for sentence-level emotion recognition.  

Considering the importance of contextual information and emotion correlation, a 

hierarchical model with label embedding is proposed in this thesis to realize accurate 

emotion recognition. The hierarchical model is utilized to learn the emotional 

representation of a given sentence based on its contextual information. To realize emotion 

correlation learning, the label embedding matrix is trained by joint learning, which is 

beneficial to emotion correlation-based emotion prediction. 

(3) Multi-label Emotion Detection via Emotion-Specified Feature Extraction and 

Emotion Correlation Learning 

Most of the existing psychological emotion models divide emotions into several 

categories, which are oversimplified and ignore the diversity of emotions. Human 

emotion is complex in reality. Many emotional categories have a particular connection, 

and there is no distinct boundary. Thus it is difficult to match an accurate label for 

emotional expression. Besides, emotions are very subjective feelings. Treating the same 

emotional expression text, humans may feel different emotions according to their own 

experience. Emotion recognition task becomes challenging because of fuzzy emotional 

boundaries and human’s subjective feelings.  

Considering that multiple emotions often co-occur with non-negligible emotion 

correlations, this thesis tries to recognize all associated emotions with a Multi-label 
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Emotion Detection Architecture (MEDA). MEDA is mainly composed of two modules: 

Multi-Channel Emotion-Specified Feature Extractor (MC-ESFE) and Emotion 

Correlation Learner (ECorL). MEDA captures underlying emotion-specified features 

through MC-ESFE module, which is composed of multiple channel-wise ESFE networks. 

Each channel in MC-ESFE is devoted to the feature extraction of a specified emotion 

from sentence-level to context-level through a hierarchical structure. With underlying 

features, emotion correlation learning is implemented through an emotion sequence 

predictor in ECorL. Furthermore, a new loss function: multi-label focal loss, is proposed. 

With this loss function, the model can focus more on misclassified positive-negative 

emotion pairs and improve the overall performance by balancing the prediction of 

positive and negative emotions. 

1.4 Organizational Structure 

This thesis mainly investigates the background and research status of the TER task, and 

proposes some TER approaches for addressing some existing challenges. The 

organizational structure of this thesis is as follows: 

Chapter 1: talks about the motivation and significance of TER task, and introduces the 

main research contents and organizational structure of this thesis. 

Chapter 2: introduces the background and related works of TER task. This chapter first 

introduces some existing psychological emotion models and publicly available emotional 

resources. Then the research status and progress of TER technology in recent years is 

reviewed. 

Chapter 3: introduces the multi-stream neural network with external background 

knowledge. Background knowledge mainly refers to keywords and co-occurred word 

pairs extracted from external corpora. This model tries to make up for the limitations of 

imbalance or insufficient information distribution in training data. 

Chapter 4: explores the influence of contextual information on sentence-level emotion 

recognition. A hierarchical model with label embedding network is proposed to learn the 

contextual information and emotion correlation by joint learning. 

Chapter 5: explores emotion correlations by proposing a Multi-label Emotion 
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Detection Architecture (MEDA). Furthermore, a new loss function named multi-label 

focal loss is defined to balance the prediction of positive and negative emotions. 

Chapter 6: concludes the whole thesis and discusses future works. 
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2 Background and Related works 

Chapter 2 

Background and Related works 

2.1 Psychological Emotion Models 

Emotion recognition is a classical problem in cognitive science and artificial 

intelligence. Before emotion recognition, it is necessary to establish the representation 

model of emotion states. In psychology, emotions are divided into basic emotions and 

complex emotions according to whether an emotion is difficult to summarize in one word. 

There are mainly two kinds of psychological emotion models describing how humans 

perceive and classify emotion: discrete categorical model and dimensional emotion model.  

Discrete emotion models have been widely used in emotion recognition task because 

of simplicity and intuitiveness. Emotions are classified into several basic emotions, which 

are often relatively independent. Although many studies are devoted to classifying human 

emotions, there is no consensus on the definition of basic emotions. A typically utilized 

discrete emotion model is proposed by Paul Ekman [36]. He concludes some universal 

emotions and proposed six basic emotions: Anger, Disgust, Fear, Happiness, Sadness, and 

Surprise. Most emotion annotation tasks are based on Ekman’s theory or its extension. 

Parrott [37] proposes a tree-structured emotion classification model for recognizing more 

than one hundred kinds of subtle emotions. This model has three layers in total, and the 

bottom layer consists of Ekman’s basic emotions. Discrete emotion models intuitively 

represent emotions and make it easier to assign emotion labels in manual or automatic 

annotation tasks. In this way, emotion recognition task can be interpreted as a 



2.1  PSYCHOLOGICAL EMOTION MODELS 10 

 

classification task with categorical emotion labels. However, there are also some 

limitations in application. Each emotion category is always represented by a particular 

word, resulting in a limited range of emotional states that can be expressed. There is a 

high degree of correlation between some emotions, and the generation, development, and 

disappearance of emotions is a dynamic process, which is challenging to describe detailed 

by a discrete emotion model [38]. 

Dimensional emotion model measures emotion states with numerical dimensions. Each 

emotion is described as a multi-dimensional vector. In each dimension, the value is 

continuously changed to distinguish the nuances of emotion, and the extremes of two 

directions mean two polarities. PAD model is a typical used dimensional model [39], 

representing emotions with three dimensions: pleasure, arousal, and dominance. The 

pleasure dimension is also called the valence dimension, which is a measure of the degree 

of human pleasure from one extreme ‘distress’ to the other extreme ‘ecstatic’. Arousal 

dimension is also called the activation dimension, measuring the level of physical activity 

and psychological alertness. Dominance dimension is also called attention or power 

dimension, referring to a feeling that affects the surrounding environment [40]. Russell’s 

circumplex model [41] consists of bivariate classifications into valence and arousal. He 

thinks that the dominance dimension is more related to cognitive activities, and the two 

dimensions of VA could represent most of the different emotions. Depending on the 

strength of both components, certain regions in VA space are given explicit interpretations 

according to 28 emotional states. Plutchik proposes a wheel of emotions [42], [43] to 

describes how basic emotions are related. In the wheel, eight basic emotions are organized 

into four bipolar axes: joy-sadness, fear-anger, trust-disgust, and surprise-anticipation 

with different intensity levels. He thinks other complex emotions can be viewed as 

combinations of the relevant primary ones. This idea enables us to implement emotion 

detection more comprehensively. The Hourglass of Emotions [44] is a complex hybrid 

emotion model, in which discrete categories and four independent but concomitant 

affective dimensions are utilized to represents affective states.  

Compared with the dimensional model, the discrete model is more widely used in 

emotion recognition research because of its intuitive and straightforward advantages. 
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2.2 Emotional Resources for Emotion Recognition 

Deep learning-based TER system is data-driven and relies on a large amount of data. 

Standard, free, and generalized annotated databases are the guarantee of model 

performance. This section discusses the publicly available databases containing emotion 

knowledge. 

Most existing prominent and available public corpora are annotated based on discrete 

emotion models. Their categorical emotion annotation schemes are often built based on 

Ekman and Plutchik’s basic emotions or extension. SemEval-2007 Affective Text Task 

corpus contains 1250 news headlines, which are extracted from news websites and 

newspapers, and are annotated with Ekman’s basic emotions [45]. ISEAR contains 7600 

self-reported experiments of emotion-provoking text about their reactions to seven 

primary emotions [46]. NLPCC-2018 database contains 7928 code-switching texts with 

five emotion labels, and each text contains more than one language (Chinese and English) 

[47]. It was the benchmarking data for NLPCC Shared Task of Emotion Detection. Alm’s 

fairy tale dataset consists of 1580 sentences from 185 children fairy tales and is annotated 

with eight emotion labels: Angry, Disgusted, Fearful, Happy, Sad, Positively Surprised, 

Negatively Surprised, and Neutral [48].Ren-CECps [49], [50] contains 1487 blogs with 

34, 719 sentences in Chinese. It is hierarchically annotated in the document, paragraph, 

and sentence level. Each level is annotated with eight basic emotions and corresponding 

emotion intensity.  

As the basic emotional knowledge, most emotion lexicons are categorically annotated. 

WordNet-Affect [51] and SentiSense Affective Lexiconv [52] are concept-based affective 

lexicons. They are suitable to represent affective concepts correlated with affective words. 

NRC Emotion Lexicon [53] (also called EmoLex) is a word-emotion association lexicon 

available in 40 languages. It is annotated with eight basic emotions and two sentiments. 

LIWC2015 [54] (Linguistic Enquiry and Word Count, LIWC) is hierarchically annotated 

with both sentiments and emotion labels. It is provided in English and has been translated 

into several languages, including Arabic, Korean, Turkish, and Chinese. 
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2.3 Conventional Approaches for TER 

As obvious clues, lexicon resources contain emotional knowledge [55] and are widely 

used in the process of TER. Keyword spotting is the most naive approach because of its 

accessibility and economy. Emotion is recognized by mapping keywords into relatively 

unambiguous affect words in emotion lexicon. Lexical-affinity techniques [56] predict 

emotions according to measuring the relationships between co-occurred words in the 

same document, but it does not work well when it comes to negative words. One of the 

advantages of the keyword-based approach is the accessibility and economy of abundant 

emotional resources. However, it depends too much on the coverage and is significantly 

affected by the absence of emotional keywords [57]. The annotation quality also has a 

decisive influence on the prediction accuracy. In most emotion lexicons, the word is 

associated with only one emotion, which oversimplifies complex emotional nature and 

ignores the emotional correlation. The experimental results in [ 58 ] suggest that its 

performance cannot be guaranteed because the semantics of the keywords heavily depend 

on the contexts. 

Machine learning-based statistic model has been widely used in this task, alleviating 

the aforementioned limitations to some extent. Emotion recognition can be treated as a 

regular text classification problem utilizing handcrafted syntactic and linguistic features. 

Bag of words (BoW) model along with feature-extraction techniques (such as TF-IDF 

weighting) are often applied to mapping the text into a feature vector [59 ]. Finally, 

machine learning algorithms are applied for final emotion prediction, such as LDA, SVM, 

KNN, Decision Tree, and Naive Bayes [60], [61]. Feature extraction is the critical step, 

and there are various basic features, such as TF-IDF, n-grams, and special symbols of 

emoticons and punctuations. Most features are extracted based on word occurrence 

frequency and BOW model. With these handcrafted features, texts are represented as 

feature vectors for final prediction.  

Emotion lexicons are often served as prior knowledge to obtain emotional features[62], 

[63]. Searching for emotional words in input text is the most direct way. Frequencies of 

lexicon words are often utilized to construct the lexicon-based feature vectors. Emotional 

features are often combined with generic n-gram features to enhance text representation. 
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The works in [64] combine two kinds of features. One is corpus-based unigram features, 

and the other is lexicon-based features derived from Roget’s Thesaurus (RT) [65] and 

WordNet-Affect. In [66], they consider both the appearance number and the intensity of 

emotional words. These emotional features are combined with Term weighting (TF) 

sentence representation for final classification. Emoticons are utilized hundreds of times 

more often on Twitter and contain direct emotional clues. With the lexicon of General 

Inquirer [67] and WordNet-Affect, S. Aman et al. [68] extracted emotional words and 

symbols (emoticons and punctuations) as features for the training of the classifier with 

popular used Naïve Bayes and SVM.  

Utilizing implicit emotional words is not the only way of expressing emotion. A 

sentence without any emotional word may become emotion-bearing depending on the 

context or underlying semantic meaning. For instance, the sentence: ‘What if nothing 

goes as planned?’ implicitly expresses ‘fear’ without using any emotion bearing word. 

Therefore, contextual and semantic analysis is necessary for accurate emotion recognition.  

Semantic-based features contribute to analyzing those expressions that do not convey 

explicit emotion but include emotional concepts. Such as the evaluation of the semantic 

similarity among generic terms and affective lexical concepts. In most cases, external 

knowledge, such as ontologies and lexicon, are often introduced to extract semantic 

features. They are often utilized as an indirect bridge for calculating the semantic 

similarity between text and an emotion state. In [69], LDA (latent semantic analysis) is 

used to calculate the semantic similarity between common words and emotional words, 

by which semantic features could be extracted for recognizing the emotions of social news. 

In [50], the polynomial kernel method is proposed to compute the similarities between 

sentences and emotional words. They utilize an emotion lexicon derived from Chinese 

emotion corpus: Ren-CECps, which is annotated with 8 basic emotions. In [70], semantic 

similarity between input words and lexicon words is computed and then combined with 

word embedding features. The works in [71] demonstrate the ability of word mover’s 

distance (WMD) in measuring the semantic difference between sentences. 

Commonsense knowledge is often introduced into TER model. The works in [72 ] 

propose a commonsense affect model to evaluate the affective qualities of textual 

underlying semantic content. They first mine affective commonsense from a large scale 
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of generic knowledge bases: Open Mind Common Sense (OMCS) [73]. This information 

is utilized to build a small society of commonsense-based linguistic models. This model 

is implemented in an emotionally responsive email browser called EmpathyBuddy and 

the feedback suggests its robust in emotion recognition. 

Rule-based affect models are often utilized to determine the emotional affinity of 

individual sentences. Some rules are established in [74 ] to determine the emotions in 

sentences in blog posts. Their analysis relies on a manually prepared database of words, 

abbreviations, and emoticons with emotional annotation. In [75], according to whether 

input text containing the emotional keywords, there are two parallel classification 

methods. If containing emotional words, traditional keywords spotting method [76] is 

applied to predict the emotion. Otherwise, hierarchical semantic features are extracted 

based on emotion generation rules for final prediction. 

Context emotion clues are essential attribution benefiting to emotion recognition, 

especially in long texts. For example, the emotion ‘angry’ is more likely to turn into 

‘angry’ than ‘Joy’. These statistical rules revealed in emotion transfer indicate the 

continuity of emotions in adjacent contexts. In [77], such clues are considered in their 

weighted high-order hidden Markov models (HMMs). They find that the sentence 

emotions are clearly affected by the direct previous three consecutive sentences.  

Traditional methods heavily rely on hand-crafted features along with shallow models, 

such as SVM and logistic regression. External emotional resources are often introduced 

as prior knowledge for emotional enhancement. However, these hand-crafted features are 

represented in a high-dimensional and sparse matrix, which are often incomplete and 

time-consuming, limiting the performance of TER model to some extent.  

2.4 Deep Learning-based Approaches for TER 

This section reviews some deep learning-based methods for TER tasks, including pre-

trained word embedding models, basal neural networks, and some derived variations. 

Some techniques for performance enhancement are also given, including knowledge 

enhanced model and transfer learning.  

TER task is a particular text classification problem. Most researches focus on creating 
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and training an effective network to learn multi-layer feature representation automatically. 

In deep learning-based neural networks, word embedding is often applied as the first step 

to obtain the distributed representation of input text. Each input word is represented in an 

n-dimensional vector by word embedding techniques. The distance between vectors 

corresponds to the semantic similarity of the word pairs. The word embeddings are then 

fed into neural networks, such as RNN and CNN, for further learning and emotion 

prediction. 

2.4.1 Pre-trained Language Model 

Word embedding is a technique based on distributional semantic modeling and aims to 

learn latent, low-dimensional representations from the language structure. Pre-trained 

word embedding alleviates the problems of sparse features and high-dimensional 

representation in traditional bag-of-words models. Some well-established embedding 

models are widely used in NLP tasks and have shown great success. 

Early word embedding model is trained based on the syntactic context. It is believed 

that frequently co-occurred words are often similar in some semantic criteria. The typical 

models, Word2vec [78], [79] and GloVe [80], are trained on a large scale of unlabeled 

data to capture fine-grained syntactic and semantic regularities. Early word embedding 

performs better than randomly initialized word vectors and has shown great success in 

NLP tasks, such as word similarity tasks and named entity recognition benchmarks. 

However, it assumes that ‘A word is represented by a unique vector’ and ignores words 

differences in different contexts. Each word is embedded into a unique vector, whether 

monosemous or polysemy, thereby antonyms words with the same language structure 

often have similar vectors [81]. This meaning conflation deficiency largely hampers the 

effectiveness of word embedding. 

Inspired by the successful transfer learning of CNNs from the image field to other 

computer vision fields, the emergence of pre-trained language model opened the pre-

training era in the NLP field. The pre-trained language models generate contextualized 

word embedding with the general knowledge that can be easily transferred to almost all 

downstream tasks. In [ 82 ], LSTM-based network is trained on English-German 
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translation task for context learning. The output of hidden layer is obtained as context 

vectors (CoVe). CoVe can be taken as word embedding with contextual information and 

contributes to other NLP tasks, including sentiment analysis and question answering. The 

contextualized word embedding model, ELMo [83], captures the variation in the meaning 

of a word depending on its context. Word representations are the real-time output of pre-

trained BiLSTM language model through the input sentence. Its word embedding is 

dynamic and context-sensitive. The same word with different contexts is represented in 

different word vectors, which significantly alleviates the ambiguity limitation. BERT [84], 

the Bidirectional Encoder Representations for Transformers, is a pre-trained model 

producing context representations that can be very convenient and effective. Through a 

deep network architecture, the language model learns to predict unseen words in the 

context by unsupervised learning. A large amount of unlabeled data is utilized during the 

training, which helps the model learn useful linguistic knowledge. Bert performs well in 

encoding contextual grammatical knowledge, and have achieved satisfactory results in 

many NLP task. The emergence and success of BERT inspires more and more pre-trained 

models, including GPT/GPT-2 [85], [86], Transformer-XL [87], XLNet [88], MASS [89], 

UNILM [90]. The pre-trained language models work well in practice on multiple tasks 

and have become a new paradigm in NLP field.  

Emotional knowledge can be represented in different ways. Motivated by word 

embedding, word-level emotional representations have shown remarkable effectiveness 

in different emotion-related tasks. To learn generalized emotion representation, Emo2Vec 

is proposed in [91 ] to encode emotional semantics. This model is pre-trained in six 

different emotion-related tasks by multi-task learning, including emotion/sentiment 

analysis, sarcasm classification, and stress detection. Emo2Vec is often utilized by 

concatenating with other embeddings, such as GloVe, for more competitive performances. 

Emoji widely used in social networks. Emoji2vec [92], is released for all unicode emoji 

representations, which directly maps emojis to continuous representations. DeepMoji [93] 

is a pre-trained model with rich representations of emotional information. This model 

consists of two-layer BiLSTM network and an attention layer, and 1.2 billion tweets with 

emojis are utilized during training. Through transfer learning, DeepMoji obtains 

satisfying performance on various emotion-related tasks. In [94 ], the performance of 
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several well-known pre-trained embeddings are compared in SenEval 2019 corpus: 

DeepMoji, ELMo, GLoVe, Emo2vec, BERT, and Emoji2Vec. DeepMoji outperforms 

others by a large margin, mainly because of the similar emotional training datasets utilized 

in DeepMoji and the target task. It also suggests the importance of selecting an 

appropriate pre-trained model for target tasks, contributing to better feature extraction. 

For example, GLoVe and BERT are often applied in general embedding, while DeepMoji 

and Emo2Vec are more appropriate for emotion embedding. 

Some works try to improve the performance of word embedding by incorporating 

emotional information. To distinguish words with similar syntactic context but opposite 

sentiment polarity, a sentiment-specific word embedding (SSWE) model is proposed in 

[95]. During the model training, sentiment information is integrated into the loss function. 

Its effectiveness has been verified in sentiment analysis of tweets in SemEval 2014 Task 

9 subtask(b) [96]. A domain-sensitive and sentiment-aware embedding (DSE) model is 

proposed in [97], which jointly models the sentiment semantics and domain specificity of 

words. Their embedding model with emotional information leads to better performance 

for emotional recognition.  

2.4.2 Knowledge Enhanced Representation  

Prior knowledge is often incorporated into deep neural networks as auxiliary 

information for deeper language understanding, including emotional lexicon resources, 

commonsense, linguistic patterns, affective semantic rules, and any other emotion-related 

knowledge. Incorporating prior knowledge contributes to enhancing emotional feature 

representation and realizing more accurate emotion recognition.  

Fusing deep learning-based features and lexicon-based term frequency features is the 

most direct way to realize emotion enhancement [98]. The combined features are fed into 

a deeper network for learning more high-level and abstract features or fed into classifiers 

directly for final prediction. In [99], to detect emotional states from health-related posts, 

they combined lexicon-based features and the outputs of CNN network, which are then 

fed into LSTM network for further learning. In [100 ], feature representation from an 

intermediate layer of pre-trained network is extracted and then concatenated with some 
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hand-crafted features such as TF-IDF weighted word vector and lexicon-based features. 

Their model captures the hidden semantics and provides a more insightful understanding 

of emotional texts. In [101], to alleviate the problem caused by misspelling and out-of-

vocabulary words, the NELEC model is proposed to make the model more robust. In their 

model, lexical features are captured and combined with neural features to boost 

performance. 

Some works concentrated on enhancing word-level representation with external 

knowledge. Implicit emotion in textual expression can be inferred more easily via its 

enriched meaning by associated commonsense knowledge. In [102], they try to explore 

implicit emotion from external knowledge, including external commonsense knowledge 

from ConceptNet and emotion intensity information from NRC_VAD lexicon. With a 

context-aware affective graph attention mechanism, they dynamically retrieve the 

context-aware concepts and obtain concept-enriched word representation. A knowledge-

enriched two-layer attention network is proposed in [103 ]. Their primary word-level 

attention is applied to input word and related terms obtained by searching WordNet and 

Distributed Thesaurus [104], generating word embedding enhanced by the knowledge 

graph. The secondary attention mechanism works on sentence-level for further context 

learning. Their system performs remarkably well on the benchmark datasets of SemEval 

2017 Task 5. NTUA-SLP embedding is proposed in [105 ] for affective information 

learning. Start from a set of seed words with affective ratings from -1 to 1, the embedding 

for new words is estimated by considering both semantic similarity and ten affect-related 

features (valence, dominance, arousal, pleasantness, anger, sadness, fear, disgust, 

concreteness, familiarity). In [106], emotional features of Tweets are generated based on 

seven lexicons, which is realized by the filter in the AffectiveTweets: 

TweetToLexiconFeatureVector [107].  

The pre-trained word embedding model contributes to generating emotional word 

representation. In [93], pre-trained DeepMoji is utilized for learning richer emotional 

context representation at the sentence level. In [108 ], Sentiment and Semantic-Based 

Emotion Detector (SS-BED) is proposed for emotion detection. The input words are 

embedded by two word embedding matrices: sentiment representations obtained by 

SSWE (Sentiment Specific Word Embedding), and the semantic word representations 
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obtained by pre-trained Word2Vec, Glove, and FastText [109]. These two sequences of 

word embedding are separately fed into two LSTM layers to learn sentiment and semantic 

features. This approach significantly outperforms traditional machine learning baselines, 

including SVM, Decision Trees, and Naive Bayes.  

Rule-based representation is another common formalism of knowledge representation. 

In [ 110 ], rule-embedded neural networks (ReNN) are proposed to encode domain 

knowledge and commonsense information. The rule-based knowledge reduces computing 

complexity and contributes to training a better model with a smaller dataset. To perform 

knowledge base completion, ITransF is proposed in [111 ], which discovers hidden 

concepts of relations and transfers statistical strength by sharing concepts. 

Linguistic patterns play an important role in emotion recognition. For example, 

negative words can shift the emotional tendency of the entire sentence. [112] proposed 

the linguistically regularized LSTMs to enhance sentence-level emotion representation. 

The effect of linguistic role (such as sentiment lexicons, negation words, and intensity 

words) is considered by proposed sentiment, negation, and intensity regularizers. Their 

model addressed the sentient shifting effect of the linguistic role. In [113 ], domain 

knowledge is combined with CNN neural network in the task of sentiment classification. 

Their domain knowledge mainly has three parts, sentiment words with intensity, linguistic 

patterns modifying the sentiment of emotional words, and the sentiment ontology 

managing semantic relationships between sentiment terms and domain concepts. Their 

model considered the effect of different terms on a specific domain. This model is 

upgraded in [114], more techniques of data augmentation based on external knowledge 

are introduced to enhance the word embedding, including negation-based augmentation 

and transfer learning.  

2.4.3 Transfer Learning for Emotion Recognition  

In an emotion recognition system, the amount of resources is a guarantee of satisfying 

performance. Collecting and annotating large amounts of data is time-consuming and 

expensive. The shortage of quality emotional data is always the most urgent problem. 

How to train an effective TER model with smaller datasets has attracted increasing 
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attention. 

By transfer learning, the knowledge learned from the source domain is transferred to 

the target domain, realizing performance improvement. In this thesis, the target task refers 

to TER, and the source task can be any other related NLP tasks, including sentiment 

analysis and machine translation. The valid information learned from related tasks can be 

transferred into the target TER model. Transfer learning can alleviate the problems caused 

by scarce training data and speed up training, which improved the performance of deep 

learning models. Gupta [115] investigates the application of semi-supervised and transfer 

learning methods in low-resource sentiment classification tasks and demonstrates that 

transfer learning could significantly improve the performance compared with the simple 

supervised method. 

There are various kinds of architecture proposed based on transfer learning. According 

to whether labeled data are available in the target and source domain, transfer learning 

can be categorized into inductive transfer learning, transductive transfer learning, and 

unsupervised transfer learning [116 ]. Among them, training data of target domain are 

labeled in inductive transfer learning while unlabeled in another two. Transfer learning is 

often utilized to transfer emotional and semantical information from source domain for 

information supplement. In this thesis, target task refers to TER. To ensure the final 

recognition accuracy, the training data of the TER task is usually annotated with emotion 

labels. Therefore, recent works about TER with transfer learning are mainly based on 

inductive transfer learning. Based on some different situations, related works can be 

mainly categorized into two sub-cases. The first is sequential transfer learning, by which 

source and target tasks are learned successively. Another is multi-task learning, by which 

source and target tasks are learned simultaneously. 

(1) Sequential transfer learning 

Sequential transfer learning is arguably the most frequently used transfer learning 

scenario in the NLP field. The process generally consists of two stages. The first is pre-

training on the source tasks, such as emotion-related tasks or other natural language 

understanding related tasks. The second is the transfer phrase, in which the knowledge 
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learned in the source domain is transferred to the target TER task. 

During the pre-training phase, many efforts are devoted to train language models with 

universal knowledge of the natural language. The aforementioned pre-trained language 

models can be transferred to almost all NLP tasks and have advanced multiple state-of-

the-art performances. Some works are devoted to pre-training their model on emotion-

related source tasks with sufficient training data, such as sentiment classification and 

emotion intensity regression.  

In the transfer phase, the pre-trained model is transferred to emotion recognition task. 

There are mainly two ways to realize the transformation. One is taking the pre-trained 

model as a feature extractor, and all parameters in this model are frozen. Aforementioned 

pre-trained language models are mainly treated as feature extractors, such as BERT and 

DeepMoji. Pre-trained text representations obtained by pre-trained model are fed into 

emotion classification model for further training and final prediction. Another is fine-

tuning the pre-trained network on target task. This operation is often accompanied by 

minor modifications to the network architecture, such as replacing the prediction layer. 

The most common fine-tuning approach is freezing most of the network and fine-tuning 

only the top layers (similar to feature extractor). There are also some other fine-tuning 

strategies. In gradual unfreezing, the layers are gradually unfrozen, starting from the new 

output layer going down to the first layer [117]. In single bottom-up unfreeze (also known 

as chaw-thaw) [93], the new output layer is trained with all the layers frozen, and then the 

models are further trained layer-wise from the bottom layer to the top layer. In the end, 

the entire model is trained with all the layers unfrozen. In single top-down unfreeze, fine-

tuning operation is similar to chaw-thaw while the direction is from the top layer to 

bottom layer. Layer-wise training is able to adjust the individual patterns across the 

network with a reduced risk of overfitting. Above fine-tuning strategies are compared in 

the task of cross-lingual emotion classification [10]. Their experimental results show that 

the performance of gradual unfreezing and single top-down unfreeze are slightly better 

on fine-tuning phrase. 

Sentiment analysis and intensity regression are often treated as source task in transfer 

learning-based TER. Compared with existing emotional corpus, sentiment datasets with 

polarity annotation are abundant. Although their content and labeling system are different, 
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both of them contain rich emotional characteristics. Such resources can be utilized by 

knowledge transfer and enhance the performance of TEC model. For example, an 

extension of transfer learning called sent2affect is proposed in [118 ]. They train a 

sentiment classification model on 100,000 tweets with polarity annotation and then 

transfer this model to TER by exchanging output layer and fine-tuning. Similar work is 

conducted in [119], inductive knowledge is transferred from SA tasks to TER task, and 

their experiments span categorical and dimensional emotion models. With transfer 

learning, the deep attentive RNNs model proposed in [105] ranked 1st in semeval-2018 

task 1 ‘Multi-Label Emotion Classification’. They firstly obtain affective word 

embedding based on a small number of emotional seed words. With emotional word 

embedding, they pre-trained their model, BiLSTM with a deep self-attention mechanism, 

on the dataset of Semeval 2017 Task 4A. The final layer is replaced with a task-specific 

layer model and then further fine-tuned with two fine-tuning schemes. In [120 ], an 

ensemble of transfer learning techniques is proposed to predict the emotions of removed 

emotion trigger words. They utilize three different pre-trained models to initialize some 

specific layers of their networks, including a language model, a word embedding model, 

and a sentiment model. Then, they ensemble and fine-tuning these models in their dataset 

and have achieved competitive experimental results. In [121 ], a dual attention-based 

transfer learning approach is proposed for multi-label emotion classification. They 

respectively captured typical sentiment features and emotion-specific features with a 

shared attention layer, which are respectively fed to the task-specific layer by a dual 

attention mechanism. Experimental results show that their dual attention transfer 

architecture can bring consistent performance gains compared to several existing transfer 

learning approaches. 

In textual emotion recognition, the existing emotional resources are mainly in English, 

while there are low resources in most European languages. The quality of emotion 

recognition model with few resources is often limited. Therefore, to those low-resource 

languages, it is advantageous to leverage the emotional information from resource-rich 

languages. To solve the low-resources problem in Hindi emotion detection, the emotional 

knowledge from English is transferred to Hindi by a deep transfer learning framework 

[10]. In their model, cross-lingual word-embeddings are trained by mapping each 
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monolingual word-embedding into a shared space with the transformation strategy of 

alignment matrices [122]. Therefore, relevant information can be captured through the 

shared space. Based on the cross-lingual word embedding, the deep learning model is pre-

trained on emotional dataset in English, and then fine-tuning is done for final emotion 

prediction in Hindi. 

Cross-domain transfer learning aimed to transfer knowledge across different domains, 

utilizing a small amount of labeled data from the target domain and abundant labeled data 

from a different source domain. The data distribution and labeled emotions from different 

domains have a significant impact on the performance of transfer learning. In [123], they 

try to transfer emotional knowledge from the source domain through joint learning with 

a domain classifier, promoting the performance of emotion classification through the 

sharing of domain-specific representation. In [14], transfer learning is utilized to address 

the task of cross-domain and cross-category emotion tagging for comments on online 

news. They achieve domain adaption through reweighting instances from the source 

domain by modeling the distribution difference. They also model the relationship between 

different sets of emotion categories from each domain, enabling project data from one 

domain into the label space of another domain. To improve the robustness of transfer 

learning methods to unseen data, Adversarial Discriminative Domain Generalization 

(ADDoG) is proposed in [124], aiming to generalize the representation of cross-corpus. 

ADDoG follows a ‘meet in the middle’ approach, iteratively move their dataset 

representations closer to one another, and improved the cross-dataset generalization 

(2) Multi-task learning 

Multi-Task Learning (MTL, also known as joint learning) is another form of inductive 

transfer. Various studies have shown that MTL dramatically improves the performance of 

TER systems than single-task learning. In MTL, target and source tasks are related and 

trained simultaneously [ 125 ]. Through underlying shared representations, sub-tasks 

promote and supply each other to learn more relevant information. Compared to the 

single-task framework, multi-task learning on related tasks can significantly reduce the 

risk of overfitting, contributing to better generalization performance and the improvement 
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on all sub-tasks.  

MTL framework targets to enhance the generalization performance by leveraging the 

inter-relatedness of multiple tasks [126], [127]. Taking emotion-related tasks as auxiliary 

tasks is ideal for the MTL-based emotion recognition system, which indirectly realized 

emotional information integration from different resources [ 128 ]. Most works are 

conducted based on the structure consisting of shared networks and some task-specific 

layers. In the Emo2Vec model proposed in [91], to encode emotional semantics into word-

level representations, six different emotion-related tasks are trained simultaneously. Their 

generalized emotion representation outperforms multiple existing affect-related 

representations, such as DeepMoji, but with much smaller training data. In [129], a two-

stage multi-task learning structure is proposed to complement the feature representation 

in the dimensional model with the knowledge transferred from the discrete model, thereby 

establishing a relationship between discrete and dimensional emotion. Rather than 

parameter sharing, the works in [130] realize label transformation from sentiment label 

to emotion label by joint learning and have improved the performance of emotion 

classification. 

To address time-consuming limitation in emotion annotation, multi-task active learning 

for regression (ALR) is proposed in [131]. The most beneficial samples are selected in 

their model, benefiting the emotion estimation in three dimensions (valence, arousal, and 

dominance) simultaneously. In [100], a multi-task ensemble learning framework is 

proposed for several tasks related to category/dimensional emotion, sentiment, and 

intensity. They firstly pre-trained three individual networks by multi-task learning and 

obtained three task-aware deep representations. These representations are combined with 

other hand-crafted features and then fed into a multi-task ensemble model for further 

learning. This multi-task ensemble framework helps in achieving generalization and 

contributes to superior results. 

The difference of label distributions between the training and test sets is considered in 

[132]. They find that most of the errors are raised by recognizing the ‘Others’ category. 

They think their performance could be better if firstly conduct the binary classification 

‘Others’ versus ‘Not-Others’. This problem is considered in [133]. They achieve better 

performance by utilizing a multi-learning network and can better detect emotions from 
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the ‘Others’ class. 

Sub-tasks in MTL are highly correlated, and label relationships among all tasks provide 

useful information. To address emotion ambiguity in the textual expression, a multi-task 

CNN model is proposed in [134], which learns emotion label distribution and emotion 

classification simultaneously. These two tasks boost each other and thereby generate a 

robust text representation. In [135], An Adversarial Attention Network (AAN) is proposed 

to conduct adversarial learning between each pair of emotional dimensions. They conduct 

multidimensional emotion regression tasks by multi-task learning, and they perform well 

on the EMOBANK corpus. In [136], a joint label space is induced to enable multi-task 

learning from both labeled and unlabeled data. They exploit the relationships between 

different labels from all tasks according to a label transfer network, demonstrating that 

potential synergies between label spaces can be leveraged for label transformation. 
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3 Background Knowledge Enhanced Classification Network 

Chapter 3 

Background Knowledge Enhanced 

Classification Network 

3.1 Introduction 

In contemporary society, textual data are continuously increasing and have become the 

commonly used information carriers [137]. As a kind of efficient information retrieval and 

data mining technology, text classification aims to associate the given document and one 

or more categories according to the features representation. It has been widely used in 

many fields, including sentiment analysis [138 ], [139 ], stock analysis [140 ], automatic 

news grouping, and so on. 

Training corpora with enough data and accurate label annotation always contribute to 

classification tasks. However, most of the existing corpora are imbalanced in two aspects 

[141]. The first is the data imbalance between categories, which means that the amount 

of data in different categories is considerably different [142]. In classification tasks, data 

distribution is usually not considered, and traditional algorithms always tend their 

performance to the categories with more data. In the worst case, categories with fewer 

data may be regarded as outliers [143], [144]. The second refers to the feature imbalance 

within the category. For a broader category, it is challenging to include all sub-categories 

in collected training datasets, especially for those low-resource categories. Therefore, it 

is common for a broader category that training and testing data come from different sub-

categories, and there are huge differences in the distribution of feature words. Such as the 
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sub-categories ‘Telecommunication and networking’ and ‘Programming languages’ of the 

broader category ‘Computer science’. Therefore, the classifier is easy to give biased 

predictions. 

There is a great deal of textual data in this information age that existed online with 

abundant information. Although most of them are unstructured data without category 

labels, this information can indirectly expand the data coverage and increase the scale of 

training data. Motivated by this cognition, a background knowledge based multi-stream 

neural network is proposed to address the challenges of imbalanced data distribution. The 

background knowledge is extracted from an external corpus, which covers the data from 

almost all fields, and it serves as prior knowledge to complement the deficiency of the 

training data. In this chapter, background knowledge mainly consists of two parts: 1) 

categorical keywords, containing distinguishable category information; and 2) co-

occurred words, which frequently co-occurred with keywords.  

To better incorporate background knowledge into the feature extraction process, we 

propose a multi-stream neural network with different fusion strategies. This network is 

mainly composed of the basal stream and background knowledge based stream. The basal 

stream takes the original word sequence as input, retaining the semantic information of 

the original sequence. The background knowledge based streams take keywords and co-

occurred words as inputs, realizing information supplement and reinforcement for the 

basal stream. Each stream is trained with GRU Network. Different fusion strategies are 

proposed to integrate the features extracted from different streams. Compared with basal 

model, the proposed method performs well in both Chinese and English corpus. The 

macro F1 score of Reuters 21578-R8 is up to 95.02%, which obtained 10.16% 

improvement, and the macro F1 score of Fudan University corpus is up to 85.03%, which 

obtained 8.75% improvement. 

Our work makes the following contributions: 

(1) Background extracted from external corpora is incorporated into the classification 

network, which indirectly enlarges the training corpus and makes up for the imbalance 

data distribution. 

(2) The background knowledge-based stream is proposed to extract features based on 

the distribution information of keywords and co-occurred words. This information is 
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acquired from the external corpus, contributing to avoiding feature imbalance within a 

particular category. 

(3) A multi-stream neural network with different fusion strategies is proposed for 

information integration, realizing information supplements and reinforcements. 

The remainder of this chapter is organized as follows. Section 3.2 introduces the 

proposed background knowledge-based multi-stream neural network. Section 3.3 

includes the experiments and discussions on both Chinese and English corpus. Finally, 

Section 3.4 summarizes our works and outlines the direction of future work. 

3.2 Background Knowledge-based Multi-Stream Neural 
Network 

This subsection detailed describe the overall methodology of background knowledge 

acquisition and multi-stream neural networks. The background knowledge is extracted 

from an external corpus and is composed of keywords and co-occurred words. To better 

incorporate background knowledge, a multi-stream neural network is proposed to extract 

in-depth features. Different fusion strategies: early-fusion and later-fusion are employed 

in the feature fusion layer to integrate features from each single-stream. 

3.2.1 Acquisition of Background Knowledge 

It is easy for humans to immediately determine the category of a document by looking 

at some specific words based on their abundant background knowledge stored in the brain. 

Therefore, the assumption is reasonable that incorporating background knowledge into 

the classification model will contribute to more accurate predictions. 

In this chapter, background knowledge is incorporated into the classification network 

to supplement training data indirectly. The background knowledge is extracted from 

external corpora based on the following assumption: in the natural language, if two words 

𝑤ଵ  and 𝑤ଶ  often appear together in the same unit window (such as paragraph and 

sentence),   it is believed that they have some particular relationship, and the higher 

frequency of word co-occurrence, the closer relationship they have.  

While word 𝑤ଵ appears, the probability of word 𝑤ଶ occurring is as follows:  
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𝑅(𝑤ଶ|𝑤ଵ) =
௙(௪భ,௪మ)

௙(௪భ)
, (3.1) 

Where 𝑓(𝑤ଵ, 𝑤ଶ) represents the counts of word 𝑤ଵand 𝑤ଶ appeared together, and 

𝑓(𝑤ଵ) represents the counts of word 𝑤ଵ appeared. 

Therefore, a reasonable assumption is that if there are some keywords of a particular 

category, their co-occurred words with high frequency also contain categorical 

information. In this chapter, background knowledge is composed of a set of keywords 

and their co-occurred words. The keywords are extracted from the annotated training 

corpus. The co-occurred words refer to those words that appear together with keywords 

within a particular word distance. The external corpora are employed to search for the co-

occurred words in a statistical unit (such as the sentence). Only those high frequency co-

occurred words are remained in the co-occurred words set. The flow of background 

knowledge acquisition is shown in Figure 3.1. 

 

Figure 3.1  Extraction of background knowledge. 

3.2.1.1 Keywords Acquisition 

The training corpus has been classified, labeled with category, and pre-processed to 

filter the useless words, such as stop words. TF-ICF method [145] is applied to obtain the 

categorical keywords in training datasets. 

𝑡𝑓𝑖𝑐𝑓௜௝ =
𝑛௜,௝

∑ 𝑛௞,௝௞

× 𝑙𝑜𝑔
|𝑐|

ห൛𝑗: 𝑤௜ ∈ 𝑐௝ൟห
 (3.2)

In which 
௡೔,ೕ

∑ ௡ೖ,ೕೖ

 is the term frequency of word 𝑤௜ occurred in category 𝑐௝, |𝑐| is the 

Training corpus 

Keywords  

External corpus 

Co-occurred words 

TF-ICF 

Background knowledge 
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number of categories, and ห൛𝑗: 𝑤௜ ∈ 𝑐௝ൟห is the number of categories containing 𝑤௜. 

For a particular category, a high 𝑡𝑓𝑖𝑐𝑓  value means a high term frequency in this 

category and a low category frequency in the whole corpus. Finally, those words with 

high 𝑡𝑓𝑖𝑐𝑓  weights composed the keywords set: 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 = {𝑘ଵ, 𝑘ଶ, … } . These 

keywords are the basis of the acquisition of co-occurred word set. 

3.2.1.2 Co-Occurred Words Acquisition 

For a particular category, it can be further subdivided into many sub-categories, but it 

is difficult for the training data to cover all these sub-categories, especially for those low-

resource categories. Therefore, the training and testing data may come from different 

subcategories and have different feature distribution, thereby affecting classification 

performance. 

If two words often appear together, we can think they belong to the same category. The 

co-occurred words of keywords with high frequency carry discriminative category 

information as well. This way, the external corpora from various fields are utilized to 

obtain co-occurred words, aiming to cover more comprehensive data and realize 

information supplementation.  

The co-occurred words and co-occurrence counts with keywords are obtained by 

scanning each sentence in the external corpora to obtain the word co-occurrence 

information. In this process, only the co-occurred words within a certain distance are 

taken into consideration. For each keyword 𝑘௜, a co-occurrence matrix is obtained, which 

column index is co-occurred word, and the value is co-occurred frequency 𝑅൫𝑘௜ห𝑤௝൯. 

𝑅൫𝑘௜ห𝑤௝൯ =
𝑓(𝑘௜, 𝑤௝)

𝑓(𝑘௜)
 (3.3)

in which 𝑓(𝑘௜, 𝑤௝) is the co-occurrence count of 𝑘௜ and 𝑤௝ in the external corpus, 

and 𝑓(𝑘௜) is the occurrence count of 𝑘௜. 

Finally, the co-occurred words of each keyword with high frequency are obtained, and 

after duplication remove, the set of co-occurred words are obtained: 𝐶𝑜_𝑤𝑜𝑟𝑑𝑠 =

{𝑐𝑜𝑤ଵ, 𝑐𝑜𝑤ଶ … }. 
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3.2.2 Multi-Stream Neural Network 

The multi-stream neural network performs well in features fusion, and is often applied 

in spatial and temporal networks in action recognition of videos [ 146 ]. To better 

incorporate background knowledge-based information, a multi-stream neural network is 

proposed, as shown in Figure 3.2, and different fusion strategies are used to extract 

comprehensive features. 

 

Figure 3.2  Multi-stream model based on background knowledge 

The proposed multi-stream neural network consists of basal word-stream and 

background knowledge-based aid streams. It mainly has five parts: input layer, word 

embedding layer, encoder layer, model training, and fusion layer. Different feature 

sequences (detailed in Section 3.2.1) are fed into each stream separately. Each stream is 

trained on a mini-batch with Adam optimizer independently. To further combine the 

features extracted from different streams, different fusion strategies (detailed in Section 

3.2.3) are employed for final prediction. 

3.2.2.1 Input Layer 

The input of basal word-stream is original texts, while another is background 

knowledge-based feature words. For each text 𝑠, the inputs of each stream in network 
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divided into three parts: words, keywords, and co-occurred words. Before the input layer, 

all words in texts 𝑠 , keywords set 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠  and co-occurred words set 𝐶𝑜_𝑤𝑜𝑟𝑑𝑠 

are firstly transformed into real-valued word tokens by looking up in a pre-defined word 

tokens dictionary. 

For each text 𝑠 = {𝑤ଵ, 𝑤ଶ, … 𝑤௡}, the different inputs in multi-stream are defined as 

follows: 

(1) Word-stream: words = {𝑤ଵ, 𝑤ଶ, … , 𝑤௡}, including all words in texts. 

(2) Key-stream: for each word 𝑤௜ in 𝑠, if 𝑤௜ in keywords set 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠, append 

𝑤௜  to the keyword sequences. Finally, the input of keyword-stream obtained: 

𝑘𝑒𝑦 = {𝑘ଵ, 𝑘ଶ, … , 𝑘௠}. 

(3) Cow-stream: for each word 𝑤௜ in 𝑠, if 𝑤௜ in co-occurred words set 𝐶𝑜_𝑤𝑜𝑟𝑑𝑠, 

append 𝑤௜ to the co-occurred word sequences. Finally, the input of co-occurred 

stream obtained: 𝑐𝑜𝑤 = {𝑐𝑜𝑤ଵ, 𝑐𝑜𝑤ଶ … 𝑐𝑜𝑤௧}. 

3.2.2.2 Word Embedding Layer 

Word embedding is learned from massive unstructured textual data and is widely 

adopted in NLP tasks. By representing each word as a fixed-length vector, these 

embedding can group semantically similar words and implicitly encode rich linguistic 

regularities and patterns [80]. 

All words of corpus composed the word embedding matrix: L ∈ 𝑅௏∗஽, in which V is 

the vocabulary size and D is the dimension of word embedding. Each word in the input 

is represented as 𝑤௜ ∈ 𝑅ଵ∗஽. 

3.2.2.3 Encoding Layer 

The encoder layer with RNN is connected to extract the high-order textual and semantic 

features. GRU (Gated recurrent units) cells are employed in RNN, and the parameters are 

not shared with each stream. GRU is a gating mechanism and performs well in in-depth 

feature extraction [147]. 

The final state of GRU is output as feature sequence: 𝐻 = {ℎଵ, ℎଶ … ℎே}, in which 𝑁 

is the dimension of hidden layer in each stream. 

The softmax function is stacked to the encoder to calculate the probability distribution, 
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and the output is 𝑃 = {𝑝ଵ, 𝑝ଶ … 𝑝௡}, in which n is the number of categories, and 𝑝௜ is 

the predicted probability of input belonging to the corresponding category i. The final 

predicted tag 𝑦ො =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑃). 

3.2.2.4 Model Training 

Each single-stream is trained respectively without parameter sharing. End-to-end 

backpropagation is employed in training, and the loss function is defined as follows: 

𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
ଵ

௡
∑ 𝑦𝑙𝑛𝑦ො + (1 − 𝑦)ln (1 − 𝑦ො), (3.4)

The training of the model is to minimize the cross-entropy in each stream, and 

AdamOptimizer is used during training. 

3.2.3 Fusion Strategy 

Different fusion strategies are employed to integrate the information of corpus self and 

background knowledge. After the optimal parameters being trained in each stream, early-

fusion and two after fusion strategies: average pooling and soft voting, are employed to 

obtain the comprehensive text representation. 

(1) Early-Fusion 

In early-fusion, the features extracted from each stream are concatenated together and 

then input to softmax for final prediction. The feature vector after early-fusion is: 

𝐻௘௔௥௟௬ = [𝐻௪௢௥ௗ, 𝐻௞௘௬, 𝐻௖௢௪], (3.5)

(2) After-Fusion 

Probability distribution from each stream indicates the corresponding categorical 

predictions of different inputs. Therefore, appropriate weights can be assigned to each 

prediction to generate a more comprehensive probability distribution for final predictions. 

This way, two after fusion strategies: average pooling and soft voting, are proposed. 
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In average-pooling, a uniform weight is assigned to each stream, and the final 

probability distribution is: 

𝑃஺௩௚ =  𝑤ଵ ∗ 𝑃௪௢௥ௗ + 𝑤ଶ ∗ 𝑃௞௘௬ + 𝑤ଷ ∗ 𝑃௖௢௪ (3.6)

in which 𝑃௪௢௥ௗ , 𝑃௞௘௬ , and 𝑃௖௢௪  are predicted probability distribution from three 

streams. 𝑤௜  is the weight parameter and ∑ 𝑤௜ = 1 . The final predicted tag: 𝑦ො௣௥௘ௗ =

𝑎𝑟𝑔𝑚𝑎𝑥(𝑃஺௩௚). 

In the process of average pooling, a uniform weight 𝑤௜ is distributed to each stream. 

It means that for a certain single-stream, the weight 𝑤௜ is assigned on each category's 

final prediction. However, in the actual case, for a certain single-stream, the features 

extracted for a particular category may be more discriminatory than others, and thereby 

its prediction may be more accurate. This way, higher weight should be given to these 

categories while lower weight should be given to those inaccurate estimations. Therefore, 

another strategy of after-fusion: soft-voting, is proposed. 

In soft-voting, a fully connected neural network is trained after softmax layer, as shown 

in Figure 3.2, to balance the weakness among each stream. The input is the concatenated 

probability distributions of all streams, and the final probability distribution is: 

𝑃௦௢௙௧ = w * [𝑃௪௢௥ௗ , 𝑃௞௘௬ , 𝑃௖௢௪] (3.7)

In which 𝑤 ∈ 𝑅ଷ௡∗௡ , and n is the number of categories. The final predicted tag: 

𝑦ො௣௥௘ௗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃௦௢௙௧). 

3.3 Experiments and Discussion 

We conduct experiments in Chinese corpus: Fudan university corpus and an English 

corpus: Reuters-21578 R8. In order to evaluate the performance of the proposed multi-

stream model based on background knowledge, multiple comparison experiments are 

conducted to: 

(1) Investigate the performance of background knowledge based multi-stream neural 

network on text classification task; 



3.3  EXPERIMENTS AND DISCUSSION 35 

 

(2) Investigate the contribution of background knowledge incorporation under 

different fusion strategies, especially the contribution to those categories with 

fewer data; 

(3) Investigate the generalization of the proposed multi-stream neural network in 

different corpus and different language environments. 

3.3.1 Dataset and Preprocessing 

In our experiments, all datasets have been preprocessed. Referred Chinese corpus is 

preprocessed by word segmentation by Stanford-Segmenter, part-of-speech tagging by 

Stanford-Postagger, non-Chinese words removal, non-nouns removal, and stop words 

removal. The English corpus is preprocessed by stemming and stop words removal. 

While reading an article, humans often can accurately judge the related area after 

reading some paragraphs instead of the whole. Especially for textual data, classification 

can be done after obtaining the category information. For the above common sense and 

to reduce the computing cost during the experiments, a fixed text length is set according 

to the length distribution of the corpus. If the length of the original text is higher than the 

fixed value, only the previous words are retained. Otherwise, 0-padding is employed. 

(1) Training Corpus 

The Chinese corpus: Fudan University text classification corpus and the English corpus: 

Reuters-21578 are used as training corpus to test the performance of the proposed method. 

The data distribution is shown in Figure 3.3 and Figure 3.4. 

Fudan University text classification corpus (hereinafter referred to as Fudan corpus) is 

provided by the natural language processing group of international database in the 

computer information and technology department of Fudan University.  

Reuters-21578, a collection of documents that appeared on Reuters newswire in 1987. 

This English corpus contains 90 classes of news documents. Reuters-21578 R8 

(hereinafter referred to as Reuter R8) selects eight classes from Reuters-21578.  
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Figure 3.3  Data distribution of each class in Fudan corpus. 

 

Figure 3.4  Data distribution of each class in Reuter-21578 R8. 

(2) Background Corpus 

There are two datasets severed as external corpus to extract background knowledge. 

One is Chinese corpus: People’s daily news (http://paper.people.com.cn), which contains 

about 61 million sentences, and the average length is about eight characters. Another is 

English corpus: Reuters Corpus, which contains about 806 thousand texts, and the 

average length is 109 words. 

3.3.2 Experimental Setup 

To investigate the contribution of background knowledge incorporation under different 

fusion strategies, some comparison experiments are conducted in both single-stream 

network and multi-stream network. Especially, the single word-stream is employed as the 

baseline, which takes the original word sequence as input and takes GRU as encoder. 

Some abbreviations used in this section are shown in Table 3.1. 

In our experiments, inputs of each stream are all uniformed to the same length by 0-

padding. The max length setting is shown in Table 3.2. The dimension of word level 

embedding is set to 128. To extract features, RNN with GRU cell is employed as encoder 

in every single stream, and the hidden layer is set to 256. We optimize every single stream 

with Adam algorithm in mini-batch, and the batch size is 256. The dropout was 0.5, and 
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the learning rate is 0.002. 

Table 3.1  Explanatory note of abbreviations in the experiments. 

Abbreviations Note 

W word-stream, input is 𝑤𝑜𝑟𝑑𝑠. 

Key key-stream, input is 𝑘𝑒𝑦. 

Cow  cow-stream, input is 𝑐𝑜𝑤. 

KeyCow keycow-stream, input is concatenate of 𝑘𝑒𝑦 and 𝑐𝑜𝑤. 

W + Key Fusion of word-stream and key-stream 

W + Cow Fusion of word-stream and cow-stream 

W + KeyCow Fusion of word-stream and keycow-stream 

W +Key + Cow Fusion of word-stream, key-stream and cow-stream 

Table 3.2  Max length setting of inputs. 

Parameters Reuter R8 Fudan Corpus 

Max length of word_stream (n) 128 300 

Max length of key_stream (m) 45 130 

Max length of cow_stream (t) 70 222 

3.3.3 Results and Discussion 

Results of Reuter-21578 R8 are shown in Table 3.3. From the results of single-streams 

based on background knowledge (key-stream, cow-stream, and keycow-stream), it can be 

seen that their macro precision, recall, and F1 score have been significantly improved 

while the accuracy is not much different compared with the basal word-stream. In the 

multi-stream network, the overall macro values increased significantly while the accuracy 

also improved, whether in early-fusion or after-fusion strategy. The highest three results 

under different evaluation indicators are bolded in the table. Under comprehensive 

consideration, the best one is obtained in three-stream network with average pooling (P = 

95.28, R = 94.75, F1 = 95.02), which is superior than baseline (word-stream, P = 84.71, 

R = 85.37, F1 = 85.04). The improved classification results suggest that incorporating 

background knowledge has enriched the text representation to a great extent. Therefore, 

we can infer that the background knowledge can make up for the insufficient information 
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of training data and make up for the deep feature extraction of those data-sparse categories. 

The effectiveness of background knowledge incorporation in multi-stream neural 

network is also verified in Fudan corpus. The results are shown in Table 3.4, and the best 

one is acquired in three-stream network with early fusion: P = 88.69, R = 81.65, F1 = 

Table 3.3  Results of Reuters-21578 R8. 

 
 

Unit: % 
Macro 

Acc 
 P R F1 

Single 
stream: 

 W (Baseline) 84.71 85.37 85.04 96.12 
 Key 90.41 92.16 91.28 96.30 
 Cow  91.35 89.84 90.59 95.39 
 KeyCow 91.44 88.81 90.11 95.75 

Early fusion: 

 W + Key 90.76 93.28 92.00 97.44 
 W + Co 92.74 91.34 92.03 96.57 
 W + KeyCow 93.56 91.03 92.28 96.67 
 W +Key + Cow 93.09 92.39 92.74 96.85 

After fusion: 

Average pooling 

W + Key 93.13 93.85 93.49 97.30 
W + Co 91.54 90.85 91.19 96.76 

W + KeyCow 90.24 89.63 89.94 96.67 
W + Key +Cow 95.28 94.75 95.02 97.67 

Soft voting 

W + Key 91.75 92.52 92.14 97.08 
W + Co 91.00 89.89 90.44 96.07 

W + KeyCow 89.12 87.90 88.50 96.35 
W + Key +Cow 95.15 94.30 94.72 97.67 

Table 3.4  Results of Fudan Corpus. 

 
 

Unit: % 
Macro 

Acc 
 P R F1 

Single 
stream: 

 W (Baseline) 76.70 76.41 76.55 95.43 
 Key 78.16 68.12 72.79 90.82 
 Cow  83.27 78.15 80.63 95.22 
 KeyCow 77.84 74.05  75.90  94.52  

Early fusion: 

 W + Key 83.82 79.63 81.67 96.15 
 W + Co 84.44 81.73 83.06 96.79 
 W + KeyCow 83.02 80.80 81.90 96.53  
 W +Key + Cow 88.69 81.65 85.03 96.89 

After fusion: 

Average pooling 

W + Key 84.18 78.99 81.50 95.98 
W + Co 84.69 80.96 82.78 96.48 

W + KeyCow 83.90 78.66 81.19 96.13 
W + Key +Cow 85.26 81.94 83.57 96.67 

Soft voting 

W + Key 83.60 76.59 79.94 95.64 
W + Co 85.64 79.40 82.40 96.30 

W + KeyCow 83.21 78.35 80.70 96.02 
W + Key +Cow 88.66 80.28 84.26 96.41 
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85.03 (while P = 76.70, R = 76.41, F1 = 76.55 in baseline), demonstrating that the 

background knowledge with multi-stream networks contributes a lot to this task. 

The comparison results between the above optimal and basal models show that the 

macro indicators have significantly improved while the overall accuracy growth is slight. 

The reason may be that in these imbalanced corpora, there are some categories with less 

data, and their classification results have a slight effect on the overall accuracy results 

because of the data distribution. However, during the model training, accuracy is often 

used as the evaluation indicator, and the categories with fewer data are ignored. Therefore, 

macro evaluation can reflect the overall classification results more comprehensively for 

imbalance corpus. 

In multi-stream network, the overall classification results are improved a lot after 

feature fusion. As the supplement, background knowledge-based features make up for the 

problem caused by data imbalance in the basal word-stream network. The imbalance 

refers to two aspects. The first is the feature imbalance in a particular category. For 

example, because of the limitation of data coverage, testing data and training data may 

come from different sub-categories of a broader category and contain different feature 

words. Background knowledge contains almost all sub-categories, serving as a bridge to 

connect training data and testing data. The second is the data imbalance among categories. 

There are some categories with fewer data and result in fewer features extracted. The 

incorporation of background knowledge can significantly alleviate the limitation caused 

by imbalanced data distribution. 

To investigate the contributions of background knowledge on different categories, the 

optimal three groups of experimental results are compared with the basal word-stream 

model. The results of each category are shown in Figure 3.5 and Figure 3.6, respectively. 

The horizontal axis refers to the categories, the bar charts refer to the classification results, 

and the line graph refers to the number of training texts in the corresponding category. 

According to the results of Reuters-21578 R8, as shown in Figure 3.5, the categories 

with fewer training data, like ‘ship’ with 36 training texts and ‘grain’ with 10 training 

texts, improved a large amount in macro precision, recall, and F1 score, while the 
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categories with relatively much training data, like ‘earn’ and ‘acq’, improved not very 

obviously. These results also suggest the previous viewpoint about imbalance corpus: the 

 

Figure 3.5  Results of Reuter-21578 R8.  

 

Figure 3.6  Results of Fudan University Corpus. 



3.4  SUMMARY 41 

 

incorporation of background knowledge can conspicuously make up for the insufficient 

information of some categories with fewer data, contributing to the overall performance.  

The results of Fudan Corpus also verify the above viewpoints, as shown in Figure 3.6. 

In the categories with more than 600 training texts, such as ‘C11’ and ’C19’, the 

improvements are slight, while in other low-data categories, the improvement is relatively 

apparent. 

3.4 Summary 

This chapter focus on the research of incorporating background knowledge to make up 

for the limitation of imbalanced training data. To better fuse background knowledge-

based features into basal model, a multi-stream neural network with different fusion 

strategies was proposed. 

The experimental results obtained from different corpus showed that, compared with 

traditional RNN based text classification model, the proposed method performed better 

under different evaluation indicators. The macro F1 score improved up to 10.16% in 

Reuters-21578-R8, and 8.75% in Fudan corpus. According to the comparison results, the 

following conclusion can be drawn: as the supplement, the background knowledge can 

make up for the information neglected or absented in the basal text classification network, 

especially for imbalance corpus. 

In the future, the proposed work can be extended by extracting more beneficial 

background knowledge from more comprehensive external corpora provided by this big 

data era. Furthermore, some state-of-the-art models can be utilized as encoders, and 

different feature fusion strategies can be further researched to achieve more 

comprehensive and in-depth feature information. 
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4 Label Embedding for Contextual Emotion Recognition 

Chapter 4 

Label Embedding for Contextual 

Emotion Recognition 

4.1 Introduction 

As an essential element in human nature, emotions have been widely studied in 

psychology [3]. Emotion recognition involves identifying detailed emotional states, 

which mainly refer to a wide range of mental states, such as happiness, anger, fear, etc. 

Textual emotion recognition (TER) is a fine-grained sentiment analysis, aiming to classify 

a textual expression into one or several emotion classes depending on the underlying 

emotion theories employed. In recent decades, TER tasks have gained considerable 

interest in the research community. 

Recent researches about TER mainly conducted on sentence-level, which aimed to 

recognize subtle emotions based on word and concept-based features extracted from the 

given sentence. However, emotional expression is complicated, and the same sentence 

could present different emotions in different contexts. In the absence of contextual 

information, even humans cannot give confident emotional judgments. Therefore, it is 

necessary to utilize contextual information for sentence-level emotion recognition.  

Given a sentence, its context generally refers to the sentences that appear around it. For 

example, given a sentence from a blog, its context refers to those sentences that appeared 

around the current sentence. Given an utterance from a dialogue, its context generally 

refers to the preceding occurred utterances. Such contextual information has been 
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explored in some preceding works, such as HANs [148], TreeLSTM [149]，and CLSTM 

[150]. Under the different circumstance, contextual sentences and current sentence have 

different contributions to final prediction, and attention mechanism based network is 

widely utilized to address this problem. Inspired by HANs (Hierarchical Attention 

Networks), we explore effective encoders for sentence-level encoding and contextual-

level encoding to generate more accurate emotion representation expressed in the given 

sentence.  

Emotional expression is very complicated. Some emotions often co-occurred with each 

other, such as the emotion pair of ‘Joy’ and ‘Love’, while some are opposed and rarely 

appear together, such as ‘Joy’ and ‘Anxiety’. Emotion correlation has always been a 

significant factor in emotion recognition tasks. To accurately recognize emotions, it is 

necessary to fully consider the correlations between each emotion. 

Above all, this chapter explores a hierarchical model to learn contextual representations, 

which encodes the emotional information of a given sentence based on its context. 

Besides, to realize emotion correlation learning, we trained a label embedding matrix by 

joint learning, which beneficial to emotion correlation-based emotion prediction. The 

contributions are summarized below: 

(1) This chapter proposes a hierarchical model to learn contextual representations for 

sentence-level emotion recognition. Pre-trained language model BERT is taken as the 

sentence-level encoder, and attention-based bidirectional LSTM is taken as the context-

level encoder, aiming to learn the emotional information of the given sentence based on 

its context. 

(2) To give emotion correlation-based prediction, the label embedding matrix is 

learning by joint learning. Emotion correlation is obtained by calculating the similarity 

features between sentence representation and each label embedding, contributing to the 

final prediction. 

(3) To guarantee the effectiveness of both emotion prediction and label embedding, the 

proposed network is trained by an assemble training objective. The experimental results 

indicate that proposed approach has a satisfying performance in TER task. 
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4.2 Methodology 

4.2.1 Problem Definition 

Assuming that we have 𝑁  training samples 𝑋  along with their contextual 

information 𝐶. Each sample 𝑥 ∈ 𝑋 is often a sentence from the hierarchical text, such 

as dialogue or blog, and the contextual information 𝑐 = {𝑐ଵ, 𝑐ଶ, … 𝑐௡} ∈ 𝐶 often means 

the preceding 𝑛  sentences appeared before 𝑥 . Each sample 𝑥  is annotated with 𝐾 

emotional labels: {𝑒ଵ, … 𝑒௞, … 𝑒௄}, denoted as a one-hot vector 𝑦 = {𝑦ଵ, … 𝑦௞, … 𝑦௄} ∈

ℝଵ×௄, in which 𝑦௞ = 1 is 𝑥 contains emotion 𝑒௞ otherwise 𝑦௞ = 0. 

For each sample 𝑥 ∈ 𝑋 , a multi-label emotion recognition model F is trained to 

transform 𝑥 into predicted distributions 𝑝 =  {𝑝ଵ, … 𝑝௞, … 𝑝௄} based on its contextual 

information 𝑐 , and then give a final prediction of all possible emotion labels. The 

function F is denoted as: 

𝐹(𝑥, 𝑐) = {𝑝ଵ, … 𝑝௞, … 𝑝௄} (4.1) 

4.2.2 Hierarchical Network with Label Embedding 

To model a sentence 𝑥 along with its contextual information 𝑐 = {𝑐ଵ, 𝑐ଶ, … 𝑐௡}, the 

simplest way is to utilize flatten context modeling, by which 𝑥 and contextual sentence 

𝑐  are concatenated as 𝑥′ = {𝑐ଵ, 𝑐ଶ, … 𝑐௡, 𝑥}  and all tokens in 𝑥′  are flattened into a 

word sequence. However, emotions flow naturally in each sentence, such flatten 

processing not only makes the sequence of words too long but also ignored the time step 

and destroyed the hierarchical structural information. The sequential nature of context is 

non-negligible, and such hierarchical information could contribute to the emotion 

prediction better.  

Motivated by Hierarchical Attention Networks (HANs), we focus on hierarchical 

context modeling. Each sentence in 𝑥′ = {𝑐ଵ, 𝑐ଶ, … 𝑐௡, 𝑥, } is first encoded into sentence-

level representation ℎ௦ = {ℎ௖ଵ
௦ , ℎ௖ଶ

௦ , … ℎ௖௡
௦ , ℎ௫

௦ }  by a sentence-level encoder 𝐸𝑛௦ , and 

then contextual information is further encoded by a hierarchy context encoder. 
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Figure 4.1  The framework of hierarchical network with label embedding. 

4.2.2.1 Sentence-level modeling 

At sentence-level, for each sentence 𝑠 = {𝑤ଵ, 𝑤ଶ, … }  in 𝑥′ = {𝑐ଵ, 𝑐ଶ, … 𝑐௡, 𝑥} , the 

function 𝐸𝑛௦ encodes 𝑠 into sentence-level representations ℎ௦, denoted as: 

ℎ௦ =  𝐸𝑛௦(𝑠) (4.2) 

Inspired by the pre-trained language model and transfer learning techniques, pre-

trained BERT model [84] is taken as sentence-level encoder 𝐸𝑛௦ in this chapter. BERT 

stands for Bidirectional Encoder Representations from Transformers, and it is designed 

to pre-train deep bidirectional representations from unlabeled textual data by jointly 

conditioning on both left and right context in all layers. It remedies the limitation of 

insufficient training corpora and contributes to syntactic and semantic sentence 

representation.  

In this way, for the sentences in 𝑥′ = {𝑐ଵ, 𝑐ଶ, … 𝑐௡, 𝑥} , sentence-level representation 

ℎ௦ = {ℎଵ
௦, ℎ௖ଶ

௦ , … ℎ௖௡
௦ , ℎ௫

௦ } is generated by pre-trained BERT model.  
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4.2.2.2 Contextual-level Modeling 

In contextual-level, the function 𝐸𝑛௖ encodes the sentence-level representation ℎ௦ =

{ℎ௖ଵ
௦ , ℎ௖ଶ

௦ , … ℎ௖௡
௦ , ℎ௫

௦ } into a context-level representation ℎ௖, which is denoted as: 

ℎ௖ =  𝐸𝑛௖(ℎ௦) (4.3) 

In the proposed model, the function 𝐸𝑛௖ mainly consisting of two-layer networks: 

BiGRU (Bidirectional Gated Recurrent Neural Networks) and attention network.  

BiGRU aims to deal with the sequential information of contexts. Take sentence-level 

representation ℎ௦ = {ℎ௖ଵ
௦ , ℎ௖ଶ

௦ , … ℎ௖௡
௦ , ℎ௫

௦ }  as input, the output of the hidden state of 

BiGRU in each step is ℎ௜ =  [ℎሬ⃑ ௜: ℎ⃐ሬ௜] , in which ℎሬ⃑ ௜  and ℎ⃐ሬ௜  are the output of hidden 

states from forward and backward directions respectively. 

The attention network aims to make the network pay more attention to essential 

contexts. The attention mechanism considers the contributions of previous occurred 

contextual sentences 𝑐௜ ∈ 𝑐  to the prediction of current sentence 𝑥 . More attention 

weight will be assigned to related contexts. Attention weight 𝑎௜ and weighted emotional 

feature vector ℎ௖ are defined as follows: 

ℎ௖ = ෍ 𝑎௜ℎ௜
௜

 (4.4) 

𝑎௜ =
𝑒𝑥𝑝 (𝑒௜)

∑ 𝑒𝑥𝑝 (𝑒௞)௡
௞ୀଵ

 (4.5) 

𝑒௜ = 𝑤ଶ
்[𝜎(𝑤ଵ

் ∙ ℎ௜ + 𝑏ଵ)] + 𝑏ଶ (4.6) 

in which 𝜎  indicates the sigmoid activation function, 𝑤ଵ, 𝑏ଵ, 𝑤ଶ, 𝑏ଶ  indicate the 

model parameters. 

In a typical contextual network, ℎ௖ is fed into the classifier for final prediction. The 

classifier typically consists of a linear transformation. It is followed by a sigmoid 

operation to normalize the outputs so that each element in the scale of [0,1]. A multi-label 
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neural network is typically trained by minimizing the Binary Cross Entropy (BCE) 

between the true labels distribution 𝑌 and predicted distribution 𝑃 as the following: 

𝐵𝐶𝐸(𝑃, 𝑌) = −
1

𝑁
෍ ෍ 𝑦௜௞ ∙ log(𝑝௜௞) + (1 − 𝑦௜௞) ∙ log(1 − 𝑝௜௞)

௄

௞ୀଵ

ே

௜ୀଵ

 (4.7) 

in which 𝑝௜௞ is the predicted probability of emotion 𝑒௞ in 𝑖𝑡ℎ sample, and 𝑦௜௞ is 

the true label, 𝑦௜௞ ∈ [0,1]. 

Above mentioned typically network is intuitive and simple, and widely utilized in 

multi-label classification problems. However, emotion recognition is a more complex 

problem. This typical network with BCE loss function can be less effective and poor 

generalization due to its ignorance of label correlations. To capture label correlations, a 

joint learning label embedding network is proposed, which is detailed in Section 4.2.2.3. 

4.2.2.3 Label embedding network 

The label embedding is supposed to represent the semantics and relations between 

emotion labels. The embedding is denoted by  

𝐸 = {𝐸ଵ, … 𝐸௞ … 𝐸௄} ∈ ℝ௄×ௗ (4.8) 

where 𝐾 is the number of emotion labels, and 𝑑 is the dimension of label embedding.  

To make label embedding contribute to the emotion recognition network, the most 

intuitive way is to compare the emotion representation of contextual input with the label 

embedding of each emotion. Thus the prediction of all possible emotion labels could be 

given by calculating the similarity features. 

Let the function 𝐸𝑛௘  as emotion projector, maps contextual-level representation ℎ௖ 

into emotion representation ℎ௘. In this way, the similarity vector 𝑠𝑖𝑚௞ between ℎ௘ and 

each label embedding 𝐸௞ ∈ 𝐸 could be calculated: 

ℎ௘ =  𝐸𝑛௘(ℎ௖) =  𝑤௘
் ∙ ℎ௖ + 𝑏௘ (4.9) 
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𝑠𝑖𝑚௞ =  ℎ௘ ⊙  𝐸௞, 𝑘 ∈ [1, 𝐾] (4.10) 

in which ⊙  is the element-wise product operation. In this way, the probability of 

containing emotion 𝑒௞ is defined as: 

𝑝௞ =  𝜎(𝑤௖
் ∙ 𝑠𝑖𝑚௞ + 𝑏௖) (4.11) 

in which 𝜎 indicates the sigmoid activation function, and 𝑤ୡ, 𝑏ୡ indicate the model 

parameters. The final prediction is given: 𝑃 =  {𝑝ଵ, … 𝑝௞, … 𝑝௄}. 

4.2.3 Training Objectives 

For multi-label emotion recognition task, the training objective is often based on binary 

cross-entropy (BCE). However, BCE loss function takes each emotion as an independent 

individual and does not consider their relationships. Emotion correlation plays an 

important role in this task, which makes emotion recognition be a more complex problem 

than traditional text classification. To guide the model to learn the emotion correlation 

during the training process, we propose an assembled training objective to consider all 

aspects. 

4.2.3.1 Training objective on output layer 

To minimize the loss between the true label distribution and the output distribution, 

label-correlation aware multi-label loss function, is applied at the output layer, which is 

determined as follows: 

𝑙𝑜𝑠𝑠ெ௅ = ෍
1

|𝑌௜||𝑌௜|

ே

௜ୀଵ

෍ 𝑒𝑥𝑝 (−൫𝑝௞
௜ − 𝑝௟

௜൯)
(௞,௟)∈௒೔×௒೔

 (4.12) 

where 𝑌௜ denotes the set of positive emotions for 𝑖th sample 𝑥௜, and 𝑌௜ denotes the 

negative emotions. 𝑝௞
௜   and 𝑝௟

௜  are the output possibility of positive emotion 𝑒௞  and 

negative emotion 𝑒௟  respectively. Therefore, training with the above loss function is 
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equivalent to maximizing the difference of (𝑝௞
௜ − 𝑝௟

௜), which leads the system to output 

larger values for positive emotions and smaller values for others. 

4.2.3.2 Training objective on label embedding 

Given a contextual input 𝑥, its positive labels are 𝑌௜ and its negative labels are 𝑌௜, 

and 𝑌 =  𝑌௜  ∪ 𝑌௜. Emotion representation ℎ௘ is learned as in Eq. (4.9). In the proposed 

network, nonlinear label embedding is utilized in the network to guiding the final 

prediction 𝑃 by the similarity feature with ℎ௘. In this way, we assume that ℎ௘ can in 

turn be used in the training of label embedding by being closer to the embedding of 

positive emotions while farther to other negative emotions. 

To measure the distance of emotion representation ℎ௘ and label embedding, cosine 

embedding loss is utilized: 

𝑙𝑜𝑠𝑠஼௢௦ா௠௕௘ௗ =  ෍
1

𝐾
∙ ෍ 𝐶𝑜𝑠𝐿𝑜𝑠𝑠(ℎ௜

௘ , 𝐸௞)
௄

௞ୀଵ

ே

௜ୀଵ
 (4.13) 

𝐶𝑜𝑠𝐿𝑜𝑠𝑠(ℎ௜
௘ , 𝐸௞) = ൜

1 − 𝑐𝑜𝑠(ℎ௜
௘ , 𝐸௞) ,

𝑚𝑎𝑥(0, 𝑐𝑜𝑠(ℎ௜
௘ , 𝐸௞) − 𝑚𝑎𝑟𝑔𝑖𝑛) ,

   
𝑦௜ ∈ 𝑌௣௢௦

𝑦௜ ∈ 𝑌௡௘௚
 (4.14) 

in which margin is a number from -1 to 1. 

To guarantee label embedding can encode semantic features among labels, we 

introduce an additional network to recognize each emotion from corresponding label 

embedding. For each emotion 𝑒௜, its label embedding is 𝐸௜. The prediction 𝑒̂௜ based on 

𝐸௜ is given as:  

𝑝௘ೖ
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௘௞ ∙ 𝐸௞  +  𝑏௘௞) (4.15) 

𝑙𝑜𝑠𝑠௅௔௕௘௟ா௠௕௘ௗ =  
1

𝐾
∙ ෍ − 𝑒௞ ∙ 𝑙𝑜𝑔 (𝑝௘ೖ

)
௄

௞ୀଵ
 (4.16) 

In summary, the assemble training objective of the proposed method is as follows: 
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𝐿𝑜𝑠𝑠(𝑥, 𝑦) = 𝑙𝑜𝑠𝑠ெ௅ + 𝑙𝑜𝑠𝑠஼௢௦ா௠௕௘ௗ + 𝑙𝑜𝑠𝑠௅௔௕௘௟ா௠௕௘ௗ  (4.17) 

4.3 Experimental Results and Discussions 

4.3.1 Experimental Setup 

The experiments are conducted on Chinese emotion corpus RenCECps to evaluate the 

proposed architecture (RenCECps: http://a1-www.is.tokushima-u.ac.jp/member/ren/Ren-

CECps1.0/DocumentforRen-CECps1.0.html). RenCECps is an annotated emotional 

corpus with Chinese blog texts. The corpus is annotated in document, paragraph, and 

sentence level [49]. Each level is annotated with eight emotional categories (‘Joy’, ‘Hate’, 

‘Love’, ‘Sorrow’, ‘Anxiety’, ‘Surprise’, ‘Anger’, and ‘Expect’).  

Our experiments are conducted at sentence level, and the preceding two sentences of 

the current sentence are taken as the context information. After pre-processing, there is a 

total of 24310 contextual sentences in training data and 6746 in testing data. Label 

cardinality(LCard) is a standard measure of multi-labeled-ness and means the average 

number of emotions concluded per sentence of the corpus and [151 ]. In RenCECps, 

LCard is 1.4468. 

4.3.2 Evaluation Metrics 

The global performance is evaluated by micro and macro F1-score. F1 score is the 

harmonic mean of precision and recall. Micro F1-score gives each sample the same 

importance, while macro F1-score takes all classes as equally important. Some popular 

evaluation measures typically utilized in multi-label classification can be utilized to 

measure the efficiency of proposed methods. Hamming Loss (HL) is the fraction of labels 

that are incorrectly predicted. Coverage evaluates how far it is needed to go down the 

ranked emotion list to cover all the relevant emotions in the instance. One Error (OE) 

evaluates the fraction of sentences whose top-ranked emotion is not in the relevant 

emotion set. Ranking Loss (RL) evaluates the average fraction of label pairs that are 



4.3  EXPERIMENTAL RESULTS AND DISCUSSIONS 51 

 

reversely ordered for instance. 

4.3.3 Experimental Details 

For a given sentence, its preceding two sentences are taken as contextual sentences. 

There are total 8 emotions labels annotated for each sentence, and the dimension of label 

embedding is set to 256. The dimension of hidden state of GRU cell is set to 768/2, and 

768 is the dimension of sentence-level embedding.  

During the model training, the learning rate is set to 2e-5, and the batch size is set to 

128. Adam optimization method is applied to train the model by minimizing the proposed 

training objective. 

4.3.4 Baselines 

In this section, we report the experimental results of our proposed method and baseline 

models. Additionally, we analyze the influence of training objectives on output layer and 

label embedding. 

We compare our proposed model with six baseline methods as follows. 

(1) RERc [152 ]: a novel framework based on relevant emotion ranking to identify 

multiple emotions and produce the rankings of relevant emotions from text. 

(2) HANs [148]: it has a hierarchical structure that mirrors the hierarchical structure of 

documents, and has two levels of attention mechanisms applied at the word-and sentence-

level. In our experiments, sentence-level encoder of HANs is replaced by pre-trained 

BERT model. 

(3) EDL [153]: Emotion Distribution Learning, it learns a mapping function from texts 

to their emotion distributions describing multiple emotions and their respective intensities 

based on label distribution learning.  

(4) EmoDetect [154]: it outputs the emotion distribution based on a dimensionality 

reduction method using non-negative matrix factorization which combines several 

constraints such as emotions bindings, topic correlations, and emotion lexicons in a 

constraint optimization framework.  

(5) ML-KNN [155 ]: Multi-Label k-Nearest Neighbor, which adapts traditional k-



4.4  EXPERIMENTAL RESULTS AND DISCUSSIONS 52 

 

nearest neighbor (KNN) algorithm to deal with multi-label data. 

(6) Rank-SVM [156]: adapt maximum margin strategy to deal with multi-label data, 

focuses on distinguishing relevant from irrelevant while neglecting the rankings of 

relevant ones.  

4.4 Experimental Results and Discussions 

4.4.1 Experimental Results 

The experimental results of our model compared with the baselines on RenCECps 

dataset are shown in Table 4.1. Results indicate that our proposed method outperforms 

other baselines to a great extent. For example, compared to the baseline RERc, our model 

achieves an improvement of 10.73% micro-F1 score. On multi-label evaluation measures, 

our model achieves a reduction of 46.15% ranking loss and 21.78% one error. Compared 

to other baselines, our model achieved satisfactory results as well, which demonstrated 

the effectiveness of the proposed method. 

Table 4.1  Experimental results in RenCECps. 

Metrics Ours RERc HAN EDL 
Emo- 

Detect 

ML- 

KNN 

Rank- 

SVM 

Micro F1 (↑) 0.5665 0.5116 0.5573 0.4620 0.4552 0.4720 0.4962 

Macro F1(↑) 0.4186 0.4161 0.4003 0.3923 0.3622 0.3632 0.3965 

Ranking loss (↓) 0.1132 0.2102 0.1136 0.2589 0.2781 0.2928 0.3024 

One-Error (↓) 0.3559 0.4550 0.3623 0.5227 0.5352 0.5543 0.5606 

Coverage (↓) 2.1272 2.1268 2.1272 2.1699 2.8956 2.4448 2.5962 

Hamming loss (↓) 0.1998 0.2014 0.2075 0.2102 0.2202 0.2409 0.2585 

4.4.2 Discussions of Label Embedding Layer 

Our proposed model is an extension of the baseline of HANs. In our experiments, 

sentence-level encoder of HANs is replaced by pre-trained BERT model. Therefore, by 

comparing the results of these two models, it can be revealed whether the addition of label 

embedding layer is effective on the sub-task of emotion correlation learning. 
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As we can see from the results shown in Table 4.1, the proposed model significantly 

outperforms baseline HANs, which achieves the improvement of micro-F1 score from 

0.5573 to 0.5665 and macro F1 score from 0.4003 to 0.4186. On multi-label evaluation 

measures, our model achieves a reduction of ranking loss from 0.1136 to 0.1131, one error 

from 0.3623 to 0.3559, and hamming loss from 0.2075 to 0.1998.  

 

 

Figure 4.2  The prediction probability given by label embedding matrix 

Both the proposed method and baseline HANs give predictions based on the contextual 

representation learned from a hierarchical network. HANs directly fed it into output layer 

for final prediction, which mainly consists of a fully connected layer and an activate 

function like sigmoid. This implementation is intuitive and straightforward, and it is also 

a typical processing method in most multi-label classification tasks. However, such 

implementation treats emotion recognition task as a general text classification task. It 

does not consider the correlation between emotion labels, such as the probability of co-

occurrence of “Love” and “Happy” is higher than that of “Love” and “Sad”. In our 

proposed model, label embedding space is introduced for emotion correlations learning. 

The final prediction is based on the interaction of the emotion representation of input text 

and the label embedding matrix. To guarantee that the semantic features among labels can 

be learned in the label embedding matrix, an auxiliary training objective on label 

embedding is utilized to guide the training. The predicted probability given by label 



4.4  EXPERIMENTAL RESULTS AND DISCUSSIONS 54 

 

embedding matrix, as Eq. (4.15), is visualized in Figure 4.2. The results in the figure 

clearly show that the label embedding matrix can accurately predict the corresponding 

emotion, which suggests that the emotional information of each label has been actually 

learned in the label embedding matrix. 

4.4.3 Discussions of Training Objectives 

As described in section 4.2.3, we proposed an assembled training objective to realize 

the joint learning of both emotion recognition task and label embedding task. To evaluate 

the effectiveness of training objectives and label embedding network, we train the 

proposed model with different training objectives. The results are shown in Table 4.2. The 

symbol ‘M’, ‘C’ and ‘L’ denotes the loss function of multi-label loss, as in Eq.(4.12), 

cosine embedding loss, as in Eq. (4.13) and label embedding loss, as in Eq. (4.16), which 

are utilized for training. 

Table 4.2  Results of proposed models with different training objectives. 

Metrics M+C+L M+C M+L M 

Micro F1 (↑) 0.5665 0.5655 0.5570 0.5539 

Macro F1(↑) 0.4186 0.4246 0.4156 0.4128 

Ranking loss (↓) 0.1132 0.1209 0.1194 0.1272 

One-Error (↓) 0.3559 0.3734 0.3719 0.3787 

Coverage (↓) 2.1272 2.1778 2.1638 2.2234 

Hamming loss (↓) 0.1998 0.1959 0.2040 0.1957 

Note: ‘M’: multi-label loss, ‘C’: cosine embedding loss, ‘L’: label embedding loss. 

 

As shown in Table 4.2, compared with the assembled training objective (‘M+C+L’), 

the proposed model with only multi-label loss (‘M’) on output layer achieves a reduction 

of 2.22% micro F1 and 1.39% macro F1, and an improvement of 12.37% ranking loss, 

6.41% one-error and 4.52% coverage. It suggests that the proposed ensemble training 

objective can contribute to the classification improvement. 

The experimental results of the proposed model trained on ‘M+C’ and ‘M’ indicate the 

contribution of cosine embedding loss on the training of the label embedding matrix. 

Cosine embedding loss guides the training of label embedding by making the emotion 
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representation of input being closer to the embedding of positive emotion labels while 

farther to other negative emotion labels. 

The comparison results of the proposed model trained on ‘M+L’ and ‘M’ indicate that 

the addition of label embedding loss is effective. Label embedding loss guarantees that 

the trained label embedding matrix can encode semantic features among emotion labels. 

4.5 Summary 

In this chapter, we proposed a hierarchical network with label embedding for 

contextual emotion recognition. Our method involves hierarchically encoding the given 

sentence based on its contextual information, and training a label embedding matrix with 

an assembled training objective to realize emotion correlation learning. The experimental 

results show the strong ability of proposed method to learn emotional features for 

contextual emotion recognition. In the future, it shall be interesting to incorporate 

background resources, such as emotion lexicon and knowledge graph, to make the system 

more satisfactory and robust. 
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5 Multi-label Emotion Detection via Emotion-Specified Feature 
Extraction and Emotion Correlation Learning 

Chapter 5 

Multi-label Emotion Detection via 

Emotion-Specified Feature Extraction 

and Emotion Correlation Learning 

5.1 Introduction 

With the rapid development of social media platforms, understanding the latent 

emotions expressed in user-generated content has gained much attention because of its 

vast potential applications [157 ], [158 ]. Although many studies have been conducted, 

most of them are done in the single-emotion environment [159]. They are based on the 

assumption that certain textual data is associated with only one emotion. However, in 

real-world conditions, people often hold multiple complex emotions simultaneously, and 

a textual expression is often associated with multiple emotions simultaneously. Therefore, 

multi-label emotion detection has gained burgeoning attention because of its vast 

potential applications.  

Multi-label emotion detection aims to recognize all possible emotions in a piece of 

textual expression [160]. In conventional emotion detection networks, textual information 

is often encoded together into a representation vector and then directly fed into the 

classifier[161], [162]. However, in a textual expression with multiple emotions, there may 

be some emotions with relatively weaker intensity. If information of each emotion is 

mixed and encoded together into a shared vector, the weaker emotions with subtle features 



5.1  INTRODUCTION 57 

 

could be covered by stronger emotions and be challenging to recognize. To accurately 

recognize the emotions expressed, the quality of underlying emotional feature 

representation has an essential influence on the final prediction.  

In most previous researches, multi-label emotion detection task is often narrowed down 

into multiple binary classifications [163], in which each emotion is detected respectively 

without considering their correlations. However, emotion correlation information 

provides non-ignorable features and is useful for improving the performance of emotion 

detection. The definition of emotion correlation can be illustrated based on Plutchik's 

work. In an emotional expression, emotion correlation mainly refers to positive or 

negative emotional correlation. Positively correlated emotions are similar to each other 

and often appear together but with different intensities. Such as the emotion pair ‘Joy’ 

and ‘Love’ tend to appear simultaneously. Negatively associated emotions are often 

opposite to each other and rarely appear together, such as ‘Love’ and ‘Sorrow’. Emotion 

correlation can be utilized to facilitate more in-depth emotion analysis in multi-label 

emotion recognition task. 

In this chapter, a Multi-label Emotion Detection Architecture (MEDA) is proposed to 

address the above challenges. MEDA is mainly composed of two modules: Multi-Channel 

Emotion-Specified Feature Extractor (MC-ESFE) and Emotion Correlation Learner 

(ECorL). MC-ESFE consists of multiple channels by which the features of each emotion 

are separately encoded. Each channel is devoted to the underlying feature representation 

of a specified emotion from both sentence-level and context-level. Furthermore, an 

external emotion lexicon is introduced as prior knowledge to integrate more detailed 

emotional information. ECorL module is devoted to learning emotion correlation based 

on extracted emotion-specified features from MC-ESFE. In ECorL, multi-label emotion 

detection task is transformed as an emotion sequence prediction task. Bidirectional GRU 

network is taken as the emotion sequence predictor, and the emotions are sequentially 

predicted in a fixed path. In the hidden state of each step, the emotion correlations of 

current emotion are learned by information interaction with the context of other emotions 

flowed from both forward and backward directions. Considering that the proposed MEDA 

network extracts emotional information from sentence level, context level, and emotion 

correlation level, an ensemble model called MEDA-FS is proposed to integrate emotional 
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information from different levels. MEDA-FS can realize the maximization of information 

retention and avoid information loss during bottom-up learning. During the training, 

positive-negative emotion correlation is incorporated into the proposed multi-label focal 

loss function. By introducing a weighting factor, our loss will focus more on misclassified 

emotion pairs and balance the prediction between positive and negative emotions. 

 Compared with existing multi-label emotion detection methods, the proposed MEDA 

architecture extracts both emotion-specified features and emotion correlations. 

Experimental results show that the proposed MEDA achieves state-of-the-art 

performance on this task and demonstrates its effectiveness. 

The major contributions of this chapter can be summarized as follows. 

(1) MEDA architecture composed of MC-ESFE and ECorL modules is proposed for 

the textual multi-label emotion detection task. MC-ESFE can encode emotion-

specified features in the corresponding channel respectively, strengthening the 

underlying feature representation of each emotion. ECorL is proposed to learn 

emotion correlations by transforming multi-label emotion detection task into 

emotion sequence prediction task. 

(2) MEDA-FS is proposed to fuse the information at sentence-level, context-level, and 

emotion correlation level, realizing the maximization of information retention 

during bottom-up learning. 

(3) Multi-label focal loss function considering emotion correlation information is 

proposed for multi-label learning. This loss function contributes to model training 

by focusing on misclassified emotion pairs and balancing the prediction of positive 

and negative emotions. 

The rest of this chapter is organized as follows: Details of the proposed MEDA are 

given in Section 5.2. The experimental setting and details are presented in Section 5.3. 

The performance of MEDA is discussed in Section 5.4. Finally, summary is drawn in 

Section 5.5. 

5.2 Proposed Method 

To comprehensively obtain emotional information of texts, Multi-label Emotion 
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Detection Architecture (MEDA) is proposed in this chapter. It mainly composes two 

modules: Multi-Channel Emotion-Specified Feature Extractor (MC-ESFE) and Emotion 

Correlation Learner (ECorL). The framework of MEDA is shown as Figure 5.1. 
 

  

Figure 5.1  The illustration of MEDA architecture. Region b is the 𝑙 − 𝑡h ESFE channel. 

Multi-label emotion detection task aims to detect all possible emotions from the pre-

defined emotional label set: 𝐸 = [𝑒ଵ, 𝑒ଶ, … 𝑒௅]. Considering the important influence of 

contextual information on this task, the previous 𝑘 sentences occurred before current 

sentence 𝑠  are taken as the context sentences: 𝑠௖௫௧ = [𝑠ି௞ , … 𝑠ିଶ, 𝑠ିଵ] . Given a 

sentence 𝑠 =  [𝑤ଵ, 𝑤ଶ…𝑤௡]  and its context 𝑠௖௫௧ , our proposed multi-label emotion 

recognition model MEDA is trained to output the predicted probability distribution 

𝑃ெ௅ = [𝑝ଵ, 𝑝ଶ, … 𝑝௅] of each emotion, denoted as: 

𝑃ெ௅ = 𝑓ொ஽஺(𝑠, 𝑠௖௫௧) (5.1) 

MC-ESFE module is composed of 𝐿 parallel channel-wise ESFE. In each channel, 

ESFE extracts emotion-specified features from sentence-level to context-level through a 

hierarchical structure. The output of each channel is combined into an emotion-specified 

feature matrix: 𝑋ாௌ
௖௫௧ = [𝑥ாௌ

௖௫௧ , 𝑥ாௌ
௖௫௧ , … , 𝑥ாௌ௅

௖௫௧ ]. In ECorL module, emotion correlations are 

further learned from 𝑋ாௌ
௖௫௧ and multi-label emotions are predicted. Specifically, MEDA 
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architecture is very flexible, and the algorithm applied in each module can be replaced by 

other state-of-the-art algorithms. 

 

 

 

Figure 5.2  The illustration of sentence-level encoder of 𝑙𝑡ℎ ESFE channel 

5.2.1 MC_ESFE: Multi-Channel Emotion Specified Feature 

Extractor 

In this chapter, a Multi-Channel Emotion-Specified Feature Extractor (MC-ESFE) is 

proposed for underlying fundamental feature extraction. MC-ESFE is composed of 𝐿 

channel-wise ESFE, and 𝐿 is equal to the number of emotions. Each channel focuses on 

the feature extraction of a specified emotion, and each emotion's information is separately 

encoded in each channel. In this way, more details of each emotion could be summarized, 

and the features of weak emotions are prevented from being covered by strong emotions 

to some extent.  

Figure 5.1 shows the hierarchical structure of 𝑙𝑡ℎ  ESFE -channel corresponding to 

emotion 𝑒௟, 𝑙 ∈ [1, 𝐿]. Each channel contains a sentence-level encoder and a context-

level encoder, which focus on feature extraction of emotion 𝑒௟ on both sentence-level 

and context-level.  

5.2.1.1 Sentence Level Encoder 
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In 𝑙𝑡ℎ ESFE channel, given a sentence 𝑠, the sentence-level encoder 𝑓ௌିா௡
௟  projects 

input sentence 𝑠 to emotion-specified feature 𝑥ாௌ௟
௦ : 

𝑥ாௌ௟
௦ = 𝑓ௌିா௡

௟ (𝑠), 𝑙 ∈ [1, 𝐿]  (5.2) 

In sentence-level encoder 𝑓ௌିா௡
௟  , as shown in Figure 5.2, two parallel architectures 

with different embedding methods are employed to generate: (1) emotional feature 

representation 𝑥ୣ୵ , (2) general sentence representation 𝑥஻ாோ். They are integrated into 

emotion-specified sentence-level representation 𝑥ாௌ௟
௦  for further context-level learning. 

General sentence representation. Inspired by the pre-trained language model learning 

approach and transfer learning techniques, pre-trained Chinese BERT model [84] is applied 

to yield general sentence representation in this chapter. BERT stands for Bidirectional 

Encoder Representations from Transformers. Chinese BERT is designed to pre-train deep 

bidirectional representations from unlabeled Chinese text by jointly conditioning on both left 

and right context in all layers. It remedies the limitation of insufficient training corpora and 

contributes to syntactic and semantic sentence representation. Given a sentence 𝑠, the general 

sentence representation 𝑥஻ாோ் is generated from Chinese BERT.  

Emotional feature representation. Arguably, it is accepted that general sentence 

representation generated by pre-trained language model does not contain specific emotional 

features, as no emotion-related knowledge has been included in the training process. To 

generate emotional sentence representation, emotional features are further extracted based on 

an external n-dimensional emotion lexicon. 

With the input sentence 𝑠 =  [𝑤ଵ, 𝑤ଶ, … ] , emotional words 𝑤ୣ =  [𝑤ଵ
௘ , 𝑤ଶ

௘ , … ] 

occurred in 𝑠  are firstly extracted by matching the emotion lexicon. The embedding of 

emotional words consists of two parts. The first is general word embedding, which is realized 

by mapping the pre-trained Word2vec word embedding matrix. Each word is embedded as 

𝑣୵ଶ୴ ∈  𝑅ଵ∗஽ , in which 𝐷  is the embedding dimension. The second is emotional word 

embedding, which is realized based on n-dimensional emotion lexicon. Each word is 

embedded as 𝑣ୣ୫୭ ∈  𝑅ଵ∗௡, in which 𝑛 is the number of emotions annotated in emotion 

lexicon and the value means the intensity of corresponding emotion. Finally, emotional word 

embedding is represented as 𝐸 =  [𝑣ଵ
௘ , 𝑣ଶ

௘ , … ], in which 𝑣௜
௘ ∈  𝑅ଵ∗(஽ା௡).  

Considered the polysemy of emotional words in different contexts, BiGRU (Bidirectional 
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Gated Recurrent Neural Networks) [147] and attention network [148] are utilized to make 

the network pay more attention to significant emotional words. Take emotional embedding 

𝐸 as input, the output of the hidden state of BiGRU in each step is ℎ௜ =  [ℎሬ⃑ ௜: ℎ⃐ሬ௜], in which 

ℎሬ⃑ ௜  and ℎ⃐ሬ௜  are the output of hidden states from forward and backward directions, 

respectively. The attention mechanism considers the contributions of different emotional 

words to the prediction of specified-emotion 𝑒௟. More attention weight will be assigned to 

words related to emotion 𝑒௟  in the current 𝑙𝑡ℎ  ESFE channel. Attention weight 𝑎௜  and 

weighted emotional feature vector 𝑥௘௪ are defined as follows: 

𝑒௜ = 𝑊ଶ
்[𝜎(𝑊ଵ

் ∙ ℎ௜ + 𝑏ଵ)] + 𝑏ଶ (5.3) 

𝑎௜ =
𝑒𝑥𝑝 (𝑒௜)

∑ 𝑒𝑥𝑝 (𝑒௞)௡
௞ୀଵ

 (5.4) 

𝑥௘௪ = [𝑎ଵℎଵ: 𝑎ଶℎଶ: … 𝑎௜ℎ௜: … ] (5.5) 

in which 𝜎 indicates the sigmoid activation function, 𝑤ଵ, 𝑏ଵ, 𝑤ଶ, 𝑏ଶ indicate the model 

parameters, and [ : ] indicates the concatenation operation. 

Finally, emotional feature vector 𝑥௘௪  and general embedding 𝑥஻ாோ் is integrated, and 

emotion-specified sentence-level representation 𝑥ாௌ௟
௦  is generated as follows: 

𝑥ாௌ௟
௦ = 𝑡𝑎𝑛ℎ(𝑊 ∙ 𝑥ୣ୵ + 𝑊஻ ∙ 𝑥஻ாோ் + 𝑏௦) (5.6) 

in which 𝑊  , 𝑊஻ and 𝑏௦ indicate the model parameters. 

5.2.1.2  Context Level Encoder 

Context level encoding is channel-wise implemented as well. As shown in Figure 5.1, in 

𝑙𝑡ℎ ESFE channel corresponding to emotion 𝑒௟, given a sentence 𝑠 and its context 𝑠௖௫௧ =

[𝑠ି௞ , … 𝑠ିଶ, 𝑠ିଵ] , context-level encoder 𝑓஼ିா௡
௟   gives contextual emotional feature 𝑥ாௌ௟

௖௫௧ . 

GRU network is utilized to learn contextual information from previous 𝑘 sentences, and the 

output of final step is captured as the context-level representation, which is denoted as: 
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𝑥ாௌ௟
௖௫௧ = 𝑓஼ିா௡

௟ ൫𝑥ாௌ௟
௦షೖ , … , 𝑥ாௌ௟

௦షభ , 𝑥ாௌ௟
௦ ൯ = 𝑓ୋୖ୙൫𝑥ாௌ௟

௦షೖ , … , 𝑥ாௌ௟
௦షభ , 𝑥ாௌ௟

௦ ൯, 𝑙 ∈ [1, 𝐿] (5.7) 

𝑥ாௌ௟
௦ష೔ = 𝑓ௌିா௡

௟ (𝑠ି௜), 𝑖 ∈ [1, 𝑘] (5.8) 

Contextual emotion-specified features 𝑥ாௌ௟
௖௫௧ learned from each channel in MC-ESFE is 

output and combined as the emotional feature matrix: 𝑋ாௌ
௖௫௧ = [𝑥ாௌଵ

௖௫௧ , 𝑥ாௌଶ
௖௫௧ , … , 𝑥ாௌ௅

௖௫௧ ]. 𝑋ாௌ
௖௫௧ 

is flowed into ECorL module for further emotion correlation learning. 

5.2.2 ECorL: Emotion Correlation Learner 

Emotion correlations are indispensable in multi-label emotion detection task. In this 

chapter, ECorL (Emotion Correlation Learner) is proposed to give emotion prediction based 

on emotion correlation learning.  

MC-ESFE module project inputs into a sequence of continuous emotional representations 

𝑋ாௌ
௖௫௧ = [𝑥ாௌଵ

௖௫௧ , 𝑥ாௌଶ
௖௫௧ , … ]. ECorL module takes 𝑋ாௌ

௖௫௧ as input. In ECorL module, multi-label 

emotion detection task is transformed as emotion sequence prediction task, and emotions are 

predicted in a fixed path. Refer to the previous work [170], the order of emotion sequence is 

set according to its occurred cumulative number in the corpus. BiGRU is taken as the 

emotional sequence predictor. The operation is formulated as follows: 

𝐻௘ = 𝑓୆୧ୋୖ୙(𝑥ாௌଵ
௖௫௧ , 𝑥ாௌଶ

௖௫௧ , … , 𝑥ாௌ௅
௖௫௧ ) (5.9) 

𝑃ெ௅ = 𝑡𝑎𝑛ℎ (𝑊ா஼௢௥ ∙ 𝐻௘ + 𝑏ா஼௢௥) (5.10) 

in which 𝐻௘ = [ℎ௘ଵ, … ℎ௘௟, … ℎ௘௅], are the hidden states of each step, 𝑊ா஼௢௥ and 𝑏ா஼௢௥ 

are the learned weight and biases, and 𝑃ெ௅ is the predicted probability of each emotion. In 

𝑙𝑡ℎ step of BiGRU, the learning of hidden state ℎ௘௟ can be viewed as the feature extraction 

of a specified emotion 𝑒௟. Invalid information of current input 𝑥ாௌ௟
௖௫௧ can be filtered because 

of the gating mechanism. With the bidirectional network, emotional feature ℎ௘௟ is learned 

based on the information of other emotions flowed from both forward and backward hidden 
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state. In this way, emotional information interaction is realized. The hidden states of BiGRU 

are output and fed into emotion interaction layer. This layer is a fully-connected layer and 

aimed to realize further emotional information interaction. In this way, the final emotion 

prediction is obtained: 𝑃ெ௅ = [𝑝ଵ, 𝑝ଶ, . . 𝑝௅].  

5.2.3  Network Pre-training in MC-ESFE 

Each channel in MC-ESFE is dedicated to obtaining corresponding emotional information, 

which belongs to the underlying feature extraction in the MEDA framework. The quality of 

feature representation has a direct impact on the performance of upper-level emotion 

predictions. To improve the underlying feature representation, network-based transfer 

learning is employed to pre-train the sentence-level encoder in each channel. During transfer 

learning, a prediction layer is added to emotional sentence representation 𝑥ாௌ௟
௦  for single-

emotion prediction:  

𝑝ாௌ௟
௦ = 𝜎(𝑤௟ ∙ 𝑥ாௌ௟

௦ + 𝑏௟). (5.11) 

in which 𝑥ாௌ௟
௦   is the sentence-level representation of input sentence 𝑠 , and 𝑝ாௌ௟

௦  

indicates the predicted probability of emotion 𝑒௟ expressed in sentence 𝑠. The first-step pre-

training is implemented on positive-negative annotated emotional datasets. The second-step 

is fine-tuning. During fine-tuning, the multi-emotion annotation {𝑠, [𝑦ଵ, 𝑦ଶ, … 𝑦௅]} of each 

sentence 𝑠 in dataset 𝐷 is transformed into multiple single-emotion annotations: {𝑠, 𝑦ଵ}, 

{𝑠, 𝑦ଶ}…{𝑠, 𝑦௅}. In this way, we reconstructed multiple binary-dataset: 𝐷෡ = {𝐷෡ଵ, 𝐷෡ଶ, … 𝐷෡௅}. 

For each binary-dataset 𝐷෡௟, 𝑙 ∈ [1, L], sentence 𝑠 ∈ 𝐷෡௟ is annotated as {𝑠, 𝑦௟}. 𝐷෡௟ is fed 

into 𝑙𝑡ℎ  ESFE  channel to fine-tune the sentence-level parameters. During pre-training, 

binary focal loss [164] is utilized: 

𝐸ி௅ =  −𝛼௧(1 − 𝑝௧)௥𝑙𝑜𝑔 (𝑝௧) (5.12) 

𝑝௧ = ൜
𝑝ாௌ௟

௦             𝑖𝑓 𝑦௟ = 1

1 − 𝑝ாௌ௟
௦        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.13) 
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in which 𝑟 is a modulating factor, and it aimed to reduce the relative loss of well-classified 

examples. 𝛼 ∈ [0,1], is a weighting factor to address the problem of class imbalance. 𝛼௧ =

𝛼 for positive label and 𝛼௧ = 1 − 𝛼 for negative label. 

5.2.4  MEDA-FS: Multi-level Information Fusion 

The proposed MEDA architectural learns emotional information from sentence-level to 

context-level, from single-emotion level in MC-ESFE to multi-emotion level in ECorL 

module. Each layer in MEDA network learns different levels of information. To realize the 

maximization of information retention and avoid information loss during bottom-up learning, 

MEDA-FS is proposed to fuse the information from different levels. MEDA-FS consists of 

three sub-models: S-MC-ESFE, C-MC-ESFE, and MEDA, which give emotion predictions 

on sentence-level, context-level, and emotion correlation level, respectively. 

S-MC-ESFE, gives sentence-level predictions 𝑃ாௌ
௦ = [𝑝ாௌଵ

௦ , … , 𝑝ாௌ௅
௦ ] . It is obtained 

during the pre-training step of sentence-level encoder in MC-ESFE, which is detailed in 

section 5.2.3. 𝑃ாௌ
௦  represents the prediction based on the underlying information, without 

considering the emotion correlations and contextual information.  

C-MC-ESFE, gives context-level predictions 𝑃ாௌ
௖௫௧ based on sentence-level predictions of 

current sentence 𝑠 , denoted as 𝑃ாௌ
௦  , and sentence-level predictions of its context 𝑠௖௫௧ , 

denoted as [𝑃ாௌ
௦షೖ , … , 𝑃ாௌ

௦షభ]. GRU network is utilized to learn contextual information and its 

final output is taken as the prediction:  

𝑃ாௌ
௖௫௧ = 𝑓ୋୖ୙([𝑃ாௌ

௦షೖ , … 𝑃ாௌ
௦షభ , 𝑃ாௌ

௦ ]) (5.14) 

MEDA, gives prediction 𝑃ெ௅ = [𝑝ଵ, 𝑝ଶ, . . 𝑝௅]  by considering both contextual 

information and emotion correlation. 

MEDA-FS, gives final predictions by comprehensively fuse the information from above 

three level, denoted as: 

𝑃 = 𝑤௦ ∙ 𝑃ாௌ
௦ + 𝑤௖ ∙ 𝑃ாௌ

௖௫௧ + 𝑤ெ௅ ∙ 𝑃ெ௅ (5.15) 

in which 𝑤௦, 𝑤௖ and 𝑤ெ௅ are the weight parameters of each level’s information. 
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5.2.5 Definition of Multi-label Focal Loss 

Multi-label (ML) loss function [165] is the commonly used loss function in multi-label 

learning. Instead of concentrating on individual label discrimination like traditional cross-

entropy loss function, ML-loss focused on considering the correlations between the different 

labels. Inspired by [164], ML-loss is rewritten as multi-label focal loss. Multi-label focal loss 

not only considers emotion correlation but also focus more on misclassified emotion pairs. 

Besides, it introduces a harmonic parameter to reduce the influence of the imbalance 

prediction of positive and negative emotions. The definition of multi-label focal loss is 

defined as follows:  

𝐸ெ௅ିி௅ = ෍
1

|𝑌௜||𝑌௜|

ே

௜ୀଵ

෍  𝛼௞௟
௜ ∙ 𝑒𝑥𝑝 (−(𝑝௞

௜ − 𝑝௟
௜)

(௞,௟)∈௒೔×௒೔

 (5.16) 

𝛼௞௟
௜ =  𝑤 ∙ (1 − 𝑝௞

௜ )௥ + (1 − 𝑤) ∙ (𝑝௟
௜)௥               (5.17) 

in which 𝑌௜  denotes the set of positive emotions expressed in 𝑖th  instance 𝑠௜ , and 𝑌௜ 

denotes the negative emotion set. 𝑝௞
௜   and 𝑝௟

௜  are the predicted probability of positive 

emotion 𝑒௞ and negative emotion 𝑒௟ respectively. Therefore, the training with above loss 

function is equivalent to maximizing the difference of negatively related emotion pair of 

(𝑝௞
௜ − 𝑝௟

௜). This leads the system to output a higher probability for positive emotion while a 

lower probability for negative emotion. In this way, the emotion correlation of negatively 

related emotion pairs can be taken into consideration. 

𝛼௞௟
௜   is a weighting factor and mainly affected by two parameters: 𝑤 ∈ (0,1)  is a 

harmonic factor aimed to balance the prediction between positive and negative emotions, and 

𝑟 > 0 is a modulating factor aimed to make the loss put more focus on hard and misclassified 

examples during training. Significantly, while 𝑟 = 0, the proposed multi-label focal loss is 

equivalent to the multi-label loss function. 

For well-classified positive-negative emotion pairs (𝑒௞, 𝑒௟ ), predicted probability 𝑝௞
௜  

tends to 1 while 𝑝௟
௜ tends to 0. In this case, the difference of (𝑝௞

௜ − 𝑝௟
௜) tends to the maximum, 

which means the minimum of 𝑒𝑥𝑝 (−(𝑝௞
௜ − 𝑝௟

௜), and the weighting factor 𝛼௞௟
௜  tends to 0. 
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Thereby the loss of well-classified positive-negative emotion pairs is minimized. Conversely, 

for hard-classified emotion pairs, the difference of (𝑝௞
௜ − 𝑝௟

௜) tends to the minimum, which 

could be caused by 𝑝௞
௜  tending to 0 or 𝑝௟

௜ tending to 1. In response to the above two cases, 

𝑤 ∙ (1 − 𝑝௞
௜ )௥ and (1 −  𝑤) ∙ (𝑝௟

௜)௥ are introduced to give more focus on misclassified 𝑝௞
௜  

and 𝑝௟
௜ respectively. 

5.3 Experiments Setup 

5.3.1  Datasets 

We employ two different datasets to evaluate the proposed architecture, which are listed 

below: 

Ren-CECps Dataset is an annotated emotional corpus with Chinese blog texts. The corpus 

is annotated in the document, paragraph, and sentence level. Each level is annotated with 

eight emotional categories (‘Joy’, ‘Hate’, ‘Love’, ‘Sorrow’, ‘Anxiety’, ‘Surprise’, ‘Anger’, 

and ‘Expect’) and corresponding discrete emotional intensity value from 0.0 to 1.0. In our 

experiments, those emotions with an intensity greater than 0.0 are labeled as 1, otherwise 0. 

‘Neutral’ is regarded as the 9𝑡ℎ emotion label in case the sentence holds no emotion. After 

pre-processing, there is a total of 27091 sentences in training data and 7681 sentences in 

testing data. The average number of emotions expressed in a sentence is 1.4468.  

NLPCC2018 Dataset consists of code-switching texts in Chinese, and concerns another 

language English on a small scale [47]. There are total 5 emotions annotated: ‘Happiness’, 

‘Sadness’, ‘Anger’, ‘Fear’, and ‘Surprise’. After pre-processing, there is 4611 texts in training 

data and 955 texts in testing data. The average number of emotions expressed in a sentence 

is 1.1466. 

The cumulative number of each emotion 𝑒௜  on Ren-CECps and NLPCC Datasets is 

calculated: 

𝐶𝑁௜ = ෍ (𝑦௡,௜ = 1
ே

୬ୀଵ
) (5.18) 

in which 𝑦௡,௜ is the annotation of emotion 𝑒௜ in 𝑛௧௛ sample. The statistical results are 
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shown in Table 5.1.  

Table 5.1  Cumulative number of each emotion in Ren-CECps and NLPCC2018 Datasets. 

Ren-CECps  NLPCC2018 

Love 11909 Hate 3533  Happiness 2534 

Anxiety 10099 Anger 2236  Sadness 1502 

Sorrow 8184 Surprise 1121  Surprise 811 

Joy 6223 Neutral 2488  Anger 765 

Expect 4633 - -  Fear 770 

 

5.3.2  Experimental Details 

In this section, we illustrate the experimental details during the model training.  

In terms of the embedding of emotional words, it mainly consists of two parts. The first 

part is the general word embedding. It is initialized by 300-dimensional Word2vec word 

embedding, which is trained on Chinese microblog data [166]. The second part is emotional 

embedding by mapping an external n-dimensional emotion lexicon. Existing emotion 

lexicons are very rare due to the subjective and inconsistent annotation. In our experiments, 

a dimensional emotion lexicon is manually built based on word-level annotation on Ren-

CECps. In our lexicon, each emotion word is annotated as an 8-dimensional vector 𝑣. Each 

dimension corresponding an emotion in [‘Love’, ‘Anxiety’, ‘Sorrow’, ‘Joy’, ‘Expect’, ‘Hate’, 

‘Anger’, ‘Surprise’], and the value represents the emotion intensity. For example, the 

emotional word ’不幸’ (‘Unfortunately’ in English) is represented as [0., 0.23, 0.62, 0., 0., 0., 

0., 0.], which means that this word expresses stronger emotion of ‘Sorrow’ and weaker 

emotion of ‘Anxiety’, and the intensities are 0.62, and 0.23 respectively. Specially, an extra 

token named ‘[EMO_PAD]’ is added to emotion lexicon, and its embedding vector is 

initialized by zeros. This token will be treated as emotional word if the current sentence does 

not contain any other emotional words.  

For RenCECps, because of the non-coexistence of ‘Neutral’ label with other emotion labels, 

the final prediction is subject to the condition: only if the prediction of ‘Neutral’ label obtained 

the highest probability among all labels, the sentence is predicted as ‘Neutral’. Otherwise, it 

is predicted as emotions contained. 



5.3  EXPERIMENTS SETUP 69 

 

In terms of the number of context sentences 𝑘 , we set 𝑘 = 3 , which means that the 

previous 3 sentences are taken as the contextual information. Particularly, replication padding 

with the last sentence is utilized while the number of contextual sentences is less than 3.  

We set the dropout as 0.2 in EcorL module to avoid over-fitting. The hidden size of BiGRU 

in sentence-level encoder is 64 in each direction. For the binary focal loss utilized during the 

network pre-training, modulating factor 𝑟 is set to 2, and the weighting factor 𝛼 is set to 

0.75. In multi-label focal loss, we set the modulating factor 𝑟 to 2 and harmonic factor 𝑤 

to 0.4. Adam optimization method is applied to train the model by minimizing the proposed 

multi-label focal loss.  

5.3.3  Metrics 

In multi-label emotion detection task, the evaluation is more complicated than traditional 

single-label emotion recognition. In this chapter, some popular evaluation measures typically 

utilized in this task are utilized to measure the performance of proposed methods [165]. 

Micro F1-score and Macro F1-score are utilized as the main metrics to evaluate the global 

performance of each model. F1 score is the harmonic mean of precision and recall. Micro F1-

score gives each sample the same importance, while Macro F1-score takes all classes as 

equally important. Hamming Loss (HL) is the fraction of labels that are incorrectly predicted. 

Average precision (AP) evaluates the average fraction of labels ranked above a particular 

label 𝑦: 𝑦 ∈ 𝑌௜  are actually in 𝑌௜ , in which 𝑌௜  is positive emotion set of 

sentence. Coverage evaluates how far it is needed to go down the ranked emotion list to 

cover all the relevant emotions in the instance. One Error (OE) evaluates the fraction of 

sentences whose top-ranked emotion is not in the relevant emotion set. Ranking Loss (RL) 

evaluates the average fraction of label pairs that are reversely ordered for instance.  

5.3.4  Baseline Models 

To demonstrate the performance of the proposed MEDA model, some baseline methods 

are compared in our experiments: 

BR [167], Binary Relevance, based on the label independence assumption, transforms a 

multi-label classification problem into multiple binary classification problems.  
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CC [168 ], Classifier Chains, a multi-label model that arranges binary classifiers into a 

classifier chain to capture the label correlations.  

LP, LabelPowerset, creates one multi-class classifier for every label combination attested 

in the training set. 

BP-MLL [165], is derived from the backpropagation algorithm by employing a novel error 

function to capture the characteristics of multi-label learning.  

DPCNN [ 169 ], a low-complexity word-level deep pyramid CNN network that can 

efficiently capture global representations of text. 

HANs [148], hierarchical attention networks that mirror the hierarchical structure of 

documents. HANs can find the essential words and sentences in a document while taking the 

contextual information into consideration. 

SGM [170], transfers multi-label classification task to a sequence generation problem and 

can capture the correlations between labels. 

In previous studies, several emotion recognition methods have been implemented in 

RenCECps datasets and achieved the previous state-of-the-art performances. Therefore, we 

take them as baselines to verify the performance of our method in RenCECps, which includes: 

DATN [121], divides the sentence representation into two different feature spaces, which 

aims to capture the general sentiment words and the other critical emotion-specific words via 

a dual attention mechanism. 

SGM-IFC [171 ], utilizes the attention-based Seq2Seq model to solve the multi-label 

problem. An initialized fully 

connection layer is employed to capture the correlation between any two different labels. 

For the baselines of BR, CC and LP, we take pre-trained BERT model as sentence encoder 

and Gaussian Naive Bayes as the classifier, and all experiments are implemented based on 

Scikit-multilearn library. The results of baselines BP-MLL, SGM, DATN, and SGM-IFC on 

RenCECps dataset are adopted from the published papers [152], [121], [171]. For others, the 

comparison experiments are implemented based on the open-source codes shared on GitHub. 

5.4 Experimental Results and Discussions 

Experimental results of the proposed method and baseline models are reported in section 
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5.4.1. The discussions are organized into two sections. In section 5.4.2, we analyzed the 

contribution of multi-level information from each sub-model. In section 5.4.3, we evaluate 

the effectiveness of emotional features by ablation experiments. In section 5.4.4, we explore 

the effectiveness of proposed multi-label focal loss on this task.  

Table 5.2  Comparison results on RenCECps Dataset  

 
Micro F1 %  

(↑) 

Macro F1 %  

(↑) 

AP %  

(↑) 

HL  

(↓) 

Coverage 

(↓) 

OE  

(↓) 

RL  

(↓) 

BR 46.40 34.79 63.69 0.2464 2.8313 0.5221 0.1789 

CC 46.97 33.62 63.16 0.2282 2.9721 0.5234 0.1965 

LP 45.15 42.51 62.62 0.2069 2.9117 0.5275 0.1861 

BP-MLL 48.89 38.13 55.45 0.2241 3.1272 0.4625 0.3234 

DPCNN 49.99 35.47 65.43 0.1583 3.0555 0.4834 0.1993 

HANs 54.54 41.36 70.65 0.1504 2.4631 0.4520 0.1362 

SGM 55.60 - - 0.1758 - - - 

DATN - 45.70 73.20 - - 0.4150 - 

SGM-IFC 58.60 - - 0.1613 - - - 

S-MC-ESFE 59.24 47.73 75.19 0.1367 2.3170 0.3760 0.1163 

C-MC-ESFE 55.30 34.34 74.76 0.1213 2.2765 0.3915 0.1134 

MEDA 59.71 47.25 75.76 0.1378 2.2369 0.3763 0.1084 

MEDA-FS 60.76 48.31 76.51 0.1249 2.2226 0.3618 0.1062 

Table 5.3  Comparison results on NLPCC2018 Dataset  

 
Micro F1 % 

(↑) 

Macro F % 

(↑) 
AP % (↑) 

HL  

(↓) 
Coverage (↓) 

OE  

(↓) 

RL  

(↓) 

BR 48.92 41.07 67.74 0.2975 2.1645 0.4958 0.2771 

CC 49.92 40.51 68.63 0.2790 2.1221 0.4883 0.2668 

LP 47.67 36.81 67.04 0.2456 2.1592 0.5159 0.2758 

BP-MLL 55.66 41.65 74.78 0.2584 1.8896 0.4002 0.2066 

DPCNN 46.07 34.25 64.22 0.2420 2.3482 0.5414 0.3231 

HANs 55.69 42.78 76.92 0.2805 1.7930 0.3758 0.1835 

SGM 57.11 36.28 64.24 0.1843 2.7813 0.4395 0.4267 

S-MC-ESFE 63.32 49.23 77.19 0.1849 1.7340 0.3780 0.1694 

C-MC-ESFE 60.59 46.90 76.43 0.1719 1.7592 0.3895 0.1749 

MEDA 61.21 47.70 75.90 0.1696 1.7665 0.4021 0.1775 

MEDA-FS 63.02 49.42 77.12 0.1728 1.7288 0.3812 0.1681 
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5.4.1 Experimental Results 

Experimental results of the proposed methods against baselines are shown in Table 5.2 and 

Table 5.3, the best two results on each metric are in bold and in bold italics, respectively.  

As the results shown in Table 5.2, the proposed model significantly outperforms baseline 

models and achieves state-of-the-art performance on RenCECps. Compared with SGM-IFC 

[171], which has previously achieved the state-of-the-art performances, proposed MEDA-FS 

has improved micro-F1 score from 58.60% to 60.76% and reduced hamming loss from 

0.1613 to 0.1249. Compared with DATN, the proposed MEDA-FS has improved macro-F1 

score from 45.70% to 48.31%, improved average precision from 73.20% to 76.51%, and 

reduced one error from 0.4150 to 0.3618. Besides, our model outperforms other deep learning 

methods and commonly used machine learning methods to a great extent, such as BR 

algorithm and SGM model. 

Table 5.3 shows the experimental results of proposed model and baselines on NLPCC2018 

dataset. Our proposed model achieved excellent results on almost all metrics except hamming 

loss. The hamming loss of proposed MEDA-FS is 0.1728, while the best is 0.1617 (achieved 

by LP). HL is the fraction of wrong labels to the total number of labels and penalizes only the 

individual labels. There are mainly two reasons for the higher hamming loss. One reason is 

that weak emotions are difficult to predict accurately. MC-ESFE module can prevent the 

features of weak emotions from being covered by strong emotions to some extent, but not 

completely. Their emotional features are not noticeable and are difficult to recognize. The 

classifier tends to conservatively predict them as negative emotions to ensure the whole 

performance among all emotion labels. Another reason is that the data distribution is 

imbalanced. It is hard to guarantee the performance of low-source emotion categories. In 

future work, more attention will be paid to the detection of weak and low- source emotions. 

In addition to hamming loss, the global performance of proposed method can also be reflected 

by other multi-label metrics, such as micro-F1, macro-F1, and average precision, on which 

the proposed method has achieved satisfying performance.  
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5.4.2 Discussion of Sub-models 

MEDA-FS is composed of 3 sub-models: MEDA, S-MC-ESFE and C-MC-ESFE. These 

sub-models are devoted to learning information from different levels and contributing to a 

more comprehensive ensemble model. To further explore the contribution of each sub-model, 

we further analyze their performance on RenCECps in this section. The comparison results 

are shown in Table 5.4 and Figure 5.3.  

Table 5.4  Comparison results of sub-models on RenCECps.  

 Micro Macro 

 P  R  F1 P  R  F1 

S-MC-ESFE  52.16 68.55 59.24 42.48 56.72 47.73 

C-MC-ESFE 59.34 51.77 55.30 43.15 32.01 34.34 

MEDA 51.81 70.46 59.71 41.44 57.54 47.25 

MEDA-FS 55.77 66.72 60.76 46.10 52.21 48.31 

 

 

Figure 5.3  Comparison results of sub-models on RenCECps. 
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MEDA: As the global performance shown in Table 5.2, MEDA (micro-F1 = 59.71%, HL 

= 0.1378) outperforms the previous state-of-the-art model SGM-IFC (micro-F1 = 58.60%, 

HL = 0.1613), and outperforms another two sub-models on micro-F1, AP and ranking loss. 

MEDA network consists of two modules. The first is MC-ESFE, which is a hierarchical 

network and extracted emotion-specified features from both sentence-level and context-level 

in each channel. This feature matrix is extracted from the under-layer and each dimension 

focused on a certain emotion, which could conclude more detailed emotion-specified 

information. Another is ECorL module, which learns more global semantic information and 

emotion correlations based on above emotion-specified features. These two modules enable 

MEDA to give emotion predictions based on context and emotion correlation information. 

To verify whether the emotion correlation information is learned in MEDA, we visualize 

the emotional correlation coefficients matrix. It is calculated with Pearson product-moment 

correlation coefficients, which indicates the level to which two emotions vary together: 

𝑅௜௝ = 𝑐𝑜𝑣(𝐸௜,  𝐸௝)/𝜎𝐸௜ ∙ 𝜎𝐸௝ (5.19) 

Where 𝐸௜ =  [𝐸ଵ௜ , 𝐸ଶ௜, … 𝐸ே௜]  and 𝐸௡௜  is the emotional intensity of emotion 𝑒௜  in 

the  𝑛𝑡ℎ  sample. 𝑐𝑜𝑣(𝐸௜,  𝐸௝)  is the covariance of 𝑒௜  and 𝑒௝ , and 𝜎  is the standard 

deviation. Figure 5.4 and Figure 5.5 show the comparison of the actual correlation 

coefficients matrix on Ren-CECps and the predicted correlation coefficients matrix in MEDA 

model. We can observe that the distribution of positively/negatively related emotion pairs 

predicted in MEDA is similar to the real distribution on Ren-CECps. Taking ‘Love’ as an 

example. Figure 5.4 shows that in actual distribution, the most positively related emotion with 

‘Love’ is ‘Joy’ (+0.20) while the most negatively related emotion is ‘Anxiety’ (-0.38). This 

means that emotions ‘Love’ and ‘Joy’ often occur together while ‘Love’ and ‘Anxiety’ rarely 

appear together. The above emotion correlation information can also be learned by MEDA: 

correlation coefficient of ‘Love’ and ‘Joy’ is +0.51 while ‘Love’ and ‘Anxiety’ is -0.65. 

Besides, there are some emotion pairs with emotion correlation that have been learned, such 

as ‘Love’ and ‘Sorrow’ (-0.39), ‘Anxiety’ and ‘Joy’ (-0.43), ‘Hate’ and ‘Anger’ (+0.40), etc. 

The results demonstrate the ability of emotion correlation learning in proposed MEDA. 
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Figure 5.4  Emotional correlation coefficients matrix in RenCECp 

 

Figure 5.5  Emotional correlation coefficients matrix learned by MEDA 

S-MC-ESFE: Results in Table 5.2 indicate that the prediction of S-MC-ESFE is better than 

baselines on most metrics. Compared with MEDA, S-MC-ESFE achieves a higher macro-F1 

value (47.73% while 47.25%). Although this gap is small, it can reflect the average level of 

emotion detection of each emotion category in S-MC-ESFE. The higher macro-F1 of S-MC-

ESFE suggests that for some sparse-resources emotion categories, it could give more accurate 

prediction than MEDA model. S-MC-ESFE is an intermediate model derived from MC-

ESFE during sentence-level pre-training. In S-MC-ESFE, each channel is trained channel-

wise and can be considered as multiple binary emotion classifier. During the training of each 

classifier, only the parameters of the corresponding channel are updated, which could make 

the model focus more on the feature extraction of a specified emotion. Take a sentence as an 
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example: ‘For a long time, I write about funny things in my blog, but this time, my heart is 

heavy.’ In the channel of ‘Joy’, feature extraction will pay more attention to the words ‘funny 

things’, while ‘Sorrow’ channel focused more on ‘heart is heavy’. Therefore, in each channel, 

the prediction of whether the sentence contains the corresponding emotion will be more 

accurate.  

C-MC-ESFE: In C-MC-ESFE model, contextual information is further considered 

compared with S-MC-ESFE model. The results in Table 5.2 shows that both macro-F1 and 

micro-F1 are inferior to S-MC-ESFE. However, C-MC-ESFE achieves a better hamming loss 

(HL = 0.1213) than MEDA (HL = 0.1378). To further explore the role of C-MC-ESFE in 

MEDA-FS model, we further compared the micro/macro precision and recall of each sub-

model. The results are shown in Table 5.4. 

From Table 5.4, we can see that the lower F1-score of C-MC-ESFE mainly because of the 

lower recall during prediction. Its micro recall is 51.77% while S-MC-ESFE is 68.55%. 

Although its recall is lower, it can ensure that the prediction is more accurate: micro-precision 

of C-ESFE is 59.34% while S-MC-ESFE is 52.16%. This means that the prediction given by 

C-MC-ESFE model is more rigorous. Therefore, with higher precision, the C-MC-ESFE 

model improves the confidence for the final prediction of the ensemble model.  

S-MC-ESFE, C-MC-ESFE, and MEDA mean different levels of information from 

sentence-level, context-level, and emotion correlation level. They are integrated into MEDA-

FS and contribute to more accurate and stable predictions in emotion detection task. 

5.4.3 Ablation Experiments 

In the sentence-level embedding, we extract the emotional features based on the external 

emotional lexicon. To evaluate the effect of emotional features on experimental results, we 

train the model without this feature on RenCECps dataset. The experimental ablation results 

are shown in Table 5.5.  

From Table 5.5, both MEDA model and MEDA-FS model with emotional features 

outperform the models without emotional features on almost all metrics. It is revealed that 

considering emotional features can make contributions to the classification improvement. In 

deep emotion recognition models, low-resource emotional datasets have been challenging, 
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and effectively incorporating existing emotional resources is the key to improving 

performance. In proposed MEDA, external emotional lexicon works as prior knowledge and 

is directly incorporated in sentence-level encoding. This method implements external 

knowledge supplementation in the simplest way and contributes to the effective extraction of 

emotional features. 

Table 5.5  Ablation study on RenCECps dataset 

 MEDA MEDA-FS 

 With Without With Without 

Micro F1: %  59.71 56.22 60.76 57.33 

Macro F1: %  47.25 42.91 48.31 44.16 

AP: %  75.76 73.22 76.51 74.11 

Hamming Loss 0.1378 0.1342 0.1249 0.1313 

Coverage  2.2369 2.3703 2.2226 2.3322 

One Error  0.3763 0.4101 0.3618 0.3959 

Ranking Loss  0.1084 0.1239 0.1062 0.1189 

‘With’ and ‘without’ denote with and without emotional features. 

5.4.4 Discussion of Multi-Label Focal-Loss 

In this section, we discuss the effectiveness of proposed multi-label focal loss (ML-FL) on 

emotion detection results. In the definition of multi-label focal loss, 𝑤 is a harmonic factor 

aimed to balance the prediction of positive and negative labels. In this way, it has an effect on 

balancing the results of precision and recall, thus obtains an optimal F1 value. To verify the 

influence of 𝑤 in emotion detection, we vary the value of w from 0. to 1. and compared it 

with two other commonly used loss functions: binary cross-entropy loss function(CE-loss) 

and multi-label loss function (ML-loss). The comparison experiments are implemented on 

RenCECps dataset, and the results are shown in Figure 5.6 and Table 5.6.  

The results of CE-loss and ML-loss both show a higher recall (81.06% and 80.60% in 

micro-recall) while lower precision (41.95% and 44.39% in micro-precision). Precision is the 

average probability of relevant retrieval, while recall is the average probability of complete 

retrieval. They are two metrics restrain mutually [172]. In this emotion detection task, we 

hope to recognize as many emotions as possible, based on the premise of ensuring precision. 
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The comparison results of cross-entropy(CE), multi-label loss function(ML), and proposed 

multi-label focal loss with different weights are shown in Figure 5.6  The comparison results 

for cross-entropy(CE), multi-label loss function(ML), and proposed multi-label focal loss 

with different weights.a proper 𝑤 can modulate the value between recall and precision, thus 

achieve both higher precision and F1-score to alleviate the above problems. 
 

 
 

 

Figure 5.6  The comparison results for cross-entropy(CE), multi-label loss function(ML), and 

proposed multi-label focal loss with different weights. 

Table 5.6  Results comparison of MEDA model with different loss functions 

 Micro % (↑) Macro: % (↑) AP: % 

(↑) 

HL  

(↓) 

Coverage 

(↓) 

OE  

(↓) 

RL  

(↓)  P P F1 P P F1 

CE-loss 41.95 81.06 55.29 37.26 64.71 42.79 70.64 0.1900 2.4496 0.4598 0.1349 

ML-loss 44.39 80.60 57.25 35.49 69.84 46.07 72.27 0.1745 2.3652 0.4421 0.1251 

ML-FL  

(w = 0.4) 
51.81 70.46 59.71 41.44 57.54 47.25 75.76 0.1378 2.2369 0.3763 0.1084 
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Figure 5.7  The comparison results of each emotion with different loss 

We will analyze the role of the parameter 𝑤 in the curve change. From the tendency of 

the curve in Figure 5.6  The comparison results for cross-entropy(CE), multi-label loss 

function(ML), and proposed multi-label focal loss with different weights. We can see that as 

the weight 𝑤 increases, precision shows a downward trend, recall shows an upward trend 

while the overall trend of F1-score is to rise first and then fall. The loss function proposed in 

this chapter is committed to maximizing the prediction difference between positive-negative 

emotion pairs. The weighting factor 𝛼 is dedicated to balancing the prediction of positive 

and negative labels, which aimed to recognize as many emotions as possible while ensuring 

the accuracy of prediction. The weight 𝛼 is consists of two parts to control the prediction 

loss of positive and negative emotions, respectively: 

𝛼௣௢௦
௜ = 𝑤 ∙ ൫1 − 𝑝௞

௜ ൯
௥

, 𝛼௡௘௚
௜ = (1 − 𝑤) ∙ (𝑝௟

௜)௥ (5.20) 

Considering the limit case, if harmonic factor 𝑤  gradually increases to the maximum 

𝑤 = 1： 
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𝛼௣௢௦
௜ ≈ ൫1 − 𝑝௞

௜ ൯
௥
, 𝛼௡௘௚

௜ ≈ 0 (5.21) 

In this case, as long as the model predicts all the emotion as 𝑝௜ = 1 , it is possible to 

minimize 𝛼௣௢௦
௜ = 0, thereby minimizing the loss. In this way, the prediction gap between 

positive and negative emotion pairs 𝑒𝑥𝑝 (−(𝑝௞
௜ − 𝑝௟

௜) can only play a weak role. Therefore, 

the results show a higher recall while precision is difficult to be guaranteed: while 𝑤 = 1.0, 

the micro-precision, recall, and F1-score are 39.22%, 85.29%, and 53.74%, respectively. 

Conversely, as 𝑤  gradually decreases, 𝛼௡௘௚
௜   gradually increases. In this way, the 

prediction error of the negative label will bring greater losses. To reduce the loss, the model 

predicts the positive label more conservatively, and thus the recall decreased and precision 

could be guaranteed to some extent. Therefore, it can be assumed that by choosing an 

appropriate value of 𝑤, it is possible to reach a balance between precision and recall, and 

then achieve satisfactory results. As the results in Figure 5.6  The comparison results for 

cross-entropy(CE), multi-label loss function(ML), and proposed multi-label focal loss with 

different weights., take F1-score to measure the overall performance, while 𝑤 ∈ [0.3,0.5], 

proposed multi-label focal loss outperforms cross-entropy and multi-label loss function. To 

be specific, while 𝑤 = 0.4, its micro-precision is 51.81%, micro- recall is 70.46%, micro-

F1-score is 59.71%. Compared with ML-loss, although the recall drops, its micro-precision 

improved 7.42% and micro-F1 improved 2.46%. Table 5.6 shows the comparison results of 

different loss functions on multi-label metrics, which demonstrate that multi-label loss 

function outperforms others. 

5.5 Summary 

In this chapter, a Multiple-label Emotion Detection Architecture (MEDA) was proposed 

for the textual multi-label emotion detection task. MEDA was composed of two modules, its 

key idea was to capture emotion-specified features by MC-ESFE module in advance, and 

then learn emotion correlations based on above features in ECorL module. In MC-ESFE 

module, information of each emotion reflected in the text was separately encoded from 

sentence-level to context-level, which contributed a lot to underlying fundamental feature 
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extraction. In ECorL module, bidirectional-GRU network was utilized as emotion sequence 

predictor and emotion correlation learning was implemented among emotion-specified 

features. MEDA-FS integrated three sub-models derived from MEDA, and realized 

information fusion from sentence-level, context-level, and emotion correlation level. 

Furthermore, to incorporate emotion correlation information into model training, multi-label 

focal loss was proposed for multi-label learning. The proposed model achieved satisfactory 

performance and outperformed state-of-the-art models on both RenCECps and NLPCC2018 

datasets, demonstrating the effectiveness of the proposed method for multi-label emotion 

detection. 
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Chapter 6 
6 Conclusion and Future work 

Conclusion and Future works 

6.1 Conclusion 

This thesis focuses on textual emotion recognition research and has proposed some related 

methods for perusing more accurate emotion prediction. Our work mainly revolves around 

some remaining challenges in this field: (1) the limitation of data imbalance, which is 

inevitable in the real-world database, (2) how to realize more accurately emotion prediction 

through contextual learning, (3) how to realize effective multi-label emotion recognition 

through emotion correlation learning. The concrete summaries and contributions are 

displayed as follows:  

(1) An external background knowledge enhanced multi-stream neural network is proposed 

to address the limitations of data imbalance. The experimental results prove that the 

proposed network concisely and efficiently integrates external background knowledge, 

achieves information enhancement, and makes up for the neglected or missing 

information in the basic network. 

(2) A hierarchical model with label embedding is proposed for contextual emotion 

recognition. The hierarchical model can effectively learn the emotional representation 

of a given sentence based on contextual information, while the label embedding matrix 

is conducive to realize emotion-correlation learning and emotion prediction. This 

method has the strong ability to learn emotional features for contextual emotion 

recognition, contributing to emotion correlation-based emotion prediction. 

(3) A Multi-label Emotion Detection Architecture (MEDA) is proposed for multi-label 

learning and emotion correlation learning. MEDA can extract emotion-specified 
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features from sentence level to context level through a multi-channel hierarchical 

structure and realize emotion correlation learning and multi-label prediction through 

an emotion sequence predictor. Besides, the defined multi-label focal loss can make 

the model focus more on misclassified positive-negative emotion pairs, contributing to 

guarantee the overall performance. 

6.2 Future Works 

There is still much space for improvements in our works. To recognize all possible emotion 

labels in multi-label TER task, discernible feature representation of the weaker emotion 

category is a critical problem. This thesis has conducted some works to prevent weak emotion 

features from being covered by strong emotions to some extent, but not completely. Future 

work will try to explore more effective methods to recognize weak emotions more accurately. 

Abundant resources are the basis of neural network training, and external emotion resources 

can be severed as prior knowledge to enhance emotional feature representation. In future 

work, more emotional resources could be incorporated for better emotional understanding.  

Furthermore, as the most extensive application scenario of the TER system, TER in 

dialogue has received continuous attention in NLP and affective computing. This thesis 

addressed some challenges, such as contextual-level emotion encoding, which also exists in 

the dialogue level TER system. Developing an intelligent dialogue-level emotion recognition 

system is worthy of further attention in future works, and some related sub-tasks, such as 

multi-party emotional interaction, personality modeling, and dynamic emotional tracking, 

can form new research directions. 
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