
Image Classification and Its Applications on Insect Pest

Recognition

劉文傑　

A Thesis submitted to Tokushima University in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

March, 2021

Tokushima University

Graduate School of Advanced Technology and Science

Information Science and Intelligent Systems

Table of Contents

1 Introduction 1

1.1 Main Research Contents . 2

1.2 Thesis Organization . 3

2 Background 5

2.1 The Architecture of Convolutional Neural Network 5

2.2 Convolutional Neural Network Learning Algorithm 10

2.3 The Convolutional Neural Network Training and Inference Process 12

2.4 Image Classification Model . 14

2.5 Datasets . 18

3 Related Work 21

3.1 Deep Convolutional Neural Networks . 21

3.2 Residual Networks . 22

3.3 Feature Fusion Networks . 23

3.4 Attention Mechanism in CNNs . 24

3.5 Application in Insect Pest Recognition . 25

4 Feature Reuse Residual Network 26

4.1 Methodology . 26

4.2 Model Optimization . 28

4.3 Experiments and Analysis . 29

4.3.1 Implementation on CIFAR-10, CIFAR-100 and SVHN datasets 30

4.3.2 CIFAR-10 Classification by FR-ResNet . 30

i

TABLE OF CONTENTS ii

4.3.3 CIFAR-100 Classification by FR-ResNet 33

4.3.4 Feature Reuse for Pre-ResNet and WRN . 34

4.3.5 Effect of Feature Reuse, Depth and Width 36

4.3.6 SVHN Classification Results . 38

4.3.7 IP102 Classification Results . 39

4.4 Discussion . 41

4.4.1 Feature Reuse . 42

4.4.2 Stronger Capacity of Representation . 42

4.5 Summary . 43

5 Deep Feature Fusion Residual Network 45

5.1 Methodology . 45

5.2 Model Optimization . 47

5.3 Experiments and Analysis . 49

5.3.1 Influence of Hyper-parameters . 49

5.3.2 Implementation on CIFAR and SVHN datasets 50

5.3.3 CIFAR-10 Classification by DFF-ResNet 50

5.3.4 CIFAR-100 Classification by DFF-ResNet 52

5.3.5 Deep Feature Fusion for WRN . 53

5.3.6 Effect of Depth and Width . 55

5.3.7 SVHN Classification Results . 56

5.3.8 Classification Result on IP102 . 57

5.4 Discussion . 59

5.4.1 Effect of Feature Fusion Residual Block . 59

5.4.2 Effect of Adding Residual Blocks in Earlier Groups 60

5.5 Summary . 61

6 Deep Multi-Branch Fusion Residual Network 62

6.1 Methodology . 62

6.2 Model Optimization . 65

6.3 Experiments and Analysis . 67

6.3.1 Influence of hyper-parameters . 68

TABLE OF CONTENTS iii

6.3.2 Implementations on CIFAR Datasets . 68

6.3.3 CIFAR Classification by DMF-ResNet . 70

6.3.4 The impact of depth and width . 71

6.3.5 Ablation Study . 73

6.3.6 Classification results on IP102 . 75

6.4 Discussion . 78

6.4.1 The effectiveness of the multi-branch fusion and SFR module 78

6.4.2 Parameter efficiency . 80

6.5 Summary . 80

7 Conclusions and Future Work 82

References . 96

List of Tables

4.2.1 Test error (%) on CIFAR-10 with different types of convolutions for FR-ResNet. . . 28

4.3.1 Test error(%) on CIFAR-10 by ResNets and FR-ResNets. 31

4.3.2 Test error (%) on CIFAR-100 by ResNets and FR-ResNets. 33

4.3.3 Test error(%) on CIFAR-10 and CIFAR-100 by Pre-ResNets and FR-Pre-ResNets. . . 33

4.3.4 Test error(%) on CIFAR-10 and CIFAR-100 by WRNs and FR-WRNs. 36

4.3.5 Test error(%) on CIFAR-10 and CIFAR-100 by FR-ResNet with different depths. . . 36

4.3.6 Test error(%) on CIFAR-10 and CIFAR-100 by FR-Pre-ResNet with different depths. 37

4.3.7 Test error(%) on CIFAR-10 and CIFAR-100 by FR-WRN with different widths and

depths. 37

4.3.8 Test error(%) on SVHN by WRNs and FR-WRNs with different depths. 38

4.3.9 Test accuracy(%) on IP102 by FR-ResNets. 38

4.3.10Test accuracy(%) on IP102 by FR-ResNets. 42

5.2.1 The architecture of DFF-Pre-ResNets for CIFAR datasets. 48

5.3.1 Comparison of test error (%) on CIFAR-10. 51

5.3.2 Comparison of test error (%) on CIFAR-100. 52

5.3.3 Comparison of test error (%) on CIFAR-10 and CIFAR-100 datasets. 54

5.3.4 Comparison of test error (%) on CIFAR-10 and CIFAR-100 by DFF-Pre-ResNet+SD

with different depths. 56

5.3.5 Comparison of test error (%) on CIFAR-10 and CIFAR-100 by DFF-WRN+SD with

different widths. 56

5.3.6 Comparison of test error (%) on SVHN. 58

iv

LIST OF TABLES v

5.3.7 Comparison of F1 score and test accuracy (%) on IP102 by DFF-Pre-ResNets and

other state-of-the-art methods. 58

6.2.1 The test error (%) on CIFAR-100 with different width under a similar total number of

parameters. 67

6.3.1 Comparison the test error (%) of DMF-ResNet with different reducing ratio of r and

t under a similar total number of parameters on CIFAR-100. The model achieves the

best result as r = 2 and t = 4. 68

6.3.2 Test error (%) on CIFAR-100. 71

6.3.3 Test error (%) on CIFAR-10 and CIFAR-100 with different depth. 72

6.3.4 Test error (%) on CIFAR-10 and CIFAR-100 with different width. 72

6.3.5 Test error (%) on CIFAR-100 to demonstrate the effectiveness of multi-branch fusion. 74

6.3.6 Test error (%) on CIFAR-100 to demonstrate the effectiveness of SFR module. . . . 75

6.3.7 Deep multi-branch fusion residual network architectures configuration. 77

6.3.8 The F1 score and test accuracy (%) on IP102 dataset by DMF-ResNet and other state-

of-the-art methods. 78

6.3.9 The highlighted important region. 79

List of Figures

2.1.1 The architecture of convolutional neural network. 5

2.1.2 Max pooling and average pooling. 7

2.1.3 The activation functions . 8

2.2.1 Convolutional neural network training process. 13

2.4.1 The inceptions used in GoogleNet. 14

2.4.2 Residual block and pre-activation residual block. 15

2.4.3 Densely connection network. 16

2.4.4 Squeeze and excitation residual block. 17

2.5.1 Example images from Cifar-10 dataset . 19

2.5.2 Example Images from the IP102 dataset. 20

4.1.1 The original basic residual block and the feature reuse residual blocks. 27

4.2.1 Comparison of FR-ResNet with different location of reducing feature map size on

CIFAR-10. Using type A can achieve best performance than others. 29

4.3.1 Smoothed test errors on CIFAR-10 by ResNets, FR-ResNet, ResNets+SD and FR-

ResNet+SD during training, corresponding to results in Table 4.3.1. Either FR-ResNet

without SD (the orange curve) or FR-ResNet+SD (the red curve) is shown yielding a

lower test error than ResNets. 31

4.3.2 Smoothed test error on CIFAR-100 by ResNets, FR-ResNet, ResNets+SD and FR-

ResNet+SD during training, corresponding to results in Table 4.3.2. FR-ResNet+SD

(the red curve) yields lower test errors than other curves. 32

vi

LIST OF FIGURES vii

4.3.3 Smoothed test error on CIFAR-10 by WRN40-4, WRN40-4+SD, FR-WRN49-4 and

FR-WRN49-4+SD during training, corresponding to results in Table 4.3.4. FR-WRN49-

4+SD (the red curve) yields lower test errors than the other curves. 34

4.3.4 Smoothed test error on CIFAR-100 by WRN40-4, WRN40-4+SD, FR-WRN49-4 and

FR-WRN49-4+SD during training, corresponding to results in Table 4.3.4. FR-WRN49-

4+SD (the red curve) yields lower test errors than the other curves. 35

4.3.5 Smoothed test error on CIFAR-10 by WRN40-4, WRN40-4+SD, FR-WRN49-4 and

FR-WRN49-4+SD during training, corresponding to results in Table 4.3.8. FR-WRN49-

4+SD (the red curve) yields lower test errors than the other curves. 39

4.3.6 Test accuracy on IP102 by 34-layer FR-ResNets and 50-layer FR-ResNet, correspond-

ing to results in Table 4.3.9. 40

4.3.7 Test accuracy on IP102 by several state-of-the-art method, corresponding to results in

Table 4.3.10. 41

4.4.1 Structure of feature reuse residual unit (a), (b) unraveled view of (a) showing that the

output contains two parts: one is from a residual block and the other is from the input

directly. 43

5.1.1 The architecture of Pre-ResNet and FF-Pre-ResNet. 46

5.2.1 The comparison result of different architecture on CIFAR-100 dataset. The structure

of B(1,3,3,1) achieves the best results for 218-layer and 302-layer DFF-Pre-ResNet. 48

5.3.1 Test error (%) of adding residual block in earlier residual groups applied to 218-layer

DFF-Pre-ResNet and 110-layer Pre-ResNet on CIFAR-100 dataset under different

hyper-parameters (k,m). 49

5.3.2 Test error curves (smoothed) on CIFAR-10 by DFF-Pre-ResNet and baseline models

during training period with corresponding results reported in Table 5.3.1. DFF-Pre-

ResNet yields a lower test error than other models. 51

5.3.3 Test error curves (smoothed) on CIFAR-100 by DFF-Pre-ResNet and baseline models

during training period with corresponding results reported in Table 5.3.2. DFF-Pre-

ResNet yields a lower test error than other models. 53

5.3.4 Test error curves (smoothed) on CIFAR-10 by DFF-WRN and baseline models during

training period with corresponding results reported in Table 5.3.3. DFF-WRN yields

a lower test error than WRN. 54

LIST OF FIGURES viii

5.3.5 Test error curves (smoothed) on CIFAR-100 by DFF-WRN and baseline models dur-

ing training period with corresponding results reported in Table 5.3.3. DFF-WRN

yields a lower test error than WRN. 55

5.3.6 Test error curves (smoothed) on SVHN by DFF-WRN and baseline models. The

corresponding results are reported in Table 8. 57

5.3.7 Test accuracy and training loss curves on evaluation set during the training period. . . 59

5.3.8 Performance comparison between the 218-layer DFF-Pre-ResNet (k = 1.3,m = 1.1)

and 182-layer DFF-Pre-ResNet (k = 1.0,m = 1.0), using CIFAR-100 dataset. 60

6.1.1 Different residual block used in this paper. 63

6.2.1 Test error (%) on CIFAR-100. Multi-branch fusion architecture achieves lower test

error than basic architecture, but still higher than bottleneck architecture. 66

6.3.1 Test error curves on CIFAR-10 by 164-layer Pre-ResNet, 245-layer Pre-ResNet, 122-

layer DMF-ResNet without SFR module and 122-layer DMF-ResNet during training,

corresponding to results in Table 6.3.2. The 122-layer DMF-ResNet (the red curve) is

shown yielding a lower test error than other models. 69

6.3.2 Test error curves on CIFAR-100 by 164-layer Pre-ResNet, 245-layer Pre-ResNet, 122-

layer DMF-ResNet without SFR module and 122-layer DMF-ResNet during training,

corresponding to results in Table 6.3.2. The 122-layer DMF-ResNet (the red curve) is

shown yielding a lower test error than other models. 70

6.3.3 Structure of multi-branch fusion residual block with the SE module in different local-

ization for ablation study, corresponding to results in Table 6.3.6. 73

6.3.4 The evaluation curves on IP102 dataset by DMF-ResNet and other state-of-the-art

methods during training period. 79

Acknowledgement 1

Acknowledgement

During the COVID-19 pandemic, my PhD career will come to an end, and I have

mixed feeling. I sincerely hope that the people around the world could stick together to

achieve the victory over the COVID-19 at an early stage. Looking back on the past time,

I am very much missing the time during the two year of study in Tokushima. Upon the

completion of this thesis, I have to thanks those who have offered me encouragement and

support for my study in Tokushima university.

First of all, the profound gratitude should go to my supervisor Professor Fuji Ren,

who is the director of the Tokushima University Ren Laboratory, for his guidance. He

helps me to select the research topic and gives a lot pertinent suggestions with his pa-

tience. With his great support, I could dedicate to complete the research on image classi-

fication tasks. He also inspires me to broaden my research interests, which will provide

more choices for my research work in the future. Meanwhile, with his help, I was awarded

the scholarship to pursue my study in Tokushima.

Secondly, my sincere gratitude also goes to Dr. Xin Kang and Asada. They helped

me a lot in my daily life during the two years in Tokushima. Additionally, I need to

give thanks to my friends at Ren Laboratory. Thanks to Duo Feng, Mengjia He, Siyuan

Xue, Jiawen Deng, Yangyang Zhou, and other friends. We debated the problems together,

which brought lots of benefits to me. Besides, we went to climb the mountain and enjoyed

the time together, which gave me a deeply impression.

Finally, I need to thank my wife, my parents, and parents in law, for their continuous

encouragement and support. With their endless love, I can successfully finish my PhD

degree.

Abstract 2

Abstract

In computer vision community, many excellent convolutional neural networks are

proposed in recent years. Kinds of approaches are applied to improve the model perfor-

mance, such as adding model depth, feature fusion, attention mechanism etc. However,

how to effective extract and utilize the feature in the model is a critical problem for convo-

lutional neural networks. In this thesis, we focused on constructing more effective feature

extracting unit based on residual network for image classification, and we proposed three

variant residual networks, including feature reuse residual network (FR-ResNet), deep

feature fusion residual network (DFF-ResNet), and deep multi-branch fusion residual

network (DMF-ResNet). Meanwhile, insect pests are regarded as the main thread to the

commercially important corps. An effective classification method can avoid economic

losses significantly. Earlier detection will help decrease agricultural losses. For the tradi-

tional classification method, it needs more experts to distinguish the categories of insect

pests, which is expensive and low efficiency. As the deep learning method attracting more

attention, this approach is applied in this domain. In our thesis, we applied our models to

recognize the insect pest, which can achieve considerable improvement compared other

convolutional neural networks.

Feature reuse is an effective method to improve the capability of model performance,

and we also adopted this method in our model. Based on the original residual block, we

combined feature from the input signal of a residual block and the residual signal to-

gether, which reuse the feature from the previous layer in a new and simple mode. There-

fore, we named it a feature reuse residual block. In each block, it enhances the capacity

of representation by learning half and reuse half feature. By stacking the feature reuse

residual block, we obtained the feature reuse residual network (FR-ResNet) and evalu-

ated the performance on several benchmark dataset, including CIFAR, SVHN, and IP102.

The experimental results showed that FR-ResNet could achieve significant performance

improvement in terms of image classification. Moreover, to demonstrate the adaptive

Abstract 3

of our approach, we applied it to various kinds of residual networks, including ResNet,

Pre-ResNet, and WRN. The experimental results also showed that the performance could

be improved obviously than original networks. Based on these experiments on several

benchmark datasets, it demonstrates the effectiveness of our approach.

In FR-ResNet, it has a drawback that adding the model width will bring more param-

eters. Therefore, to obtain a good tradeoff between model performance and parameters,

we modified the architecture of feature reuse residual block and proposed the feature

fusion residual block. In each feature fusion residual block, we fused the feature from

the previous layer between two 1×1 convolution layer in residual signal branch to ex-

tract more feature for our task. Meanwhile, we explored the contribution of each residual

group to the entire model. We found that adding the number of residual blocks in earlier

residual groups can promote the model performance significantly, which makes the model

having a better capacity of generalization. Following the architecture of FR-ResNet, we

construct the Deep Feature Fusion Residual Network (DFF-ResNet). Furthermore, we

combined our approach with two common residual networks (Pre-ResNet and WRN) to

prove the validness and adaptiveness of our method. Then, we validated these models on

several benchmark datasets, including CIFAR and SVHN. The empirical experimental

results indicate that our models have a better model performance than FR-ResNet and

other state-of-the-art methods. Then, we apply our models in the field of recognizing

insect pests, and we evaluate our models on IP102 dataset. Under the similar total num-

ber of model parameters, the DFF-ResNet surpasses FR-ResNet on several benchmark

datasets with fewer parameters, respectively. Meanwhile, DFF-ResNet had better test

accuracy performance than other state-of-the-art methods.

Activated by the proceding works, to learn the multi-scale representation to improve

the model performance, we fused the extracted feature from three branches in each resid-

ual block. Specifically, in the new residual block, it contains three branches, including

the basic branch, the bottleneck branch, and the branch from the input with linear con-

version. Based on this structure, to further improve the model performance, we proposed

LIST OF FIGURES 4

the SFR module to recalibrate channel-wise feature responses and to model the rela-

tionship between these branches. The experimental results verified the effectiveness of

our approach on CIFAR-10 and CIFAR-100 datasets. Even for extremely deep DMF-

ResNet, our model can achieve compelling results. Compared to the baseline models

and other state-of-the-art methods, our model can obtain the best model performance on

IP102 dataset, which had proved the validness of our approach for the high-resolution

image classification task. Through visualizing the highlighted regions on images, we can

further explain the effect of our approach for the image classification task.

In this thesis, we proposed the FR-ResNet, DFF-ResNet, and DMF-ResNet end

evaluated these models on several benchmark datasets. The experimental results demon-

strated that our approaches can effectively improve the model performance. Besides,

it also verified that our proposed models could extract more useful features for image

classification tasks.

Keywords: Deep Learning, Residual Network, Feature Reuse Feature Fusion, Multi-

branch Fusion, Insect Recognition, Image Classification

Chapter 1

Introduction

The emergence of deep learning technology has made breakthroughs in various

fields, including natural language processing [1, 2, 3], emotion computing [4, 5, 6], es-

pecially for computer vision tasks, such as image classification [7, 8, 9, 10, 11, 12, 12,

13, 14, 15], object detection [16, 17, 18, 19], image segmentation [20, 21, 22, 23], fa-

cial expression recognition [24, 25]. Since LeNet [26] introduced the use of deep neural

network architectures for computer vision tasks, the advanced architecture AlexNet [10]

acquired ground-breaking victory at the ImageNet competition in 2012 by a large margin

over traditional methods. Subsequently, many excellent neural networks, such as ZF-

net [27], VGG [11], GoogleNet [12], Residual Networks [13, 14], and Inception Resid-

ual Networks [15], have been proposed and achieved better performance on ImageNet

and other benchmark datasets. The ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2015, Residual Networks (ResNets) [13] win the 1st places on: ImageNet

classification, detection, localization and COCO detection as well as segmentation tasks.

The concept of shortcut connections inside a proposed residual unit for residual learn-

ing makes it possible to train much deeper network architectures. Then, an increasing

number of deep residual network variants are emerged, which construct a family of deep

residual networks. Our works in this thesis are also based on ResNet. Meanwhile, the

development of deep learning is inseparable from convolutional neural networks.

1

CHAPTER 1. INTRODUCTION 2

The development of the convolutional neural network can be traced back to 1962,

as Hubel and Wiesel [28] studied the visual system in the cat brain. In 1998, Yann Le-

Cun proposed LeNet-5 [26], which adopted gradient-based learning applied to document

recognition. Meanwhile, Back-Propagating (BP) algorithm [29] is applied to the training

of neural network structure, forming the prototype of contemporary convolutional neural

network. Until 2012, with the emergence of AlexNet [7], the neural networks attracted

more attention. In the ImageNet Large Scale Visual Recognition (ILSVRC) 2012, the

AlexNet drop the test error on ImageNet dataset from over 25% to 15%, which intro-

duced a new deep structure and a dropout neural network method and overturned the

field of image recognition. Since then, the convolutional neural network has gained great

fame and developed rapidly. It is widely used in various fields, includiing autonomous

driving, intelligent robots, and agriculture, and achieves the best performance in many

problems. Thus, to evaluate the effectiveness of our approaches on real world problems,

we choose to apply our proposed models in agricultural field to recognize insect pests.

1.1 Main Research Contents

The main research contents can be divided into following points:

1) To enrich the extracted feature for the classification task, we proposed a feature

reuse residual block. By stacking the feature reuse residual block, we obtained the

FR-ResNet. To verify the effectiveness of our approach, we evaluated our model on

CIFAR-10/100, SVHN benchmark dataset and explored the properties of the model.

Meanwhile, we applied our approach on Pre-ResNet and WRN to demonstrate the

generalization of our method. The experimental results indicate that our approach

can not only enhance model performance effectively but also be used in other net-

works.

2) To further enhance the capacity of FR-ResNet and address the drawback of FR-

ResNet, we proposed the Deep Feature Fusion Residual Network (DFF-ResNet).

CHAPTER 1. INTRODUCTION 3

Then, we followed the experiment strategies in FR-ResNet to demonstrate the ef-

fectiveness the method. As the experimental results showed that DFF-ResNet can

achieve better performance than FR-ResNet.

3) To fuse the feature from multi-scale branches, we proposed a new residual block

containing three branches to extract more features for image classification task. Fur-

thermore, we proposed a module and embedded it into the new residual block to

recalibrate the channel-wise feature response and to model the relationship of the

three branches. By stacking this kind of block, we constructed the Deep Multi-

branch Fusion Residual Network (DMF-ResNet).

4) We applied the proposed models to recognize the insect pest and evaluated the model

performance on IP102 datasets. The experimental results showed that our proposed

approaches can achieve considerable improvement than the original ResNet with a

similar total number of parameters or fewer parameters.

1.2 Thesis Organization

This thesis is divided into 7 chapters, which is organized as follows.

Chapter 2: Gives some background works including the structure of CNN, CNN

learning algorithm, CNN training and inference process, image classification models,

and the related datasets.

Chapter 3: Reviews some related works including deep convolutional neural net-

works, residual networks, feature fusion networks, attention mechanism and insect pest

recognition.

Chapter 4: Introduces the feature reuse residual block, model optimization, the

model properties, and the experimental results on several benchmark datasets.

Chapter 5: Introduces the feature fusion residual block, model optimization, the

model properties, and the experimental results on several benchmark datasets.

CHAPTER 1. INTRODUCTION 4

Chapter 6: Introduces the multi-branch fusion residual block, model optimization,

the model properties, and the experimental results on several benchmark datasets.

Chapter 7: Presents the conclusion and future works.

Chapter 2

Background

2.1 The Architecture of Convolutional Neural Network

Convolutional neural networks [30] are widely adopted in the computer vision tasks,

including image classification, object detection, and segmentation. In this part, the com-

ponents of a typical convolutional neural network are introduced, including the input

layer, the convolutional layer, the pooling layer, the fully connection layer, the activation

function, and the output layer. Fig. 2.1.1 shows an architecture of convolutional neural

network.

Input

Convolutions ConvolutionsSubsampling Subsampling Fully Connection Softmax

Output

Fig. 2.1.1. The architecture of convolutional neural network.

Input Layer. The convolutional neural network is familiar to deal with euclidean

spatial data, including images. For image classification tasks, the images are feed into

5

CHAPTER 2. BACKGROUND 6

the network. If you input the black and white image, it only has one channel. For color

image, it has three channels for each pixels. In computer vision community, most of the

open datasets contain the color images, which is same as the real world. In this thesis, we

also focus on classifying color images.

Convolution Layer. Convolutional neural network is the first success learning

method applied to deep neural network training. It utilizes the relationship between

features to reduce the parameters to be learned, which improves the back-propagation

training performance and meets the requirements of minimizing data preprocessing. In

the convolutional layer, there are several critical properties, including local connectivity,

spatial arrangement, and parameter sharing. Due to the sparse interactions in convolution

layer, each node connects part of nodes in previous layer. The local connection is called

receptive field. The Fig. 2.1.1 shows local connectivity between convolution layers. In

each convolutional layer, the input of each neuron is connected to the local receptive

field of the previous layer to extract the local features. When the feature is extracted,

the corresponding positional relationship between other features is determined. Spatial

arrangement determine the number of neurons in each convolutional layer, which is con-

trolled by three hyperparameters: the depth, stride, and zero-padding. The depth of the

output volume corresponds to the number of filters we would like to use, each learning

to look for something different in the input. The stride corresponds to the step of filters

moving distance on the feature map. The zero-padding controls the number of pixel to

pad the input volume with zeros around the border. The nice feature of zero padding is

that it will allow us to control the spatial size of the output volumes. Meanwhile, in each

depth slice, the filters are constrained to use the same weights and bias, which is called

parameter sharing scheme. This scheme is used to control the number of parameters in

the convolutional layers.

Pooling Layer. The advantages of adopting pooling layer in ConvNet can be divided

into several points. The first is used to reduce the spatial size of the representation. The

second is used to decrease the number of parameters and computation. Meanwhile, it

CHAPTER 2. BACKGROUND 7

also can control overfitting. Therefore, it is common to periodically insert a pooling layer

between successive convolutional layers in ConvNet architecture. Besides, the pooling

layer reduce the model’s dependency on location information. Therefore, the model will

not be sensitive to object location and rotating for convolutional network. The other

character is that pooling layer can increase the receptive field obviously. Convolutional

layer has finite receptive field, which is hard to obtain the global input image information.

Pooling layer can provide wider receptive field for the following convolutional layer.

There are two common pooling operations in ConvNet architecture: max pooling and

average pooling. Fig. 2.1.2 shows the max and average pooling. As the Fig. 2.1.2 shown,

in max pooling layer, the max value in the sliding window is selected as the output. In

average pooling layer, the values in the sliding window are averaged as the output. In

each pooling layer, there are two hyperparameters: filter size and stride. As Fig. 2.1.2

illustrated, they determine the size of sliding window and the output volume.

4 9

5 6

2 5

2 4

2 4

5 6

5 4

8 4

Max Pooling

Avg Pooling

9 5

6 8

6.0 3.3

4.3 5.3

Fig. 2.1.2. Max pooling and average pooling.

Fully Connected Layer. The fully connected layer is used to select the extracted

feature from previous convolutional layers and output the optimal result. Before the fully

connection layer, flatten or global pooling operation is performed, and all the information

is converted into a one-dimension vector. This operation drops the spatial information,

but it still can acquire the global input information as the increased receptive field in the

CHAPTER 2. BACKGROUND 8

previous layers and is convenient to output the result. In recent years, global pooling with

one fully connection layer is commonly used in ConvNet designation.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid

(a) Sigmoid

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Tanh

(b) Tanh

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

6

8

10 Relu

(c) ReLu

100 80 60 40 20 0 20 40

0

10

20

30

40

50 Leaky relu

(d) Leaky ReLu

Fig. 2.1.3. The activation functions

Activation Function. The activation function plays a critical role in the convolu-

tional network, which can improve the model non-linear representation ability. When

the information pass through the convolutional layer, the output will be affected by the

activation function. In the earlier period of CNN architecture design, the sigmoid and

tanh functions are adopted. Fig. 2.1.3 (a) and (b) shows the activation functions. The

formulations of these functions are represented as follows:

sigmoid(x) =
1

1+ e−x
(2.1.1)

CHAPTER 2. BACKGROUND 9

tanh(x) =
ex− e−x

ex + e−x
(2.1.2)

The sigmoid and tanh activation functions have two advantages. One is that the input

can be constraint between 0 to 1 or -1 to 1, which is convenient to calculate between the

CNN layers. The other is that these two functions are differentiable in the whole interval,

which is a necessary condition for back-propagation algorithm. However, they also have

drawbacks. When the output value is too large or small, the gradient of the function is

close to zero. This phenomenon is called gradient saturation, and it will lead to the update

value closing to zero in the back-propagation process. Then, the network parameters are

difficult to be updated. Secondly, they need more calculation leading to more time for

model training, especially for the deep convolutional neural network. Therefore, they are

gradually replaced by Rectified Linear Unit (ReLu) function, as shown in Fig. 2.1.3(c).

The formula of the function is very simple.

ReLu(x) = max(0,x) (2.1.3)

Meanwhile, there are also some works trying to improve the ReLu activation func-

tion, and the Leaky ReLu [31] and PReLu [32] are proposed by changing the slope. Fig.

2.1.3 (d) shows the Leaky ReLu activation function. The advantages of the improved

activation functions can be summed up in the following two points. The first is that the

gradient will not saturated, which can alleviate the problem of gradient diffusion and

accelerate the parameter update rate. The second is that these activation functions do

not need much accumulation compared with exponent arithmetic, which will save the

training time for large neural networks.

Output Layer. Most of works adopt softmax function to output the predicted result

for image classification model. The softmax layer will output the probability correspond-

ing to the real category. The formula of softmax function is presented as follows:

CHAPTER 2. BACKGROUND 10

so f tmax(xi) =
exp(xi)

∑ j exp(x j)
(2.1.4)

In this section, we introduce the components in the ConvNet. Based on the specific

tasks, we can modify these components to improve the model performance. In the next

section, we will introduce the ConvNet learning algorithm.

2.2 Convolutional Neural Network Learning Algorithm

The learning algorithm of convolutional neural network comes from back-propagation

algorithm. The significant difference of the two algorithm is that the neural nodes only

connect part of nodes in the previous layer in ConvNet compared with fully connection

in the back-propagation algorithm.

Convolution layers. At a convolution layer, the feature maps from previous layer

are convolved with learnable kernels and pass through the activation function to form

the output feature map. Therefore, the formula of convolutional layer in the l-th can be

represented as follows:

xl
j = f (∑

i∈M j

xl−1
i ∗ kl

i, j +bl
j) (2.2.1)

Here, xl refers to the output of feature map in the l-th. M j represents a selection of

input maps. kl refers to the convolutional kernels. f represents the activation function. ∗

represents the convolution operation, and bl refers to the bias.

The gradient of convolution layer. In the back-propagation process, it updates the

weight and bias by minimizing the residual error. To acquire the residual error, we should

compute the sensitivity map δ corresponding to a block of pixels in the convolutional

layer’s output map. We assume that each convolution layer l is followed by a subsampling

layer l + 1, and δl+1 represents the associated sensitivity map in the subsampling layer

l +1. Thus, the sensitivity map in the l-th layer can be represented as follows:

CHAPTER 2. BACKGROUND 11

δ
l
j = β

l+1
j (f ′(ul

j)◦up(δ l+1
j)) (2.2.2)

Here, f ′(ul
j) refers to the gradient of the j-th gradient in the l-th layer. β represents

the sampling coefficient, and ◦ denotes element-wise multiplication. The up(·) represents

the upsampling operation, and the subsampling factor is n. Then, one possible way to

upsampling operation is to use the Kronecker product:

up(x)≡ x⊗1n×n (2.2.3)

Thus, the bias gradient can be represented as follows:

∂E
∂b j

= ∑
u,v
(δ l

j)u,v (2.2.4)

The gradient for the kernel weights are computed by using backpropagation. We

sum the gradients for a given weight for all the connections:

∂E
∂kl

i j
= ∑

u,v
(δ l

j)u,v(pl−1
i)u,v (2.2.5)

Here, the (pl−1
i)u,v is the patch in xl−1

i . The equation 2.2.5 can be implemented in a

single MATLAB line:

∂E
∂kl

i j
= rot180(conv2(xl−1

i ,rot180(δ l
j),
′ valid′)) (2.2.6)

Where ′valid′ refers to the valid convolution operation.

Subsampling layers. For the subsampling layer, the formulation can be represented

as follows:

xl
j = f (β l

jdown(xl−1
j)+bl

j) (2.2.7)

Where down(·) refers the downsampling operation.

The gradient of subsampling layers. We assume that the subsampling layers is

followed by convolution layers, and the sensitivity maps can be computed in MATLAB:

CHAPTER 2. BACKGROUND 12

δ
l
j = f ′(ul

j)◦ conv2(δ l+1
j ,rot180(kl+1

j),′ f ull′) (2.2.8)

Here, ′ f ull′ refers the fully convolution operation. Then, we need to compute the

gradients for b and β . The additive bias b is the sum over the elements of the sensitivity

map:

∂E
∂b j

= ∑
u,v
(δ l

j)u,v (2.2.9)

To acquire the gradient for β , we need to recompute the maps during backpropaga-

tion.

dl
j = down(xl−1

j) (2.2.10)

Then, the gradient for β can be represented as follows:

∂E
∂β j

= ∑
u,v
(δ l

j ◦dl
j)u,v (2.2.11)

Updating the weight and bias. After computing the value of residual error, we

can update the weight and bias. Following the back-propagation algorithm, the updating

formula can be represented as follows:

W (t +1) =W (t)+ηδ (t)x(t) (2.2.12)

Here η refers to the learning rate, and x(t) refers to the input. The δ (t) denotes to

the error term.

2.3 The Convolutional Neural Network Training and Inference

Process

The type of training process for pattern recognition can be divided into two cate-

gories, including the supervised and unsupervised learning. In this thesis, we focus on

CHAPTER 2. BACKGROUND 13

forward

backward

mini-batch

 person labels

=?

error

forward

Image

 person

Training process:

Inference process:

Fig. 2.2.1. Convolutional neural network training process.

supervised learning. The convolutional neural network training process consists of two

stages: forward propagation and backward propagation. As shown in Fig. 2.2.1, in the

forward propagation, a minibatch images are sampled from the dataset, which contains

the images and truth labels. Then, the images are feed into the network and pass through

the input layer to the output layer. In the backward propagation, the output obtained from

the forward propagation process will be used to compare with the truth labels to compute

the training loss. Then, based on the loss value, the model parameters are updated by

minimizing the error function. As the loop of training progress, the training loss will be

convergenced. Then, we get the optimal model. In the inference period, it only needs to

perform the forward process. The images are feed into the trained model to predict and

output the category directly.

CHAPTER 2. BACKGROUND 14

2.4 Image Classification Model

For traditional image classification task, the primary solutions are based on the hand-

crafted feature, such as SIFT [33], HOG [34]. These methods could obtain a good result

on the low-level feature representations, including color, edge, and texture. However, be-

cause of lacking high-level semantic information representation ability, the handcrafted

methods can not reach satisfactory results. In recent years, deep learning methods at-

tracted more attention in the computer vision community. Many great convolution neural

networks, such as AlexNet [10], VGG [35], and ResNet [35], are proposed and achieve

state-of-the-art results on large-scale benchmark datasets, which exceed the handcrafted

methods significantly. With the development of convolutional neural network, more and

more excellent networks are proposed. There are three models’ structure having impor-

tant impact on the following content, including GoogleNet [12], ResNet [35], DenseNet

[9], and SENet [36]. Therefore, in the following section, these models will be shortly

introduced.

5x5 Conv 3x3 Conv 3x3 Conv pool

Input Layer

Concatenation

1x1 Conv

5x5 Conv

1x1 Conv

5x5 Conv

pool

5x5 Conv

1x1 Conv

Input Layer

Concatenation

(a) (b)

1x1 Conv

3x3 Conv

3x3 Conv

1x1 Conv

3x3 Conv

pool

1x1 Conv
1x1 Conv

Input Layer

(c)

Concatenation

1x1 Conv

3x3 Conv

3x3 Conv

1x1 Conv

3x3 Conv 1x1 Conv

1x1 Conv

ReLu activation

(d)

ReLu activation

Fig. 2.4.1. The inceptions used in GoogleNet.

GoogleNet. The GoogleNet is proposed in 2014, which explored to improve the

model capacity by fusing the feature from multi-scales branches. The authors found that

fusing the feature from different scales can effectively alleviate the problem of overfitting,

gradient disappearance, and gradient explosion. The model has several variants, includ-

ing Inception-v1 [12], Inception-v2 [37], Inception-v3 [38], and Inception-v4, Inception-

CHAPTER 2. BACKGROUND 15

ResNet [15]. In these models, they construct the model by stacking the inception unit

and modify the unit to improve the model performance. Fig. 2.4.1(a) shows the inception

structure used in Inception-v1, which utilizes the kernels with different size to extract fea-

ture. Based on this observation, it demonstrated that adding the model width can improve

the model performance effectively. For GoogleNet, it explores to design a wider model

to obtain higher model performance. In Fig. 2.4.1(b), the unit is inserted a 1×1 convo-

lutional layer to decrease the dimension, and it is used in Inception-v2 and Inception-v3

to reduce the number of calculations. In Fig. 2.4.1(c), the authors replaced the 5×5

convolutional layer by two successive 3×3 convolutional layer to not only improve the

computational speed but also reduce the model parameters. In Fig. 2.4.1(d), activated by

the architecture of ResNet, the authors added the identity mapping in the module, and it

is used in Inception-ResNet to accelerate model convergence.

Output

(b) Pre-ResNet basic residual block

BN
ReLu

Input

BN
ReLu

conv3×3

conv3×3

Output

(d) Pre-ResNet bottleneck residual block

BN
ReLu

Input

BN
ReLu

conv1×1

conv1×1

BN
ReLu

conv3×3

conv3×3

conv3×3

ReLu

Output

(a) Basic Residual Block

BN
ReLu

Input

BN

conv1×1

conv1×1

ReLu

Output

(b) Bottleneck residual block

BN
ReLu

Input

BN

conv3×3

BN
ReLu

Fig. 2.4.2. Residual block and pre-activation residual block.

ResNet. The residual network (ResNet) is proposed in 2015, which win the 1st in

several computer vision tasks, including image classification, object detection, and seg-

mentation. It achieved tremendous improvement than the previous convolutional neural

CHAPTER 2. BACKGROUND 16

network on ImageNet dataset. In ResNet, it introduces a shortcut conception to propagate

information smoother in the entire network, as shown in Fig. 2.4.2 (a) and (b). For deep

convolutional neural networks, it is difficult to train due to the problem of degradation.

Adding the shortcut conception can alleviate the problem effectively. Even in extremely

deep exceeding 1000+ layers, ResNets still achieve considerable accuracy performance

on benchmark datasets. For high-resolution image classification task, the authors pro-

posed the bottleneck structure, as shown in Fig. 2.4.2(b). The bottleneck architecture

uses a stack of 1×1, 3×3, and 1×1 convolution, where 1×1 convolutional layers are used

to reduce and then increase dimension. The bottleneck design can significantly reduce the

model parameters with the same depth model. Activated by the excellent performance,

more and more deep neural network are proposed based on ResNet. However, for the

extremely deep ResNet, the degradation problem appeared. Therefore, to address this

problem, the authors proposed the pre-activation residual block, as shown in Fig. 2.4.2

(c) and (d). They regarded the identity mapping as the skip connection and after-addition

activation. Meanwhile, they converted the order of Conv-Bn-ReLu to Bn-ReLu-Conv.

C
o
n

v
o
lu

tio
n

image

C
o
n

v
o
lu

tio
n

P
o

o
lin

g

C
o
n

v
o
lu

tio
n

P
o

o
lin

g

P
o

o
lin

g

F
C

Softmax
Prediction

Dense Block 1 Dense Block 2 Dense Block 3

Fig. 2.4.3. Densely connection network.

DenseNet. Activated by the characteristic of creating short paths from early layers to

later layers, the author proposed the densely connected convolutional neural network. To

ensure maximum information flow between layers in the network, they design to connect

all layers directly with each other. Fig. 2.4.3 shows the architecture of DenseNet. From

the Fig. 2.4.3, we can see the l-th layer has l inputs, which consist of the feature maps

from all preceding convolutional blocks. Unlike in ResNet using element-wise summa-

tion to fuse the feature, DenseNet adopt the concatenation operation to fuse the feature

CHAPTER 2. BACKGROUND 17

from preceding layers. Therefore, in the L-layer network, it has (L(L+1)/2 connections,

instead of just L, as in the traditional architecture. Due to the densely connections, the

previous feature maps can be accessed by all subsequent layers, which encourages feature

reuse throughout the network.

Output

Residual

FC

Global
Pooling

ReLu

FC

Sigmoid

Scale

Input

H×W×C

1×1×C

1×1×C/r

1×1×C/r

1×1×C

1×1×C

H×W×C

H×W×C

Fig. 2.4.4. Squeeze and excitation residual block.

Squeeze-and-Excitation Networks. Squeeze-and-Excitation Networks (SENet) [36]

was proposed in 2017 and achieved the champion on ImageNet 2017 competition. To

boost the representation power for the existing network, the work focus on modeling the

channel relationship and adaptively recalibrates channel-wise feature responses. The ar-

chitecture of the squeeze-and-excitation block contians three operations, inculding squeeze,

excitation, and reweight. Fig. 2.4.4 illustrates the architecture of the squeeze and exci-

tation module with residual block. For squeeze operation, the authors adopt the global

CHAPTER 2. BACKGROUND 18

average pooling to compress the information into a one-dimension vector. Then, in ex-

citation operation, to make use of the information aggregated in the squeeze operation,

the authors employed a gating mechanism with a sigmoid activation. To realize this pur-

pose and limit the model complexity, two fully connection with bottleneck architecture

is applied into the architecture, and a relu function is used to enhance the capacity of

the model non-linearity. The final output of the SE module performs the channel-wise

multiplication to realize the purpose of feature recalibration. In this way, the model can

learn to selectively emphasise information features and suppress less useful ones.

2.5 Datasets

In this thesis, the proposed models are evaluated on several benchmark datasets,

including CIFAR-10, CIFAR-100, SVHN, and IP102. In the following paragraphs, we

introduce the information of these datasets.

CIFAR-10 [39] is a dataset comprising a collection of 50k training images and 10k

testing 32×32pixel RGB images in 10 classes of natural scene objects. Fig. 2.5.1 shows

some example images from CIFAR-10 dataset, which includes airplane, automobile, bird,

cat, deer, dog, frog, horse, ship, and truck.

Similar to CIFAR-10, CIFAR-100 [39] is a dataset comprising a collection of 50k

training images and 10k testing 32×32pixels RGB images, but the number of classes is

extended to 100. Due to each class only consists of 600 images, it is more challenging

for classification on CIFAR-100 dataset.

The Street View House Number (SVHN) [40] dataset is also a well-known bench-

mark dataset in computer vision. The dataset contains 73,257 digits in the training set,

26,032 in the test set and 531,131 additional training images respectively. All the images

are obtained from house numbers in Google Street View images. The label of dataset are

the house number from 0 to 9.

The resolution of the images from CIFAR-10, CIFAR-100, and SVHN datasets is

CHAPTER 2. BACKGROUND 19

Fig. 2.5.1. Example images from Cifar-10 dataset

low. Due to this reason, it do not need much time to train a CNN model on these datasets.

Therefore, most of works first demonstrate the effectiveness their method on the these

datasets. Then, it is applied to high-resolution image classification tasks. In this thesis,

we also demonstrate the validness of our method on CIFAR-10, CIFAR-100, and SVHN

datasets, then it is applied to recognize insect pests.

IP102 [41] is a large-scaled insect pest dataset covered 102 species of common crop

insect pests. The dataset contains 45,095 images in the training set, 7,508 images in

the validation set and 22,619 images in the testing set for classification task. Fig. 2.5.2

shows some example images from IP102. As illustrated in [41], there are several factors

affecting the classification performance. First, the pests are difficult to be distinguished,

because the colors are similar between object and background. Second, IP102 contains

the image throughtout pests life cycle, and it is hard to classify especially in the larval

period. Third, the pests between classes are often similar. Due to these factors, it is more

challenging for classification on IP102 dataset.

CHAPTER 2. BACKGROUND 20

Rice Leaf Caterpil lar Asiat ic Rice Borer English Grain Aphid

 Whcat Ph loeothrips Lytta Polita Legume Blister Beetle

 Therioaphis Maculata Buck ton Oides Decempunctata Ampclophaga

Fig. 2.5.2. Example Images from the IP102 dataset.

Chapter 3

Related Work

In this section, we will review some related work, including deep convolutional neu-

ral networks, residual networks, feature fusion networks, attention mechanism in CNNs,

and application in insect pest recognition.

3.1 Deep Convolutional Neural Networks

The development of convolutional neural networks undergo for a long time. In 1998,

LeNet-5 [26] was trained with back-propagation algorithm, which forms the embryonic

of contemporary convolutional neural network. Until the AlexNet [10] proposed in 2012,

it consists of five convolutional layers, some of which are followed by max-pooling layer.

In the output layer, it contains three fully connected layer with a final 1000-way soft-

max. Meanwhile, the authors employed the dropout method to reduce overfitting in the

fully connected layers. Then, the convolutional neural networks attract more attention,

and more and more convolutional neural networks emerged, such as SegNet [42], NiN

[43], GoogLeNet [12], and XNOR-Net [44]. In VGGNet [35], it proposed an architec-

ture with small (3×3) convolution filters, and the depth of the network can be pusshed

to 16-19 weight layers. With depth going deep, the accuracy has continued to increase.

However, very deep CNNs have to face the crucial problem of vanishing gradients. Ini-

21

CHAPTER 3. RELATED WORK 22

tialization methods and layer-wise training were adopted to reduce this problem in earlier

works. Moreover, the ReLU [31] activation function and its variants were also used to

prevent vanishing gradients, such as ELU [45], PReLU[32], and PELU [46]. Batch nor-

malization (BN) [37] could also largely address this problem through standardizing the

mean and variance of hidden layers for each mini-batch, and MSR initialized the weights

with a more reasonable variance. Meanwhile, a degradation problem has been emerged,

and several methods were proposed to resolve this problem. Inspired by Long Short-

Term Memory recurrent networks [47] and by using adaptive gating units to regulate the

information flow, Highway Networks [48] can be trained directly through simple gra-

dient descent. ResNets [35] introduced a shortcut conception to propagate information

to deeper layers of networks, which are simpler and more effective than Highway Net-

works. Consequently, ResNets construct deep residual network with layers exceeding

1000+ and still have compelling accuracy and nice convergence behaviors on many com-

puter vision tasks. Therefore, it attracts many researchers, and more and more residual

network variants have been proposed as a family of extremely deep architectures. The

models proposed in this thesis are also based on ResNet.

3.2 Residual Networks

ResNets achieved significant success in computer vision. However, ResNets [8]

become difficult to converge when the depth goes very deep. Therefore, Pre-ResNets

[14] proposed a new residual block with a BN-ReLU-Conv order to reducing training

difficulties with identity mappings as the skip connections and after-addition activation.

Weighted Residual Networks [49] found the original residual networks have the incom-

patibility between ReLU and element-wise addition and deep network initialization prob-

lem. Therefore, they proposed the weighted residual networks, which enjoy a consistent

improvement over accuracy when depths increase from 100+ layers to 1000+ layers.

More residual network variants try to improve performance by constructing deeper resid-

CHAPTER 3. RELATED WORK 23

ual networks, while the problem of diminishing feature reuse for very deep residual net-

works makes these networks very slow to train. To tackle these problems, WRNs [50]

generated residual networks by decreasing depth and increasing width of residual net-

works. WRNs improved accuracy and reduced the training time compared with thin and

very deep counterparts. Huang et al. [51] proposed a stochastic depth drop-path method

which randomly drops a subset of layers and bypasses them with identity function. Their

experiments showed that their method shortened training time substantially and reduced

the test errors. RoR [52] further dug the optimization ability of residual networks by

adding shortcut connections upon original residual networks. Pyramidal Residual Net-

work [53] enhanced the generalization ability by increasing the feature map dimension

gradually instead of sharply increasing the feature map dimension at down-sampling lo-

cation. More and more residual variants networks are proposed and form a fammily of

ResNet [8, 14, 49, 50, 51, 52, 53, 54, 55, 56, 57].

3.3 Feature Fusion Networks

Many convolutional neural networks adopted feature fusion method to gain model

performance improvement in several computer vision tasks, inculding image classifica-

tion [58, 59, 60, 61], object detection [62, 63, 64, 65], segmentation [66, 67, 68, 69], and

other domains [70, 71, 72]. In DenseNets [9], the features from preceding layers are input

into subsequent layers directly. In this way, DenseNet can build very deep networks with-

out the problem of training difficulty; thus, it had achieved state-of-the-art results with

reusing features method. CondenseNet [73] proposed a learned group convolution to in-

tensify the capacity of the network by removing superfluous feature reuse connections.

In ShuffleNet V2 [74], half of the feature channels directly go through the block and are

input into the next block, which is deemed to a kind of feature reuse. DSOD [16] trained

an object detector model from scratch by learning half of the feature and reusing half

from the contiguous high-resolution feature maps. Therefore, the feature fusion method

CHAPTER 3. RELATED WORK 24

is an effective method to enhance the model performance. In this thesis, our proposed

works also adopt the feature fusion method to construct more validness ConvNet models

for image classification tasks.

3.4 Attention Mechanism in CNNs

Attention mechanism has been approved their effectiveness in many tasks, such as

sequence learning [75, 76, 77, 78], localization [79, 80, 81, 82], and image captioning

[83, 84, 85, 86] etc. Meanwhile, soft attention can be trained end-to-end for convolu-

tional neural networks. Therefore, some works combined the soft attention method with

the existing models in an innovative way to construct new models. Wang et al. [87] pro-

posed the attention residual learning, which helped to train very deep residual attention

networks. They used the mixed attention to capture different types of attention guiding

feature learning and encoded top-down attention mechanism into trunk-and-mask archi-

tecture based on hourglass modules [88]. To strengthen the model representational power,

J. Hu et al. [36] proposed a light-weight squeeze-and-excitation block to adaptively re-

calibrate channel-wise feature responses. It can significantly promote the model perfor-

mance for existing state-of-the-art CNN models. M. Luo et al. [89] proposed a stochastic

region pooling module to improve the capacity of channel-wise attention network. This

module made the channel descriptors more diversity and representative through gener-

ating more or wider important feature response. To realize the adaptive receptive field

sizes of neurons, X. Li et al. [90] proposed a selective kernel convolution to aggregate

information from multiple kernels. Woo et al. [91] proposed a simple yet effective at-

tention module for feed-forward convolutional neural network, which sequentially infers

attention maps in two dimensions, channel and spatial.

CHAPTER 3. RELATED WORK 25

3.5 Application in Insect Pest Recognition

For the traditional insect pest recognition task, the primary solutions are based on

the handcrafted feature, such as SIFT [33], HOG [34]. These methods obtain a good

result on the low-level feature representations, including color, edge, and texture. How-

ever, because of lacking high-level semantic information representation ability, the hand-

crafted methods can not reach satisfactory results. In recent years, deep learning methods

attracted more attention in the research community. Many great convolution neural net-

works, including VGG [11], ResNet [8], and GoogleNet [12], are proposed and achieve

state-of-the-art results on large-scale benchmark datasets, which exceed the handcrafted

methods significantly. The deep learning technology is alsp applied in agriculture in re-

cent years, and most of applications focused on identification of weed [92, 93], plant

recognition [94, 95, 96], fruits counting [97] and crop type classification [98]. To solve

the problem of pests’ different scales and attitudes, R. Li et al. [99] proposed an valid

data augmentation strategy for CNN-based models. To detect and classify eight insects,

K. Dimililer and S. Zarrouk [100] proposed a two-stages method depended on neural net-

works. Liu et al. [101] released their dataset consisting of about 5,000 training images in

12 categories of paddy field pests and trained a deep CNN model on this dataset. Mean-

while, a large-scale dataset will promote the development of insect pest recognition. X.

Wu et al. [41] collected a large-scale dataset called IP102 for insect pest recognition,

which consists of more than 75,000 images in 102 classes. In this thesis, we also eval-

uated our models on IP102 benchmark dataset to demonstrate the effectiveness of our

methods.

Chapter 4

Feature Reuse Residual Network

In Densenet, it reuse the feature from previous layer throughout the network to im-

prove the model performance. Besides, GoogleNet fuse the feature from multi-scale

branches to enhance the capacity of the network. Activated by these networks, the fea-

ture reuse residual network is proposed by reusing the feature from previous layer and

adding a branch to wide the model in the residual block. In the following section, the

methodology of the feature reuse residual network will be introduced.

4.1 Methodology

The original residual block with identity mapping can be expressed by the following

computation:

yl = h(xl)+F(xl,wl) (4.1.1)

xl+1 = f (yl) (4.1.2)

Where xl+1 and xl are output and input of the l-th residual block in the network,

F is a residual function and wl are parameters of the l-th residual block. The function

h(xl) is an identity mapping: h(xl) = xl , and f is a ReLU function. Fig 4.1.1(a) shows

26

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 27

the original residual basic block with branched residual signal consisting two successive

3×3 conv layers. Residual network consists of sequentially stacked residual blocks.

conv3×3

conv3×3

ReLu

Output

(a) Basic Residual Block

BN
ReLu

Input

conv3×3

conv3×3

ReLu

Output

(b) Feature Reuse Residual block

BN
ReLu

Input

conv3×3

BN
ReLu

conv1×1

C

BN

BNBN

conv3×3

conv3×3

Output

(c) Feature Reuse Pre-activation Residual block

BN
ReLu

Input

conv3×3

BN
ReLu

conv1×1

C

BN

BN
ReLu

Fig. 4.1.1. The original basic residual block and the feature reuse residual blocks.

We try to explore the effective of feature reuse for the original residual block by

adding extra connection from the input signal of residual block. In order to match fea-

ture size and dimension, the input feature maps pass through a 1×1 conv layer without

ReLU function shown in Fig. 4.1.1(b). To maximize the performance of network, we

experiment kinds of residual block size and analysis the result in the following section.

Therefore, the Feature Reuse Residual block can be expressed by the following formula-

tions:

yl = h(xl)+F (g(xl) ,wl) o g(xl) (4.1.3)

xl+1 = f (yl) (4.1.4)

Where g is a function to transform feature map size and dimensions, which is re-

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 28

alized by a 1×1 conv layer without ReLU. Meanwhile, the location of reducing feature

size also have significant impact on test error, and our experiments empirically show that

using average pooling layer before 1×1 convolutional layer in down-sampling block can

achieve better performance than other options. The comparison of this matter is contin-

ued in the following section.

4.2 Model Optimization

In order to optimize FR-ResNet, we must determine some important principles, such

as residual block size, and location of reducing feature map size. We tested these princi-

ples on CIFAR-10 benchmark dataset.

In the case of original ResNets, the basic residual unit consists of a stack of two 3×3

convolutional layers in [8] as shown in Fig. 4.1.1(a). In order to analyze the effects of

different residual block sizes, we explored several types of convolutions in every residual

block with a similar total number of parameters. We use B(M) to denote residual block

structure, which is used by WRN [50], and M is a list with the kernel sizes of the convolu-

tional layers in a block. For example, B(1,3,3,3) denotes a residual block with one 1×1

and three 3×3 convolutional layers as shown in Fig. 4.1.1(b). We experiment with these

types of convolutions on CIFAR-10 dataset, and the results are reported in Table 4.2.1.

The experimental results show that B(1,3,3,3) achieved the best performance when the

epoch number was 164 and 500.

Tab. 4.2.1. Test error (%) on CIFAR-10 with different types of convolutions for FR-ResNet.

block type depth paprams 164 epoch 500 epoch

B(1,3,3) 98 1.7M 6.12 5.23

B(1,3,3,3) 135 1.7M 5.71 4.76

B(1,3,3,3,3) 122 1.7M 6.77 5.52

The experiments show that the performance can vary depending on the location of

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 29

reducing feature map size in down-sampling block. We consider four variants in this

paper: (A) adding a 2×2 average pooling layer before 1×1 conv; (B) adding a 3×3 max

pooling layer with the stride of 2 before 1×1 conv; (C) 1×1 conv with the stride of 2; (D)

first 3×3 conv with the stride of 2. The test result are shown in Fig. 4.2.1 which shows

A or B can achieve similar and lower test error than other variants on CIFAR-10 dataset.

Therefore, in this work, we choose A in our structures.

A B C D
types of variant

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

te
st

 e
rro

r(%
)

5.71% 5.78%
6.06%

6.36%

CIFAR-10 164 Epoch
FR_ResNet_135

Fig. 4.2.1. Comparison of FR-ResNet with different location of reducing feature map size on CIFAR-

10. Using type A can achieve best performance than others.

4.3 Experiments and Analysis

In order to investigate the effectiveness of our approach generalize, we combined

our method with various residual networks: ResNet, Pre-ResNet, and WRN and evaluate

the performance on a series of benchmark datasets: CIFAR-10, CIFAR-100, and SVHN.

Then, we demonstrated the effectiveness of our approach on IP102 dataset for insect pest

recognition.

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 30

4.3.1 Implementation on CIFAR-10, CIFAR-100 and SVHN datasets

We combined our method with various residual networks: ResNet, Pre-ResNet, and

WRN and evaluate the performance on CIFAR-10, CIFAR-100, and SVHN datasets to

demonstrate the effectiveness of our approach. We compared the results of FR-ResNets

and the original ResNets baseline with a similar total number of parameters. In the case

of CIFAR, we used the 135-layer and 194-layer FR-ResNets compared with 110-layer

and 164-layer ResNets, respectively. The original ResNets contained three groups of 16

filters, 32 filters and 64 filters of residual blocks, and the feature map sizes respectively are

32, 16 and 8. As shown in Fig. 4.1.1(b), we adopted each convolution in residual mapping

following batch normalization and activation (ReLU). In FR-Pre-ResNet and FR-WRN

experiments, we adopted BN-ReLU-Conv order. For CIFAR datasets, we initialize the

weights with Kaiming Xavier algorithm [32] and use SGD with a mini-batch size of 128

for 500 epochs as in [52]. The learning rate is initialized by 0.1 and is divided by 10

at the 250th and 375th. For SVHN dataset, we adopted SGD with a mini-batch size of

128 for 50 epochs. The learning rate is initialized by 0.1 and is divided by 10 at the 30th

and 35th as in [52]. The weight decay is 0.0001, and momentum is 0.9 on all datasets.

According to [51], the stochastic drop-path method can alleviate overfitting and enhance

the test performance, so we also adopted this method in this paper. We set pl with the

linear decay rule of p0 = 1 and pL = 0.5 when depth exceeds 100 layers, and we set

p0 = 1 and pL = 0.8 with the linear decay when the depth is less than 100 layers. In the

following sections, we use "SD" to denote adopting the stochastic drop-path method in

the experiments.

4.3.2 CIFAR-10 Classification by FR-ResNet

The standard data augmentation strategies were adopted in our experiments for train-

ing: 4 pixels are padded on each side, then a random 32×32 crop is sampled from the

padded image; mean and standard deviation normalization is also applied or its horizontal

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 31

flip.

200 250 300 350 400 450 500
epoch

5

7

9

11

13

te
st

 e
rro

r (
%

)

135-layer FR-ResNet on CIFAR-10
ResNet110
FR-ResNet135
ResNet110+SD
FR-ResNet135+SD

Fig. 4.3.1. Smoothed test errors on CIFAR-10 by ResNets, FR-ResNet, ResNets+SD and FR-

ResNet+SD during training, corresponding to results in Table 4.3.1. Either FR-ResNet without SD

(the orange curve) or FR-ResNet+SD (the red curve) is shown yielding a lower test error than ResNets.

Tab. 4.3.1. Test error(%) on CIFAR-10 by ResNets and FR-ResNets.

CIFAR-10 500 Epoch depth # params error(%) error(%)+SD

ResNets
110 1.7M 5.79 4.84

164 2.6M 5.59 4.70

FR-ResNets
135 1.7M 4.76 4.57

194 2.5M 4.96 4.15

In Table 4.3.1 and Fig. 4.3.1, we construct 135-layer and 194-layer FR-ResNets

compared with 110-layer and 164-layer ResNets with a similar total number of param-

eters, respectively. The 110-layer ResNets without SD achieved a competitive 5.79%

error on the test set. The 135-layer FR-ResNets without SD had a 4.76% error on the

test set and outperformed the 110-layer ResNets without SD by 17.8% on CIFAR-10.

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 32

As can be observed, the 135-layer FR-ResNets without SD can also slightly outperform

the 4.92% error of the 1001-layer Pre-ResNets with the same mini-batch size []. The

194-layer FR-ResNets without SD achieved a 4.96% error on the test set, and it outper-

forms the 164-layer ResNets without SD by 11.3%. Consequently, we found that the

194-layer FR-ResNets performance is worse than 135-layer FR-ResNet while the result

changed when we added SD. We conjectured that the incompatibility between ReLU and

element-wise addition degraded the accuracy and feature reuse method made the situa-

tion worse, and the problem was resolved in FR-Pre-ResNets which treat both h(xl) and

f serve as identity mappings.

200 250 300 350 400 450 500
epoch

21

23

25

27

29

31

33

35

37

39

te
st

 e
rro

r (
%

)

194-layer FR-ResNet on CIFAR-100
ResNet164
FR-ResNet194
ResNet164+SD
FR-ResNet194+SD

Fig. 4.3.2. Smoothed test error on CIFAR-100 by ResNets, FR-ResNet, ResNets+SD and FR-

ResNet+SD during training, corresponding to results in Table 4.3.2. FR-ResNet+SD (the red curve)

yields lower test errors than other curves.

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 33

Tab. 4.3.2. Test error (%) on CIFAR-100 by ResNets and FR-ResNets.

CIFAR-100 500 Epoch depth # params error(%) error(%)+SD

ResNets
110 1.7M 26.21 23.45

164 2.6M 25.96 22.78

FR-ResNets
135 1.7M 24.88 22.19

194 2.5M 24.26 21.83

4.3.3 CIFAR-100 Classification by FR-ResNet

We adopt the same augmentation and preprocessing techniques as on CIFAR-10. In

Table 4.3.2 and Fig. 4.3.2, the 110-layer and 164-layer ResNets without SD achieved

a competitive 26.21% and 25.96% error on the test set, and the results of the 135-layer

FR-ResNets and 194-layer FR-ResNets without SD had 24.88% and 24.26% error on

the test set. Unlike on CIFAR-10, FR-ResNets without SD outperformed their coun-

terparts obviously on CIFAR-100 even when depth become deep. FR-ResNets perform

better performance on more challenging dataset. It is gratifying that the 135-layer FR-

ResNets+SD and 194-layer FR-ResNets+SD achieved a 22.19% and 21.83% error on the

test set, and they outperformed the 110-layer ResNets, 110-layer ResNets+SD, 164-layer

ResNets and 164-layer ResNets+SD by 15.3%, 5.3%, 15.9% and 4.2%, respectively on

CIFAR-100.

Tab. 4.3.3. Test error(%) on CIFAR-10 and CIFAR-100 by Pre-ResNets and FR-Pre-ResNets.

500 Epoch depth # params
CIFAR-10 CIFAR-100

error(%) error(%)+SD error(%) error(%)+SD

Pre-ResNets
110 1.7M 5.22 4.71 25.93 23.99

164 2.6M 4.75 4.69 25.06 22.98

FR-Pre-ResNets
135 1.7M 4.41 4.35 23.38 21.53

194 2.5M 4.36 3.90 22.39 20.73

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 34

200 250 300 350 400 450 500
epoch

3

5

7

9

11

te
st

 e
rro

r (
%

)

FR-WRN-49-4 on CIFAR-10
WRN-40-4
FR-WRN-49-4
WRN-40-4+SD
FR-WRN-49-4+SD

Fig. 4.3.3. Smoothed test error on CIFAR-10 by WRN40-4, WRN40-4+SD, FR-WRN49-4 and FR-

WRN49-4+SD during training, corresponding to results in Table 4.3.4. FR-WRN49-4+SD (the red

curve) yields lower test errors than the other curves.

4.3.4 Feature Reuse for Pre-ResNet and WRN

Pre-ResNets [14] changed the order of Conv-BN-ReLU to BN-ReLU-Conv to re-

duce vanishing gradients, and WRN [50] can achieve a dramatic performance improve-

ment by decreasing depth and increasing width of residual networks. First, we changed

the residual blocks of the original FR-ResNet with a BN-ReLU-Conv order as shown

in Fig. 4.1.1(c). We did the same experiment by FR-Pre-ResNet on CIFAR-10 and

CIFAR-100, and the results are reported in Table 4.3.3 where FR-Pre-ResNet is com-

pared with Pre-ResNet. As can be observed, the 135-layer and 194-layer FR-Pre-ResNets

with SD achieved 4.35% and 3.9% test error, and they outperformed the 110-layer Pre-

ResNet, 110-layer Pre-ResNet+SD, 164-layer Pre-ResNet and 164-layer Pre-ResNet+SD

by 16.7%, 7.6%, 17.9% and 16.8%, respectively on CIFAR-10. Consequently, a similar

phenomenon appeared on CIFAR-100.

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 35

200 250 300 350 400 450 500
epoch

19

21

23

25

27

29

31

33

35

37

te
st

 e
rro

r (
%

)

FR-WRN-49-4 on CIFAR-100
WRN-40-4
FR-WRN-49-4
WRN-40-4+SD
FR-WRN-49-4+SD

Fig. 4.3.4. Smoothed test error on CIFAR-100 by WRN40-4, WRN40-4+SD, FR-WRN49-4 and FR-

WRN49-4+SD during training, corresponding to results in Table 4.3.4. FR-WRN49-4+SD (the red

curve) yields lower test errors than the other curves.

In the case of WRN, we found B(1,3,3) can achieve better performance. Therefore,

B(1,3,3) was adopted in FR-WRN. We did the same experiment by 40-layer WRN and

49-layer FR-WRN of a width of 2 and 4 on CIFAR-10 and CIFAR-100 with a similar

total number of parameters. Table 4.3.4 shows the results of our FR-WRN compared

with WRN. Fig. 4.3.3 and Fig. 4.3.4 show the test errors on CIFAR-10 and CIFAR-100

at different training epochs. The experimental results show that FR-WRNs are better

than WRNs on CIFAR-10 and CIFAR-100, and SD can further improve the performance

by alleviating overfitting. FR-WRN49-4+SD achieved 3.73% test error on CIFAR-10

and 19.16% test error on CIFAR-100, and it outperformed WRN-40-4+SD by 6.3% on

CIFAR-10 and 5.5% on CIFAR-100. Through analysis and experiments, we conclude

that our Feature Reuse Residual architecture can also promote the performance of other

residual networks, such as Pre-ResNets and WRNs.

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 36

Tab. 4.3.4. Test error(%) on CIFAR-10 and CIFAR-100 by WRNs and FR-WRNs.

500 Epoch depth # params
CIFAR-10 CIFAR-100

error(%) error(%)+SD error(%) error(%)+SD

WRNs
40-2 2.2M 4.63 4.25 24.42 22.21

40-4 8.9M 4.07 3.98 21.85 20.28

FR-WRNs
49-2 2.2M 4.50 4.18 23.21 21.45

49-4 8.7M 3.99 3.73 20.92 19.16

Tab. 4.3.5. Test error(%) on CIFAR-10 and CIFAR-100 by FR-ResNet with different depths.

Depth CIFAR-10 FR-ResNet CIFAR-100 FR-ResNet

135-layer 4.76 24.88

194-layer 4.97 24.26

314-layer 5.09 23.25

4.3.5 Effect of Feature Reuse, Depth and Width

Based on preceding experiments, we can conclude that increasing width or depth

can improve the performance. In order to investigate the effect of width and depth to

feature reuse residual network, we explored the following experiments.

The FR-ResNets derive from the original ResNets, and the vanishing gradients prob-

lems appear when depth goes deep. As shown in Table 4.3.5, the test error gradually

increases from 135-layer to 194-layer, then to 314-layer on CIFAR-10. Interesting, in

the case of CIFAR-100, FR-ResNets present consistent improvement. These experiments

indicated that the vanishing problem still exists in deep FR-ResNet, and feature reuse

method is more effective on the competitive dataset, for example, CIFAR-100.

In the case of Pre-ResNet, it reduced the vanishing problem. We constructed FR-

Pre-ResNet based on Pre-ResNet and experimented with different depth, as shown in

Table 4.3.6. As can be observed, the test error gradually reduced as the number of layers

increased. For the 1202-layer FR-Pre-ResNet with a batch size of 32, it achieved the

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 37

Tab. 4.3.6. Test error(%) on CIFAR-10 and CIFAR-100 by FR-Pre-ResNet with different depths.

Depth
CIFAR-10

FR-Pre-ResNet+SD

CIFAR-100

FR-Pre-ResNet+SD

135-layer 4.35 21.53

194-layer 3.90 20.73

242-layer 3.85 20.01

1202-layer

(15.7M,bs=32)
3.74 17.85

Tab. 4.3.7. Test error(%) on CIFAR-10 and CIFAR-100 by FR-WRN with different widths and depths.

Depth and Wideth
CIFAR-10

FR-WRN+SD

CIFAR-100

FR-WRN+SD

FR-WRN49-2 4.18 21.45

FR-WRN49-4 3.73 19.16

FR-WRN76-2 3.88 20.21

FR-WRN76-4 3.39 18.64

FR-WRN94-4

(17.3M)
3.34 17.99

3.74% test error on CIFAR-10 and 17.85% test error on CIFAR-100. So, we conclude

that the vanishing gradients can be alleviated, even on very deep FR-Pre-ResNet.

In the case of WRN, the vanishing problem is not obvious for the shallow network,

but adding more feature planes and parameters introduce overfitting. We explored exper-

iments with FR-WRN with different widths and depths on CIFAR-10 and CIFAR-100,

as shown in Table 4.3.7. The experiments show that the network performance can be

improved with both depth and width increasing. But when we widened the FR-WRN, the

problem of overfitting appeared. So, we need to reduce it by SD. As can be observed,

FR-WRN-94-4+SD achieved a 3.34% test error on CIFAR-10 and a 17.99% test error on

CIFAR-100. However, we found that the 1202-layer FR-Pre-ResNet+SD compared with

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 38

FR-WRN-94-4+SD can achieve lower test error on CIFAR-100 with fewer parameters. It

demonstrates that increasing depth is more effective for feature reuse residual networks

on CIFAR-100.

Based on these experiments and analysis, we conclude that both adding depth and

width of feature reuse residual networks are effective for model learning capability. There-

fore, we must carefully choose the tradeoff between the depth and width to achieve satis-

fying results.

4.3.6 SVHN Classification Results

For SVHN dataset, following the common practice, we used all the training samples

but without performing data augmentation. Mean and standard deviation normalization

is also applied to preprocess the data. To demonstrate the effectiveness of our method on

SVHN, we used WRN40-4 and FR-WRN49-4 with a similar total number of parameters

to train SVHN, and the results are reported in Table 4.3.8. As can be observed, FR-

WRN49-4+SD outperformed WRN40-4+SD by 7.4% on SVHN, and Fig. 4.3.5 showed

the training curves. These experiments showed our approach can achieve improvement

on SVHN dataset too.

Tab. 4.3.8. Test error(%) on SVHN by WRNs and FR-WRNs with different depths.

SVHN depth # params error(%) error(%)+SD

WRN 40-4 8.9M 1.69 1.75

FR-WRN 49-4 8.7M 1.78 1.62

Tab. 4.3.9. Test accuracy(%) on IP102 by FR-ResNets.

IP102 # depth # params F1 Acc (%)

FR-ResNet
34 20.67M 53.58 54.73

50 30.78M 54.18 55.24

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 39

30 35 40 45 50
epoch

1.5

2.0

2.5

3.0

te
st

 e
rro

r (
%

)

FR-WRN-49-4 on SVHN
WRN-40-4
FR-WRN-49-4
WRN-40-4+SD
FR-WRN-49-4+SD

Fig. 4.3.5. Smoothed test error on CIFAR-10 by WRN40-4, WRN40-4+SD, FR-WRN49-4 and FR-

WRN49-4+SD during training, corresponding to results in Table 4.3.8. FR-WRN49-4+SD (the red

curve) yields lower test errors than the other curves.

4.3.7 IP102 Classification Results

The testing results on CIFAR and SVHN datasets demonstrated the effectiveness of

our approach. In this part, we applied our method to recognize the insect pests.

The ResNets models for ImageNet contain four residual block groups, which re-

quired 64, 128, 256, 512 filters for basic residual block or 256, 512, 1024, 2048 for

bottleneck residual block. More planes will increase the number of parameters and intro-

duce overfitting problem for IP102. Therefore, to limit the parameters, we only conducted

feature reuse residual network based on basic residual block. For IP102 dataset, we fol-

low the implementation in [41]. SGD was adopted with a mini-batch size of 64. The

learning rate is initialized by 0.01 and is divided by 10 every 40 epochs. The weight

decay is 0.0005, and momentum is 0.9. The data augmentation strategies were adopted

in our experiments for training: first, the image is resized into 256×256 square image;

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 40

0 20 40 60 80 100 120
epoch

0

10

20

30

40

50
te

st
 a

cc
ur

ac
y

(%
)

Test accuracy of FR_ResNet34
Test accuracy of FR_ResNet50
Training Loss of FR_ResNet34
Training Loss of FR_ResNet50

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tra
in

in
g

lo
ss

Fig. 4.3.6. Test accuracy on IP102 by 34-layer FR-ResNets and 50-layer FR-ResNet, corresponding

to results in Table 4.3.9.

second, a rectangular region is randomly cropped with aspect ratio randomly sampled in

[3/4, 4/3] and area randomly sampled in [0.08, 1]; third, the cropped region resized into a

224×224 square image; last, mean and standard deviation normalization is also applied.

During test, we followed the processing of training except for randomly augmentation

and cropped out the 224×224 regions in the center of the resized image during valida-

tion. We trained our models on the training set and evaluated the performance on the test

set. Our implementations are based on Pytorch 1.0 with one Nvidia Titan X.

We constructed FR-ResNet with different depths and evaluated accuracy perfor-

mance on IP102 compared with ResNet baseline models. The results are reported in

Table 4.3.9. Moreover, we compared FR-ResNet with several state-of-the-art models:

AlexNet, ResNet-50, ResNet-101, Googlenet, VGG-16, and DeseNet121 to demonstrate

their performance on IP102 dataset, and the results are reported in Table 4.3.10. As can

be observed, compared with Table 4.3.9 and Table 4.3.10, 34-layer FR-ResNet had a test

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 41

0 20 40 60 80 100 120
epoch

0

10

20

30

40

50

te
st

 a
cc

ur
ac

y
(%

)

Test accuracy of Alexnet
Test accuracy of ResNet-50
Test accuracy of ResNet-101
Test accuracy of GoogLeNet
Test accuracy of VGG-16
Test accuracy of DenseNet-121
Training Loss of Alexnet
Training Loss of ResNet-50
Training Loss of ResNet-101
Training Loss of GoogLeNet
Training Loss of VGG-16
Training Loss of DenseNet-121

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tra
in

in
g

lo
ss

Fig. 4.3.7. Test accuracy on IP102 by several state-of-the-art method, corresponding to results in Table

4.3.10.

accuracy of 54.73% and 53.58 F1 score on test set, which outperformed all models per-

formance in Table 4.3.10. The 50-layer FR-ResNet can acquire better performance than

34-layer FR-ResNet. As Fig. 4.3.6 and Table 4.3.7 shown, ResNet-101 can achieve lower

training loss than ResNet-50, while its test accuracy is worse than ResNet-50 because the

increased parameters led to overfitting. Through these experiments, it demonstrated the

effectiveness of our method on IP102 dataset.

4.4 Discussion

We found the impact of Feature Reuse Residual unit is twofold. Fist, the feature

from previous layers is used for subsequent layers. Second, feature reuse residual unit

has a stronger capacity of representation than the original residual unit.

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 42

Tab. 4.3.10. Test accuracy(%) on IP102 by FR-ResNets.

IP102 # params F1 Acc (%)

AlexNet [7] 57.42M 48.22 49.41

ResNet-50 [8] 23.72M 52.93 54.19

ResNet-101 [8] 42.63M 52.00 53.07

Googlenet [12] 10.24M 51.24 52.17

VGG-16 [11] 134.68M 51.20 51.84

DenseNet-121 [9] 7.06M 52.97 54.59

4.4.1 Feature Reuse

From Eqn.(4.1.3), the branched residual signal and the input signal of a residual

block are concatenated before summation, and we realized the Feature Reuse Residual

block based on the original residual block. BN and ReLU are omitted for simplifying.

We can split the identity mapping into two parts. Therefore, as illustrated in Fig. 4.4.1(a),

we could conjecture that each output of Feature Reuse Residual block contains two parts:

one is from a residual block and the other is from the input directly. Through this method

of learning half and reusing half, we enhanced the capacity of network and intensified the

relationship of adjacent residual block. The experimental results in proceeding sections

show our models outperformed the baseline models significantly with a similar total num-

ber of parameters or fewer parameters and demonstrated our suppose that reuse feature

from previous layers in residual block can improve the performance on IP102 dataset.

4.4.2 Stronger Capacity of Representation

In the case of original ResNet and Pre-ResNet, each residual block contains two

continuous 3×3 convolutional layers. While Feature Reuse Residual block contains three

continuous 3×3 convolutional layers as shown in Fig. 4.1.1(b), and the results in Table

4.3.2, Table 4.3.3 and Table 4.3.4 show this structure can achieve a better performance

with a similar total number of parameters. For each feature reuse residual block, the in-

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 43

conv3×3

conv3×3

(a)

Input

conv3×3

conv1×1

C

conv3×3

conv3×3

(b)

Input

conv3×3

conv1×1

OutputOutput

Fig. 4.4.1. Structure of feature reuse residual unit (a), (b) unraveled view of (a) showing that the

output contains two parts: one is from a residual block and the other is from the input directly.

creased 3×3 convolutional layer with ReLU function enhance nonlinearity. However, the

total number of ReLU unit in Feature Reuse Residual networks is less than the counter-

part residual networks with a similar total number of parameters. In the case of WRN,

the capacity of each wide residual unit is stronger than pre-activation residual block. Af-

ter combined WRN with feature reuse method, the performance further enhanced with

less ReLU unit, as shown in Table 4.3.3 and Table 4.3.4. So we can conclude that Feature

Reuse Residual network have a stronger capacity of representation than their counterparts

with less ReLU unit.

4.5 Summary

In this work, we proposed the feature reuse residual network (FR-ResNet) for image

classification task. The central idea of the structure was described in this paper involves

learning half and reuse half feature in each Feature Reuse Residual block. Based on the

simple structure, we constructed the FR-ResNet and evaluated the classification perfor-

CHAPTER 4. FEATURE REUSE RESIDUAL NETWORK 44

mance on several benchmark datasets. The experimental results on these datasets showed

that FR-ResNet could achieve better accuracy recognition performance compared with

the baseline models.

Chapter 5

Deep Feature Fusion Residual

Network

For FR-ResNet, we found that adding the model width will introduce more parame-

ters, especially for high-resolution image classification tasks, which makes it impossible

to construct deeper FR-ResNet to extract more features to enhance the model perfor-

mance with a similar number of parameters. Therefore, to address this problem, we mod-

ified the original feature reuse residual block and proposed a new deeper feature fusion

residual block to perform image classification tasks.

5.1 Methodology

In ResNets, the residual learning block with identity mapping can be formulated as

follows,

yl = h(xl)+F(xl,wl) (5.1.1)

xl+1 = f (yl) (5.1.2)

Here xl and xl+1 refer to the input and output of the l-th residual block in the network. The

function h(xl) refers to identity mapping: h(xl) = xl . F refers to the residual function, and

45

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 46

Output

(c) FF-Pre-ResNet basic block

BN
ReLu

Input

BN
ReLu

C
BN
ReLu

conv1×1

conv3×3

conv3×3

conv1×1

Output

BN
ReLu

Input

BN
ReLu

C
BN
ReLu

conv1×1

conv3×3
(stride=2)

Conv3×3

conv1×1

avg pool
(3,2)

(d) FF-Pre-ResNet down-sampling block

conv3×3

conv3×3

Output

(a) FR-Pre-ResNet basic block

BN
ReLu

Input

conv3×3

BN
ReLu

conv1×1

C

BN

BN
ReLu

conv3×3

conv3×3

Output

(c) FR-Pre-ResNet down-sampling block

BN
ReLu

Input

conv3×3

BN
ReLu

conv1×1

C

BN

BN
ReLu

Avgpool

Fig. 5.1.1. The architecture of Pre-ResNet and FF-Pre-ResNet.

wl represents the parameters in the l-th residual block. The function of f expresses the

ReLU.

In Pre-ResNet, both h(xl) and f are served as the identity mappings to transmit

information through the network. The following computation can perform it:

xl+1 = h(xl)+F(xl,wl) (5.1.3)

Based on these works, we attempt to explore a validness feature fusion residual block. We

follow the setting in Pre-ResNet by assigning both h(xl) and f serve as identity mappings

and adopt the setting in Chapter 4 for FR-ResNet as shown in Fig. 5.1.1 (a) and (b).

Then we proposed the feature fusion residual block, as shown in Fig. 5.1.1(c). Two 1×1

Conv layers are added into the residual block. One is used to balance the parameter of

the two branches, and the other is used to reduce the channel dimension. Thus, it can be

formulated as follows:

G(xl) = F(g(xl),wl)og(xl) (5.1.4)

xl+1 = h(xl)+g′(G(xl),w′l) (5.1.5)

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 47

Here o refers to the concatenate operation, and G(xl) denotes to the concatenated result.

The function of g represents the first 1×1 convolution layer. The function of g′, which

is the second 1×1 convolution layer and realized by a BN-ReLU-Conv block, is used to

halve the feature map dimension. The details will be described in the following section.

Meanwhile, we also explore the number of 3×3 Conv layer in each residual block and the

number of the feature fusion residual block in each group affected on model performance.

The following section will extend the comparison of these matters.

5.2 Model Optimization

To max DFF-ResNet performance, we need to explore the important principles in

two folds, including residual block size and the number of residual blocks in each residual

group. Experiments are constructed on CIFAR-100 dataset to assess these principles.

To explore the the number of 3×3 Conv layer affected on model performance, we

implemented some models with a different number of 3×3 Conv layers. We follow the

setting in Chapter 4 and use B(M) represents the residual block structure. We construct

models with B(1,3,1), B(1,3,3,1), and B(1,3,3,3,1). The results are reported in Fig.

5.2.1. As the result showed, the 218-layer DFF-Pre-ResNet and the 302-layer DFF-

Pre-ResNet can achieve the best result as the structure is B(1,3,3,1). Thus we choose

B(1,3,3,1) in the following experiments.

The original ResNet contains three residual groups with 2n layers in each residual

group, and it has feature maps of sizes 32, 16, 8, respectively. In the down-sampling

block, reducing the feature map size and increasing feature map dimensions are per-

formed to keep a similar computational complexity. Consequently, each residual group

has a similar computation complexity for ResNet. However, whether the contribution of

each group to network performance is equal? Activated by this thought, we rethink the

amount of residual blocks reasonability in each residual group. We construct different

amounts of residual blocks in each group, and the experimental results show that adding

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 48

Tab. 5.2.1. The architecture of DFF-Pre-ResNets for CIFAR datasets.

Group Group1(32x32) Group2(16x16) Group3(8x8)

layers dn∗ k ∗me dn∗ ke n

filters 16 32 64

the number of residual blocks in the earlier residual groups can increase the accuracy per-

formance. Let us introduce the factors k and m, where k and m are the number of residual

block multiple factors in different groups. Table 5.2.1 summarizes the architecture. The

experimental results indicate that DFF-Pre-ResNet obtains the best performance when

k = 1.3 and m = 1.1. The comparison and discussion of this matter are extended in the

following section.

B(1,3,1) B(1,3,3,1) B(1,3,3,3,1)
18

19

20

21

22

23

24

25

te
st

 e
rro

r(%
)

23.12%
22.69%

23.23%

22.53%
22.25%

23.12%

218-layer DFR-Pre-ResNet
302-layer DFR-Pre-ResNet

Fig. 5.2.1. The comparison result of different architecture on CIFAR-100 dataset. The structure of

B(1,3,3,1) achieves the best results for 218-layer and 302-layer DFF-Pre-ResNet.

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 49

1.0 1.1 1.2 1.3 1.4
k

1.0

1.1

1.2

1.3
m

23.34 22.97 23.11 22.96 23.49

23.15 23.46 23.36 22.69 23.33

23.27 23.45 23.27 23.26 22.91

23.45 23.63 23.34 23.42 22.59

218-layer DFF-Pre-ResNet

1.0 1.1 1.2 1.3 1.4
k

1.0

1.1

1.2

1.3

m

25.93 26.36 26.58 25.77 26.00

25.74 25.99 26.31 25.76 25.83

26.05 26.21 25.97 25.69 26.31

26.48 25.89 26.21 26.12 25.81

110-layer Pre-ResNet

Fig. 5.3.1. Test error (%) of adding residual block in earlier residual groups applied to 218-layer

DFF-Pre-ResNet and 110-layer Pre-ResNet on CIFAR-100 dataset under different hyper-parameters

(k,m).

5.3 Experiments and Analysis

Some experiments are conducted to validate our proposed approach. First, we ex-

perimented with the impact of hyper-parameters of k and m to our model, and we test the

model on CIFAR, SVHN, and IP102 benchmark datasets. These testing results verified

the validness and adaptiveness of our method.

5.3.1 Influence of Hyper-parameters

In order to explore the influence of the two hyper-parameters (multiple ratio k and m)

on test error , as shown in Fig. 5.3.1, we explored the ablation experiments on CIFAR-

100 with different hyper-parameter settings. For a fair comparison, we implement the

models under a similar total number of parameters. For 218-layer DFF-Pre-ResNet, the

accuracy performance increased when the data range of k is between 1.1 and 1.3 com-

pared with k = 1.0. It means that adding more residual blocks in earlier two residual

groups bring benefits for DFF-Pre-ResNet. Meanwhile, if we only add residual blocks in

the first group, it also brings a slight performance increase when m is 1.1 or 1.2 compared

with m = 1.0. As Fig. 5.3.1 shown, the model achieves the best performance when the

value of k and m are 1.4 and 1.3, respectively. However, the depth of the model becomes

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 50

deeper when the k and m value increased under a similar total number of parameters, so it

needs more time in each training epoch. When k = 1.3 and m = 1.1, it needs 64 seconds

on Nvidia RTX 2080Ti. While, it needs 75 seconds as k = 1.4 and m = 1.3, and the

test performance only achieves tiny improvement. Therefore, for the trade-off accuracy

performance and training time, we choose k = 1.3 and m = 1.1 for 218-layer DFF-Pre-

ResNet. We also use k = 1.3 and m = 1.1 for all experiments unless specified elsewhere.

For comparison, we do the same experiments on 110-layer Pre-ResNet. As can be ob-

served, it does not show the same pattern, and the accuracy performance increased is

finite.

5.3.2 Implementation on CIFAR and SVHN datasets

The hyper-parameters setting is the same as in Chapter 4. For all datasets, we use

SGD with batch-size of 128, 0.0001 weight decay, and 0.9 momentum. Kaiming Xavier

algorithm [32] is used to initialize the weights. In case of CIFAR datasets, we adopted

0.1 as the initial learning rate and divided by a factor of 10 at 250th and 375th, ending at

500 epochs. In the case of SVHN dataset, the learning rate is set to be 0.1 and divided by

a factor of 10 at 30th and 35th, ending at 50 epochs. The stochastic drop-path method is

adopted to enhance test performance and alleviate overfitting. When depth exceeds 100

layers, we set pl with the linear decay rule of p0 = 1.0 and pl = 0.5, and we set p0 = 1.0

and pl = 0.8 as the depth is less than 100 layers. In the following sections, we will use

"SD" to denote training our model with the stochastic drop-path method.

5.3.3 CIFAR-10 Classification by DFF-ResNet

As shown in Table 5.3.1 and Fig. 5.3.2, we conducted different depth of DFF-Pre-

ResNet, FR-Pre-ResNet, and Pre-ResNet, and the test error performance on CIFAR-10

dataset are reported. The 218-layer DFF-Pre-ResNet without SD achieved a competitive

4.18% test error on the test set, which outperformed the 110-layer Pre-ResNet without

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 51

Tab. 5.3.1. Comparison of test error (%) on CIFAR-10.

CIFAR-10 Depth Params Error(%) Error(%)+SD

Pre-ResNets
110 1.7M 5.22 4.71

164 2.6M 4.75 4.69

FR-Pre-ResNets
135 1.7M 4.41 4.35

194 2.5M 4.36 3.90

DFF-Pre-ResNets
218 1.7M 4.18 4.19

302 2.5M 4.08 3.98

200 250 300 350 400 450 500
Number of epochs

4

5

6

7

8

9

10

11

12

Te
st

 e
rro

r (
%

)

110-layer Pre-ResNet
135-layer FR-Pre-ResNet
218-layer DFF-Pre-ResNet
110-layer Pre_ResNet+SD
135-layer FR-Pre-ResNet+SD
218-layer DFF-Pre-ResNet+SD

Fig. 5.3.2. Test error curves (smoothed) on CIFAR-10 by DFF-Pre-ResNet and baseline models during

training period with corresponding results reported in Table 5.3.1. DFF-Pre-ResNet yields a lower test

error than other models.

SD by 19.9% and 135-layer FR-Pre-ResNet without SD by 5.5%. The 218-layer DFF-

Pre-ResNet with SD achieved a competitive 4.19% test error on the test set, which out-

performed the 110-layer Pre-ResNet+SD by 11.0% and 135-layer FR-Pre-ResNet+SD

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 52

Tab. 5.3.2. Comparison of test error (%) on CIFAR-100.

CIFAR-100 Depth Params Error(%) Error(%)+SD

Pre-ResNets
110 1.7M 25.93 23.99

164 2.6M 25.06 22.98

FR-Pre-ResNets
135 1.7M 23.38 21.53

194 2.5M 22.39 20.73

DFF-Pre-ResNets
218 1.7M 22.69 20.92

302 2.5M 22.25 20.53

by 3.7%. Meanwhile, the 302-layer DFF-Pre-ResNet without SD achieved a similar sit-

uation compared to 194-layer FR-Pre-ResNet and 164-layer Pre-ResNet. For 302-layer

DFF-Pre-ResNet+SD, it had a 3.98% test error on the test set, which was slightly worse

than 194-layer FR-Pre-ResNet+SD but still outperformed the 164-layer Pre-ResNet with

SD significantly. Depended on these experimental results and analysis, we can conclude

that the DFF-Pre-ResNet has a stronger capacity than FR-Pre-ResNet and Pre-ResNet

with a similar total number of parameters.

5.3.4 CIFAR-100 Classification by DFF-ResNet

In the case of the test error performance on CIFAR-100, the results are reported in

Table 5.3.2 and Fig. 5.3.3. We also constructed the different depth of DFF-Pre-ResNet,

FR-Pre-ResNet, and Pre-ResNet. The 218-layer and 302-layer DFF-Pre-ResNet with-

out SD had 22.69% and 22.25% test error on the test set. The 218-layer and 302-layer

DFF-Pre-ResNet+SD achieved a 20.92% and 20.53% test error on the test set, and they

outperformed the 135-layer and 194-layer FR-Pre-ResNet+SD by 2.83% and 0.96%, re-

spectively. In addition, the 218-layer and 302-layer DFF-Pre-ResNet also have signifi-

cantly better performance than 110-layer and 164-layer Pre-ResNet, respectively.

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 53

200 250 300 350 400 450 500
Number of epochs

20

23

26

29

32

35

38

41

Te
st

 e
rro

r (
%

)

110-layer Pre-ResNet
135-layer FR-Pre-ResNet
218-layer DFF-Pre-ResNet
110-layer Pre-ResNet+SD
135-layer FR-Pre-ResNet+SD
218-layer DFF-Pre-ResNet+SD

Fig. 5.3.3. Test error curves (smoothed) on CIFAR-100 by DFF-Pre-ResNet and baseline models

during training period with corresponding results reported in Table 5.3.2. DFF-Pre-ResNet yields a

lower test error than other models.

5.3.5 Deep Feature Fusion for WRN

In order to explore the performance influence for WRN, we constructed 52-layer

DFF-WRN with different width, and the results are reported in Table 5.3.3, Fig. 5.3.4

and Fig. 5.3.5. As can be observed, DFF-WRN52-2 and DFF-WRN52-4 have lower test

error than corresponding models with fewer parameter. The DFF-WRN52-4 had 4.08%

and 20.73% test error on CIFAR-10 and CIFAR-100, respectively, which outperformed

WRN40-4 with fewer parameter. Meanwhile, DFF-WRN52-4+SD had a 3.51% test error

and 19.09% test error on CIFAR-10 and CIFAR-100, which outperformed WRN40-4+SD

by 11.81% on CIFAR-10 and 5.87% on CIFAR-100. Depended on these analysis and

experiments, the adaptiveness of our approach to WRN is demonstrated.

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 54

Tab. 5.3.3. Comparison of test error (%) on CIFAR-10 and CIFAR-100 datasets.

CIFAR-10 CIFAR-100

500 Epoch Depth Params Error(%) Error(%)+SD Error(%) Error(%)+SD

WRNs
40-2 2.2M 4.63 4.25 24.42 22.21

40-4 8.9M 4.07 3.98 21.85 20.28

DFR-WRNs
49-2 2.2M 4.50 4.18 23.21 21.45

49-4 8.7M 3.99 3.73 20.92 19.16

DFF-WRNs
52-2 2.0M 4.41 3.93 23.19 21.45

52-4 7.9M 4.08 3.51 20.73 19.09

200 250 300 350 400 450 500
Number of epochs

3

4

5

6

7

8

9

10

11

12

Te
st

 e
rro

r (
%

)

WRN40-4
FR_WRN49_4
DFF-WRN52-4
WRN40-4+SD
FR_WRN49_4+SD
DFF-WRN52-4+SD

Fig. 5.3.4. Test error curves (smoothed) on CIFAR-10 by DFF-WRN and baseline models during

training period with corresponding results reported in Table 5.3.3. DFF-WRN yields a lower test error

than WRN.

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 55

200 250 300 350 400 450 500
Number of epochs

20

23

26

29

32

35

38

Te
st

 e
rro

r (
%

)

WRN40-4
FR_WRN49_4
DFF-WRN52-4
WRN40-4+SD
FR_WRN49_4+SD
DFF-WRN52-4+SD

Fig. 5.3.5. Test error curves (smoothed) on CIFAR-100 by DFF-WRN and baseline models during

training period with corresponding results reported in Table 5.3.3. DFF-WRN yields a lower test error

than WRN.

5.3.6 Effect of Depth and Width

From the previous experimental results in this section, it indicates that increasing

depth or width could improve the test error effectively. For the sake of investigating the

influence of depth and width on DFF-ResNets, we did the following experiments.

In the case of DFF-Pre-ResNets, we constructed them with different depth to in-

vestigate the influence of depth to the models, and the test performance are represented

in Table 5.3.4. It indicates that the test error gradually decreases on CIFAR datasets as

layers increased. For extremely deep model, the 1050-layer DFF-Pre-ResNet achieved

the 3.67% test error on CIFAR-10 and 18.71% test error on CIFAR-100. It demonstrates

that adding the model depth can improve the model’s test error performance effectively.

In the case of DFF-WRN, we constructed them depended on WRN and explored

them with different width. The experimental results are showed in Table 5.3.5. As the

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 56

Tab. 5.3.4. Comparison of test error (%) on CIFAR-10 and CIFAR-100 by DFF-Pre-ResNet+SD with

different depths.

Depth CIFAR-10 DFF-Pre-ResNet CIFAR-100 DFF-Pre-ResNet

218-layer 4.19 20.92

302-layer 3.98 20.53

378-layer 3.75 19.92

1050-layer 3.67 18.71

Tab. 5.3.5. Comparison of test error (%) on CIFAR-10 and CIFAR-100 by DFF-WRN+SD with

different widths.

Width CIFAR-10 DFF-WRN CIFAR-100 DFF-WRN

DFF-WRN52-2 3.93 21.45

DFF-WRN52-4 3.51 19.09

DFF-WRN52-8 3.31 17.83

DFF-WRN52-8+mixup 2.42 15.59

width increased, the test error gradually decreased. The DFF-WRN52-8 had the 3.31%

test error on CIFAR-10 and 17.83% test error on CIFAR-100. On the other hand, we adopt

the mixup [102] augmentation methods to further improve the test error performance. The

DFF-WRN52-8+SD+mixup achieved the 2.42% test error on CIFAR-10 and 15.59% test

error on CIFAR-100.

These experiments further demonstrated that both increasing depth and width for

DFF-ResNets could bring performance improvement. To achieve satisfying results, we

should determine the depth and width carefully.

5.3.7 SVHN Classification Results

We also experimented with the model performance on SVHN dataset and chose

DFF-WRN52-4 to compare with WRN. As the results in Table 5.3.6, DFF-WRN52-4+SD

outperformed WRN40-4+SD by 12.0% on SVHN showed the test error curves. For DFF-

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 57

30 35 40 45 50
epoch

1.5

2.0

2.5

3.0

te
st

 e
rro

r (
%

)

DFF-WRN-49-4 on SVHN
WRN-40-4
DFF-WRN-52-4
WRN-40-4+SD
DFF-WRN-52-4+SD

Fig. 5.3.6. Test error curves (smoothed) on SVHN by DFF-WRN and baseline models. The corre-

sponding results are reported in Table 8.

WEN52-8, it can achieve a 1.53% test error on SVHN. These facts indicated that our

model could also bring improvement on SVHN dataset.

5.3.8 Classification Result on IP102

We follow the dataset augmentation settings in FR-ResNet. In experiments, we first

trained DFF-Pre-ResNets on the training set. Then, we evaluated the model on validation

set to get the optimal model parameters. Last, the F1 score and accuracy performance are

reported on the test set.

In the original ResNet for ImageNet, it contains four residual block groups. We

follow this setting and construct DFF-Pre-ResNet with four residual block groups. For

simplify, we only add the number of residual blocks in two earlier groups. As the results

depicted in Table 5.3.7 and Fig. 5.3.7, we constructed the different depth of DFF-Pre-

ResNet to compare with FR-ResNets and other state-of-the-art methods. The 62-layer

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 58

Tab. 5.3.6. Comparison of test error (%) on SVHN.

SVHN Depth Params Error (%) Error (%)+SD

WRN 40-4 8.9M 1.69 1.75

FR-WRN 49-4 8.7M 1.78 1.62

DFF-WRN
52-4 7.9M 1.76 1.54

52-8 31.4M - 1.53

Tab. 5.3.7. Comparison of F1 score and test accuracy (%) on IP102 by DFF-Pre-ResNets and other

state-of-the-art methods.

IP102 # params F1 Acc (%)

AlexNet [7] 57.42M 48.22 49.41

ResNet-50 [8] 23.72M 52.93 54.19

ResNet-101 [8] 42.63M 52.00 53.07

Googlenet [12] 10.24M 51.24 52.17

VGG-16 [11] 134.68M 51.20 51.84

DenseNet-121 [9] 7.06M 52.97 54.59

FR-ResNet-34 20.67M 53.58 54.73

FR-ResNet-50 30.78M 54.18 55.24

DFF-Pre-ResNet-62 22.54M 53.98 55.39

DFF-Pre-ResNet-82 30.20M 54.18 55.43

DFF-Pre-ResNet achieved 55.39% test accuracy and 53.98% F1 scores on the test set

surpassing 50-layer Pre-ResNet by 1.76% and 1.55%, respectively. The 82-layer DFF-

Pre-ResNet had the same F1 score compared with 50-layer FR-ResNet with fewer param-

eters, and it achieved a better accuracy performance. According to these facts, it indicated

the validness of our approach to IP102 dataset.

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 59

0 20 40 60 80 100 120
Number of epochs

0

10

20

30

40

50
te

st
 a

cc
ur

ac
y

(%
)

Test accuracy of Alexnet
Test accuracy of ResNet-50
Test accuracy of ResNet-101
Test accuracy of GoogLeNet
Test accuracy of VGG-16
Test accuracy of DenseNet-121
Test accuracy of FR_ResNet34
Test accuracy of FR_ResNet50
Test accuracy of DFF-Pre-ResNet-62
Test accuracy of DFF-Pre-ResNet-82
Training Loss of Alexnet
Training Loss of ResNet-50
Training Loss of ResNet-101
Training Loss of GoogLeNet
Training Loss of VGG-16
Training Loss of DenseNet-121
Training Loss of FR_ResNet34
Training Loss of FR_ResNet50
Training Loss of DFF-Pre-ResNet-62
Training Loss of DFF-Pre-ResNet-82

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tra
in

in
g

lo
ss

Fig. 5.3.7. Test accuracy and training loss curves on evaluation set during the training period.

5.4 Discussion

We found that the influence of DFF-ResNet is twofold. First, the feature fusion

residual block make mode deeper to extract feature more validness. Second, adding

residual blocks in earlier residual groups promote model generalization.

5.4.1 Effect of Feature Fusion Residual Block

ResNet has demonstrated that increasing the depth of the network can enhance

model performance significantly. Depended on this hypothesis, in this paper, we pro-

posed DFF-ResNet. As Eqn. 5.1.4, Equ. 5.1.5 and Fig. 5.1.1 shown, the feature fusion

residual basic block adds two 1×1 Conv layer compared with basic residual block. Be-

cause of this modification, the feature fusion block could reach the same depth with

fewer parameters. Thus, under the similar total number of parameters, we can construct a

deeper model than FR-Pre-ResNet through stacking feature fusion residual block, which

benefits to model performance. As the experiment results reported from Table 5.3.1 and

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 60

200 250 300 350 400 450 500
epoch

0

5

10

15

20

25

30
te

st
 e

rro
r (

%
)

Test Error of DFF-Pre-ResNet218 (k=1.3, m=1.1)
Test Errof of DFF-Pre-ResNet182 (k=1.0, m=1.0)
Training Loss of DFF-Pre-ResNet218
Training Loss of DFF-Pre-ResNet182

10 2

10 1

100

tra
in

in
g

lo
ss

Fig. 5.3.8. Performance comparison between the 218-layer DFF-Pre-ResNet (k = 1.3,m = 1.1) and

182-layer DFF-Pre-ResNet (k = 1.0,m = 1.0), using CIFAR-100 dataset.

Table 5.3.2, these results demonstrate that DFF-ResNet outperforms the baseline models.

5.4.2 Effect of Adding Residual Blocks in Earlier Groups

For each residual group in the original ResNet, it has a similar computation com-

plexity. We explored the effect of different numbers of residual blocks in each residual

group. As Fig. 5.3.1 shown, adding the features from shallow residual groups can en-

hance the test error performance significantly, and the model had the best performance

when k = 1.3 and m= 1.1. In order to explore the impact of adding residual blocks in ear-

lier groups, we also compared the training loss and test error curves of DFF-Pre-ResNet

with different of hyper-parameters of k and m, as shown in Fig. 5.3.8. For a fair compari-

son, we constructed the two models with the same number of parameters (1.7M). As can

be observed, the 218-layer DFF-Pre-ResNet has superior test accuracy, and it demon-

strated the greater ability to generalize compared to 182-layer DFF-Pre-ResNet. Thus,

CHAPTER 5. DEEP FEATURE FUSION RESIDUAL NETWORK 61

the results indicate that adding residual blocks in earlier residual groups can promote the

model generalization ability.

5.5 Summary

In this work, the central idea of our model focus on making the model becoming

deeper than FR-ResNet under a similar total number of parameters. Meanwhile, to further

improve the model performance, we explored the influence of the number of residual

blocks in earlier residual groups, which indicate that it could bring benefits to our models.

We evaluated DFF-ResNet classification performance on several benchmark datasets with

different depth. The results indicated that our models could achieve better performance

than other state-of-the-art methods and FR-ResNets.

Chapter 6

Deep Multi-Branch Fusion Residual

Network

Activated by the previous works, a new residual block are introduced to learn multi-

scale representation in this part. In each block, it contains three branches: one is parameter-

free, and the others contain several successive convolution layers. Moreover, an attention

module is embedded into the new residual block to recalibrate the channel-wise feature

response and to model the relationship of the three branches. By stacking this kind of

block, we constructed the Deep Multi-branch Fusion Residual Network (DMF-ResNet).

6.1 Methodology

Learning multi-scale representation is deemed to be a valid method to improve

model performance. Therefore, in order to further improve the capacity of the model,

we combine two types of residual architectures with a parameter-free branch to learn

multi-scale representation, as shown in Fig. 6.1.1(c), which is named as multi-branch fu-

sion residual block. We use xl ∈ RH×W×C denotes the l-th layer input feature map. Then,

the following computation can perform it:

62

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 63

Output

(a) Pre-ResNet basic residual block

BN
ReLu

Input

BN
ReLu

conv3×3

conv3×3

Output

(c) Multi-branch fusion residual block

BN
ReLu

Input

BN
ReLu

C
BN
ReLu

conv1×1

conv3×3

conv3×3

conv1×1

BN
ReLu

BN
ReLu

conv1×1

conv1×1

conv3×3
BN
ReLu

SFR Module

Global Pool

Global Pool

Global Pool

Reshape

Global Pool

conv3×3

FC

F
C

F
C

F
C

C/d

Output

(b) Pre-ResNet bottleneck residual block

BN
ReLu

Input

BN
ReLu

conv1×1

conv1×1

BN
ReLu

conv3×3

C/r

C/t

C/t

C

C

C

C

SFR Module

Fig. 6.1.1. Different residual block used in this paper.

u = g1(xl, ŵ1×1) (6.1.1)

B1 = u

B2 = Fbasic(u,wbasic)

B3 = Fbottleneck(u,wbottleneck)

(6.1.2)

Here the function g1 denotes to the 1×1 convolution layer with the parameter of

ŵ1×1. B1, B2, and B3 refer to the extracted feature from three branches, and Fbasic and

Fbottleneck refer to the residual functions of basic and bottleneck residual branches, respec-

tively. wbasic and wbottleneck refer to the parameter of two residual branches. However, if we

concatenated three branches directly, model performance can not achieve optimal results.

The parameter proportion of different branches and the width of the model have signifi-

cant impact on model performance. The comparison of these matters will be continued

in the following section.

In order to further improve the capacity of multi-branch fusion residual block, we

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 64

proposed a module to recalibrate channel-wise feature response adaptively and to model

the relationship of the three branches, as shown in Fig. 6.1.1(c). This module realized

this purpose by three operations - Squeeze, Fuse and Recalibrate, thus we named it as

SFR module.

Squeeze. Following the setting in SENet [36], we also adopted the global average

pooling to generate global information bk ∈ Rc,k = 1,2,3 from each branch Bk,k = 1,2,3

in its spatial dimensions H×W, and the c-th element of bk can be calculated by:

bc
k = Fgp (Bc

k) =
1

H×W

H

∑
i=1

W

∑
j=1

Bc
k (i, j) ,k = 1,2,3 (6.1.3)

Where Fgp denotes the global average function, Bk =
[
B1

k,B
2
k, ...,B

C
k

]
,k = 1,2,3.

Fuse. As shown in Fig. 6.1.1(c), the squeezed signals are concatenated as ŝ =[
b1

T ,b2
T ,b3

T] ∈ RC×3. Then, ŝ is reshaped to generate the folded feature map s̃ ∈ R
C
m×3m,

where the fold-ratio of m is used to control the shape of feature map. Subsequently, a 3×3

convolution kernel scans the folded feature map to enhance the nonlinear representation

capacity,

š = Fw (s̃,w3×3) (6.1.4)

Where š ∈ RC×C
m×3m, Fw denotes to 3×3 convolution function, and w3×3 denotes to

the parameter of 3×3 convolution layer. Then, we obtain the mean reuslt in channel

dimension, and the flatten layer is used to reshape the convolution results for subsequent

FC layers, as s = (Ff latten (š))
T ∈ R3C. Further, a compact feature z ∈ R

C
d is implemented

to reduce the model complexity:

z = F̃f c (s,W1) = δ (W1s) (6.1.5)

Where W1 ∈ R
C
d×3C, d is the reduction ratio to control the bottleneck structure, and δ

refers to the relu function.

Recalibrate. As stated in previous section, our goal is to rescale the value for each

channel and to model the relationship of three branches. Therefore, we implement three

soft attention vectors M1,M2,M3 ∈ RC×d for B1,B2,B3, respectively. Note that Mc
k is the

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 65

c-th row of Mk.
Mk = F̂f c (z,W2) = σ (W2z)

B̃c
k = Mc

k ·Bc
k

(6.1.6)

Here W2 ∈ RC×C
d , B̃k =

[
B̃1

k, B̃
2
k, ..., B̃

C
k

]
,k = 1,2,3. Then, B̃1, B̃2, B̃3 are concatenated

together, as B̃ = [B̃1, B̃2, B̃3]. The concatenated feature pass through a 1×1 convolution

layer to reduce the feature map dimension.

xl+1 = h(xl)+g2(B̃, w̌1×1) (6.1.7)

Where xl+1 refers to the output of the l-th residual block in the network, and g2 refers

to the function of the 1×1 convolution layer with the parameter of w̌1×1. The function

h(xl) is an identity mapping: h(xl) = xl .

6.2 Model Optimization

For the sake of maxing DMF-ResNet model performance, some critical principles

should be determined, including parameter proportion of different branch, and the width

of the model. We test the model performance on the CIFAR-100 benchmark dataset to

evaluate these principles.

Parameter proportion of different branches on model performance. In each

multi-branch fusion residual block, the three branches represent different scale represen-

tation features. In these branches, one is parameter-free, and the other two branches con-

tain several successive convolutional layers. However, as experimental results showed,

simply concatenating these branches together can not achieve the superior effect. Because

the parameter proportion of two residual signal branches have a significant on model per-

formance, which means the feature extracted from the two residual branches need to be

adjusted to max the capacity of the block. In the original ResNet, deeper bottleneck ar-

chitecture has similar time complexity compared with basic residual architecture. The

deeper bottleneck architecture uses a stack of 1×1, 3×3, and 1×1 convolutions, where

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 66

basic_block bottleneck_block multi-branch fusion
type of residual block

18

20

22

24

26

28

te
st

 e
rro

r(%
)

26.11%

22.16%

23.24%

122-layer multi-branch fusion residual network

Fig. 6.2.1. Test error (%) on CIFAR-100. Multi-branch fusion architecture achieves lower test error

than basic architecture, but still higher than bottleneck architecture.

1×1 layers are used to reduce and then increase dimension. Meanwhile, the input and

output dimensions are expanded four times compared with the feature map dimension

of basic residual architecture. In order to learn semantic information equally from each

scale, we construct each branch having the same output feature map size and dimension,

which leads to the bottleneck branch having fewer parameters compared with the basic

residual architecture branch. In order to max the model performance, we should balance

the number of parameters between the two residual signal branches. Let us introduce the

factor r and t, as shown in Fig. 6.1.1(c), where r and t are ratios of reducing the fea-

ture map dimension for basic and bottleneck residual architecture branch, respectively.

The experimental results indicate that DMF-ResNets achieve the best performance when

r = 2 and t = 4, which means decrease the parameter proportion of the basic residual

branch can improve the capacity of the block.

The impact of model width. Adjusting the parameter proportion from different

branches can learn each scale representation effectively. However, as shown in Fig. 6.2.1,

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 67

Tab. 6.2.1. The test error (%) on CIFAR-100 with different width under a similar total number of

parameters.

Width Params Error (%)

1 2.54M 23.24

2 2.45M 21.38

3 2.76M 22.22

we test these models with a similar number of parameters. The test error on CIFAR-100

of DMF-ResNet is lower than Pre-ResNet with basic architecture, while it is still higher

than Pre-ResNet with bottleneck architecture. We conjectured that the mismatch between

model width and model performance leads to this problem. In the original ResNet, to

keep similar compute complexity, the feature map dimension of 1×1 convolution layers

are expanded. Thus, the feature extracted capacity of the bottleneck branch in multi-

branch fusion residual block is not maximized. In order to address this problem, we

constructed the model with different width under a similar total number of parameters,

and Table 6.2.1 shows the experimental results. As the results showed, the model achieves

the best result when the model width is 2. Therefore, we adopt width = 2 for DMF-

ResNet in the following experiments (except where otherwise stated).

6.3 Experiments and Analysis

We first reported the influence of hyper-parameters on model performance in this

section. Then, we empirically demonstrated the effectiveness of our approach on CI-

FAR datasets and investigated the impact of model depth and width. Subsequently, we

implemented some ablation experiments to verify the validness of multi-branch fusion

and SFR module. Based on these explorations, we further constructed DMF-ResNets for

high-resolution image classification tasks and evaluated these models’ accuracy perfor-

mance on IP102 dataset.

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 68

Tab. 6.3.1. Comparison the test error (%) of DMF-ResNet with different reducing ratio of r and t

under a similar total number of parameters on CIFAR-100. The model achieves the best result as

r = 2 and t = 4.

r

t
1 2 4 8

1 22.66 22.37 22.61 22.41

2 22.69 21.77 21.38 21.82

4 22.37 21.72 21.80 21.92

6.3.1 Influence of hyper-parameters

For the sake of exploring the impact of the two hyper-parameters (reducing ratio

r and t) on model performance, we constructed some ablation experiments on CIFAR-

100 datasets under a similar total number of parameters. Meanwhile, to eliminate the

interference, we constructed these models without the SFR module, and the experimental

results are shown in Table 6.3.1. As the results showed, increasing the value of r and t

at the same time can bring benefits to our model, and the model achieves the best test

error result as r = 2 and t = 4. It means the multi-branch fusion residual block learns

multi-scale representation more effectively with r = 2 and t = 4. Under this condition,

we calculate the number of parameters for each residual branch. The result shows that

the bottleneck branch extracts feature with fewer parameters than the basic branch. Thus,

it demonstrated that the parameter effectiveness of the bottleneck branch is higher than

the basic branch.

6.3.2 Implementations on CIFAR Datasets

To demonstrate the validness of our method, we first evaluated our models on CIFAR-

10 and CIFAR-100 benchmark datasets. For CIFAR datasets, the weights are initialized

by Kaiming Xavier algorithm [32], and all models adopted SGD algorithm. The mo-

mentum is 0.9, with a min-batch size of 128. The learning rate is set to be 0.1, and it

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 69

drops to 1/10 and 1/100 at 150th and 225th, ending at 300 epochs. All experiments are

constructed on Pytorch platform. Meanwhile, in multi-branch fusion residual block, the

final settings of model performance depended on four hyper-parameters: the fold-ratio

of m, the feature dimension reducing factor of r and t, and the reduction ratio of d. In

our experiments, the model performance is not very sensitive to the fold-ratio of m. As

the experimental results showed, the model obtains the best result when m = 8. Thus,

we select m = 8 for CIFAR-10 and CIFAR-100 datasets in the following experiments.

Following the setting of the reduction ratio in SENet [36], we set d = 4 for CIFAR-10

and CIFAR-100 datasets. The effect of the reduction ratio of r and t has been discussed

in the previous section.

100 120 140 160 180 200 220 240 260 280 300
epoch

4

5

6

7

8

9

10

11

te
st

 e
rro

r (
%

)

122-layer DMF-ResNet on CIFAR-10
Pre-ResNet164
Pre-ResNet245
DMF-ResNet(without SFR)
DMF-ResNet

Fig. 6.3.1. Test error curves on CIFAR-10 by 164-layer Pre-ResNet, 245-layer Pre-ResNet, 122-

layer DMF-ResNet without SFR module and 122-layer DMF-ResNet during training, corresponding

to results in Table 6.3.2. The 122-layer DMF-ResNet (the red curve) is shown yielding a lower test

error than other models.

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 70

100 120 140 160 180 200 220 240 260 280 300
epoch

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

te
st

 e
rro

r (
%

)

122-layer DMF-ResNet on CIFAR-100
Pre-ResNet164
Pre-ResNet245
DMF-ResNet(without SFR)
DMF-ResNet

Fig. 6.3.2. Test error curves on CIFAR-100 by 164-layer Pre-ResNet, 245-layer Pre-ResNet, 122-

layer DMF-ResNet without SFR module and 122-layer DMF-ResNet during training, corresponding

to results in Table 6.3.2. The 122-layer DMF-ResNet (the red curve) is shown yielding a lower test

error than other models.

6.3.3 CIFAR Classification by DMF-ResNet

The standard data augmentation strategy is used following the setting in previous

experiments. For each image, 4 pixels are padded on each side to form an image with a

size of 40×40. Then, a random 32×32 crop is applied to produce 32×32 images with

horizontally mirroring half of the image. Mean and standard deviation normalization are

also adopted.

We experimented with four models on CIFAR datasets: 164-layer Pre-ResNet with

basic residual block, 245-layer Pre-ResNet with bottleneck residual block, 122-layer

DMF-ResNet without SFR module, and 122-layer DMF-ResNet. All these models have

a similar total number of parameters, and the test error performance and training curves

on CIFAR datasets are showed in Fig. 6.3.1, Fig. 6.3.2, and Table 6.3.2. As the results

shown, the 164-layer Pre-ResNet with basic residual block had a 5.23% and 26.11% test

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 71

Tab. 6.3.2. Test error (%) on CIFAR-100.

Params
CIFAR-10

Error (%)

CIFAR-100

Error (%)

164-layer Pre-ResNet

(basic architecture)
2.6M 5.23 26.11

245-layer Pre-ResNet

(bottleneck architecture)
2.5M 4.42 22.16

122-layer DMF-ResNet

(without SFR)
2.4M 4.32 21.38

122-layer DMF-ResNet 2.7M 4.01 20.85

error on CIFAR-10 and CIFAR-100, respectively. The 245-layer Pre-ResNet with bottle-

neck residual block achieved a competitive 4.42% and 22.16% test error on CIFAR-10

and CIFAR-100, respectively, which is better than Pre-ResNet with basic residual block.

The 122-layer DMF-ResNet without SFR module outperformed 245-layer Pre-ResNet

with bottleneck residual block by 0.1% on CIFAR-10 and 0.78% on CIFAR-100, which

demonstrated that fusing the extracted feature from three branches can bring benefits

for model performance. Meanwhile, the 122-layer DMF-ResNet with the SFR module

achieved better test error performance than without the SFR module, and it achieved

4.01% and 20.85% test error on CIFAR-10 and CIFAR-100, respectively. Therefore, the

results demonstrate that the SFR module also can bring improvements to our model.

6.3.4 The impact of depth and width

In order to explore the effect of depth and width on DMF-ResNet, we implemented

the following experiments. These experiments are evaluated on CIFAR datasets, and

Table 6.3.3 and Table 6.3.4 report the experimental results. As results showed, increasing

depth or width could bring benefits to our models.

In terms of depth, we implemented 122-layer, 182-layer, 302-layer, and 1052-layer

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 72

Tab. 6.3.3. Test error (%) on CIFAR-10 and CIFAR-100 with different depth.

Depth Params
CIFAR-10

Error (%)

CIFAR-100

Error (%)

122 2.7M 4.01 20.85

182 4.1M 3.97 20.77

302 6.8M 3.82 20.16

1052

(batch-size=32)
23.7M 3.63 18.73

Tab. 6.3.4. Test error (%) on CIFAR-10 and CIFAR-100 with different width.

Depth Params
CIFAR-10

Error (%)

CIFAR-100

Error (%)

122-2 2.7M 4.01 20.85

122-4 10.8M 3.77 19.12

122-8 42.9M 3.52 17.51

302-4 26.9M 3.53 18.26

122-8+mixup 42.9M 2.60 16.88

DMF-ResNet to explore the influence of depth for our model. As results are showed

in Table 6.3.3, the test error gradually decreased on CIFAR-10 and CIFAR-100 datasets

when depth increased. The 302-layer DMF-ResNet had a 3.82% test error on CIFAR-10

test set and a 20.16% test error on CIFAR-100 test set. For extremely deep DMF-ResNet,

due to the limited resource, the 1052-layer model was trained with a batch-size of 32,

and it can still achieve a 3.63% test error on CIFAR-10 test set and 18.73% test error on

CIFAR-100 test set. Based on these experimental results, we can conclude that increasing

the depth can bring benefits for our model performance.

In terms of width, we implemented DMF-ResNet with a different width to explore

the influence of width for our model. As the results are showed in Table 6.3.4, the test

error gradually decreased on CIFAR-10, and CIFAR-100 datasets as the width increased

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 73

on 122-layer DMF-ResNet. The DMF-ResNet-122-8 had a 3.52% test error on CIFAR-10

and 17.51% test error on CIFAR-100. Meanwhile, we also constructed the DMF-ResNet-

302-4, and it had a 3.53% test error on CIFAR-10 test set and 18.26% test error on CIFAR-

100 test set. Thus, the result indicates that increasing the depth and width at the same

time can also improve model performance. On the other hand, augmentation methods,

such as mixup [102], can further improve model performance. The DMF-ResNet122-

8+mixup had the 2.60% test error and 16.88% test error on CIFAR-10 and CIFAR-100,

respectively.

Output

(a) Multi-branch fusion residual block

 without SFR module

Input

C

conv1×1

conv3×3

conv3×3

conv1×1

conv1×1

conv1×1

conv3×3

Input

C

conv1×1

conv3×3

conv3×3

conv1×1

conv1×1

conv1×1

conv3×3

SE SESE

Output

(b) SE module on each branch

Input

C

conv1×1

conv3×3

conv3×3

conv1×1

conv1×1

conv1×1

conv3×3

Output

(c) SE module on main path

SE

Fig. 6.3.3. Structure of multi-branch fusion residual block with the SE module in different localization

for ablation study, corresponding to results in Table 6.3.6.

6.3.5 Ablation Study

For the sake of demonstrating the effectiveness of the multi-branch fusion and SFR

module, we constructed some ablation experiments as follows. These experiments are

evaluated on CIFAR-100 dataset.

Multi-branch Fusion. In DMF-ResNet, we fused three branches between two 1×1

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 74

Tab. 6.3.5. Test error (%) on CIFAR-100 to demonstrate the effectiveness of multi-branch fusion.

Model Params
CIFAR-100

Error (%)

A (basic) 2.6M 26.11

B (basic, r = 2) 2.5M 25.62

C (basic, r = 2,w = 2) 2.5M 25.04

D (bottleneck) 2.6M 22.16

122-layer DMF-ResNet

(without SFR)
2.4M 21.38

convolutional layers. One branch is parameter-free, and the other two are residual signals

with basic residual block or bottleneck residual block. In order to demonstrate the ef-

fectiveness of the multi-branch fusion approach, we constructed four models to compare

with 122-layer DMF-ResNet. Model A is the 164-layer Pre-ResNet with basic residual

block. Model B is the 164-layer Pre-ResNet with basic residual block and channel re-

duction ratio of 2 (r = 2). Doubling the width of model B, we obtained model C. Model

D is the 254-layer Pre-ResNet with bottleneck residual block. The results are reported

in Table 6.3.5. All models are constructed under a similar total number of parameters.

Compared to model A with model B, channel reduction between two 3×3 convolution

layers make the model deeper under a similar number of parameters, which improves the

model performance. Compared to model B with model C, increasing width has the same

effect. However, model D had the lowest test error than the other three models. DMF-

ResNet without SFR module contains the residual signal in models C and D, and it has

a 21.38% test error on CIFAR-100 test set. The result outperforms model D by 0.78%.

Therefore, it demonstrated the effectiveness of our multi-branch fusion approach.

Impact of SFR module. For the sake of verifying the effectiveness of the SFR

module, we implemented some ablation experiments. We constructed three models to

compare with DMF-ResNet, as shown in Fig. 6.3.3. To simplify, we omit the batch

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 75

Tab. 6.3.6. Test error (%) on CIFAR-100 to demonstrate the effectiveness of SFR module.

Network Params
CIFAR-100

Error (%)

(a) without SFR module 2.5M 21.38

(b) SE on each branch 2.7M 21.12

(c) SE on main path 2.5M 21.66

122-layer DMF-ResNet 2.7M 20.85

normalization and relu layer. The first residual block is the multi-branch fusion residual

block without the SFR module. The second residual block adds a SE block in each

branch. The third residual block only adds a SE block in the main residual signal. All

these models are constructed under a similar total number of parameters and tested model

performance on CIFAR-100 dataset. Table 6.3.6 shows the experimental results. As the

results showed, compared (a) with (c), adding a SE block in the main signal can not

improve the model performance. Compared (a) with (b), adding a SE block in each

branch can bring benefits to model performance. However, model (b) is short of modeling

the relationship between three branches. The 122-layer DMF-ResNet had a 20.85% test

error on CIFAR-100 test set, which outperforms model (b) by 0.27%. Based on these

analyses, we can conclude that the SFR module can enhance our model performance

effectively.

6.3.6 Classification results on IP102

Based on the previous experiments and analyses, to further demonstrate the effec-

tiveness of our approach, we constructed DMF-ResNet for high-resolution image classi-

fication tasks. Then we applied it in a specific domain to recognize insect pests.

For the high-resolution image classification task, we implemented DMF-ResNet

with different depths, which of the overall architectures are listed in Table 6.3.7. As de-

scribed in the previous section, doubling the width of the model can reduce the test error

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 76

significantly under a similar total number of parameters. However, increasing the width

will introduce more parameters. Therefore, in order to control the number of parame-

ters, we constructed these models with three stages, which is different from the original

ResNet with four stages. We increased the number of multi-branch residual blocks in

the second stage to construct models with different depths, including 77-layer, 97-layer,

and 117-layer DMF-ResNet. Meanwhile, In our experiments, we select m = 16 in the

following experiments. Following the setting of the reduction ratio in SENet [36], we set

d = 16 for IP102 dataset.

We evaluated our models with different depths on IP102 dataset. We adopt 0.01 as

the initial learning rate, and it drops to 1/10 and 1/100 at 40th and 80th, ending at 120

epochs. SGD is used with a batch-size of 32. The weight decay is set to be 0.0005, and

the momentum is set to be 0.9. For data augmentation strategies, we adopt the follow-

ing common approaches in the training phase. First, the image is randomly cropped a

rectangular region, which is randomly sampled in [3/4, 4/3] and area randomly sampled

in [0.08, 1] from resized 256×256 squared image. Second, the cropped region is resized

into the size of 224×224. Third, randomly horizontal flips and standard deviation normal-

ization are also applied in these experiments. During the evaluation period, the cropped

224×224 region from the center of the resized 256×256 image is used to classify. In

these experiments, the model is trained on the training set and evaluated on the validation

set to obtain the optimization model. Then we acquire the accuracy performance on the

test set.

We implement three DMF-ResNets with different depths to compare with ResNet,

Pre-ResNet, and other state-of-the-art methods. The accuracy performance on the test set

is reported in Table 6.3.8, and Fig. 6.3.4 shows the test accuracy curves on the evaluation

set during training. As the results showed, 77-layer DMF-ResNet achieved a 57.67 F1

scores and 58.48% test accuracy on the test set surpassing 50-layer ResNet 1.26 and

1.09% respective with fewer parameters. Meanwhile, the 77-layer DMF-ResNet achieved

better model performance than other state-of-the-art methods. As the depth going deep,

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 77

the DMF-ResNet test accuracy and F1 score increased. The 117-layer DMF-ResNet had

a 58.37 F1 score and 59.22% test accuracy on the test set. Based on these experiments,

we empirically demonstrated the validness of our approach to IP102 dataset.

For the sake of visualizing the effect of our approach, we use the technique of Grad-

Cam [103] to highlight the important regions in the image for our insect pest classifica-

tion task. To evaluate the effect of multi-fusion method and SFR module more clearly,

we compare results from three models, including ResNet-50, DMF-ResNet without SFR

module, and DMF-ResNet. We randomly select some images from IP102 dataset, and

Table 6.3.9 presents the results. Compared ResNet-50 with DMF-ResNet without SFR

module columns, the highlighted region in DMF-ResNet without SFR moduel column is

wider than ResNet-50. It indicates that multi-scale learning obtained more abundant ex-

tracted features for the classification task. Compared DMF-ResNet without SFR module

with DMF-ResNet columns, we can observe that the highlighted regions are finetuned

to acquire more precise information for our task. Therefore, based on these analyses,

we further demonstrate the effectiveness of our approach by visualizing the important

regions for our task.

Tab. 6.3.7. Deep multi-branch fusion residual network architectures configuration.

layer name output size 77-layer 97-layer 117-layer

conv1_x 112×112 7×7, 64, stride 2

conv2_x 56×56
3×3, max pool, stride 2 3×3, 64

3×3, 128

×5,


1×1, 32

3×3, 32

1×1, 128

×5

 3×3, 64

3×3, 128

×5,


1×1, 32

3×3, 32

1×1, 128

×5

 3×3, 64

3×3, 128

×5,


1×1, 32

3×3, 32

1×1, 128

×5

conv3_x 28×28

3×3, 128

3×3, 256

×6,


1×1, 64

3×3, 64

1×1, 256

×6

3×3, 128

3×3, 256

×10,


1×1, 64

3×3, 64

1×1, 256

×10

3×3, 128

3×3, 256

×14,


1×1, 64

3×3, 64

1×1, 256

×14

conv4_x 14×14

3×3, 256

3×3, 512

×4,


1×1, 128

3×3, 128

1×1, 512

×4

3×3, 256

3×3, 512

×4,


1×1, 128

3×3, 128

1×1, 512

×4

3×3, 256

3×3, 512

×4,


1×1, 128

3×3, 128

1×1, 512

×4

1×1 average pool, 102-d fc, softmax

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 78

Tab. 6.3.8. The F1 score and test accuracy (%) on IP102 dataset by DMF-ResNet and other state-of-

the-art methods.

IP102 Depth Params F1 Acc (%)

AlexNet [7] 8 57.42M 48.08 49.63

ResNet-50 [8] 50 23.72M 56.41 57.39

ResNet-101 [8] 101 42.63M 55.37 56.02

Pre-ResNet-50 [14] 50 23.70M 55.18 55.86

VGG-16 [11] 16 134.68M 53.18 54.43

Densenet-121 [9] 121 7.06M 56.81 57.73

DMF-ResNet

77 22.10M 57.67 58.48

97 25.96M 58.06 59.11

117 29.70M 58.37 59.22

6.4 Discussion

In this section, we further discuss the effectiveness of our approach in two folds.

First, we will discuss the effectiveness of the multi-branch fusion and SFR module. Sec-

ond, we will discuss the parameter efficiency.

6.4.1 The effectiveness of the multi-branch fusion and SFR module

Compared with the original ResNet, DMF-ResNet combined the extracted feature

from three branches to learn the multi-scale representation. The experimental results in

Table 6.3.2 and Table 6.3.5 supported that learning multi-scale representation can enrich

the feature for the classification task. Furthermore, the SFR module can further improve

model performance. Through visualizing the effect of these approaches on some images,

as shown in Table 6.3.9, the wider highlighted regions indicate that the receptive filed

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 79

0 20 40 60 80 100 120
epoch

0

10

20

30

40

50

te
st

 a
cc

ur
ac

y
(%

)

Test accuracy of Alexnet
Test accuracy of ResNet-50
Test accuracy of ResNet-101
Test accuracy of GoogLeNet
Test accuracy of VGG-16
Test accuracy of DenseNet-121
Training Loss of Alexnet
Training Loss of ResNet-50
Training Loss of ResNet-101
Training Loss of GoogLeNet
Training Loss of VGG-16
Training Loss of DenseNet-121
Training Loss of 77-layer DMF-ResNet
Training Loss of 97-layer DMF-ResNet
Training Loss of 117-layer DMF-ResNet

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

tra
in

in
g

lo
ss

Fig. 6.3.4. The evaluation curves on IP102 dataset by DMF-ResNet and other state-of-the-art methods

during training period.

Tab. 6.3.9. The highlighted important region.

ID Original image ResNet-50
DMF-ResNet

(without SFR)
DMF-ResNet

1

2

3

4

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 80

is enlarged by learning the multi-scale representation. Meanwhile, the SFR module can

finetune the response region by recalibrating channel-wise feature responses and mod-

eling the relationship of these branches. Based on the result shown in Table 6.3.9, the

highlight region is wider and precise. Therefore, it can be used to extract features in

two-stage fine-grained image classification models to localize the object more accurately.

6.4.2 Parameter efficiency

In each multi-branch fusion residual block, we explored the different branches of

parameter proportion on model performance, and the test error performance is reported in

Table 6.3.1. As the results showed, the model achieves the best model performance as r =

2 and t = 4. Therefore, compared to the bottleneck branch with the basic branch, the ratio

of the number of parameters in two branches is 1:9. Because these branches have the same

feature dimension, thus each branch provided the same semantic information for model

performance. Based on these analyses, we can obtain that the extracting feature capacity

of the bottleneck branch is more effective than basic branch with fewer parameters. So

we can conclude that a more effective convolution branch can further enhance the model

performance, and the results also provide our direction to improve our model performance

in the future.

6.5 Summary

In this work, to learn the multi-scale representation to improve the model perfor-

mance, we fused the extracted feature from three branches in each residual block. More-

over, we proposed the SFR module to recalibrate channel-wise feature responses and to

model the relationship between these branches. The experimental results verified the ef-

fectiveness of our approach on CIFAR-10 and CIFAR-100 datasets. Even for extremely

deep DMF-ResNet, our model can achieve compelling results. Then, we constructed our

model with different depths and tested the F1 score and model accuracy on IP102 dataset.

CHAPTER 6. DEEP MULTI-BRANCH FUSION RESIDUAL NETWORK 81

Compared to the baseline models and other state-of-the-art methods, our model can ob-

tain the best model performance on IP102 dataset, which had proved the validness of

our approach for the high-resolution image classification task. Through visualizing the

highlighted regions on images, we can further explain the effect of our approach for the

image classification task. Therefore, based on these empirical studies, we have verified

the effectiveness of our approach.

Chapter 7

Conclusions and Future Work

In our thesis, we proposed the feature reuse residual network (FR-ResNet) for insect

pest recognition. The central idea of the structure was described in our work involves

learning half and reuse half feature in each Feature Reuse Residual block. Based on

the simple structure, we constructed the FR-ResNet and evaluate the classification per-

formance on IP102 dataset which is an challenging insect pest recognition benchmark

dataset. The experimental results on IP102 showed that FR-ResNet can achieve better

accuracy recognition performance compared with the baseline models. We also demon-

strated that our approach can be adopted by other residual networks and outperform the

original networks on CIFAR-10, CIFAR-100, and SVHN datasets. Through these empir-

ical studies, the effectiveness of our approach was demonstrated, and this approach can

be easily implemented in other residual networks.

To further enhance the model performance and get a tradeoff between test accuracy

and model parameters, the deep feature fusion residual network (DFF-ResNet) is pro-

posed. The central idea of our model focus on fusion feature from previous layer and

making the model becoming deeper than FR-ResNet. Meanwhile, to further improve

the model performance, we explored the influence of the number of residual blocks in

earlier residual groups, which indicate that it could improve the test error performance

effectively. For the sake of verifying the validness and adaptiveness of our approach,

82

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 83

we followed the experimental strategies on FR-ResNet evaluated the test error perfor-

mance on CIFAR and SVHN benchmark datasets with different width and depth. The

experimental results indicated that our models could achieve better performance than

baseline models. Besides, for high-resolution image classification task, our approach

is applied to recognize insect pest and evaluated on IP102 benchmark dataset. As the

testing performance showed, our models achieve better test accuracy performance than

FR-ResNet model and other state-of-the-art approaches. Thus, based on above studies, It

demonstrated the validness and adaptiveness of our approach, and it is convenient to be

embedded into other common residual networks.

Based on the proposed residual networks and the attention mechanism methods, we

proposed a new residual network to learn the multi-scale representation to improve the

model performance. We fused the extracted feature from three branches in each resid-

ual block. Moreover, we proposed the SFR module to recalibrate channel-wise feature

responses and to model the relationship between these branches. The experimental re-

sults verified the effectiveness of our approach on CIFAR datasets. Even for extremely

deep DMF-ResNet, our model can achieve compelling results. Then, we constructed

our model with different depths and tested the F1 score and model accuracy on IP102

dataset. Compared to the baseline models and other state-of-the-art methods, our model

can obtain the best model performance on IP102 dataset, which had proved the valid-

ness of our approach for the high-resolution image classification task. Meanwhile, we

visualized the highlighted regions on images to explain the effect of our approach for the

image classification task. Therefore, based on these empirical studies, we have verified

the effectiveness of our approach.

In future work, we will try to extend the proposed networks to different technical

fields and explore more effective convolutional neural network structure.

Bibliography

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018. 1

[2] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for gener-

ative adversarial networks,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2019, pp. 4401–4410. 1

[3] F. Ren and J. Deng, “Background knowledge based multi-stream neural network

for text classification,” Applied Sciences, vol. 8, no. 12, p. 2472, 2018. 1

[4] W. Zhang, M. Wang, Y. Zhu, J. Wang, and N. Ghei, “A hybrid neural network

approach for fine-grained emotion classification and computing,” Journal of Intel-

ligent & Fuzzy Systems, vol. 37, no. 3, pp. 3081–3091, 2019. 1

[5] F. Ren and N. Liu, “Emotion computing using word mover’s distance features

based on ren_cecps,” PloS one, vol. 13, no. 4, p. e0194136, 2018. 1

[6] F. Ren, Y. Dong, and W. Wang, “Emotion recognition based on physiological sig-

nals using brain asymmetry index and echo state network,” Neural Computing and

Applications, pp. 1–11, 2018. 1

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, 2012, pp. 1097–1105. 1, 4.3.10, 5.3.7, 6.3.8

84

BIBLIOGRAPHY 85

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 770–778. 1, 3.2, 3.5, 4.2, 4.3.10, 5.3.7, 6.3.8

[9] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in 2017 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2017, pp. 2261–2269. 1, 2.4, 3.3, 4.3.10, 5.3.7, 6.3.8

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Communications of The ACM, vol. 60, no. 6, pp.

84–90, 2017. 1, 2.4, 3.1

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 1, 3.5, 4.3.10, 5.3.7,

6.3.8

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

1, 2.4, 2.4, 3.1, 3.5, 4.3.10, 5.3.7

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778. 1

[14] ——, “Identity mappings in deep residual networks,” in European conference on

computer vision. Springer, 2016, pp. 630–645. 1, 3.2, 4.3.4, 6.3.8

[15] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-

resnet and the impact of residual connections on learning,” in Thirty-First AAAI

Conference on Artificial Intelligence, 2017. 1, 2.4

BIBLIOGRAPHY 86

[16] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, “Dsod: Learning deeply

supervised object detectors from scratch,” in Proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 1919–1927. 1, 3.3

[17] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick, “Inside-outside net: De-

tecting objects in context with skip pooling and recurrent neural networks,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 2016,

pp. 2874–2883. 1

[18] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” IEEE transactions on pattern analysis

and machine intelligence, vol. 39, no. 6, pp. 1137–1149, 2016. 1

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European conference on computer vision.

Springer, 2016, pp. 21–37. 1

[20] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 3431–3440. 1

[21] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

arXiv preprint arXiv:1511.07122, 2015. 1

[22] Y. Lu, Y. Chen, D. Zhao, and J. Chen, “Graph-fcn for image semantic segmen-

tation,” in International Symposium on Neural Networks. Springer, 2019, pp.

97–105. 1

[23] H. Park, L. L. Sjösund, Y. Yoo, J. Bang, and N. Kwak, “Extremec3net: Extreme

lightweight portrait segmentation networks using advanced c3-modules,” arXiv

preprint arXiv:1908.03093, 2019. 1

BIBLIOGRAPHY 87

[24] F. Ren and Z. Huang, “Automatic facial expression learning method based on hu-

manoid robot xin-ren,” IEEE Transactions on Human-Machine Systems, vol. 46,

no. 6, pp. 810–821, 2016. 1

[25] D. Feng and F. Ren, “Dynamic facial expression recognition based on two-stream-

cnn with lbp-top,” in 2018 5th IEEE International Conference on Cloud Computing

and Intelligence Systems (CCIS). IEEE, 2018, pp. 355–359. 1

[26] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998. 1, 3.1

[27] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-

works,” in European conference on computer vision. Springer, 2014, pp. 818–833.

1

[28] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and func-

tional architecture in the cat’s visual cortex,” The Journal of physiology, vol. 160,

no. 1, p. 106, 1962. 1

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986. 1

[30] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L.

D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural

computation, vol. 1, no. 4, pp. 541–551, 1989. 2.1

[31] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint

arXiv:1803.08375, 2018. 2.1, 3.1

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the IEEE

BIBLIOGRAPHY 88

international conference on computer vision, 2015, pp. 1026–1034. 2.1, 3.1, 4.3.1,

5.3.2, 6.3.2

[33] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004. 2.4, 3.5

[34] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

2005 IEEE computer society conference on computer vision and pattern recogni-

tion (CVPR’05), vol. 1. IEEE, 2005, pp. 886–893. 2.4, 3.5

[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 2.4, 3.1

[36] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–

7141. 2.4, 2.4, 3.4, 6.1, 6.3.2, 6.3.6

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015. 2.4,

3.1

[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-

ception architecture for computer vision,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 2818–2826. 2.4

[39] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny

images,” 2009. 2.5

[40] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits

in natural images with unsupervised feature learning,” 2011. 2.5

[41] X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, “Ip102: A large-scale

benchmark dataset for insect pest recognition,” in Proceedings of the IEEE Con-

BIBLIOGRAPHY 89

ference on Computer Vision and Pattern Recognition, 2019, pp. 8787–8796. 2.5,

3.5, 4.3.7

[42] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation,” IEEE transactions on pat-

tern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. 3.1

[43] M. Lin, Q. Chen, and S. Yan, “Network in network,” international conference on

learning representations, 2014. 3.1

[44] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-

sification using binary convolutional neural networks,” in European conference on

computer vision. Springer, 2016, pp. 525–542. 3.1

[45] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network

learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289,

2015. 3.1

[46] L. Trottier, P. Gigu, B. Chaib-draa et al., “Parametric exponential linear unit for

deep convolutional neural networks,” in 2017 16th IEEE International Conference

on Machine Learning and Applications (ICMLA). IEEE, 2017, pp. 207–214. 3.1

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997. 3.1

[48] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv

preprint arXiv:1505.00387, 2015. 3.1

[49] F. Shen, R. Gan, and G. Zeng, “Weighted residuals for very deep networks,” in

2016 3rd International Conference on Systems and Informatics (ICSAI). IEEE,

2016, pp. 936–941. 3.2

[50] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint

arXiv:1605.07146, 2016. 3.2, 4.2, 4.3.4

BIBLIOGRAPHY 90

[51] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with

stochastic depth,” european conference on computer vision, pp. 646–661, 2016.

3.2, 4.3.1

[52] K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, “Residual networks of

residual networks: Multilevel residual networks,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 28, no. 6, pp. 1303–1314, 2017. 3.2, 4.3.1

[53] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.

5927–5935. 3.2

[54] W. Liu, G. Wu, F. Ren, and X. Kang, “Dff-resnet: An insect pest recognition model

based on residual networks,” Big Data Mining and Analytics, vol. 3, no. 4, pp. 300–

310, 2020. 3.2

[55] W. Liu, G. Wu, and F. Ren, “Deep multi-branch fusion residual network for insect

pest recognition,” IEEE Transactions on Cognitive and Developmental Systems,

2020. 3.2

[56] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like ensem-

bles of relatively shallow networks,” Advances in neural information processing

systems, vol. 29, pp. 550–558, 2016. 3.2

[57] W. Nan, Z. Zhigang, M. Jingqi, L. Huan, L. Junyi, and Z. Zhenyu, “Face recogni-

tion method based on enhanced edge cosine loss function and residual network,”

in 2019 Chinese Control And Decision Conference (CCDC). IEEE, 2019, pp.

3320–3324. 3.2

[58] B. Fernando, E. Fromont, D. Muselet, and M. Sebban, “Discriminative feature

fusion for image classification,” in 2012 IEEE Conference on Computer Vision

and Pattern Recognition. IEEE, 2012, pp. 3434–3441. 3.3

BIBLIOGRAPHY 91

[59] Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature

fusion and its application in image recognition,” Pattern Recognition, vol. 38, no.

12, pp. 2437–2448, 2005. 3.3

[60] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral image classification with deep

feature fusion network,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 56, no. 6, pp. 3173–3184, 2018. 3.3

[61] X. Cao, R. Li, L. Wen, J. Feng, and L. Jiao, “Deep multiple feature fusion for

hyperspectral image classification,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 11, no. 10, pp. 3880–3891, 2018.

3.3

[62] Z. Li and F. Zhou, “Fssd: feature fusion single shot multibox detector,” arXiv

preprint arXiv:1712.00960, 2017. 3.3

[63] W. Guan, Y. Zou, and X. Zhou, “Multi-scale object detection with feature fusion

and region objectness network,” in 2018 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 2596–2600. 3.3

[64] J. Chu, Z. Guo, and L. Leng, “Object detection based on multi-layer convolution

feature fusion and online hard example mining,” IEEE Access, vol. 6, pp. 19 959–

19 967, 2018. 3.3

[65] P. Zhang, W. Liu, Y. Lei, and H. Lu, “Hyperfusion-net: Hyper-densely reflective

feature fusion for salient object detection,” Pattern Recognition, vol. 93, pp. 521–

533, 2019. 3.3

[66] Z. Zhang, X. Zhang, C. Peng, X. Xue, and J. Sun, “Exfuse: Enhancing feature

fusion for semantic segmentation,” in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 269–284. 3.3

BIBLIOGRAPHY 92

[67] S.-J. Park, K.-S. Hong, and S. Lee, “Rdfnet: Rgb-d multi-level residual feature

fusion for indoor semantic segmentation,” in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 4980–4989. 3.3

[68] S. Lee, S.-J. Park, and K.-S. Hong, “Rdfnet: Rgb-d multi-level residual feature

fusion for indoor semantic segmentation,” in 2017 IEEE International Conference

on Computer Vision (ICCV). IEEE, 2017, pp. 4990–4999. 3.3

[69] M. Gao, H. Chen, S. Zheng, and B. Fang, “Feature fusion and non-negative matrix

factorization based active contours for texture segmentation,” Signal Processing,

vol. 159, pp. 104–118, 2019. 3.3

[70] S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for vhr remote sensing

scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol.

55, no. 8, pp. 4775–4784, 2017. 3.3

[71] F. Ni, J. Zhang, and Z. Chen, “Pixel-level crack delineation in images with convo-

lutional feature fusion,” Structural Control and Health Monitoring, vol. 26, no. 1,

p. e2286, 2019. 3.3

[72] S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for vhr remote sensing

scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol.

55, no. 8, pp. 4775–4784, 2017. 3.3

[73] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Condensenet: An

efficient densenet using learned group convolutions,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 2752–2761. 3.3

[74] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for

efficient cnn architecture design,” in Proceedings of the European conference on

computer vision (ECCV), 2018, pp. 116–131. 3.3

BIBLIOGRAPHY 93

[75] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in neural information

processing systems, 2017, pp. 5998–6008. 3.4

[76] T. Bluche, “Joint line segmentation and transcription for end-to-end handwritten

paragraph recognition,” in Advances in Neural Information Processing Systems,

2016, pp. 838–846. 3.4

[77] J. Libovickỳ and J. Helcl, “Attention strategies for multi-source sequence-to-

sequence learning,” arXiv preprint arXiv:1704.06567, 2017. 3.4

[78] T. Shen, T. Zhou, G. Long, J. Jiang, S. Wang, and C. Zhang, “Reinforced self-

attention network: a hybrid of hard and soft attention for sequence modeling,”

arXiv preprint arXiv:1801.10296, 2018. 3.4

[79] C. Cao, X. Liu, Y. Yang, Y. Yu, J. Wang, Z. Wang, Y. Huang, L. Wang, C. Huang,

W. Xu et al., “Look and think twice: Capturing top-down visual attention with

feedback convolutional neural networks,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 2956–2964. 3.4

[80] J. Choe and H. Shim, “Attention-based dropout layer for weakly supervised ob-

ject localization,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 2219–2228. 3.4

[81] ——, “Attention-based dropout layer for weakly supervised object localization,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2019, pp. 2219–2228. 3.4

[82] Y. Zhu, J. Xie, Z. Tang, X. Peng, and A. Elgammal, “Semantic-guided multi-

attention localization for zero-shot learning,” in Advances in Neural Information

Processing Systems, 2019, pp. 14 943–14 953. 3.4

BIBLIOGRAPHY 94

[83] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua, “Sca-cnn: Spa-

tial and channel-wise attention in convolutional networks for image captioning,” in

Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 5659–5667. 3.4

[84] L. Huang, W. Wang, J. Chen, and X.-Y. Wei, “Attention on attention for image

captioning,” in Proceedings of the IEEE International Conference on Computer

Vision, 2019, pp. 4634–4643. 3.4

[85] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,

“Bottom-up and top-down attention for image captioning and visual question an-

swering,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2018, pp. 6077–6086. 3.4

[86] M. Pedersoli, T. Lucas, C. Schmid, and J. Verbeek, “Areas of attention for im-

age captioning,” in Proceedings of the IEEE international conference on computer

vision, 2017, pp. 1242–1250. 3.4

[87] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang,

“Residual attention network for image classification,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 3156–3164.

3.4

[88] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose

estimation,” in European conference on computer vision. Springer, 2016, pp.

483–499. 3.4

[89] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convo-

lutional neural networks,” arXiv preprint arXiv:1301.3557, 2013. 3.4

[90] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2019, pp. 510–

519. 3.4

BIBLIOGRAPHY 95

[91] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional block attention

module,” in Proceedings of the European conference on computer vision (ECCV),

2018, pp. 3–19. 3.4

[92] B. Espejo-Garcia, N. Mylonas, L. Athanasakos, S. Fountas, and I. Vasilakoglou,

“Towards weeds identification assistance through transfer learning,” Computers

and Electronics in Agriculture, vol. 171, p. 105306, 2020. 3.5

[93] J. Haupt, S. Kahl, D. Kowerko, and M. Eibl, “Large-scale plant classification using

deep convolutional neural networks.” in CLEF (Working Notes), 2018. 3.5

[94] M. M. Ghazi, B. Yanikoglu, and E. Aptoula, “Plant identification using deep neural

networks via optimization of transfer learning parameters,” Neurocomputing, vol.

235, pp. 228–235, 2017. 3.5

[95] P. A. Dias, A. Tabb, and H. Medeiros, “Apple flower detection using deep convo-

lutional networks,” Computers in Industry, vol. 99, pp. 17–28, 2018. 3.5

[96] H. Zhang, G. He, J. Peng, Z. Kuang, and J. Fan, “Deep learning of path-based tree

classifiers for large-scale plant species identification,” in 2018 IEEE Conference

on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2018, pp.

25–30. 3.5

[97] S. W. Chen, S. S. Shivakumar, S. Dcunha, J. Das, E. Okon, C. Qu, C. J. Taylor,

and V. Kumar, “Counting apples and oranges with deep learning: A data-driven

approach,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 781–788,

2017. 3.5

[98] J. B. Castro, R. Q. Feitosa, and P. N. Happ, “An hybrid recurrent convolutional

neural network for crop type recognition based on multitemporal sar image se-

quences,” in IGARSS 2018 - 2018 IEEE International Geoscience and Remote

Sensing Symposium, 2018, pp. 3824–3827. 3.5

BIBLIOGRAPHY 96

[99] R. Li, R. Wang, J. Zhang, C. Xie, L. Liu, F. Wang, H. Chen, T. Chen, H. Hu, X. Jia

et al., “An effective data augmentation strategy for cnn-based pest localization and

recognition in the field,” IEEE Access, vol. 7, pp. 160 274–160 283, 2019. 3.5

[100] K. Dimililer and S. Zarrouk, “Icspi: Intelligent classification system of pest in-

sects based on image processing and neural arbitration,” Applied Engineering in

Agriculture, vol. 33, no. 4, p. 453, 2017. 3.5

[101] Z. Liu, J. Gao, G. Yang, H. Zhang, and Y. He, “Localization and classification of

paddy field pests using a saliency map and deep convolutional neural network,”

Scientific reports, vol. 6, p. 20410, 2016. 3.5

[102] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical

risk minimization,” arXiv preprint arXiv:1710.09412, 2017. 5.3.6, 6.3.4

[103] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,

“Grad-cam: Visual explanations from deep networks via gradient-based localiza-

tion,” in Proceedings of the IEEE international conference on computer vision,

2017, pp. 618–626. 6.3.6

	Introduction
	Main Research Contents
	Thesis Organization

	Background
	The Architecture of Convolutional Neural Network
	Convolutional Neural Network Learning Algorithm
	The Convolutional Neural Network Training and Inference Process
	Image Classification Model
	Datasets

	Related Work
	Deep Convolutional Neural Networks
	Residual Networks
	Feature Fusion Networks
	Attention Mechanism in CNNs
	Application in Insect Pest Recognition

	Feature Reuse Residual Network
	Methodology
	Model Optimization
	Experiments and Analysis
	Implementation on CIFAR-10, CIFAR-100 and SVHN datasets
	CIFAR-10 Classification by FR-ResNet
	CIFAR-100 Classification by FR-ResNet
	Feature Reuse for Pre-ResNet and WRN
	Effect of Feature Reuse, Depth and Width
	SVHN Classification Results
	IP102 Classification Results

	Discussion
	Feature Reuse
	Stronger Capacity of Representation

	Summary

	Deep Feature Fusion Residual Network
	Methodology
	Model Optimization
	Experiments and Analysis
	Influence of Hyper-parameters
	Implementation on CIFAR and SVHN datasets
	CIFAR-10 Classification by DFF-ResNet
	CIFAR-100 Classification by DFF-ResNet
	Deep Feature Fusion for WRN
	Effect of Depth and Width
	SVHN Classification Results
	Classification Result on IP102

	Discussion
	Effect of Feature Fusion Residual Block
	Effect of Adding Residual Blocks in Earlier Groups

	Summary

	Deep Multi-Branch Fusion Residual Network
	Methodology
	Model Optimization
	Experiments and Analysis
	Influence of hyper-parameters
	Implementations on CIFAR Datasets
	CIFAR Classification by DMF-ResNet
	The impact of depth and width
	Ablation Study
	Classification results on IP102

	Discussion
	The effectiveness of the multi-branch fusion and SFR module
	Parameter efficiency

	Summary

	Conclusions and Future Work
	References

