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A B S T R A C T 

In many real-world applications, only user-item interactions (one-class feedback) can be 

observed. The recommendation methods have been studied for personalized ranking 

with one-class feedback in recent years. Pairwise ranking methods have been widely 

used for dealing with the one-class problem with the assumption that users prefer their 

observed items over unobserved items. However, existing some items that users have 

not seen yet. It is unsuitable for treating all unobserved items of the user as negative 

feedback. In this paper, we propose a Prior-based Bayesian Pairwise Ranking (PBPR) 

model, which relaxes the simple pairwise preference assumption in previous works by 

further considering the pairwise preference between two unobserved items. Moreover, 

we calculate users' potential preference scores on unobserved items, i.e., prior infor-

mation, based on historical interactions. The prior information can be used to measure 

the fine-grained preference difference between any two unobserved items of each user. 

Through extensive experiments on real-world datasets, we demonstrate the effectiveness 

of our proposed recommendation method. 

© 2020 Elsevier B.V. All rights reserved. 

1 Introduction

With the rapid spread of multimedia Web applications, a large 

number of contents are being generated online in real-time. Users 

will spend much effort in finding interesting things from the mas-

sive data. Therefore, recommender systems are proposed to deal 

with information overload and meet users' personalized interests. 

Almost every service (search engines, social media sites, E-

commerce, and news portals) that provides the content to users is 

equipped with a recommender system [1]. In recommender systems, 

item represents different kinds of contents consumed by users [2], 

like a movie, a song, or a book. Collaborative filtering (CF) based 

methods [3], which take account of user-item interactions, have 

made great satisfactory success, among different recommend strat-

egies [4]. However, the sparsity of user-item interactions usually 

influences the performance of CF-based recommendation methods. 

The recommendation problem for the dataset, like MovieLens 

[5], in which users give the rating values scale 1-5, can be consid-

ered as a multi-class task. For example, the accurate preference 

scores of users on different movies are predicted based on multi-

class methods. However, in many datasets, only one-class feedback 

is available [6], e.g., bought products, watched movies, and clicked 

Web pages. Such datasets only have each user's positive feedback, 

usually called one-class feedback [7] or implicit feedback [8]. The 

one-class problem is different from that of the five stars rating pre-

diction problem since the former only contain observed items ra-

ther than both positive items and negative items in the latter. The 

one-class collaborative filtering methods aim to rank unobserved 

items for users, and the multi-class methods aim to predict users' 

rating scores on items. 

The recommendation methods for solving the one-class problem, 

which is also the implicit feedback problem, can be divided into 

two branches based on previous researches: pointwise regression 

methods [9,10] and pairwise ranking methods [11,12]. The 

pointwise regression methods, which take observed items as abso-

lute preference scores [13] for the one-class problem, learn latent 

representations of users and items to represent users' preference 

scores and minimize a pointwise square loss to approximate the 

absolute scores. The pairwise ranking methods take an observed 

item and an unobserved item of a user as a triple <user, an ob-

served item, an unobserved item>, assuming that users prefer ob-

served items to unobserved items, and maximize the likelihood of 

pairwise preferences over observed items and unobserved items. 

Empirically, the pairwise ranking methods [14,15], which have 
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been successfully adopted in many scenarios [16,17], achieve much 

better performance than pointwise methods [7,10]. Bayesian per-

sonalized ranking (BPR) [14] is one of the most popular pairwise 

ranking methods. The optimization process of the BPR model as-

sumes equal importance of the huge unobserved items. 

We find that the historical interactions between users and items 

provide resources about users' partial preferences. Specifically, we 

could discover a user's potential preference on his/her unobserved 

items, according to some explainable connections existing between 

observed items and unobserved items. For example, a recommend-

er system contains three users (A, B, and C) and five movies (a, b, c, 

d, and e). The interactions between users and items are shown in 

Fig. 1. Movie b is a nice choice while recommending a new movie 

for user B. Considering that user B has the same historical interac-

tions (a and c) with user A, user A can be considered as the like-

minded user of user B. Thus, user B may be interested in the movie, 

which has been watched by user A. Additionally, users' potential 

preferences on items provide resources about potential interactions 

between users and items, which can alleviate the data sparsity prob-

lem and can also be used to evaluate the fine-grained preference 

difference between any two unobserved items. 

    In this paper, we propose a novel recommendation model called 

Prior-based Bayesian Pairwise Ranking (PBPR), which further 

considering the pairwise preference between two unobserved items, 

for attempting to relax the assumption adopted by BPR with equal 

importance of the unobserved items. The preference difference 

between two unobserved items can be determined by users' poten-

tial preference scores, which are calculated based on historical 

interactions. Our proposed recommendation method does not need 

any side information except the user-item interactions. The key 

contributions in this research are summarized as below: 

⚫ We propose a novel pairwise ranking model named Prior-

based Bayesian Pairwise Ranking (PBPR), which relaxes the 

assumption in BPR about unobserved items by taking into 

account the preference difference between unobserved items 

of a user. 

⚫ We calculate potential preference scores between users and 

items based on user-item interactions to measure the fine-

grained preference difference between any two unobserved 

items of the user.  

⚫ We conduct extensive experiments on three real-world da-

tasets, demonstrating the effectiveness of our proposed rec-

ommendation method. 

The remainder of this paper is organized as follows: Section 2 

discusses related works. The problem definition and base models 

are given in Section 3. Section 4 describes our solution in detail, 

and Section 5 provides experimental results and analysis based on 

real-world datasets. Section 6 is the presentation of conclusions and 

future work. 

2 Related works 

One-class collaborative filtering is an emerging setup in collabo-

rative filtering. One-class collaborative filtering recommendation 

methods are proposed for solving problems in real-world scenarios 

that only positive examples can be observed [18]. Compared with 

the traditional collaborative filtering setting where the data has 

ratings, one-class collaborative filtering is more realistic in many 

scenarios when no explicit feedbacks are available [19]. 

The existing personalized recommendations with one-class feed-

back generally focus on how to discover the missing interactions 

into personalized preference modeling. Zhou et al. [20] proposed 

the MUPL (Multi-facet user preference learning) framework for the 

fine-grained item recommendation, which considers different types 

of auxiliary feedback, to generate a high-quality personalized rec-

ommendation. Guo et al. [21] devised a linear regression model to 

learn the correlations between auxiliary feedback and target feed-

back and selected a number of nearest neighbors as positive items 

based on the set of items purchased by the user. They proposed a 

novel ranking model to help accommodate both the original and 

generated data and conducted experiments to demonstrate its per-

formance. However, in practice, not all recommendation datasets 

contain social information. Besides, the aforementioned personal-

ized recommendation methods are designed for applications includ-

ing some specific information like the auxiliary implicit feedback 

of view or click in [20] and [21].  

Bayesian personalized ranking (BPR) is a well-performed pair-

wise ranking recommendation approach, many previous methods 

optimized by BPR [22,23]. Existing pairwise ranking methods 

extend BPR for better recommendation results [24,25] by relaxing 

the assumptions before or taking into account more features like 

visual features from product images [26]. Inspired by the limitation 

of the assumption that individual preference alone in [14], Pan et al. 

[27] proposed a novel model called GBPR (Group Bayesian per-

sonalized ranking), which introduces group preference into the 

novel model to relax the individual and independence assumptions 

in BPR, enhance the richer interactions among users. The experi-

mental results demonstrate the effect of group preference assump-

tion in GBPR. Nevertheless, the equal importance for a large num-

ber of unobserved items of each user is unreasonable because the 

user might not notice some items rather than dislikes them. For 

distinguishing the difference between unobserved items, Yu et al. 

[28] divided the unobserved items into the possibly negative items 

and the unknown preference for the items. Zhou et al. [29] catego-

rized the unobserved feedback into potential feedback and negative 

feedback and assumed user u prefers items with positive feedback 

over items with potential feedback, and user u prefers items with 

potential feedback over items with negative feedback. The prefer-

ence comparison strategies for unobserved items are carried be-

tween unobserved items from different groups. The preference 

difference between two unobserved items in the same group could 

not be measured. 

We propose a generic recommendation approach, which is also 

an extension of BPR and does not need any social information, for 

 
Fig. 1: Illustration of the example of three users' implicit feedback on five 
movies. 



 

 

datasets containing user-item interactions. Moreover, we aim to 

measure the fine-grained preference difference between any two 

unobserved items of the user rather than dividing unobserved items 

into different groups and distinguishing the preference difference 

between unobserved items from different groups. 

3 Preliminaries 

We give the problem definition and then review the MF algo-

rithm and the BPR algorithm in this section. 

3.1 Problem Definition 

We use 𝑈𝑡𝑟 = {𝑢}𝑢=1
𝑀  and 𝐼𝑡𝑟 = {𝑖}𝑖=1

𝑁  to denote the sets of users 

and items and denote a user-item interaction matrix as 𝑅 ∈  𝑀×𝑁, 

where M and N represent the number of users and items, respec-

tively. We use 𝑅𝑢𝑖 to record the interaction between a user u and an 

item i. 𝑅𝑢𝑖 > 0 indicates user u has interacted with the item i, and 

𝑅𝑢𝑖 = 0 indicates user u has no interaction with the item i. Our 

goal is to recommend items to users that they may like from their 

unobserved items. 

3.2 Matrix Factorization 

Collaborative filtering, which can be divided into memory-based 

collaborative filtering [30] (user-based collaborative filtering and 

item-based collaborative filtering) and model-based collaborative 

filtering [31], is an essential technique for solving the problem of 

recommender systems. Matrix factorization [32] is widely applied 

in model-based collaborative filtering tasks because of its scalabil-

ity and flexibility. 

    Matrix factorization algorithm decomposes the user-item interac-

tion matrix 𝑅𝑀×𝑁 into the inner product of two low-rank matrices 

𝑈𝑀×𝑘 and 𝑉𝑁×𝑘.  

𝑅𝑀×𝑁 ≈ 𝑈𝑀×𝑘 ∙ 𝑉𝑁×𝑘
𝛵  (1) 

where 𝑈𝑀×𝑘  and 𝑉𝑁×𝑘  represent the user latent factor matrix and 

the item latent factor matrix. k represents the number of dimension-

ality and k≪min (M, N). We use 𝑈𝑢  to denote the latent factor 

vector of user u and 𝑉𝑖 to denote the latent factor vector of item i. 

3.3 Bayesian Personalized Ranking  

BPR is a widely used classical matrix factorization algorithm 

[33]. It makes pairwise learning and models a triplet of a user and 

two items, where one item is the observed item of the user, and the 

other one is the user's unobserved item. The individual preference 

score of user u on item i is denoted as 𝑟𝑢𝑖, which is calculated by 

the inner product of 𝑈𝑢 and 𝑉𝑖. 

𝑟𝑢𝑖 = 𝑈𝑢 ∙ 𝑉𝑖
𝛵. (2) 

BPR assumes the user prefers the observed item to the unob-

served item, and the likelihood of pairwise preferences of users is 

independent. The overall likelihood of BPR among users could be 

formulated as 

BPR = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗) [1 − 𝑃𝑟 (𝑟𝑢𝑗 >  𝑟𝑢𝑖)]

𝑗∈𝐼𝑡𝑟\𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

 (3) 

where user u has observed items 𝐼𝑢
+ and unobserved items 𝐼𝑡𝑟\𝐼𝑢

+. 

Item i is an observed item from 𝐼𝑢
+, and item j is a random sampled 

unobserved item.  𝑟𝑢𝑖 >  𝑟𝑢𝑗 represents user u prefers item i to item 

j. 

4 Our Solution 

4.1 Prior-based Bayesian Pairwise Ranking  

Besides observed items 𝐼𝑢
+, the remaining items which are unob-

served by users could be attributed to two reasons: the user has not 

seen these items, or the user is not interested in these items [28]. 

Different from the assumption adopted by the BPR with equal im-

portance of the unobserved items, we consider user's preferences 

on unobserved items are not equal, and the preference difference 

between unobserved items could be measured by potential prefer-

ence scores between users and items. We give an illustration of 

preference assumption based on prior information in Fig. 1. For 

user u, we record “1” for his/her observed items and record the 

user's potential preference scores on unobserved items in the grey 

area with a value varied from 0 to 1. We consider that item j has a 

higher possibility of attracting the user u's attention than item k 

according to their potential preference scores. 𝑟𝑢𝑗 >  𝑟𝑢𝑘 represents 

the preference difference between item j and item k. Inspired by 

this assumption, we can simply extend BPR to our proposed new 

model called Prior-based Bayesian Pairwise Ranking (PBPR). The 

tentative likelihood for users and items could be written as follows: 

PBPR = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗 , 𝑟𝑢𝑗 >  𝑟𝑢𝑘)

𝑗,𝑘∈𝐼𝑡𝑟\𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

 

               [1 − 𝑃𝑟(𝑟𝑢𝑖 <  𝑟𝑢𝑗 , 𝑟𝑢𝑗 <  𝑟𝑢𝑘)] 

(4) 

where 𝐼𝑢
+ represents observed items of user u. j and k are two ran-

dom sampled unobserved items of user u, and item j is more likely 

to be observed by the user than item k.  

The shortcoming of PBPR in Eq. (4) is that its performance 

largely depends on the accuracy of potential preference scores. We 

consider that when the individual preference 𝑟𝑢𝑗  is fused with an 

individual preference 𝑟𝑤𝑗 (𝑤 ∈ 𝑈𝑗
𝑡𝑟, 𝑈𝑗

𝑡𝑟 represents the set of users 

who observe item j), the fused preference 𝑟𝑁𝑢𝑗 is more likely to be 

higher than the individual preference 𝑟𝑢𝑘 comparing with the indi-

vidual preference 𝑟𝑢𝑗. Based on the above consideration, the likeli-

hood of our proposed PBPR model could be given by: 

PBPR = ∏ ∏ ∏ 𝑃𝑟(𝑟𝑢𝑖 >  𝑟𝑢𝑗 , 𝑟𝑁𝑢𝑗 >  𝑟𝑢𝑘)

𝑗,𝑘∈𝐼𝑡𝑟\𝐼𝑢
+𝑖∈𝐼𝑢

+𝑢∈𝑈𝑡𝑟

 

                [1 − 𝑃𝑟(𝑟𝑢𝑖 <  𝑟𝑢𝑗 , 𝑟𝑁𝑢𝑗 <  𝑟𝑢𝑘)] 

(5) 

where 𝑟𝑁𝑢𝑗 = 𝜆1𝑟𝑤𝑗 + (1 − 𝜆1)𝑟𝑢𝑗 represents the fused preference 

on item j, 𝜆1  is a trade-off parameter used to fuse two different 

users' preferences on item j.  

4.2 Generation prior information 

As mentioned before, our proposed PBPR model is designed, 

further considering the pairwise preference between two unob-

served items of each user. Therefore, we need prior information 

 
 F Fig. 2: Illustration of preference assumption based on prior information. 



 

 

about each user's potential preference scores on items to measure 

the fine-grained preference difference between unobserved items. 

In this section, we focus on describing the calculation method of 

potential preference scores between users and items based on their 

historical interactions. 

We consider that the user's potential preferences on items could 

be measured by his/her like-minded users' preferences on items and 

the similarity between observed items and unobserved items. 

Therefore, we firstly employ cosine similarity to measure the item-

based similarity (IUS, IUS ∈  𝑀×𝑀) between user u and user w 

based on the user-item interaction matrix 𝑅: 

IUS(𝑢, 𝑤) =
∑ 𝑅𝑢𝑘𝑘 𝑅𝑤𝑘

√∑ 𝑅𝑢𝑘
2

𝑘 √∑ 𝑅𝑤𝑘
2

𝑘

 
(6) 

where k is the dimensionality of user latent factor vector, 𝑢 𝜖 𝑈𝑡𝑟, 

and 𝑤 𝜖 𝑈𝑡𝑟 . 𝑅𝑢 represents the latent factor vector of user u. For 

each user, we rank other users according to user similarities calcu-

lated by Eq. (6). Only the top-5 users with the highest similarities 

are chosen as like-minded users. The user-based item similarity 

(UIS, UIS ∈  𝑁×𝑁) between item i and item j can also be calculat-

ed as follows: 

UIS(𝑖, 𝑗) =
∑ 𝑅:,𝑖𝑘𝑘 𝑅:,𝑗𝑘

√∑ 𝑅:,𝑖𝑘
2

𝑘 √∑ 𝑅:,𝑗𝑘

2
𝑘

 
(7) 

where k is the dimensionality of the item latent factor vector, 𝑖 𝜖 𝐼𝑡𝑟, 

and 𝑗 𝜖 𝐼𝑡𝑟. 𝑅:,𝑖 represents the latent factor vector of item i. 

We denote the potential preference score matrix as S (  𝑆 ∈

 𝑀×𝑁 ), and 𝑆𝑢𝑖  (𝑆𝑢𝑖 ∈ [0,1]) represents the potential preference 

score of user u on item i. 𝑆𝑢𝑖 is fixed as 1 when the item i is an 

observed item of user u. It will not be changed during the calcula-

tion of potential preference scores. Other values in 𝑆𝑢𝑖 are calculat-

ed in the sense of the user-based and item-based collaborative fil-

tering, which could be formulated as follows. 

𝑆𝑢
′ =

𝑅𝑢𝑈𝐼𝑆

∑ 𝑅𝑢𝑖𝑖
 (8) 

𝑆𝑢
′′ =

1

|𝐺𝑢|
∑ (IUS(𝑢, 𝑤)𝑆𝑤

′

𝑤∈𝐺𝑢

) (9) 

𝑆𝑢 =
1

2
𝑆𝑢

′ +
1

2
𝑆𝑢

′′ (10) 

In Eq. (8), 𝑆𝑢
′  represents potential preference score vector of user 

u from user u's observed items, which are calculated based on the 

multiplication of 𝑅𝑢, UIS and the number of observed items of user 

u.  𝑆𝑢
′′  represents the potential preference score vector of user u 

from user u's like-minded users. 𝐺𝑢  represents the group of like-

minded users of user u, and IUS(𝑢, 𝑤) denotes the user similarity 

between user u and user w. In 𝑆𝑢
′  and 𝑆𝑢

′′ , the observed items of 

user u are all fixed as 1. Finally, the potential preference score 

vector of user u (𝑆𝑢) is calculated by Eq. (10) based on 𝑆𝑢
′  and 𝑆𝑢

′′. 

Considering the ranking list of user's unobserved items can be de-

termined by his/her potential preference scores, we denote this 

calculation method as U & I recommendation method and evaluate 

its performance in Section 5. 

4.3 Learning the model 

In this paper, we represent 𝑟𝑢𝑖 >  𝑟𝑢𝑗 ,  𝑟𝑁𝑢𝑗
>  𝑟𝑢𝑘  as λ(𝑟𝑢𝑖 −

 𝑟𝑢𝑗) + (1 − 𝜆)(𝑟𝑁𝑢𝑗
−  𝑟𝑢𝑘), where 𝜆 is a control coefficient used 

to fuse their relations. To maximize the posterior probability for 

PBPR, we employ σ(x) = 1/(1 + exp(−𝑥))  to approximate the 

probability 𝑃𝑟 (∙), following the BPR algorithm, where 𝜎  repre-

sents the logistic sigmoid function. The log-likelihood is also em-

ployed to reduce the calculation complexity of PBPR. For each 

randomly sampled record, it includes a user u, an observed item i 

of user u, two unobserved items j, k of user u, and a user w, where 

𝑤 ∈ 𝑈𝑗
𝑡𝑟. The illustration of this process is shown in Fig. 3. The 

objective function can be written as: 

𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘) =  − lnσ (λ(𝑟𝑢𝑖 − 𝑟𝑢𝑗)

+ (1 − 𝜆) (𝑟𝑁𝑢𝑗
−  𝑟𝑢𝑘)) +

 𝛽

2
(‖𝑈𝑢‖2

+ ‖𝑈𝑤‖2 + ‖𝑉𝑖‖2 + ‖𝑉𝑗‖
2

+ ‖𝑉𝑘‖2) 

(11) 

where ‖𝑈𝑢‖2 , ‖𝑈𝑤‖2 , ‖𝑉𝑖‖2 , ‖𝑉𝑗‖
2

 and ‖𝑉𝑘‖2 are regularization 

terms to prevent overfitting in the learning process, and 𝛽 is the 

hyper-parameter to tune the regularization terms. The individual 

preference score is modeled by matrix factorization. Different im-

plementations of prediction functions and their experimental results 

will be discussed in Section 5.2.1 and Section 5.3.  

Following the well-known stochastic gradient descent (SGD) al-

gorithm, each parameter could be updated as follows, 

𝜃 ← 𝜃 − 𝜂
𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝜃
 (12) 

where 𝜃 can be 𝑈𝑢, 𝑈𝑤, 𝑉𝑖, 𝑉𝑗 , or 𝑉𝑘, and 𝜂 > 0 is the learning rate. 

We represent the fuse of the preference difference between 𝑟𝑢𝑖 and 

𝑟𝑢𝑗 , and the preference difference between 𝑟𝑁𝑢𝑗  and 𝑟𝑢𝑘  as 

𝑟𝑢𝑖𝑢𝑗; 𝑁𝑢𝑗𝑢𝑘. So, we can derive the following gradients for users: 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑈𝑢
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘

× (𝜆𝑉𝑖 + ((1 − 𝜆)(1 − 𝜆1) − 𝜆)𝑉𝑗

− (1 − 𝜆)𝑉𝑘) + 𝛽𝑈𝑢 

(13) 

 
Fig. 3: Illustration of each randomly sampled record in PBPR. For each user 
u, an observed item i and two unobserved items are selected. The unobserved 

item with a higher potential preference score is item j, another item k. User w 

has positive feedback on item j. 



 

 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑈𝑤
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (𝜆1(1 − 𝜆)𝑉𝑗) + 𝛽𝑈𝑤 (14) 

and we can get the gradients for items as follows: 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑖
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (𝜆𝑈𝑢) + 𝛽𝑉𝑖 (15) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑗
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘

× (((1 − 𝜆)(1 − 𝜆1) − 𝜆)𝑈𝑢

+ 𝜆1(1 − 𝜆)𝑈𝑤) + 𝛽𝑉𝑗  

(16) 

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑉𝑘
=

𝜕𝐿(𝑢, 𝑤, 𝑖, 𝑗, 𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
× (−(1 − 𝜆)𝑈𝑢) + 𝛽𝑉𝑘 (17) 

where 
𝜕𝐿(𝑢,𝑤,𝑖,𝑗,𝑘)

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
= −

exp(−𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)

1+exp(−𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)
= −

1

1+exp (𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘)
. The 

steps of PBPR is summarized in Algorithm 1 in detail. 

5 Experiments 

In this section, we demonstrate the effectiveness of our proposed 

recommendation method by a series of experiments on three real-

world datasets. We compare the performance of the PBPR model 

with several benchmark methods in terms of precision (Prec), recall 

(Rec), and normalized discounted cumulative gain (NDCG). Then 

we evaluate the impacts of different parameter settings on the per-

formance of our proposed recommendation method. 

5.1 Datasets 

Three real-world datasets are employed as experimental data, in-

cluding Last-FM1, MovieLens 100K2, and MovieLens 1M2. Last-

FM provides a dataset that users' behaviors of listening to music, 
__________ 

1 https://grouplens.org/datasets/hetrec-2011/. 

2 https://grouplens.org/datasets/movielens/. 

which has 92,834 interactions from 1,892 users and 17,632 items. 

MovieLens is a collection of movie ratings. MovieLens 100K in-

cludes 100,000 ratings given by 943 users and 1,682 movies, and 

MovieLens 1M contains 951,612 interactions assigned by 6,040 

users and 3,952 movies. For studying the one-class feedback prob-

lem on datasets MovieLens 100K and MovieLens 1M, we do not 

preprocess datasets according to their rating values scale 1-5, such 

as keeping the ratings larger than 3 as the observed feedback. We 

consider all observed user-item pairs as positive feedbacks in all 

experiments [29]. The description of the experimental datasets is 

presented in Table 1. 

For all three datasets, we randomly sample 20%, 50%, and 80% 

of user-item interactions on each dataset as training data, respec-

tively, and the rest as test data.  

Table 1 Description of the experimental datasets 

Dataset #Users #Items #Interactions Sparsity 

Last-FM 1,892 17,632 92,834 99.72% 

MovieLens 100K 943 1,682 100,000 93.70% 

MovieLens 1M 6,040 3,952 951,612 96.01% 

5.2 Experimental design 

To evaluate the performance of the PBPR model, we compare 

our proposed method with benchmark methods by convincing 

evaluation metrics. In addition, we empirically investigate the ef-

fects of different parameter settings in PBPR on the recommenda-

tion results. 

5.2.1 Benchmark methods 

We compare our proposed method with several recommendation 

methods, including 

⚫ PopRank [20]: PopRank recommends each user a ranking 

list of items according to the item's popularity in the training 

data. It is not a personalized recommendation approach usu-

ally used for solving the user cold-start problem. 

⚫ U ＆ I: U ＆ I represents the user-based and item-based 

recommendation method, which we propose in Section 4.2. 

It can also be used to predict users' preferences via aggrega-

tion of the item-item similarity and the like-minded users' 

preferences. 

⚫ BPR [2]: As introduced in Section 3.3, the Bayesian Person-

alized Ranking method is a state-of-the-art [20] pairwise 

learning method based on matrix factorization. It recom-

mends a personalized ranking list of items for each user only 

based on the user's historical interactions. 

⚫ GBPR [3]: Group preference-based Bayesian Personalized 

Ranking method is an extension of the BPR model, which 

relaxes individual and independence assumptions in the BPR 

model. This work is able to accommodate richer interactions 

among users. 

We define the following two prediction functions for PBPR: 

𝑟𝑢𝑖 = 𝑈𝑢 ∙ 𝑉𝑖
𝛵 (18) 

𝑟𝑢𝑖 = 𝑈𝑢 ∙ 𝑉𝑖
𝛵 +  𝛼 ∙ 𝑆𝑢𝑖 (19) 

where 𝛼  is a trade-off parameter, and S represents the potential 

preference score matrix. We denote the recommendation methods, 

in which the prediction functions are Eq. (18) and Eq. (19), as 

PBPR and PBPR+, respectively. 

Algorithm 1: Learning parameters for the PBPR model 

Input:  

User-item interaction matrix R;  

Potential preference score matrix S;  

Parameters η, λ, 𝜆1, and β; 

Output:  

The learned model parameters {𝑈𝑢, 𝑉𝑖 , 𝑢 ∈ 𝑈𝑡𝑟 , 𝑖 ∈ 𝐼𝑡𝑟}. 

1. Randomly initialize U and V; 

2. For 𝑡1 = 1, … , 𝑇 

3.   For 𝑡2 = 1, … , 𝑡 

4.     Randomly pick a user 𝑢 ∈ 𝑈𝑡𝑟; 

5.     Randomly pick an item 𝑖 ∈ 𝐼𝑢
+; 

6.     Randomly pick two items 𝑗, 𝑘 ∈ 𝐼𝑡𝑟\𝐼𝑢
+, 𝑆𝑢𝑗  > 𝑆𝑢𝑘; 

7.     Randomly pick a user 𝑤 ∈ 𝑈𝑗
𝑡𝑟; 

8.     Calculate 𝑟𝑁𝑢𝑗 and 
𝜕𝐿

𝜕𝑟𝑢𝑖𝑢𝑗;𝑁𝑢𝑗𝑢𝑘
; 

9.     Update 𝑈𝑢 via Eq. (13); 

10.     Update 𝑈𝑤 via Eq. (14); 

11.     Update 𝑉𝑖 via Eq. (15); 

12.     Update 𝑉𝑗  via Eq. (16); 

13.     Update 𝑉𝑘 via Eq. (17); 

14.   End 

15. End 

 



 

 

5.2.2 Experimental setting 

We set the iteration number T=10,000. To make the comparison 

fair, we initialize all pairwise ranking models (BPR, GBPR and 

PBPR) with the same random distribution. We set the same dimen-

sionality, the same learning rate, and the same hyper-parameter of 

the regularization terms. For all recommendation models, the di-

mensionality is empirically set to 𝑘 = 20, the learning rate is set to 

𝜂 = 0.05, and the hyper-parameter is set to 𝛽 = 0.01. 

     For the GBPR model, we fix the user group size as |𝐺| = 3, the 

parameter ρ=1 and ρ=0.6 are set for the datasets MovieLens 100K 

and MovieLens 1M, respectively, considering the settings in [27]. 

The parameter ρ=0.8 is set for the dataset Last-FM. The control 

coefficient 𝜆 = 0.7 by default in PBPR and PBPR+ , the control 

coefficient for the dataset Last-FM is set as 𝜆 = 0.8. The trade-off 

parameter  𝜆1 = 0.9 is set for the datasets MovieLens 100K and 

MovieLens 1M, and  𝜆1 = 0.3 is set for the dataset Last-FM. The 

trade-off parameter 𝛼 in the prediction function is set as 𝛼 = 0.7 

and 𝛼 = 0.1 for the Last-FM dataset and other datasets. We could 

observe that parameter settings in PBPR are the same for the da-

tasets MovieLens 100K and MovieLens 1M. The reason may be 

that two datasets are all collected from the MovieLens web site. 

    Different dimensionalities have influences on the performance of 

the models. We will change the dimensionality to study the effects 

of different dimensionalities on recommendation results. In the 

PBPR+ model, 𝛼 is a trade-off parameter in the prediction function, 

and we will discuss its influence on the recommendation results in 

Section 5.4. 

5.2.3 Evaluation metrics 

We report the average performance of users in the test data. Us-

ers pay attention to a few top-ranked items, so we use top-N evalu-

ation metrics [34], which are Prec@N, Rec@N, and NDCG@N, to 

evaluate the performance of our method.  

The metrics Prec@N and Rec@N for user u are defined as fol-

lows: 

𝑃𝑟𝑒𝑐@𝑁 =
1

𝑁
∑ 𝛿(𝐼𝑖  ∈  𝐼𝑢

+)

𝑁

𝑖=1

 (20) 

𝑅𝑒𝑐@𝑁 =
1

|𝑈𝑢
𝑡𝑒𝑠𝑡|

∑ 𝛿(𝐼𝑖  ∈  𝐼𝑢
+)

𝑁

𝑖=1

 (21) 

where 𝐼𝑖 represents the i-th item in the ranking list. 𝛿(∙) represents 

the indicator function. Its value is equal to 1 when 𝐼𝑖  ∈  𝐼𝑢
+, other-

wise 0. |𝑈𝑢
𝑡𝑒𝑠𝑡| represents the number of all observed items of user 

u in the test data. 

The normalized discounted cumulative gain (NDCG) [35], 

which takes into account the position of correctly recommended 

items, is a standard measure of ranking quality. It is defined as 

𝑁𝐷𝐶𝐺@𝑁 =
1

𝑍𝑁
∑

2𝑟(𝑗) − 1

log (𝑗 + 1)

𝑁

𝑗

 (22) 

where j represents the j-th position in the ranking list, and r(j) pre-

sents the relevance of the item in position j. 𝑍𝑁 represents the ideal 

value for the discounted cumulative gain (DCG, DCG =

∑
2𝑟(𝑗)−1

log (𝑗+1)

𝑁
𝑗 ). Here, we set N as 5. 

5.3 Performance comparison results and analysis 

Our experiments are performed on a Windows 10 with 3.6GHz 

Intel Core i3, 8 GB. The results of all recommendation methods on 

the datasets Last-FM, MovieLens 100K and MovieLens 1M are 

presented in Table 2, Table 3, Table 4, respectively. The best val-

ues for each dataset are in bold. Several observations stand out: 

⚫ PBPR+ performs the best on all the three datasets according 

to evaluation metrics in Section 5.2.3. The results of PBPR+ 

outperform PBPR on all datasets, which shows the effect of 

the integration strategy in Eq. (19). PBPR+ and PBPR further 

improve BPR on all top-5 metrics on all datasets, which 

demonstrates the effectiveness of injected pairwise preference 

between unobserved items into the traditional pairwise rank-

ing model. 

⚫ Note that the sparsity of the user-item interaction matrix has 

an influence on the recommendation results. The results of 

the top-5 metrics are much lower for the dataset Last-FM 

than other datasets because the sparsity of its user-item inter-

action matrix is significantly larger than MovieLens 100K 

and MovieLens 1M. The overall results of the dataset Mov-

ieLens 100K are slightly better than MovieLens 1M. 

⚫ Compare with the training data with 20% user-item pairs, the 

results of the training data with 50% user-item pairs increase 

in terms of Prec@5 and NDCG@5 because more user-item 

pairs could provide more information about users' preferences. 

However, the results of Prec@5 and NDCG@5 decrease 

when the training data includes 80% user-item pairs. We con-

sider reasons may be that the observed items of some users 

might be smaller than 5 because we do not preprocess the 

original datasets. For example, the best precision is 0.2 when 

only one item of user u in the test data. In addition, it is diffi-

cult to find this item from a large number of unobserved 

items for user u.  

⚫ In Eq. (21), |𝑈𝑢
𝑡𝑒𝑠𝑡|  represents the number of all observed 

items of the user u in the test data. The results are very poor 

in Table 2, Table 3 and Table 4 in terms of Rec@5. The rea-

son may be that many users' observed items in the test data 

are larger than 5. For example, user u has 24 user-item pairs 

in the test data; the best recall is 0.208 when the top-5 items 

are all user u's observed items. Therefore, the results of 

Rec@5 improve with the increase of the training user-item 

pairs on all three datasets, i.e., the decrease of the number of 

user-item pairs in the test data. 

⚫ The gaps between U ＆ I method and recommendation mod-

els (BPR, GBPR and PBPR) are reduced with the increase of 

the training data, especially on the dataset Last-FM (80%), 

the U ＆ I method performs better than almost all recommen-

dation models (BPR, GBPR and PBPR) on all evaluation 

metrics. It is obvious that the U ＆ I method could provide 

well results when the training user-item pairs are enough. 
However, data with high density is difficult to obtain in real-

life applications. The results of the U ＆ I method could be 

integrated with the recommendation model to enhance its 

performance and provide more accurate recommendations. 

⚫ PopRank performs better than the U ＆ I method and BPR on 

MovieLens 100K (20%). It demonstrates the effectiveness of 

recommending popular items to users to solve the user cold-



 

 

start problem. In this study, we take this idea into the sam-

pling strategy of our proposed model, which will be dis-

cussed in Section 5.5.1. 

Table 2: Performance comparison for PopRank, U ＆ I, BPR, GBPR, PBPR and PBPR+ in terms of Prec@5, Rec@5 and 

NDCG@5 on Last-FM.  

Method/Dataset Last-FM (20%) Last-FM (50%) Last-FM (80%) 

Prec@5 Rec@5 NDCG@5 Prec@5 Rec@5 NDCG@5 Prec@5 Rec@5 NDCG@5 

PopRank 0.1588 0.0406 0.1314 0.1434 0.0583 0.1538 0.0722 0.0735 0.0987 

U ＆ I 0.1751 0.0220 0.1794 0.2740 0.0558 0.2870 0.2163 0.1112 0.2379 

BPR 0.2874 0.0365 0.2947 0.3346 0.0680 0.3500 0.1932 0.0986 0.2108 

GBPR 0.3131 0.0398 0.3200 0.3425 0.0703 0.3543 0.1997 0.1019 0.2221 

PBPR 0.3226 0.0411 0.3327 0.3653 0.0745 0.3852 0.2083 0.1065 0.2267 

PBPR+ 0.3317 0.0423 0.3416 0.3720 0.0758 0.3957 0.2185 0.1116 0.2406 

Table 3: Performance comparison for PopRank, U ＆ I, BPR, GBPR, PBPR and PBPR+ in terms of Prec@5, Rec@5 and 

NDCG@5 on MovieLens 100K.  

Method/Dataset MovieLens 100K (20%) MovieLens 100K (50%) MovieLens 100K (80%) 

Prec@5 Rec@5 NDCG@5 Prec@5 Rec@5 NDCG@5 Prec@5 Rec@5 NDCG@5 

PopRank 0.4838 0.0416 0.4960 0.3862 0.0573 0.4009 0.2180 0.0768 0.2303 

U ＆ I 0.4592 0.0403 0.4729 0.5007 0.0781 0.5201 0.3423 0.1251 0.3638 

BPR 0.4802 0.0465 0.4868 0.5262 0.0804 0.5388 0.3665 0.1274 0.3840 

GBPR 0.5393 0.0538 0.5462 0.5790 0.0925 0.5967 0.3871 0.1361 0.4105 

PBPR 0.5642 0.0569 0.5758 0.5922 0.0931 0.6098 0.3981 0.1389 0.4239 

PBPR+ 0.5684 0.0574 0.5788 0.5930 0.0932 0.6117 0.3996 0.1394 0.4249 

Table 4: Performance comparison for PopRank, U ＆ I, BPR, GBPR, PBPR and PBPR+ in terms of Prec@5, Rec@5 and 

NDCG@5 on MovieLens 1M.  

Method/Dataset MovieLens 1M (20%) MovieLens 1M (50%) MovieLens 1M (80%) 

Prec@5 Rec@5 NDCG@5 Prec@5 Rec@5 NDCG@5 Prec@5 Rec@5 NDCG@5 

PopRank 0.3611 0.0217 0.3362 0.3301 0.0306 0.3454 0.2110 0.0405 0.2209 

U ＆ I  0.3917 0.0255 0.3861 0.4294 0.0495 0.4379 0.3274 0.0865 0.3471 

BPR 0.5145 0.0357 0.5213 0.5092 0.0556 0.5177 0.3510 0.0813 0.3652 

GBPR 0.5497 0.0391 0.5552 0.5307 0.0612 0.5424 0.3477 0.0847 0.3638 

PBPR 0.5550 0.0391 0.5575 0.5527 0.0629 0.5653 0.3664 0.0874 0.3833 

PBPR+ 0.5554 0.0391 0.5580 0.5541 0.0631 0.5667 0.3672 0.0874 0.3842 

5.4 Investigation of parameters 

The dimensionality is an important parameter for pairwise rank-

ing models. Small dimensionalities will not represent users and 

items well, and large dimensionalities will spend more time train-

ing the model. We investigate the performance of different models 

with different dimensionalities (𝑘 = 10, 20, 30, 40, 50) on Last-FM 

(50%), MovieLens 100K (50%) and MovieLens 1M (50%). Other 

parameter settings of models are the same as in Section 5.3. The 

results are shown in Fig. 4. We can observe that all evaluation met-



 

 

rics are improved with the increase of the dimensionality. The ex-

perimental results of all models are best on all datasets when the 

dimensionality k=50. From Fig. 4, we can also see that PBPR-

based models achieve high performance in contrast to the BPR 

model and the GBPR model in terms of Prec@5, Rec@5 and 

NDCG@5. 

   
a) Last-FM (50%) 

   
b) MovieLens 100K (50%) 

   
c) MovieLens 1M (50%) 

Fig. 4: Performance investigation different dimensionalities on Last-FM (50%), MovieLens 100K (50%) and MovieLens 1M (50%). 

The User-based and Item-based (U ＆ I) recommendation meth-

od could achieve great results when 80% of the user-item interac-

tions are chosen as training data. Therefore, we discuss the impact 

of the trade-off parameter α on three datasets Last-FM (80%), 

MovieLens 100K (80%) and MovieLens 1M (80%)), on which the 

performance of potential preference scores is relatively good.  

We change the trade-off parameter 𝛼  with different values of 

{0.1, 0.2, …, 0.9, 1}. The experimental results of the PBPR model 

and the PBPR+ model in terms of Prec@5, Rec@5 and NDCG@5 

are shown in Fig. 5. Fig. 5 shows that the results of the PBPR+ 

model increase on all evaluation metrics when α varies from 0.1 to 

1 on the dataset Last-FM (80%). In Fig. 5 b), the PBPR+ model 

achieves high performance in term of Rec@5 when the parameter 

𝛼 set on some specific values. The results of PBPR+ decrease with 

the increase of 𝛼 in term of Rec@5 on the dataset MovieLen 1M 

(80%). The performance of the PBPR+ model improves when the 

parameter 𝛼  varies from 0.1 to 0.3 and then decreases with the 

increase of 𝛼, in terms of Prec@5 and NDCG@5 on the dataset 

MovieLens 100K (80%). PBPR+ performs better than PBPR when 

the parameter 𝛼  is smaller than 0.8, in terms of Prec@5 and 

NDCG@5 on the dataset MovieLens 1M (80%). 

We observe that prior information calculated based on user-item 

interactions has a significant impact on the results of the PBPR-

based models. We consider that more accurate potential preference 

scores and the suitable trade-off parameter could make the PBPR+ 

model provide more accurate recommendations. In this paper, our 

proposed PBPR a generic recommendation approach. It could be 

improved by considering more auxiliary information for specific 

recommended scenarios like calculating the potential preference 

scores between users and microblogs considering the topic infor-

mation [36] and emotions [37] of microblogs while recommending 

microblogs for users. 
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a) Last-FM (80%) 

   
b) MovieLens 100K (80%) 

   
c) MovieLens 1M (80%) 

Fig. 5: Performance investigation of trade-off parameters on Last-FM (80%), MovieLens 100K (80%) and MovieLens 1M (80%). 

5.5 Discussion  

5.5.1 More details in the sampling process  

In Algorithm 1, we randomly sample two unobserved items j and 

k, with the condition that 𝑆𝑢𝑗 is larger than 𝑆𝑢𝑘 in step 6, where the 

matrix S (𝑆 ∈  𝑀×𝑁) records potential preference scores between 

users and items. In this study, the sparsity of the dataset Last-FM is 

99.72%. The sparsity of the dataset Last-FM (20%) reaches 

99.94%, which may cause like-minded users can not be found, or 

values of user-based item similarity are zero. Existing users that 

their potential preference scores on unobserved items are all zero. 

    Recommending popular items for users is a solution for solving 

the user cold-start problem. Inspired by this, we assume that users 

may like items that are popular among other users. During the ran-

dom sampling process on the dataset Last-FM, we randomly sam-

pled a popular item from the user's unobserved items as the unob-

served item j of user u when the potential preference scores be-

tween the user u and unobserved items are all zero. 

5.5.2 Explainability of prior information 

Explainability becomes critically important for recommender 

systems to provide convincing results [33]. Explainable recom-

mender systems [38] aim to reveal why a user might like the item, 

and it helps improve users' satisfaction or acceptance of recom-

mendation results [39]. The explanations for recommender systems 

are usually based on phrase sentiment [40], aspect [41], and social 

networks [42]. 

    Since we adopt the user-based and item-based collaborative 

filtering method to calculate the potential preference scores be-

tween users and items, it provides an explainable reason for why 

the user might have an interest in the items with higher potential 

preference scores. For instance, recommending item 1 to user 2 

might be explained by “ 𝑖𝑡𝑒𝑚 1
watched

→
 𝑢𝑠𝑒𝑟 1

like − minded
→

 𝑢𝑠𝑒𝑟 2 ”. 

Therefore, in PBPR, the prior information provides an explainable 

reason for why the user u might prefer the unobserved item j over 

the unobserved item k. Additionally, the preference score matrix S, 

which considering the user's potential preference score on items, 

provides more potential interaction information between users and 

items to relax the sparsity issues from the user-item interaction 

matrix.  

6 Conclusions 

In this paper, we propose a novel model called PBPR for solving 

the one-class problem. PBPR relaxes the assumption in BPR with 

equal importance of the unobserved items, further considering the 

pairwise preference between two unobserved items. Our proposed 

recommendation method merely needs positive feedbacks without 

any additional information. It is a generic recommendation ap-

proach and could be improved by considering the unique social 

information about the specific application. Moreover, we measure 
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the preference difference between any two unobserved items based 

on prior information rather than dividing unobserved items into 

different groups and studying the preference difference between 

unobserved items from different groups. We calculate potential 

preference scores as prior information based on users' historical 

interactions, which can be used to (a) measure fine-grained prefer-

ence difference between any two unobserved items; (b) relax the 

sparsity of user-item interactions by providing more potential inter-

actions be-tween users and items; (c) integrate with the individual 

preference for the more accurate recommendations. Experimental 

results demonstrate the effectiveness of our method on real-world 

datasets. 

    For future work, we are interested in (a) considering side infor-

mation from other domains (affective computing, data mining). 

Emotion expressions [43], which are opinion targets with users' 

emotions, can be extracted from microblogging sites; and provide 

more information about user-item interactions for the recommender 

systems. Moreover, we can use sentiment analysis techniques [44] 

to analyze why users like items (user A prefers action movies) or 

study users' preferences by considering the auxiliary feedback via 

the hybrid emotion recognition system [45]; this helps to construct 

explainable recommender systems; (b) exploring the multi-task 

learning tasks, which conduct the calculation of potential prefer-

ence scores and recommendation model learning together.  
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