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Sleeping habits are one of the major issues in today’s healthcare. In this paper, we
consider the problem of analyzing sleeping habits of people using social networking service

(SNS) texts. As the first step toward predicting user’s sleeping time using SNS texts, we

assume that the time span between the user’s last post in one day and the first post the
next day can be used as a pseudo-indicator for the user’s sleeping time if the user posts

the text sufficiently frequently. We call such tweet time spans “pseudo-sleeping time”

if the first tweet of the next day include “Good morning” or similar words. We try to
predict such pseudo-sleeping time using the text (tweet) of the preceding tweet (i.e., the
last tweet of the day). Preliminary experiments show that the tweet text contains some
useful information to predict the user’s pseudo-sleeping time.

Keywords: sleeping time, SNS, text mining

1. Introduction

In this paper, we discuss the problem of predicting the sleeping time of a person

given the social networking service (SNS) texts (e.g., tweets) of that person. Today,

sleeping habits are one of the main issues in healthcare. It will contribute greatly

to our quality of life if we can predict or obtain some insights about our sleeping

habits from the SNS texts.

However, it is costly to collect accurate sleeping time data, resulting in very

small size of obtained data to be useful for meaningful analysis or applicable to

machine-learning algorithms.

To solve these issues, we instead propose a concept of pseudo-sleeping time, which

can be easily collected using time stamps of SNS posts. Here, pseudo-sleeping time

is defined as tweet time spans between the last tweet of one day and the first tweet of

the next day. (See Figure 1.) Note that here “day” is not the span from 0:00 to 23:59

hours, but the span of awake hours of a person. In other words, we regard the tweet
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Fig. 1. Definition of Pseudo Sleeping Time

saying “good morning” or similar things as the first tweet of a day (which we call

good-morning tweets) and the tweet before the first morning tweet as the last tweet

of the previous day (which we call good-night tweets.) That is, the pseudo-sleeping

time is the time span between a good-night tweet and the next good-morning tweet.

In this paper, we try to predict the pseudo-sleeping time using the contents of

the good-night tweets using a standard support vector machine (SVM) classifier.

We compare several settings using different datasets and different features to be

used in the classifier.

The remainder of the paper is organized as follows. In Section 2, we discuss

the related work. Section 3 explains our data and Section 4 describes our methods.

We show our experimental results using two types of data in Section 5. Section 6

concludes the paper and lists the future work.

2. Related Work

Many researches for using Twitter for disease surveillance have been done so far1.

For example, visualizing influenza epidemic by extracting tweets related to influenza

is a major research topic in this area6,7, while systems for mining more general

public-health-related issues were also available5. Surveying public health using Twit-

ter is also a major research topic. Sadilek and Kautz3 proposed an automatic way

to infer the health of people using geo-tagged tweets. They used features such as

the word “sick” appearing in the tweets, the number of times the user visits gyms,

etc.

Analyzing people with sleep troubles using Twitter was proposed by some re-

searchers. Jamison-Powell et al.2 used Twitter to find the people with their sleep

disorder by Twitter content analysis. (For example, tweets containing the word “in-

somnia” strongly suggest that the user has sleep-related troubles.) McIver et al.4

also proposed to use Twitter to investigate sleep issues by finding users who exhib-

ited keywords like “can’t sleep” and analyze their tweets. These researches focused
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on people who have relatively serious troubles with sleep. In contrast, our research

focuses on more general sleeping-time issues including simple insufficient sleeping

time, which is not a severe disease currently but may cause other related diseases.

Our contribution especially is to propose a method for analyzing the tweets that

do not contain sleep-related words explicitly (like “can’t sleep”) for sleeping time

surveillance.

3. Data and Problem Definition

We collected tweets via Twitter REST API v1.1 and then searched for “good morn-

ing” or other similar phrases. If the tweet m that contained such phrases (which we

call good-morning tweets) were found, we obtained the previous tweet n (which we

call good-night tweets), and calculated the time span t between m and n.

In this paper, we define our prediction problem as the binary classification prob-

lem. We give label l = +1 to the tweet n if t > 8 (i.e., pseudo-sleeping time is over 8

hours) and label −1 otherwise. We call the tweets with label l = +1 positive tweets

and the tweets with label l = −1 negative tweets. Therefore, resulting (n, l) pairs

(i.e., pairs of the good-morning tweet and time-classification label) are used as our

dataset and the task is to predict label l given n.

4. Method

Each tweet is converted to the word list using the morphological analyzer, MeCaba.

MeCab separates a sentence into a list of words, each of which is tagged with Part-

Of-Speech (POS) labels such as nouns, verbs, and adjectives.

We tested the following three types of POS filters:

• nouns only,

• verbs only, and

• nouns and verbs only.

After obtaining a list of words for each sentence, words other than the selected

POS (e.g., adjectives or prepositions) are discarded. The resulting list is converted

to a Bag of Words (BoW) representation, which is a list of (word, frequency) pairs.

The resulting BoW for each tweet is converted to tf-idf vectors by replacing a

frequency value for each word with the corresponding tf-idf score. The tf-idf scoring

function is defined as follows:

tfidf(t, d) = tf(t, d) · idf(t, d)

tf(t, d) and idf(t, d) are defined as follows:

tf(t, d) =
nt,d∑
s∈d ns,d

ahttps://taku910.github.io/mecab/
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where n(t, f) is the frequency of word t in document d.

idf(f) = log
N

df(t) + 1

where N is the number of documents and df(t) is the number of documents in which

t appears.

The obtained tf-idf vectors were divided into training and test data and used

for classification. SVM8 was used as a standard classifier for binary classification

problems. SVMs were trained on training data, and the accuracy of the trained

classifier was evaluated on test data. We used the Classias9 implementation for the

SVM classification.

5. Experiments

We collected two types of data described as follows:

Data-1: We collected good-morning tweets randomly using the Twitter search API

and obtained corresponding good-night tweets.

Data-2: We collected good-morning tweets of selected users, and obtained corre-

sponding good-night tweets.

In the following subsections, we describe these datasets and reports the experi-

mental results on each data set.

5.1. Results on Data-1

Data-1 is a collections of tweets randomly obtained by searching for good-morning

tweets and corresponding good-night tweets. As a result, we obtained the following

number of tweets for training and test data.

• Training data: 1,500 tweets

• Test data: 100 tweets

We applied SVM on this data. The results are shown in Table 1.

Table 1. Results on Data-1

nouns verbs nouns and verbs

47% 83% 51%

We observed that the setting using verb features showed extremely high accu-

racy. To find the reasons, we checked what kinds of strings are found in positive

(l = +1) or negative (l = −1) tweets.

We found that the following phrases were frequently found in the negative tweets:
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(1) “Fukugyou” (second job)

(2) Japanese quotation marks

(3) “Eigyou” ((shop is) open)

(4) “Nyusu” (news)

(5) “DM” (direct mail)

These were typical strings found in bot accounts. For example, “Eigyou” (open)

was found in the advertisement tweets such as “XX shop is open from 10:00 to

22:00 !”. We also found that Japanese quotation marks were typically found in the

bot accounts that quoted famous phrases or jokes. As a result, phrases that suggest

that the account was for the user’s lifelogs could be used as features to distinguish

such lifelog tweets from the “noisy” bot tweets. Especially, verbs like “Neru” (sleep)

strongly suggest that the accounts were for lifelogs, resulting in high accuracy for

verb features.

Considering these results, we concluded that the high accuracy obtained on the

data 1 was highly due to these “noises” that did not reflect the actual sleeping time

of the user.

Therefore, we decided to construct a new data set (the data-2 mentioned above),

which is “cleaner” in the sense that it:

(1) Consisted of reliable users only.

(2) Manually checked whether the good-night tweets are actually the last tweet of

the previous day.

To satisfy condition 1, we limited the collected accounts to be of the student

users only because student users show relatively regular life patterns compared to

adults who have much various statuses (e.g., office workers, housewives/husbands,

self-employed workers, etc.), resulting in more meaningful analysis. We also focused

on the users with the sufficient numbers of tweets to be used for good-morining

and good-night tweets extraction. Condition 2 is to filter out the “noisy” tweets

that is before the morining tweet but is not the good-night tweet (e.g., the pre-

good-morining tweets that do not say “good-morining”, such as “I will sleep a little

longer...”) Although currently we check the condition 2 manually, we think we can

automate the process using some patterns or classifiers to filter out such noisy

good-night tweets.

5.2. Results on Data-2

In data-2, we obtained the user profile texts of the tweets, and retained the tweets

of the user whose profile contains the word “student.” It is for focusing on only

tweets by students for the purpose of regularizing the lifestyle habits of the users,

because lifestyle habits are much different among people with various status/jobs,

such as students and office workers.

As a result, we obtained the following number of users, as shown in Table 2.
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Table 2. The Number of Users and Tweets
hhhhhhhhhhhhhhhh# of data

# of data types
training test

# of users 50 10

# of data per user 3,000 3,000

# of all tweets 150,000 30,000

We obtained good-morning and good-night tweets from these tweets, resulting

in the following number of training and test data.

Table 3. Description of Data-2

training test

1817 484

We applied SVMs to the obtained data in the same way as data-1. Table 4 shows

the results.

Table 4. Results on Data-2

nouns verbs nouns and verbs

62.3% 61.7% 63.3%

We observed that we could predict the label l with over 60% accuracy. This

result suggests that the last tweet of a day contained some useful information for

predicting the user’s sleeping time.

To analyze the results in further detail, we extracted phrases frequently found

in positive/negative tweets in the same way as data-1.

“Baito” (part-time job) were very frequently found in positive tweets (19 times

in positive tweets while 0 times in negative ones). In contrast, various phrases were

found in negative tweets such as:

(1) “Jikan” (time)

(2) “Testo” (exam)

(3) “2ji” (2 o’clock)

(4) “tokei” (clock)

(5) “neochi” (falling asleep)

(6) “netai” (want to sleep)

Phrase 1, 3, and 4 suggest that the user suddenly realized that it was late at
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night. In contrast, phrases 2 and 6 suggest that they had work to do and thus could

not go to bed. Phrase 5 suggests that the user fell asleep and would go to bed to

sleep for the remaining time. In general, these situations tend to cause a reduced

sleeping time.

6. Conclusions and Future Work

In this paper, we discussed the problem of predicting the sleeping time of persons

using Twitter texts posted by users. For collecting sufficient data at low costs, we

proposed the concept of pseudo-sleeping time, which can be considered as a kind of

upper-bound of the true sleeping time and used as an approximation to the sleeping

time. Using this concept, we defined our task to classify the pseudo-sleeping time

using the final tweet of the day.

We applied SVM classifiers on different datasets using different features, and

found that we can predict the pseudo-sleeping time to some extent using appropri-

ately collected datasets by avoiding “noises” (i.e., bot tweets) and constrained user

types (i.e., students in our case).

The future work includes analysis of the relation between the pseudo-sleeping

time and true sleeping time. We also plan to increase the data size by including more

users. The use of classification methods other than SVMs will also be an important

future work.
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