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Abstract: The problem of tomographic image reconstruction can be reduced to an optimization
problem of finding unknown pixel values subject to minimizing the difference between the measured
and forward projections. Iterative image reconstruction algorithms provide significant improvements
over transform methods in computed tomography. In this paper, we present an extended class of
power-divergence measures (PDMs), which includes a large set of distance and relative entropy
measures, and propose an iterative reconstruction algorithm based on the extended PDM (EPDM)
as an objective function for the optimization strategy. For this purpose, we introduce a system of
nonlinear differential equations whose Lyapunov function is equivalent to the EPDM. Then, we
derive an iterative formula by multiplicative discretization of the continuous-time system. Since
the parameterized EPDM family includes the Kullback–Leibler divergence, the resulting iterative
algorithm is a natural extension of the maximum-likelihood expectation-maximization (MLEM)
method. We conducted image reconstruction experiments using noisy projection data and found that
the proposed algorithm outperformed MLEM and could reconstruct high-quality images that were
robust to measured noise by properly selecting parameters.

Keywords: power-divergence measure; computed tomography; iterative reconstruction; maximum-
likelihood expectation-maximization method; continuous-time image reconstruction

1. Introduction

Image reconstruction in computed tomography (CT) is the process of estimating un-
known density images from measured projections. When the system of a tomographic
inverse problem is ill-posed, iterative reconstruction algorithms [1,2] based on the opti-
mization strategy provide significant improvements over transform methods, including
the filtered back-projection [3,4] (FBP) procedure. In recent years, iterative reconstruction
has received much attention because of its ability to reduce radiation doses [5–9] in X-ray
CT. Iterative algorithms implemented in, e.g., the algebraic reconstruction technique [1],
maximum-likelihood expectation-maximization [10] (MLEM) method, and multiplicative
algebraic reconstruction technique, have been used for reconstructing CT images. The
MLEM algorithm, which is the most popular method used in emission CT and is derived
for the maximum likelihood estimation of a Poisson distribution, reconstructs high-quality
images even for noisy projection data, but it is slow to converge [11–14] under iteration.
The ordered-subsets EM algorithm [11], in which the EM iteration is performed in each
subset by dividing the projection into subsets or blocks, is known to be useful for acceler-
ating MLEM [13,15,16]. However, divergence or oscillation of solutions may occur in the
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iterative process when the subset balance is not satisfied. Because of the high quality of
image reconstruction afforded by the MLEM algorithm, improved MLEM methods have
been presented for accelerating convergence. Some schemes accelerate the convergence rate
by increasing a relaxation parameter or the step-size in iterative operations [14,17,18] or by
introducing a parameter with a power exponent related to the projection for controlling
the noise model [19,20]. However, no theory has explained the divergence and oscillation
phenomena affecting solutions when the step-size parameter is large.

The convergence of iterative solutions and the quality of images are governed by the
underlying objective function that has to be minimized. Hence, the base objective function
is one of the most important decisions when designing an iterative algorithm. In this paper,
we present an extended class of power-divergence measures [21–24] (PDMs) and derive a
novel iterative algorithm based on the minimization of the extended PDM (EPDM) as an
objective function for the optimization strategy. Let us define the parameterized function
Φγ,α(p, q) of vectors p and q with nonnegative elements pi and qi, respectively, as

Φγ,α(p, q) := ∑
i

∫ qi

pi

sγ − pγ
i

sγα
ds (1)

where γ and α indicate positive and nonnegative parameters, respectively. The extension
is performed by incorporating the parameter α in the conventional class of PDMs, which
includes a large set of distance and relative entropy measures. By fixing the parameter
α = 1, Φγ,1 gives the family of PDMs with a single parameter γ. Therefore, the measure
coincides with the Kullback–Leibler (KL), or relative entropy, divergence [25] if γ = 1,
Neyman’s χ2 distance if γ = 2, and the generalized Hellinger distance otherwise. Moreover,
it corresponds to the squared L2 norm when γ = 1 and α = 0 and the reverse KL-divergence
when γ = 1 and α = 2. Thus, the parameters γ and α provide a smooth connection among
the forward and reverse KL-divergences, the Hellinger distance, the χ2 distance, and the
L2 distance and can control the trade-off between robustness and asymptotic efficiency of
the estimators, in a similar way as in other families of distance measures [26–29].

By exploiting the vectors p and q in Equation (1) as the measured and forward pro-
jections, respectively, for the tomographic inverse problem, it is expected that we can
create a high-performance iterative reconstruction algorithm thanks to the high degree of
freedom. For constructing this novel iterative algorithm, we introduce a nonlinear differ-
ential equation whose numerical discretization is equivalent to the iterative system. The
purpose of applying a dynamical method [30–35] to tomographic inverse problems [36–39]
is as follows: it enables us to prove the stability of the equilibrium corresponding to the
desired solution of the system of differential equations by using the Lyapunov stability
theorem [40] if a proper Lyapunov function can be found; then, since the step-size used to
discretize the set of differential equations corresponds to the relaxation or scaling parame-
ter of the system of difference equations, a family of iterative algorithms incorporating a
parameter for acceleration is naturally derived. Moreover, it provides a methodology for
systematically designing a new iterative reconstruction algorithm based on optimization of
an objective function depending on the features of the image to be reconstructed.

Since the EPDM family includes the KL-divergence, the resulting iterative algorithm
with power exponents corresponding to the parameters γ and α is a natural extension of
the MLEM method with (γ, α) = (1, 1). The convergence of solutions to the continuous
analog of the proposed iterative algorithm is theoretically shown using the EPDM as a
Lyapunov function when the tomographic inverse problem is consistent.

We conducted image reconstruction experiments using numerical and physical phan-
toms with noisy projections and found that the proposed algorithm outperformed the
conventional MLEM method with respect to reconstructing high-quality images that are
robust to measured noise when selecting a set of proper parameter values.
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2. Definitions and Notations

Image reconstruction is a problem of obtaining unknown pixel values x ∈ RJ
+ satisfying

y = Ax + δ (2)

where y ∈ RI
+, A ∈ RI×J

+ , and δ ∈ RI denote the measured projection, projection operator,
and noise, respectively, with R+ representing the set of nonnegative real numbers. When
the system in Equation (2) without noise, i.e., δ = 0, has a solution e ∈ RJ

+, it is consistent;
otherwise, it is inconsistent. The tomographic inverse problem can be reduced to one of
finding x, which can be accomplished using an optimization approach such as an iterative
method or a continuous-time system by minimizing an objective function.

Here, we introduce the notation that will be used below. The superscript > stands
for the transpose of a matrix or vector, θk indicates the kth element of the vector θ, Θi
and Θij indicate the ith row vector and the element in the ith row and jth column of the
matrix Θ, respectively, Log(θ) and Exp(θ) are, respectively, the vector-valued functions
Log(θ) := (log(θ1), log(θ2), . . . , log(θi))

> and Exp(θ) := (exp(θ1), exp(θ2), . . . , exp(θi))
>

of each element in vector θ = (θ1, θ2, . . . , θi)
>, and diag(θ) indicates the diagonal matrix in

which the diagonal entries are the elements of the vector θ.

3. Proposed System
3.1. Definition

The proposed methods for obtaining a solution to the tomographic inverse problem
can be described as an iterative algorithm and dynamical system.

We present an iterative reconstruction method with a relaxation or scaling parameter
h > 0:

zj(n + 1) = zj(n)
(

f j(z(n))
)h (3)

with

f j(w) :=

I

∑
i=1

Aij

(
yi

(Aiw)α

)γ

I

∑
i=1

Aij

(
Aiw

(Aiw)α

)γ
(4)

for j = 1, 2, . . . , J and n = 0, 1, 2, . . . , N− 1, where γ > 0, α ≥ 0, and z(0) = z0 ∈ RJ
++, with

R++ representing the set of positive real numbers. The accompanying system derived from
a continuous analog based on the dynamical method is described by a dynamical system:

dxj(t)
dt

= xj(t) log
(

f j(x(t))
)

(5)

for j = 1, 2, . . . , J at t ≥ 0, where the function f j is in Equation (4) and x(0) = z0. The
system in Equation (5) can be equivalently written as

dx(t)
dt

= X
(

Log(A> Exp(γ(Log(y)− α Log(Ax(t)))))

−Log(A> Exp(γ(1− α)Log(Ax(t))))
)

(6)

where X := diag(x). The iterative formula in Equation (3) is obtained by discretizing the
differential equation of Equation (5) by using the multiplicative Euler method [41,42] with
a step-size of h. Note that the iterative formula in Equation (3) with h = 1 is equivalent to
the algorithm presented by Zeng [19] when γ = 1, to the algorithm in Reference [20] when
α = 1, and to the MLEM algorithm when (γ, α) = (1, 1).
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We apply the proposed divergence in Equation (1) to the tomographic objective
function consisting of measured and forward projections. Namely, we define

V(x) := Φγ,α(y, Ax) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

sγα
ds (7)

which can be written as

V(x) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

s
ds

=
1
γ

I

∑
i=1

yγ
i

(
log
(

yi
Aix

)γ

+

(
Aix
yi

)γ

− 1
)

if γα = 1;

V(x) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

s1+γ
ds

=
1
γ

I

∑
i=1

log
(

Aix
yi

)γ

+

(
yi

Aix

)γ

− 1

if γα = 1 + γ; and

V(x) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

sγα
ds

=
I

∑
i=1

1
1− γα

y1+γ(1−α)
i

(
1−

(
Aix
yi

)1−γα
)

+
1

1 + γ(1− α)
y1+γ(1−α)

i

((
Aix
yi

)1+γ(1−α)

− 1

)

otherwise.

3.2. Theoretical Results

This section provides a theoretical result on the dynamical system defined in the
preceding section. We show that any solution to the continuous analog converges to
the desired solution of the system in Equation (2) with δ = 0 when the inverse problem
is consistent.

Theorem 1. Assume there exists e ∈ RJ
++ satisfying y = Ae. Then, e is an equilibrium observed

in the continuous-time system in Equation (6) and is asymptotically stable.

Proof. We see that e is an equilibrium of the system and the solutions to the system are
in RJ

++ because the initial state value at t = 0 belongs to RJ
++ and the flow cannot pass

through the invariant subspace xj = 0 for j = 1, 2, . . . , J in the state space according to the
uniqueness of solutions for the initial value problem. The nonnegative function V(x) of
xj > 0 in Equation (7) is well-defined as a candidate of a Lyapunov function. Then, we
have the derivative of V along the solutions to Equation (6):

dV
dt

(x)
∣∣∣∣
(6)

= −
I

∑
i=1

((
yi

(Aix)α

)γ

− (Aix)γ(1−α)

)
Ai

dx
dt

= −(ξ − ζ)>X(Log(ξ)− Log(ζ)) (8)

≤ 0
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where

ξ := A> Exp(γ(Log(y)− α Log(Ax)))

ζ := A> Exp(γ(1− α)Log(Ax)).

Therefore, V is a Lyapunov function and the equilibrium e is asymptotically stable.

This theorem guarantees that the proposed difference system in Equation (3) as a
first-order approximation to the differential equation in Equation (6) has a stable fixed
point e when the chosen step-size h is sufficiently small to ensure numerical stability.

4. Experimental Results and Discussion

We will illustrate the effectiveness of the extended MLEM algorithm based on the EPDM
family in Equation (3) with the parameter set (γ, α) (in what follows, the iterative algorithm
except for MLEM with (γ, α) = (1, 1) is referred to as PDEM) by using examples from
numerical and physical CT experiments. The proposed systems were executed using a 6-core
processor and computing tools provided by MATLAB (MathWorks, Natick, MA, USA).

We set h = 1 and a constant initial value z0
j for j = 1, 2, . . . , J. Note that variation of

h is out of the scope of this paper, although setting h > 1 would accelerate convergence.
In addition, in the numerical simulation, the PDEM algorithm in Equation (3) with h = 1
as a simple forward Euler discretization qualitatively approximates the solutions to the
differential equation in Equation (6), which were calculated by a standard MATLAB ODE
solver ode113 implementing a variable step-size variable order method.

4.1. Reconstruction Using Numerical Phantom

We used a numerical phantom image consisting of e ∈ [0, 1]J with 128× 128 pixels
(J = 16,384), as shown in Figure 1. For our experiment, a Shepp–Logan phantom [43],
which is a popular test image for developing reconstruction algorithms, was modified
by changing the density values for ellipses so that the resulting image had better visual
perception with high contrast. The noise-free and noisy projections y ∈ RI

+ derived from
the phantom image were, respectively, simulated using Equation (2) without and with δ
denoting white Gaussian noise such that the signal-to-noise ratio (SNR) was 30 dB and
by setting the number of view angles and detector bins to 180 and 184 (I = 33,120) with
180-degree sampling.

Figure 1. Image of numerical phantom.

For directly evaluating the quality of the reconstructed images, we defined functions
for comparing the reconstructed image compared against the true image, e, as

Dj(z) := |ej − zj| (9)
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for j = 1, 2, . . . , J and

E(z) := ||e− z||2 =

(
J

∑
j=1

(
Dj(z)

)2
) 1

2

. (10)

First, we considered the case of a noise-free projection. Figure 2 shows the evaluation
functions E(z(n)) of the iterative points z(n) for MLEM and PDEM with the sets of pa-
rameters (γ, α) being (0.3, 1.2), (0.5, 1.2), (0.8, 1.2), and (1.3, 1.2) for n = 0, 1, 2, . . . , 200. All
algorithms monotonically decreased the evaluation function, as supported by the theoreti-
cal result that the solutions of the continuous analog converge to the true value. Indeed,
another experiment confirmed that the monotonic decrease continued as the number of
iterations exceeded 200 iterations. We can see that PDEM with the parameter set (1.3, 1.2)
reduces the evaluation function much more than MLEM does. To put it another way,
the PDEM algorithm takes less computation time than MLEM for obtaining the same
evaluation values.

E
(z
(n
))

-

0 20 40 60 80 100 120 140 160 180 200

10
1

n -

Figure 2. Evaluation functions for MLEM and PDEM algorithms at each iteration in the experiment
using numerical phantom with noise-free projection. Note that because the values of PDEM with
(γ, α) = (0.8, 1.2) and MLEM are very similar, the plotted points for PDEM are almost invisible.

Figure 3 shows contour plots of the evaluation values on a logarithmic scale,
log10(E(z(N))) for N = 50, 100, and 200, in the parameter plane (γ, α). The parame-
ters γ and α were, respectively, sampled from 0.1 to 1.5 and 0 to 1.4 with a sampling
interval of 0.1. We can see that, at least in the range examined, the evaluation function
becomes smaller as the values of γ ≥ 1 and α ≥ 1 increase.
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Figure 3. Contour plots of evaluation functions log10(E(z(N))) with N being (a) 50, (b) 100, and
(c) 200 using numerical phantom with noise-free projections. The white dot indicates the position
of MLEM.

Figure 3. Contour plots of evaluation functions log10(E(z(N))) with N being (a) 50, (b) 100, and (c) 200
using numerical phantom with noise-free projections. The white dot indicates the position of MLEM.
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Figure 4 illustrates images reconstructed by MLEM and PDEM with (γ, α) = (1.3, 1.2)
at the 200th iteration and the corresponding subtraction images Dj(z(200)) (displayed in
the range from 0 to 0.2) at every jth pixel, for j = 1, 2, . . . , J. By comparing the values of the
subtraction between MLEM and PDEM, e.g., the edges of the high-density objects in the
image, we can see that PDEM produces high-quality reconstructions, as is quantitatively
indicated by its small evaluation value between the reconstructed and phantom images.

Version July 21, 2021 submitted to Entropy 8 of 16

MLEM PDEM

Figure 4. Reconstructed images (upper panel) and images of the subtraction (lower panel) for
MLEM and PDEM with (γ, α) = (1.3, 1.2) at 200th iteration using numerical phantom with
noise-free projection.
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Figure 4. Reconstructed images (upper panel) and images of the subtraction (lower panel) for
MLEM and PDEM with (γ, α) = (1.3, 1.2) at 200th iteration using numerical phantom with noise-
free projection.

Next, let us consider the effect of the measured noise. Figure 5 is a graph of the
evaluation E(z(n)) as a function of iteration number n with n = 0, 1, 2, . . . , 200. Given noisy
projection data, the algorithm with each parameter set decreases the evaluation function
in the early iterations. However, the time course does not show a monotonic decrease in
further iterations. Similar characteristics are known to exist and have been considered for
the alternative MLEM [19] that is described as Equation (3) with γ = 1. We can see that a set
of parameters (γ, α) exists at which the PDEM algorithm reduces the evaluation function
more than MLEM does for any iteration number. Additionally, the smallest value of the
evaluation function among the iteration numbers for a fixed set of the parameters becomes
smaller with decreasing γ in the set {0.3, 0.5, 0.8, 1, 1.3} considered for this example. The
parameter dependence of the evaluation function is clearly visible in contour plots of
Figure 6, showing the values of log10(E(z(N))) for N = 50, 100, and 200 in the parameter
plane. When designing a parameterized PDEM algorithm, a relatively large value of α
and a small value of γ compared with the reference values of (γ, α) = (1, 1) provide
the best performance in early and sufficient iterations, respectively. The best choices of
(γ, α) depending on the termination iteration number are approximately (0.8, 1.2) at the
50th iteration, (0.5, 1.2) at the 100th iteration, and (0.3, 1.2) at the 200th iteration. The
evaluation values under these conditions are indicated in Table 1, showing that PDEM
with each parameter set gives a smaller value than MLEM does. The reconstructed images
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and subtraction images (displayed in the range from 0 to 0.3) are shown in Figure 7. The
figure reveals lots of artifacts in the reconstructed image due to the presence of noise in
the measured projection. In terms of a quantitative evaluation, the structural similarity
index measure [44] (SSIM) between the reconstructed and the true images was calculated
and summarized in Table 2. A higher value of SSIM, which is a perception-based quality
metric, provides higher image quality. By comparing the images reconstructed by MLEM
and PDEM at the 100th and 200th iterations (see Figure 7 and Table 2), we can see that the
PDEM with a proper set of parameters is able to reconstruct high-quality images while
reducing the effects of noise in the projections, which means that PDEM is more robust to
noise than MLEM.

E
(z
(n
))

-

0 20 40 60 80 100 120 140 160 180 200

10

15

20

25

30

35

40

n -

Figure 5. Evaluation functions for MLEM and PDEM algorithms at each iteration in the experiment
using numerical phantom with noisy projection.

Table 1. Values of the evaluation function for MLEM and PDEM with (γ, α) equal to (0.8, 1.2) at
50th iteration, (0.5, 1.2) at 100th iteration, and (0.3, 1.2) at 200th iteration in the experiment using
numerical phantom with noisy projection.

N
E(z(N))

MLEM PDEM with (γ, α)

50 6.44 6.29 (0.8, 1.2)
100 6.65 5.85 (0.5, 1.2)
200 7.86 5.70 (0.3, 1.2)
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Figure 6. Contour plots of evaluation functions log10(E(z(N))) with N equal to (a) 50, (b) 100,
and (c) 200 in experiment using numerical phantom with noisy projection. White dot indicates the
position of MLEM.

Figure 6. Contour plots of evaluation functions log10(E(z(N))) with N equal to (a) 50, (b) 100, and
(c) 200 in the experiment using numerical phantom with noisy projection. The white dot indicates
the position of MLEM.
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MLEM PDEM

(a)

(b)

Figure 7. Reconstructed images (upper panel) and subtraction images (lower panel) for MLEM
and PDEM with (γ, α) equal to (a) (0.8, 1.2) at 50th iteration and (b) (0.5, 1.2) at 100th iteration in
experiment using numerical phantom with noisy projection.

Figure 7. Cont.
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MLEM PDEM

(c)

Figure 7. (Continued) Reconstructed images (upper panel) and subtraction images (lower panel)
for MLEM and PDEM with (γ, α) equal to (c) (0.3, 1.2) at 200th iteration in experiment using
numerical phantom with noisy projection.

Table 2: SSIM for MLEM and PDEM with the same parameters as shown in Table 1 at
Nth iteration in experiment using numerical phantom with noisy projection.

N
SSIM

MLEM PDEM w/ (γ, α)

50 0.651 0.689 (0.8, 1.2)
100 0.581 0.726 (0.5, 1.2)
200 0.531 0.772 (0.3, 1.2)

Figure 7. Reconstructed images (upper panel) and subtraction images (lower panel) for MLEM
and PDEM with (γ, α) equal to (a) (0.8, 1.2) at 50th iteration, (b) (0.5, 1.2) at 100th iteration, and
(c) (0.3, 1.2) at 200th iteration in the experiment using numerical phantom with noisy projection.

Table 2. SSIM for MLEM and PDEM with the same parameters, as shown in Table 1 at Nth iteration
in the experiment using numerical phantom with noisy projection.

N
SSIM

MLEM PDEM with (γ, α)

50 0.651 0.689 (0.8, 1.2)
100 0.581 0.726 (0.5, 1.2)
200 0.531 0.772 (0.3, 1.2)

4.2. Reconstruction Using Physical Phantom

A physical experiment was carried out to further validate the effectiveness of the
proposed method, although the true image is not available for a quantitative evaluation.
The projections were physically acquired from an X-ray CT scanner (Canon Medical
Systems, Tochigi, Japan) with a body-simulated phantom [45] (Kyoto Kagaku, Kyoto,
Japan) using 80 kVp tube voltage, 30 mA tube current, and an exposure time of 0.75 s per
rotation. Figure 8 represents the sinogram, a two-dimensional array of data containing the
projections y ∈ RI

+, with I = 430,200 (956 acquisition bins and 450 projection directions
in 180 degrees) and a reconstructed image created by FBP using a Shepp–Logan filter
with J = 454,276 (674× 674 pixels). Images reconstructed by MLEM and PDEM with
(γ, α) = (0.5, 1.2) are shown in Figure 9. The parameter values were referred to as the
results of the numerical phantom with noisy projection. Figure 10, which shows the
density profiles along horizontal lines (indicated by white) in the reconstructed images of
Figures 8b and 9, verifies that the PDEM has a lower density deviation on a flat distribution
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of the X-ray absorption in the physical phantom than either MLEM or FBP. The parameter
values of the power exponents in the PDEM algorithm make it more robust to noise in
spite of the higher noise level due to the low-dose X-ray exposure condition. This fact
implies that the proposed method contributes to reducing patient doses during X-ray CT
examinations in clinical practice by adjusting the parameter values depending on the noise
levels of the projection data.
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Figure 10. Density profiles for (a) FBP, (b) MLEM, and (c) PDEM of reconstructed images along
horizontal line with L = 674× 224 and ` = 1, 2, . . . , 674.

Figure 10. Density profiles for (a) FBP, (b) MLEM, and (c) PDEM of reconstructed images along
horizontal line with L = 674× 224 and ` = 1, 2, . . . , 674.

5. Conclusions

We presented an extension of the PDM family with two parameters, γ and α, and
proposed a novel iterative algorithm based on minimization of the divergence measure
as an objective function of the reconstructed images. The theoretical results show the
convergence of solutions to the continuous analog of the iterative algorithm owing to the
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objective function decreasing as the time proceeds. Numerical experiments illustrated that
the proposed algorithm, which is considered to be an extended MLEM with two power
exponents γ and α, has advantages over MLEM, which is the most popular and suitable
iterative method of image reconstruction from noisy measured projections. The algorithm
is of practical importance because its image quality is superior to that of MLEM. Our
results suggest that a larger value of α accelerates convergence and a smaller value of γ
improves its robustness to measured noise. An investigation of the direct relation between
the parameter variation in the EPDM family and the quality of images reconstructed
by the proposed algorithm based on minimization of the EPDM is a future work to be
considered. Moreover, we will use techniques such as machine learning to determine the
most appropriate parameter depending on the noise level of the projections, number of
projections, number of pixels, etc.
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