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A one-dimensional Gaussian map defined by a Gaussian function describes a discrete-time
dynamical system. Chaotic behavior can be observed in both Gaussian and logistic maps. This
study analyzes the bifurcation structure corresponding to the fixed and periodic points of a
coupled system comprising two Gaussian maps. The bifurcation structure of a mutually cou-
pled Gaussian map is more complex than that of a mutually coupled logistic map. In a coupled
Gaussian map, it was confirmed that after a stable fixed point or stable periodic points became
unstable through the bifurcation, the points were able to recover their stability while the system
parameters were changing. Moreover, we investigated a parameter region in which symmetric
and asymmetric stable fixed points coexisted. Asymmetric unstable fixed point was generated
by the D-type branching of a symmetric stable fixed point. The stability of the unstable fixed
point could be recovered through period-doubling and tangent bifurcations. Furthermore, a
homoclinic structure related to the occurrence of chaotic behavior and invariant closed curves
caused by two-periodic points was observed. The mutually coupled Gaussian map was merely
a two-dimensional dynamical system; however, chaotic itinerancy, known to be a characteristic
property associated with high-dimensional dynamical systems, was observed. The bifurcation
structure of the mutually coupled Gaussian map clearly elucidates the mechanism of chaotic
itinerancy generation in the two-dimensional coupled map. We discussed this mechanism by
comparing the bifurcation structures of the Gaussian and logistic maps.
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1. Introduction

Various nonlinear phenomena, including periodic
and nonperiodic oscillations as well as chaotic
behavior, have intrigued multiple researchers in
many disciplines, such as biology, chemistry, phys-
ics, neurobiology, and engineering [Gandomi et al.,
2013; Cho et al., 1987; Berger et al., 2007; Gilad
et al., 2004]. Nonlinear phenomena have been
studied through the analysis of numerical models
based on dynamical systems and bifurcation the-
ory [Banerjee & Grebogi, 1999; Wieczorek et al.,
2002; Orosz et al., 2004; Balanov et al., 2005]. Dif-
ferential equations and iterated maps are the two
main types of numerical and complex systems that
have been investigated [Guckenheimer & Holmes,
2013]. Since differential equations can describe the
evolution of systems in continuous time, the numer-
ical integration of differential equations could well
represent the complicated behaviors of experimen-
tal subjects. However, numerical integration tends
to accumulate numerical errors over time and can
be extremely time-consuming. The study and anal-
ysis of iterated maps, e.g. discrete-time dynamical
systems described by difference equations, are con-
siderably important because the complicated prop-
erties associated with dynamical systems could be
reproduced by simple models, using which these
properties could be clearly observed. In addition,
describing models in simple forms is necessary
when we consider the applications of such models
[Aftab & Shafiq, 2015; Han et al., 2017; Gámez
et al., 2017]. The simplicity of numerical models is
the key to improving the comprehensibility of the
mechanism of the phenomena observed in the mod-
els and implementability of the applications.

For a simple discrete-time dynamical system,
a logistic map is a model that can represent the
dynamics of population growth [May, 1976; Ver-
hulst, 1845]. Even though the model is a one-dimen-
sional dynamical system, a logistic map can gen-
erate various phenomena, including periodic points
and chaotic behavior. Hence, many researchers have
shown interest in logistic maps and one-dimensional
models [Tarasova & Tarasov, 2017; Lampart &
Oprocha, 2016; Maranhao, 2016].

In contrast, Gaussian maps, which are also
one-dimensional maps based on the Gaussian expo-
nential function [Hilborn, 2000], have drawn less
attention because of their similarity to logistic
maps. A Gaussian map also generates various
phenomena including periodic points and chaotic

behavior, when the system parameters are varied.
Since the function of a Gaussian map is bell-shaped,
which is similar to the shape of a logistic map, the
dynamics of a Gaussian map seems to have prop-
erties similar to those of a logistic map. However,
there has not yet been a sufficient discussion on
the difference between the dynamics of the Gaus-
sian and logistic maps. Since a logistic map can be
considered as an expression with zero-, first-, and
second-order terms of a Taylor-expanded Gaussian
map around zero, we can discuss the function and
influence of higher-order terms, which are omitted
in approximate systems, by investigating the differ-
ence between the Gaussian and logistic maps. In
particular, the appearance of coexisting attractors
in a Gaussian map [Patidar & Sud, 2009; Patidar,
2006] is an interesting subject of investigation as
they do not appear in a logistic map.

Herein, to elucidate the difference between
the Gaussian and logistic maps, mutually coupled
Gaussian and logistic maps are investigated in
terms of the bifurcation phenomena. Focusing on
the differences in the properties of the maps, we
investigated the bifurcation structure of each cou-
pled map. Based on bifurcation analysis, the chaotic
behaviors observed in a mutually coupled Gaus-
sian map and logistic map are described. Further-
more, in a mutually coupled Gaussian map, we
observed chaotic itinerancy [Kaneko & Tsuda, 2003;
Tsuda, 2015] in specific chaotic behavior. Generally,
chaotic itinerancy has been thought of as charac-
teristic phenomena generated in high-dimensional
dynamical systems [Kaneko, 1991; Ikeda et al.,
1989; Tsuda & Umemura, 2003]. The basic char-
acteristics of chaotic itinerancy include existence
of low-dimensional ordered motion which is called
attractor-ruin [Kaneko & Tsuda, 2003]. In our pro-
posed model which is a two-dimensional coupled
map, we observed attractor-ruins and transition
motion between those attractor-ruins. Even though
transition of chaotic attractors between low- and
high-dimensional motion did not appear in our pro-
posed model, the two-dimensional coupled map is a
minimum structure which generates chaotic itiner-
ancy. In addition, based on the bifurcation analysis,
we investigated the mechanism of the generation of
chaotic itinerancy in a mutually coupled Gaussian
map.

Herein, we first address the results of the bifur-
cation analysis focusing on a fixed point and two-
periodic points observed in each mutually coupled
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map and then highlight the difference between the
bifurcation structures of the coupled Gaussian and
logistic maps. Then, the chaotic itinerancy observed
in the mutually coupled Gaussian map is demon-
strated and the mechanism that generates chaotic
itinerancy is explained based on the bifurcation
analysis.

2. Mutually Coupled Systems
of One-Dimensional Maps

The dynamics of the mutually coupled systems
of one-dimensional Gaussian maps are generally
described as a difference equation, which can be
expressed as follows:

x(t + 1) = f(x(t)). (1)

Equivalently, they can be described as an iterated
map, which can be expressed as follows:

f : R
2 → R

2; x �→ f(x), (2)

where t denotes discrete time, R represents a set of
real numbers, and x and f represent (x1, x2)� and
(f1, f2)�, respectively. The dynamics of the mutu-
ally coupled systems of the Gaussian and logistic
maps discussed herein are described as(

f1(x)

f2(x)

)
=

(
exp(−αx2

1) + β + ε(x2 − x1)

exp(−αx2
2) + β + ε(x1 − x2)

)
(3)

and(
f1(x)

f2(x)

)
=

(
γx1(1 − x1) + β + ε(x2 − x1)

γx2(1 − x2) + β + ε(x1 − x2)

)
, (4)

respectively. α, γ, β, and ε are system parameters.
ε represents the coupling strength between two con-
nected maps. The systems in Eqs. (3) and (4) pos-
sess reflection symmetricity, namely,

P :=

(
0 1

1 0

)
(5)

and

f(Px) = Pf(x) (6)

are satisfied by both mutually coupled Gaussian
and logistic maps. Herein, with the settings α = 6
and γ = 2, we analyze the bifurcation sets of the
mutually coupled systems of the Gaussian and logis-
tic maps as the bifurcation parameters by changing
the values of β and ε.

3. Method

In bifurcation analysis, we used a method based
on the qualitative bifurcation theory [Kawakami,
1984]. The point x∗ satisfying

x∗ − f(x∗) = 0 (7)

becomes a fixed point in Eq. (3) or Eq. (4). The
characteristic equation for the fixed point x∗ is
defined as

χ(x∗,µ) = det(µI − Df(x∗)) = 0, (8)

where I is the 2×2 identity matrix and Df denotes
the derivative of f . We consider x∗ to be hyperbolic
if none of the absolute eigenvalues of Df are at
unity. Note that in Eq. (7), an m-periodic point can
be investigated by replacing f with fm, i.e. the mth
iteration of f . In the following discussion, we only
consider the properties of a fixed point of f , though
a similar argument can be applied to a periodic
point of f .

Let us consider the topological classification of
a hyperbolic fixed point x∗. The topological type of
a hyperbolic fixed point is determined by dimEu

and detLu, where Eu is the intersection of R
2 and

the direct sum of the generalized eigenspaces of
Df(x∗) corresponding to eigenvalue µ such that
|µi| > 1, and Lu = Df(x∗)|Eu .

When detLu > 0 and detLu < 0, the
hyperbolic fixed point is called D-type and I-
type, respectively. Based on this definition, we have
five topologically different types of hyperbolic fixed
points: kD, k = 0, 1, 2 and kI, k = 1, 2. When we
consider the distribution of the characteristic mul-
tipliers of Eq. (8), D and I correspond to the even
and odd numbers, respectively, of the characteristic
multipliers on the real axis (−∞,−1) and k rep-
resents the number of the characteristic multipli-
ers outside the unit circle on the complex plane.
When all characteristic multipliers are in the unit
circle, the topological type is 0D that means com-
pletely stable; otherwise, kD, k > 0 and kI, k > 0
represent directly unstable and inversely unstable,
respectively.

Bifurcation occurs when the topological type
of a fixed point is changed by the varying of a
system parameter. The generic codimension-one
bifurcations are the tangent, period-doubling, and
Neimark–Sacker bifurcations. In addition, a D-
type branching appears in a system that pos-
sesses some symmetric properties as a degenerate
case of the tangent bifurcation. These bifurcations
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are observed when hyperbolicity is destroyed. This
corresponds to the critical distribution of the char-
acteristic multiplier µ such that µ = +1 for tan-
gent bifurcation and D-type branching, µ = −1 for
period-doubling bifurcation, and µ = ejθ for the
Neimark–Sacker bifurcation, where j =

√−1.
The bifurcation sets of a fixed point were

computed by solving the simultaneous Eqs. (7)
and (8). For numerical determination [Kawakami,
1984], we used Newton–Raphson method. The Jaco-
bian matrix of the set of equations was derived from
the first and second derivatives of map f .

4. Results

Using bifurcation analysis, we investigated the
bifurcation sets of the mutually coupled Gaussian
and logistic maps on the (ε, β)-plane. In the bifur-
cation diagrams, we use the following symbols:

Gm
l : tangent bifurcation of the m-periodic point

Im
l : period-doubling bifurcation of the

m-periodic point
Dm

l : D-type branching of the m-periodic point
Nm

l : the Neimark–Sacker bifurcation of
m-periodic point

where l distinguishes the same types of bifurcation
sets of m-periodic points. As for the fixed points
and periodic points observed in the coupled system,
x1 = x2 indicates a symmetrical fixed point or in-
phase periodic points, whereas x1 �= x2 represents
an asymmetric fixed point or out-of-phase periodic
points.

4.1. Mutually coupled Gaussian
map

Figure 1 shows the waveforms of the fixed point
and two-periodic points at ε = −0.2. As shown in
Figs. 1(a) and 1(b), the symmetric and asymmetric
periodic points coexist at β = −1.2. Figures 1(c)
and 1(d) show typical in-phase and out-of-phase
two-periodic points at β = −0.8 and β = −0.6,
respectively. Figure 2 shows the two-parameter
bifurcation diagram of the fixed point and two-
periodic points observed in the mutually coupled
Gaussian map. In Fig. 2, the symmetric stable
fixed point exists in the regions represented by

and . In the regions with and ,
the in-phase stable two-periodic points and out-of-
phase stable two-periodic points exist, respectively.

The values of the symmetric stable fixed points
existing in the regions and are different.
To explain the parameter region where the fixed
point exists, the return map of the single Gaussian
map, i.e. the mutually coupled Gaussian map with-
out coupling, is shown in Fig. 3. The intersection of
x(t + 1) = x(t) and x(t + 1) = exp(−αx2(t)) corre-
sponds to the fixed point on the line of ε = 0, as
shown in Fig. 2. In Fig. 3, xsp(·) and xsn(·) represent
the stable fixed point at β = −1.2, −0.9, and 0.42.
In the parameter region where β is greater than G1

1,
the fixed point corresponding to xsp(·) always exists
even though the stability changes with the varying
of the value of β. When β decreases and it passes
through G1

1, the fixed point corresponding to xsp(·)
disappears. In contrast, the stable fixed point cor-
responding to xsn(·) disappears by passing through
G1

2 when β increases. The fixed point always exists
when β is smaller than G1

2.
Figure 4 shows the stability change of the fixed

point and two-periodic points observed in the mutu-
ally coupled Gaussian map. The bold solid curves
indicate the stable fixed and two-periodic points,
while the thin solid curves represent the correspond-
ing unstable points. The open circles shown in Fig. 4
correspond to the bifurcation points. In Fig. 4, when
β has a value between D1 and I1

1, two stable fixed
points coexist. One of the stable fixed points, the
value of which is around zero, becomes unstable
when β increases and passes through I1

1, while the
stable two-periodic points are generated around the
unstable fixed point. After β increases, the unsta-
ble fixed point passes through I1

4, and becomes
stable again. When we decrease the value of β, D-
type branching appears and the asymmetric unsta-
ble fixed point is generated. This point becomes
stable after passing through the period-doubling
and tangent bifurcations, and at around β = −1.2,
the asymmetric and symmetric stable fixed points
coexist.

The generation of the asymmetric fixed point
is important for understanding the appearance
of chaotic itinerancy, which is comprehensively
explained later.

A schematic showing the details of the stability
change of the fixed points and the generation of
the asymmetric fixed point is illustrated in Fig. 5.
The filled circles , and represent tan-
gent bifurcation, D-type branching, and period-
doubling bifurcation, respectively. The solid and
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Fig. 1. Waveforms and phase portraits of a fixed point and two-periodic points at ε = −0.2 and α = 6. (a) Symmetric fixed
point at β = −1.2, (b) asymmetric fixed point at β = −1.2, (c) in-phase two-periodic points at β = −0.8 and (d) out-of-phase
two-periodic points at β = −0.6.
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I1
4

I1
6

I1
5 D2

2

D1
1

N2
1

I 2
3

I 2
2

I 1
2

I 1
3

I 1
1

I 2
1

G1
2

G1
1

D2
1

D2
3

Fig. 2. Bifurcation diagram of a fixed point and two-
periodic points observed in the mutually coupled Gaussian
map at α = 6.

dashed curves indicate the stable and unstable fixed
points in Fig. 5. The asymmetric stable fixed point
and its period-doubling bifurcation are important
for the generation of chaotic itinerancy in the mutu-
ally coupled Gaussian map.

Next, we focus on the topological properties of
the stable two-periodic points. The in-phase stable
two-periodic points exist in the parameter region of
I1

1–I
2
2 and I2

3–I
1
4, whereas the out-of-phase stable

two-periodic points exist in the parameter region

x
(t

+
1)

β = 0.42

β = −0.9

β = −1.2

xsn(−1.2)

xsn(−0.9)

xsp(−0.9)

xsp(0.42)

x(t)

Fig. 3. Return map of Gaussian map at α = 6.

D
m

,I
m

2I
1

1I
1

D1 I1
1 D2

2

N2
1

I2
2

I2
3

I1
4

0D
1

N2
1

D2
2

β

Fig. 4. Stability changes of a fixed point and two-periodic
points observed in the mutually coupled Gaussian map at
ε = −0.2.

of D2
2–N

2
1 (N 2

1–D
2
2). The out-of-phase points are

generated by the destruction of the symmetry of
the in-phase points. When the two-periodic points
pass through N2

1, an invariant closed curve appears
around the out-of-phase stable two-periodic points
as β is varied. Figure 6 shows the invariant closed
curve observed at ε = −0.4 and β = −0.91.
To focus on x1 − x2 = 0 or u = v, the coor-
dinates are converted to u = (x1 + x2)/

√
2 and

v = (x1 − x2)/
√

2. By varying the value of β, we

0D

1D

1D

1D

2D
2I

1I

1I

2I

1I

1D

0D

0D

0D

β

Fig. 5. Schematic diagram on the generation of asymmetric
fixed point.
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Fig. 6. Invariant closed curve generated by the Neimark–
Sacker bifurcation of the two-periodic points at ε = 0.4 and
β = −0.91.

Fig. 7. Chaotic behavior observed at ε = 0.4 and β =
−0.879.

observe the appearance of the transverse and non-
transverse (or tangent) types of homoclinic points
as well as chaotic behavior, as shown in Fig. 7. Fig-
ure 8 shows a waveform corresponding to Fig. 7 at
ε = 0.4 and β = −0.879.

4.2. Mutually coupled logistic map

Figure 9 shows a two-parameter bifurcation dia-
gram of the mutually coupled logistic map on the
(ε, β)-plane at α = 6. In the regions with ,

, and , a stable fixed point, in-phase sta-
ble periodic points, and out-of-phase stable two-
periodic points exist, respectively. In the parameter
region where ε is greater than N2

1, an invariant
closed curve was observed and chaotic behavior
was generated with increasing ε. In the parameter
region where β is greater than I1

1, a stable fixed
point does not exist. Additionally, when β is smaller
than G2

1, a fixed point and periodic points are not
observed. This result is understandable since the
intersection of x(t + 1) = x(t) and x(t + 1) =
γx(1−x) disappears when β decreases, as shown in
Fig. 10.

Figure 11 represents the change in the stability
of the fixed point and two-periodic points at β =
−0.2. The bold solid curves indicate the stable fixed
point and stable two-periodic points, while the thin
solid curves correspond to the unstable fixed point
and unstable two-periodic points. In D1–I1

1, a sym-
metric stable fixed point exists. By decreasing β,
D-type branching appears and the asymmetric and
symmetric unstable fixed points are generated. The
symmetric unstable fixed point is terminated at G1

1.
On the contrary, by increasing β, a symmetric stable
fixed point passes through I1

1, after which an unsta-
ble fixed point and in-phase stable two-periodic

x
1,

x
2

t

x
2

x1

Fig. 8. Waveform and phase portrait at ε = 0.4, β = −0.879.
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I 1
1

I 1
2

I 2
2

I 2
1

N 2
1

D2
2

D1
1

G1
1

D2
1

Fig. 9. Bifurcation sets observed in the mutually coupled
logistic map at γ = 2.

points are generated. By continuously increasing
β, first, the unstable fixed point passes through
I1

2, after which the in-phase unstable two-periodic
points appear. The symmetricity of the in-phase
unstable two-periodic points in I1

2–D
2
2 is broken

via D-type branching. Then, the out-of-phase sta-
ble two-periodic points are generated in D2

2–N
2
1.

After passing through N2
1, an invariant closed curve

appears and chaotic behavior is observed by further
increasing β.

Fig. 10. Return map of the logistic map at γ = 2.

D
m

,I
m G1

1 1D
1

I1

2D
1

2D
1

0D
1

0D
2

I2
2

2D
2

I1
2

2D
2

2D
2

D2
2

N2
1

D1

I1
1

β

Fig. 11. Stability change of the fixed point and two-periodic
points observed in the mutually coupled logistic map at
ε = −0.2.

4.3. Chaotic itinerancy observed in
mutually coupled Gaussian
maps

Figure 12 shows a typical waveform of chaotic itin-
erancy observed in a mutually coupled Gaussian
map at α = 12, β = −0.504, and ε = −0.086. After
passing enough time to remove a transient state,
we plotted the values of x1 and x2 from t = 0 to
t = 30000 as shown in Fig. 12(a). Figure 12(b) is
an enlarged diagram of Fig. 12(a) between t = 2200
and t = 3400. As shown in Fig. 12(b), after one
of the two chaotic trajectories is attracted to the
other, the trajectories replace each other. Figure 13
indicates the phase portraits of the chaotic itin-
erancy. The bifurcation structure associated with
the asymmetric fixed points, as shown in Fig. 14,
explains the mechanism of chaotic itinerancy gen-
eration. In the regions , and , the asym-
metric stable fixed points, asymmetric in-phase sta-
ble two-periodic points, and asymmetric in-phase
stable four-periodic points exist, respectively. The
right-hand side region corresponds to the asym-
metric stable fixed point generated via the D-type
branching of the symmetric stable fixed point, as
shown in Fig. 5. The chaotic itinerancy shown in
Fig. 12 was observed at the parameter indicated
with an X mark in Fig. 14.
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Chaotic Itinerancy Observed in Mutually Coupled Gaussian Maps

(a)

(b)

Fig. 12. Chaotic itinerancy observed in the mutually coupled Gaussian map at α = 12, β = −0.504, and ε = −0.086.
(a) Typical waveforms and (b) enlarged diagram of (a).

(a) t = 0, 1, . . . , 30 000 (b) t = 0, 1, . . . , 2600

Fig. 13. Phase portraits of chaotic itinerancy at α = 12, β = −0.504, and ε = −0.086.

1830011-9

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
O

K
U

SH
IM

A
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
4/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 24, 2018 14:9 WSPC/S0218-1274 1830011

M. Kobayashi & T. Yoshinaga

(c) t = 2700, 2701, . . . , 2900 (d) t = 10 000, 10 001, . . . , 12 600

Fig. 13. (Continued)

Fig. 14. Bifurcation sets of asymmetric fixed points and
periodic points at α = 12.

5. Discussion

In this section, we discuss the mechanism of the gen-
eration of chaotic itinerancy observed in the mutu-
ally coupled Gaussian map but not in the mutually
coupled logistic map based on Figs. 15 and 16.

Figure 15 shows the stability change of the fixed
point at ε = −0.086 and α = 12 in the mutu-
ally coupled Gaussian map. The dashed line indi-
cates β = −0.504, which corresponds to the param-
eter set at the X mark in Fig. 14. Figure 16 shows
the schematic diagram associated with Fig. 15. In

Fig. 16, the bold solid and dashed curves indicate
the stable and unstable fixed points, respectively.
The solid curves connected to , which signifies
D-type branching, represents the symmetric sta-
ble fixed point. On the contrary, the curves end-
ing at and , which indicate the tangent and
period-doubling bifurcations, respectively, denote
the asymmetric stable fixed point.

The bifurcation structure of the mutually cou-
pled Gaussian map depends on the characteristic of

D
m

,I
m

1I
1

0D
1

1D
1

0D
1

2I
1 2D

1

0D
1

0D
1

2I
1

1I
1

1D
1

β

Fig. 15. Stability change of the fixed point at ε = −0.086
and α = 12. The dashed line indicates β = −0.504, which
corresponds to the parameter set at the X mark in Fig. 14.
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Fig. 16. Schematic of the relation between two D-type
branchings of the symmetric and asymmetric fixed points.

the single Gaussian map. The range of the function
of the single Gaussian map is (β, 1 + β], whereas
that of the single logistic map is (−∞, γ/4 + β].
Hence, it follows that the periodic points observed
in the Gaussian map do not diverge and that the
fixed point always exists.

When we first focus on the symmetric stable
fixed point at the top in Fig. 16, the generation of
the asymmetric stable fixed point can be explained
as follows. The stability of the fixed point changes

x
i

β

Fig. 17. One-parameter bifurcation diagram observed in the
mutually coupled Gaussian map at ε = −0.086 and α = 12.
The dashed line indicates β = −0.504 which corresponds to
the parameter set at the X mark in Fig. 14.

to unstable, and the asymmetric unstable fixed
point appears around the symmetric stable fixed
point. The asymmetric unstable fixed point passes
through period-doubling bifurcation with increas-
ing β and is terminated with tangent bifurcation.
The asymmetric unstable fixed point on the folded
manifold passes through the period-doubling bifur-
cation with decreasing β, and the stability of the
asymmetric fixed point is recovered. Consequently,
the asymmetric stable fixed point appears. Inter-
estingly, the asymmetric stable fixed point is also
folded by tangent bifurcation at the left-hand end
of the parameter region of β, where the asymmetric
stable fixed point exists, and the asymmetric unsta-
ble fixed point connects to another symmetric sta-
ble fixed point via D-type branching. As shown in
Fig. 16, the manifold of the asymmetric fixed point
has an S-shaped form at α = 12 and ε = −0.086.

Chaotic itinerancy generation is related to the
period-doubling bifurcation of the asymmetric sta-
ble fixed point. A cascade of the period-doubling
bifurcation from the asymmetric stable fixed point
leads to a chaotic set, and chaotic itinerancy
appears at β = −0.504.

Figure 17 shows a one-parameter bifurcation
diagram with respect to β. At approximately β =
−1.1, the stable asymmetric fixed point exists. The
asymmetric fixed point leads to chaos when β is
varied. Between β = −0.85 and −0.58, the chaotic
behavior is not displayed in Fig. 17 because the
stable symmetric fixed point coexists in the range
of parameter β. Each chaotic trajectory generated
around the asymmetric fixed point becomes closer
and ultimately begins to be itinerant at β = −0.504.

6. Conclusion

We investigated the bifurcation structure of the
fixed point and periodic points observed in a mutu-
ally coupled Gaussian map and a mutually cou-
pled logistic map. In the mutually coupled Gaus-
sian map, complex bifurcation phenomena were
observed; however, no such structure existed in the
mutually coupled logistic map. Based on the bifur-
cation analysis, the generation mechanism of the
asymmetric stable fixed point was elucidated. In
other words, the asymmetric unstable fixed point
generated by the D-type branching of a symmet-
ric stable fixed point becomes stable by passing
through the period-doubling and tangent bifurca-
tions. It is assumed that the stable or unstable fixed
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point always exists with respect to all β in the mutu-
ally coupled Gaussian map because of the shape of
the mapś function. Furthermore, the detailed struc-
ture of the change in the stability of the fixed point
was clarified based on the bifurcation analysis.

In the mutually coupled Gaussian map, even
though it is a two-dimensional discrete-time dynam-
ical system, chaotic itinerancy was observed. The
mechanism of the generation of the phenomena
was clearly elucidated based on the bifurcation
structure of the asymmetric fixed point. We also
compared the bifurcation structure of the mutually
coupled Gaussian map to that of the mutually cou-
pled logistic map by focusing on D-type branch-
ing and discussed how chaotic itinerancy in the
two-dimensional coupled map only appears in the
mutually coupled Gaussian map due to the charac-
teristics of the function.
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