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ABSTRACT A brain–computer interface (BCI) is a communication tool that analyzes neural activity and
relays the translated commands to carry out actions. In recent years, semi-supervised learning (SSL) has
attracted attention for visual event-related potential (ERP)-based BCIs and motor-imagery BCIs as an
effective technique that can adapt to the variations in patterns among subjects and trials. The applications of
the SSL techniques are expected to improve the performance of auditory ERP-based BCIs as well. However,
there is no conclusive evidence supporting the positive effect of SSL techniques on auditory ERP-based BCIs.
If the positive effect could be verified, it will be helpful for the BCI community. In this study, we assessed the
effects of SSL techniques on two public auditory BCI datasets—AMUSE and PASS2D—using the following
machine learning algorithms: step-wise linear discriminant analysis, shrinkage linear discriminant analysis,
spatial temporal discriminant analysis, and least-squares support vector machine. These backbone classifiers
were firstly trained by labeled data and incrementally updated by unlabeled data in every trial of testing
data based on SSL approach. Although a few data of the datasets were negatively affected, most data were
apparently improved by SSL in all cases. The overall accuracy was logarithmically increased with every
additional unlabeled data. This study supports the positive effect of SSL techniques and encourages future
researchers to apply them to auditory ERP-based BCIs.

INDEX TERMS Auditory stimuli, brain–computer interface, event-related potential, semi-supervised
learning, P300.

I. INTRODUCTION
As a brain-computer interface (BCI) performs communica-
tion based on neural activity measurement. It is a useful tool
for patients with paralysis who find it difficult to express
their feelings and thoughts via body movements [1], [2].
Among devices such as functional near-infrared spectroscopy
(fNIRS), functional magnetic resonance imaging (fMRI), and
electroencephalogram (EEG) used tomeasure neuronal activ-
ities, EEGs have attracted considerable research attention
due to their noninvasive monitoring potential with a high
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temporal resolution for capturing information of the neuronal
responses [3], [4]. When a patient with paralysis operates
an EEG-based BCI, a paradigm evoking event-related poten-
tial (ERP) is commonly used [5]–[7]. An ERP is evoked
by a visual, auditory, or tactile rare stimulus and con-
tains characteristic positive/negative amplitude peaks with
their latencies (e.g., P100, N100, P200, N200, and P300)
appearing a few hundred milliseconds after the stimulus.
A P300 speller, which mainly uses the temporal features of
positive amplitude peaks appearing approximately 300 ms
after the aforementioned stimuli is presented, is regarded
as the most well-known paradigm in BCI community
[8], [9]. In order to use such ERP-based BCI regardless of the
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environment, combining them with wearable devices is a hot
research topic for BCI researchers [10]. Some studies devel-
oped portable ERP-based BCIs through the use of wearable
EEG devices [11]–[13]. These developments make routine
use of ERP-based BCIs possible for not only patients with
paralysis but also for healthy people.

Classifying ERPs is predicated on machine learning (ML)
methods such as linear discriminant analysis (LDA) [14] and
support vectormachine (SVM) [15]. To classify them, theML
methods consider the temporal features including peak ampli-
tudes and latencies among trials, and spatial features over
the channels [16]. Human-specific parameters such as fatigue
and concentration change during the operation of the BCI as
well as on a day-to-day basis, and the characteristics of the
ERP change accordingly. This is one of the central challenges
of theMLmethods, To deal with this challenge, an increasing
number of studies have been conducted on robust universal
feature extraction methods such as deep learning [17], [18].
However, if the parameters of the ML-based classifier are
fixed after the initial training, it is not possible to mitigate the
effects of these occasional changes. This leads to a sudden
accuracy drop and results in inhibition of the routine use of
ERP-based BCIs.

Semi-supervised learning (SSL) is an effective technique
for adapting ML-based trained classifiers to varying patterns
owing to the use of unlabeled new data. It has recently
been applied to various biological signal-based applications
[19]–[21] including visual ERP-based and motor imagery
(MI)-based BCIs [22]–[25]. In the visual ERP- and MI-based
BCIs, SSL has indicated its efficiency of adapting pre-trained
LDA and SVM families: SVM [22], least squares SVM
(LS-SVM) [23], spectral regression kernel discriminant anal-
ysis (SRKDA) [24], and shrinkage regularized based LDA
(SKLDA) [25]. In most cases, an incremental update strategy
is naively applied every time a single-trial unlabeled data is
recorded. Although SSL has recently been combined with a
deep learning method in an MI-based BCI [26], LDA and
SVM series are still used/applied in the mainstream. BCI
operation protocol generally consists of pre-training phase in
which the labeled data is used for training a classifier, and
testing phase in which the trained classifier infers the class
of unlabeled data for controlling the system and storing the
unlabeled data. In SSL, the trained classifier is updated by
unlabeled data in the testing phase to tune the parameters
optimally, combining older and new data. Thus, the technique
can mitigate the effect of changes on human-specific param-
eters during BCI operation even with a shortened pre-training
phase [22], [25].

In this study, we investigate the adaptability of SSL to
auditory ERP-based BCIs. In patients with amyotrophic lat-
eral sclerosis (ALS), the final stage of the disease involves
the loss of eye-related functions (e.g., manipulation of eyes
and opening and closing of the eyelids) [27]. Therefore,
auditory paradigms have been gaining attention to meet the
needs of BCI for a wider range of patient groups [28], [29].
However, to the best of our knowledge, previously proposed

SSL techniques have not been applied to auditory ERP-based
BCIs. In visual and auditory ERP-based BCI, the character-
istic peaks of ERPs represented by N200 and P300 differ
between auditory and visual stimuli [30], [31]. Moreover,
the accuracy of the auditory ERP-based BCI is less than
that of the visual one because of its weaker ERP evoked
by the auditory stimulus [32]. These differences may cause
a negative effect for the application of SSL techniques to
auditory ERP-based BCIs. In contrast, if the positive effect
could be verified in the auditory ERP-based BCIs, it will be
helpful for BCI communities.

To evaluate the effect of SSL for auditory ERP-based BCI,
we used multiple public datasets (AMUSE and PASS2D)
and traditional ML algorithms for ERP-based BCIs as
backbone classifiers: step-wise LDA (SWLDA) [33] and
LS-SVM [23]. In addition, two advanced ML algorithms
named SKLDA [34] and spatial-temporal discriminant anal-
ysis (STDA) [35] were also investigated as backbone classi-
fiers. Employing the two datasets and four ML algorithms,
we evaluate the effect of SSL for auditory ERP-based BCI.
We expect that the obtained results will encourage future
studies related to auditory ERP-based BCIs to use SSL tech-
niques for their paradigms.

This paper is organized as follows. Section II details the
datasets, prepossessing methods, classification algorithms
including SSL techniques, and evaluation metrics. Section III
presents the results and discussions of the experiments; the
supervised learning techniques and SSL techniques using
four ML algorithms are compared. Section IV presents the
conclusions of our study.

II. MATERIALS AND METHODS
Public datasets enable us to compare the obtained results with
those of previous studies. For this study, we used two public
auditory ERP-based BCI datasets: auditory multiclass spatial
ERP (AMUSE) [36], [37] and predictive auditory spatial
speller with two-dimensional cues (PASS2D) [38]. These
datasets were collected by Neurotechnology Group, Tech-
nische Universität Berlin, Germany (available from BNCI
Horizon 2020 database [39]) and they have been used inmany
studies [40], [41]. Therefore, we utilize them for compar-
ing our results with those of other studies, enabling future
researches to compare their results with ours.

The presented auditory stimuli must be easily recognizable
by all users with minimal or no loss of cognitive function. The
elements of auditory stimulus are broadly divided into two
factors: (1) timbre and (2) sound direction. Several studies
proposed methods for differentiating recognizable timbres
using synthetic beeps [37], natural speech [42], and natu-
ral sounds (i.e., ducks, birds, and frogs) [33]. Furthermore,
some other studies proposed methods to differentiate the
directionality of recognizable sounds by physically plac-
ing loudspeakers evenly around the user or by varying the
interaural level difference or interaural time difference when
using headphones [36], [38]. AMUSE and PASS2D datasets
present paradigms of auditory stimuli that can recognize both
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FIGURE 1. (A) Experimental flow of AMUSE dataset. Forty eight trials were conducted in pre-training phase. After training classifiers,
29 to 165 trials were conducted in testing phase. (B) Stimulus selection flow of trials. Each trial consisted of 15 sequences, and each
sequence consisted of 6 sub-trials. Sound duration was 40 ms, and ISI was 135 ms. (C) Explanation of stimulus sounds. Six ring sounds
were presented from each six directions. (D) Experimental flow of PASS2D dataset. Twenty seven trials were conducted in pre-training
phase. After training classifiers, 29 to 127 trials were conducted in testing phase. (E) Stimulus selection flow of trials. Each trial consisted
of 12 sequences, and each sequence consisted of 9 sub-trials. Sound duration was 100 ms, and ISI was 125 ms. (F) Explanation of stimulus
sounds. Three different tones were presented from each of the three directions (left, right, and both sides).

differences based on combinations of the aforementioned
methods. Both datasets are provided in the binary data con-
tainer formats used in MATLAB (.mat).

A. AMUSE DATASET
The paradigm for the AMUSE dataset was proposed by
Schreuder et al. [36] and published by Höhne et al. [37] as
a dataset with 21 healthy subjects. EEG data were recorded
with 60 Ag/AgCl electrodes based on the placement of the
International 10-20 System. Electrooculogram (EOG) data
were recorded with two bipolar channels over the eyes; the
reference channel was placed on the nose. These data were

amplified using a Brain Products amplifier (Brain Products
Co., Munich, Germany) with a sampling rate of 1000 Hz,
and filtered through an analog bandpass filter (between
0.1 and 250 Hz; the publicly available data are distributed in
a downsampled form to 250 Hz).

The experimental design of the AMUSE dataset is shown
in Fig. 1 (A)–(C). Firstly, training data for constructing
classifiers were measured in pre-training phase. The pre-
training phase consists of 48 trials. Secondly, classifiers
were trained to classify target and nontarget ERP features,
as shown in Fig. 2. Thirdly, subjects typed digital letters as
they liked using the trained classifier and the BCI system in
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FIGURE 2. (A) Ground average of ERPs on Cz channel from subject ‘‘fcb’’
of AMUSE dataset. Purple line denotes ERP when target sound presented.
Gray line denotes ERP when nontarget sound presented. (B) Topological
map of primary features (N200 and P300) of target and nontarget ERPs of
subject ‘‘fcb’’ of AMUSE dataset.

testing phase. The trained classifiers inferred which letter the
subject wanted to select. The minimum and maximum num-
ber of trials in the testing phase were 29 and 165, respectively.
Lastly, the BCI performance was evaluated. The trials were
composed of sequences and sub-trials shown in Fig. 1 (B).
The target direction was visually and aurally instructed prior
to each trial. The number of sub-trials in each sequence was
equal to the kinds of sound stimuli. Discriminable synthetic
beep stimuli were randomly presented from six audio speak-
ers evenly spaced around the subject (i.e., audio speakers
were arranged every 60◦) as shown in Fig. 1 (C). Based
on the idea of a classic oddball paradigm, any of the six
directions could be a target (probability 16.7%), which leaves
the others as nontargets (probability 83.3%). Each stimulus
was presented for 40 ms. The inter-stimulus interval (ISI)
was 135 ms. Furthermore, the stimulus onset asynchrony
(SOA) or inter-stimulus onset interval, which is the sum of
the stimulus presentation time and interval time for sound
stimuli, was 175 ms.

B. PASS2D DATASET
The paradigm for this dataset was proposed and published
by Höhne et al. [38] as a dataset with 12 healthy subjects.
EEG data were recorded using a Fast’n Easy Cap (Easy-
Cap GmbH, Inning, Germany) with 63 Ag/AgCl electrodes
based on the placement of the International 10-20 System.
The reference channel was placed on the nose. These data
were amplified using a Brain Products amplifier (Brain
Products Co., Munich, Germany) with a sampling rate
of 1000 Hz and filtered through an analog bandpass filter

(between 0.1 and 250 Hz; the publicly available data are
distributed in a downsampled form to 250 Hz.).

The experimental design of the PASS2D dataset is shown
in Fig. 1 (D)–(F). Similar to AMUSE dataset, the flow con-
sists of pre-training phase, training the classifiers, testing
phase, and BCI performance evaluation. The pre-training
phase consisted of 27 trials. In testing phase, subjects typed
virtual pre-defined letters until all selections were correctly
perfomed. The minimum and maximum number of trials
in the testing phase were 29 and 127, respectively. The
trials were composed of sequences and sub-trials shown
in Fig. 1 (E). The target direction was visually and aurally
instructed prior to each trial. The number of sub-trials in
each sequence was equal to the kinds of sound stimuli.
Discriminable synthetic beep stimuli were randomly pre-
sented from headphones and were generated by three kinds
of pitch (high/medium/low) and location (left/middle/right).
Based on the idea of a classic oddball paradigm, any
of the three pitches and directions could be a target
(probability 11.1%), leaving the others as nontargets (prob-
ability 88.9%). The current target cue was presented to the
subject three times before starting each pre-training recording
trial, and the corresponding number on a 3× 3 grid was fur-
ther highlighted on the screen. Each stimulus was presented
for 100 ms. The ISI and SOA were 125 ms and 225 ms,
respectively.

C. PREPROCESSING
To compare the effects of SSL techniques for traditional and
advancedML algorithms, we performed the same preprocess-
ing approach on the two datasets.

Each EEG signal was low-pass filtered with 40 Hz using a
fourth-order Butterworth filter. Furthermore, the filtered sig-
nal was segmented into epochs from -150 ms to 800 ms based
on the stimulus onset. If the peak-to-peak voltage difference
of any channel was greater than 100 µV, the epoch was con-
sidered contaminated with some artifacts (e.g., motion and
ocular artifacts), and it was discarded [38]. Then, the remain-
ing epochs were downsampled to 50 Hz. Finally, we per-
formed baseline correction using the average values of the
first 150 ms data. Since the amplitude values can be used as
temporal features in ERP analysis, baseline corrected 800 ms
epoch (40 time points) after the onset were flattened in the
channel direction and used as a feature vector x ∈ RD, where
D denotes the dimensionality of the features (the number of
channels and time points).

D. CLASSIFICATION
In this study, for all classification algorithms, a binary clas-
sifier to determine whether an auditory stimulus was a tar-
get or nontarget was generated based on a previous study [37].
The typical target and nontarget ERPs are described in Fig. 2.
There are differences of peak amplitudes, the latencies
(Fig. 2 (A)), and spatial patterns over the channels (Fig. 2 (B))
between target and nontarget ERPs. The binary classifiers
were trained to recognize such differences. It should be noted
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that the binary classification problem swaps the definitions
of class labels, depending on the target sounds. If there are
Ns types of target sounds, Ns binary classifiers will be trained
(k = 1, . . . ,Ns). In the AMUSE and PASS2D datasets, six
and nine types of target sounds were presented, respectively.
Thus, six binary classifiers for the AMUSE (Ns = 6) and nine
binary classifiers for the PASS2D (Ns = 9) were trained.
The feature vectors in the pre-training phase X tr =

{xi}
NL
i=1 ∈ RD×NL , where NL indicates the number of all pre-

training trials (4,320 or 2,916), were used to train the clas-
sifiers. We did not emphasize the ERP waveform of training
epochs by an averaging process. To evaluate the performance
of trained classifiers, we used the averaged feature vectors
over sequences in the testing phase X te = {xj}

NU
j=1 ∈ RD×NU ,

where NU indicates the number of averaged featured vectors.
In this case, an averaging process was applied to a group of
data corresponding to the stimulus sound.

1) SWLDA
SWLDA is commonly used in auditory ERP-based BCI
studies as a classifier, including for feature selection func-
tions [33], [43]. The classification module of SWLDA is the
same as that of Fisher LDA (FLDA), and it learns the decision
boundaries for binary labeled (target and nontarget) training
feature vectors X tr. In the dataset for the k-th auditory sound,
NL1 trials in class 1 are denoted byX L1 , andNL2 trials in class
2 are denoted by XL2 (NL = NL1 + NL2 ).

The FLDA finds the class separability in the direction
w ∈ RD by maximizing,

J (w) =
wTSBw
wTSWw

. (1)

where SB ∈ RD×D, SW ∈ RD×D, and (·)T are the between-
class and within-class scatter matrices, and the transpose
operator, respectively. The between-class and within-class
scatter matrices can be written as,

SB =
1
NL

2∑
c=1

NLc (x̄Lc − x̄)(x̄Lc − x̄)
T, (2)

SW =
1
NL

2∑
c=1

∑
x∈XLc

(x− x̄Lc )(x− x̄Lc )
T, (3)

where x̄ ∈ RD is the overall mean of X tr, and x̄Lc ∈ RD is the
mean of XLc .

In the testing phase, the likelihood pk,j for the k-th auditory
sound to the j-th testing data can be obtained by linearly
multiplying the k-th learnedweight vectorwk by the averaged
feature vector xj as,

pk,j = wTk xj. (4)

The label corresponding to the sound stimulus that presented
the highest likelihood is set to 1, and the others are set
to 0 to determine the prediction vector ŷj ∈ RNs to the

j-th testing data.

ŷk,j =

{
1 (pk,j = max(pj))
0 (otherwise).

(5)

The feature selection module of SWLDA involves a step-
wise approach that selects important feature variables auto-
matically with a combination of forward and backward
steps [44]. The p-values are calculated using least-squares
regression of the feature variables. The feature variable
set has a lower p-value compared to the input threshold
(p-value < 0.10), and it is pooled into the FLDA module.
The unpooled feature variables are added to the feature set
one by one, and the p-value is updated in the FLDA module.
Each time the p-value is updated, the feature variable is
removed from the variable set if the p-value is greater than
the threshold value (p-value > 0.15). This loop is repeated
until the feature variables no longer meet the input or output
criteria. Since ERPs have subject-specific shapes, the feature
variables were selected for each subjects.

2) SKLDA
FLDA estimates between-class and within-class covariance
matrices Sb,Sw. Generally, these matrices are not biased
and have acceptable properties. However, when the training
data is high-dimensional, the covariance matrix cannot be
estimated accurately because the estimates of the maximum
and minimum eigenvalues of the original covariance matrix
deviate significantly.

In order to deal with this problem, SKLDA was proposed
to estimate the covariance matrices more precisely through
adjusting the extreme eigenvalues of the covariance matrix
towards the average eigenvalue [16], [45]. To adjust the esti-
mation error, the new covariance matrix S̃ is calculated as
follows,

S̃(γ ) = (1− γ )S+ γ vI, (6)

where γ is a tuning parameter γ ∈ [0, 1], v is an average
eigenvalue of S, and I is the identity matrix. In this study,
we used optimal tuning parameter calculated using the fol-
lowing equation [34],

γ ∗ =
NL

(NL − 1)2

∑D
i,j=1 varn(zij(n))∑

i6=j s
2
ij +

∑
i(sii − v)2

, (7)

where sij is the element in the i-th row and j-th column of
covariance vector S and zij(n) is computed as follows.

zij(n) = ((xn)i − (x̄)i))((xn)j − (x̄)j), (8)

where (xn)i and (x̄)i are the i-th element of the feature vector
xn and mean vector x̄,
To train a weight vector, SKLDA adopts vectorized

(one-way) training samples with (M × P) dimensions where
M denotes the number of channels andP denotes the temporal
points of each channel. Similar to that in LDA, the training
data is high dimensional.
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3) STDA
In traditional classifiers for auditory ERP-based BCI such
as SWLDA and LS-SVM, D(= MP)-dimensional samples
where each sample is the concatenation of P temporal fea-
tures from each of M channels have been used as training
and testing data. Therefore, the dimensionality tends to be
very high.

STDA adopts spatial-temporal (two-way) training sam-
ples Xi ∈ RM×P(i = 1, 2, · · · ,N ) to separately find the
two projection matrices from spatial and temporal dimen-
sions and effectively reduces the original feature dimen-
sion for discriminant analysis [35]. The spatial and temporal
projection matrices are expressed as, W1 ∈ RM×L and
W2 ∈ RP×L respectively. Here, L should be lower than M
andP. The projectionmatrices are optimized using traditional
LDA algorithm. After the projection matrices are optimized
as W̃1 and W̃2, a training data is transformed to a lower
dimensional sample as:

f i = vec(X i ×1 W̃
T
1 ×2 W̃

T
2 ), (9)

where f i ∈ RL2 and vec(·) denotes the vectorization operator.
×1 and ×2 denote multiplication of matrices in a particular
dimension. The projected samples are used for training an
LDA classifier.

4) SSL WITH SWLDA, SKLDA, AND STDA
In SSL, the backbone pre-trained SWLDA, SKLDA, and
STDA update their weight vectors using the unlabeled data
measured in testing phase. These updates are based on incre-
mental update strategy that updates with each one-trial testing
data. We refer to it as SSL in this study. Each testing dataset
inferred as to which class it belongs to by the classifier
trained until the previous trial. The estimated labels are not
true labels but called pseudo-labels and used for re-training
the classifiers. SSL uses training data and pseudo-labeled
‘‘original’’ testing data. Here, original testing data indicates
that the data are not subjected to averaging process across
trials.

The three LDA-based classifiers commonly use Eqs. (1),
(4), and (5) for testing data. From Eq. (5), we can determine
the stimulus-induced ERPs contained in the averaged test-
ing data xj. We assign binary pseudo-labels (i.e., target and
nontarget) to all original testing data based on the estimation
result for the averaged testing data, merge a set of original
testing data and pseudo labels into the original training data,
and retrain the model. Not only the classification module
but also the important feature variables obtained in the step-
wise approach and projected samples in STDA projection
approach are retrained by SSL.

5) LS-SVM
SVM constructs a hyperplane or a set of hyperplanes using
the first layer of vectors closest to the plane, called sup-
port vectors. This classification algorithm is frequently
used in BCI communities [15], [46]. Instead of solving

computationally intensive quadratic programming of tradi-
tional SVM, LS-SVM, which uses a set of linear equations
for training, has been proposed [23], [47]. The optimization
problem of LS-SVM is:

min
w,b,e
‖w‖2 + γ ‖e‖2,

s.t. wTϕ(xi)+ b = yi + ei, (10)

where ϕ(xi) denotes a mapping function from the original
space to a high-dimensional space, ei represents an error for
the i-th feature, γ denotes the regularization term (γ ≥ 0),
and b represents the bias term. The labels here are the binaries
of −1 and 1 (i.e., yi ∈ {−1, 1}).

Introducing a positive-definite kernel K ∈ RNL×NL ,
the problem in Eq. (10) can be represented as a set of linear
equations: [

K + γ−1I 1

1T 0

] [
a
b

]
=

[
y
0

]
, (11)

where y ∈ RNL denotes the label vector; all elements in
vector 1 ∈ RNL are 1. I ∈ RNL×NL denotes an identity
matrix, and a ∈ RNL represents the dual variable vector.
K ii′ = K (xi, xi′ ) = ϕ(xi)Tϕ(xi′ ) is the (i, i′)-th element of K .
The optimal parameters for a and b are calculated by,

a = H−1(y− b1), (12)

b = 1TH−1y(1TH−11)−1, (13)

where the model matrix H ∈ RNL×NL is represented as,

H = K + γ−1I. (14)

The decision function of LS-SVM can be expressed as,

f (xj) = sgn(
N∑
i=1

aiyiK (xj, xi)+ b). (15)

In this study, we used the linear kernel. LS-SVM was
applied for each sound stimulus; thus, Ns decision functions
were calculated and the auditory sound tied to the highest-
value function was selected as the estimated target for the
testing data xj.

6) SEMI-SUPERVISED LS-SVM
Semi-supervised SVM for P300 BCI was proposed by
Li et al. [22]; Subsequently, Gu et al. [23] reduced the compu-
tational cost by introducing LS-SVM, and they developed the
application by sequentially updating the self-training algo-
rithm in an online P300BCI called SUST-LSSVM.By adding
new unlabeled feature vectors in the testing phase {xj}

NU
j=1 to

the original feature vectors {xi}
NL
i=1, the model matrix H can

be updated using,

HNL+NU =

[
HNL UNU
UT
NU VNU

]
, (16)
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where UNU ∈ RNL×NU , with uij = K (xi, xj), and VNU ∈

RNU×NU as,

VNU =

 K (x1, x1) · · · K (x1, xNU ),
...

. . .
...

K (xNU , x1) · · · K (xNU , xNU ),

+ γ−1I.
(17)

To update the parameters in SUST-LSSVM, the predicted
labels for new data {yj}

NU
j=1 obtained using the initial pre-

trained LS-SVM classifier were merged with the initial labels
{yi}

NL
i=1. Similar to the semi-supervised SWLDA, the impor-

tant feature variables found by a step-wise approach with
LDA were applied in SUST-LSSVM.

E. EVALUATION
The effectiveness of the SSL techniques was evaluated based
on two metrics: BCI accuracy and information transfer rate
(ITR). The BCI accuracy indicates how accurately the user
can select the desired command, which purely evaluates the
performance of the supervised/semi-supervised classification
algorithms. ITR is proportional to BCI accuracy; however,
it evaluates the performance of the BCI on a timescale that
considers the number of commands per minute, thereby
allowing a direct comparison of performance with previous
studies that use the same/other BCI frameworks, unlike BCI
accuracy.

For each test data, the number of data in the pre-training
phase is validated in an unchanging state (i.e., the trained
classifier remains unchanged over all testing data); however,
in SSL, each test data can be added to the training dataset.
Thus, we incrementally added test data to training datasets
and retrained the classifier and plotted the changes in BCI
accuracy and ITR.

1) BCI ACCURACY
Considering the application for the BCI system, the BCI accu-
racy should be defined as the accuracy of selecting a correct
command or a character connected to one sound stimulus in
each trial. For each trial of the testing data, we intention-
ally defined one sound stimulus as the target and the other
(i.e.,Ns−1) sound stimuli were classified as nontargets. Since
only one auditory sound is identified as a target label per trial,
if a nontarget is targeted and misclassified, the target label is
automatically misclassified as a nontarget as well. Under this
unbalanced data scenario, the correct classification rate of the
target data is of paramount importance when assessing the
performance of the BCI. For example, subject ‘‘ja’’ included
in the PASS2D contains 72-trial data (i.e., it contains 72 target
data). If all target label data are classified correctly, the BCI
accuracy will be 72/72 = 100%. This value was used
as a metric of the accuracy of the BCI as with other BCI
studies [5], [22].

2) ITR
A well-known metric in BCI studies is ITR, which can fit
letter choices, typing speed, and classification accuracy into
a single value [2], [48]. It is important to evaluate from a
perspective other than classification accuracy because the
classification accuracy tends to increase with a reduction
in the number of classes and an increase in the number of
sequences. However, such paradigm manipulation lowers the
number of choices of letters and typing speed. ITR allows us
to evaluate the amount of information per unit time (second)
of an implemented BCI system quantitatively, independent of
the paradigm and the dataset. It can be calculated as,

ITR = R×
60
T
, (18)

R = (log2 N + P · log2 P+ (1− P) · log2
1− P
N − 1

), (19)

where T denotes the average time for a command selection,
N denotes the number of selectable commands, and P rep-
resents the BCI accuracy (0 ≤ P ≤ 1). The first term in
Eq. (19)—log2 N—denotes the information forN ; the second
term—P·log2 P—denotes the information entropy defined by
Shanon [49], and the last term denotes the information for the
misclassification rate.

3) CHANGES IN BCI PERFORMANCE THROUGH SSL
First, we designed a backbone supervised learning classifier
using all labeled data (pre-training phase data) and then plot-
ted BCI performance (BCI accuracy and ITR) of SSL for each
trial to evaluate the change in BCI accuracy and ITR when
unlabeled data (testing phase data) incrementally provided
pseudo-labels. Each plot denotes five trials, as displaying all
plots would be too detailed. Note that because the number of
trials in the testing phase varies between subjects, the length
of the plot also varies between subjects.

III. RESULTS AND DISCUSSIONS
A. BCI PERFORMANCES OVER SUBJECTS
BCI accuracy and ITR with subject average for supervised
and semi-supervised classifiers in AMUSE and PASS2D
datasets are shown in Figs. 3 and 4. The SSL techniques
improved averaged BCI accuracy and ITR of auditory
ERP-based BCIs for all datasets and classifiers.

In the AMUSE dataset, the four classifiers (SWLDA,
SKLDA, STDA, and LS-SVM) showed the averaged BCI
accuracy as 84.03 ± 11.88, 83.86 ± 12.01, 82.64 ± 13.96,
84.10 ± 12.54% and ITR as 6.40 ± 2.12, 6.37 ± 2.10,
6.23 ± 2.37, 6.44 ± 2.23 bits/min, respectively. Combining
SSL with the classifiers improved averaged BCI accuracy as,
86.28 ± 11.47, 88.13 ± 10.31, 86.34 ± 11.52, and 86.90 ±
12.09% and ITR as 6.82 ± 2.12, 7.15 ± 1.98, 6.84 ± 2.14,
and 6.97±2.15 bits/min. The improvements in averaged BCI
accuracy owing to SSL were 2.25, 4.27, 3.70, and 2.80%
for SWLDA, SKLDA, STDA, and LS-SVM respectively.
In addition, the improvements in averaged ITR owing to
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SSL were 0.42, 0.78, 0.61, and 0.53 bits/min for SWLDA,
SKLDA, STDA, and LS-SVM respectively.

To evaluate the effect of the two different categorical
independent variables (classifier type and learning method),
we used a two-way analysis of variance (ANOVA), which
allows us to evaluate the main effect of each independent
variable and the interaction between them. We noted that
there was no interaction between the factors of classifier and
learning method (F(3, 21) = 0.05, p = 0.98). There was
no significant difference for the main effect of the classifiers
(F(3, 21) = 0.11, p = 0.96). The main effect of learning
method was probably significant considering that the p-value
is under 0.1 (F(1, 21) = 2.80, p < 0.10) [50], [51]. There-
fore, regardless of the classifiers, SSL techniques probably
result in positive effect for AMUSE dataset.

In the PASS2D dataset, the four classifiers (SWLDA,
SKLDA, STDA, and LS-SVM) showed the averaged BCI
accuracy as 94.34 ± 3.13, 93.38 ± 3.37, 93.14 ± 5.30,
93.87 ± 2.30% and ITR as 5.36 ± 0.43, 5.22 ± 0.45,
5.24 ± 0.70, 5.28 ± 0.32 bits/min, respectively. Combining
SSL with the classifiers improved averaged BCI accuracy as
96.16±2.59, 95.55±2.22, 95.36±3.45, and 95.14±2.57%
and ITR as 5.62 ± 0.39, 5.53 ± 0.35, 5.52 ± 0.51, and
5.46 ± 0.37 bits/min. The improvements in averaged BCI
accuracy owing to SSL were 1.82, 2.17, 2.22, and 1.27%
for SWLDA, SKLDA, STDA, and LS-SVM respectively.
In addition, the improvements in averaged ITR owing to SSL
were 0.26, 0.31, 0.28 and 0.18 bits/min for SWLDA, SKLDA,
STDA, and LS-SVM respectively.

The two-way ANOVA revealed that there was no interac-
tion between the factors of classifier and learning method
(F(3, 10) = 0.07, p = 0.97). There was no significant
difference for main effect of the classifiers (F(3, 10) = 0.29,
p = 0.83). On the other hand, there was significant differ-
ence due to the main effect of learning method (F(1, 10) =
5.42, p = 0.02). For PASS2D dataset, the positive effect of
SSL technique was apparently confirmed.

The overall accuracy of AMUSE dataset was lower than
that of PASS2D dataset. SKLDA classifiers with SSL showed
the best performance in AMUSE dataset (see Fig. 3).
In addition, the improvement rate for SKLDA classifiers
was the highest among four classifiers. It is known that
SKLDA is effective when the number of samples is extremely
lower compared to the feature dimensionality [16]. However,
the number of training samples in the dataset is considered
to be sufficient. Therefore, we speculate that the characteris-
tics of the ERPs were changed during the BCI experiments,
and the ideal sample for calculating the exact covariance
matrix was insufficient for each trial compared to the fea-
ture dimensionality. Using SKLDA, the covariance matrices
could be regularized and adjusted as ideal and would lead
to the high improvement rate of SSL. SWLDA classifiers
showed the best performance in PASS2D dataset (see Fig. 4).
It is assumed that the ERPs are more easily classified in
PASS2D dataset. In this case, SWLDA classifiers are prob-
ably ideal for sophisticated data in which the ERPs tend to be

FIGURE 3. BCI accuracy and ITR with subject average for supervised and
semi-supervised classifiers in AMUSE dataset. Bar plots denote the
subject average, and error bars denote standard errors of all subjects.

FIGURE 4. BCI accuracy and ITR with subject average for supervised and
semi-supervised classifiers in PASS2D dataset. Bar plots denote subject
average, and the error bars denote standard errors of all subjects.

clearly classified. It is difficult to choose the best classifier
for auditory ERP-based BCI because the superiority or infe-
riority can be changed by the BCI paradigms and proficiency
of subjects in controlling the BCI. However, it is clear that
SSL could significantly improve the performance of auditory
ERP-based BCIs.

B. CHANGES IN BCI PERFORMANCE THROUGH SSL
To investigate the effect of SSL in more detail, we plotted
the changes in BCI accuracy and ITR when the number
of unlabeled data in testing phase for re-training increased.
Fig. 5 shows the BCI accuracy and ITR averaged across
subjects. Since the number of testing data varied from subject
to subject, the results of other subjects were supplemented
according to the subject with the largest number of tests
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FIGURE 5. The subject average changes of BCI accuracy and ITR when the
number of unlabeled data is incrementally increased by re-training. The
x-label denotes the number of unlabeled trials measured in testing phase
added to the data in pre-training phase. (a) AMUSE dataset, (b) PASS2D
dataset.

(i.e., if 150 trials was the maximum, the results of the subject
who has only 120 trials were concatenated with the same
results as 120-th trial from 121-st to 150-th one). The ver-
tical axis denotes accuracy and ITR. The horizontal axis is
the number of trials of unlabeled data added in SSL; thus,
the leftmost points are the results of classifying testing data
using supervised learning.

Similar to previous studies, the accuracy was logarithmi-
cally increased by SSL [22], [24]. The tendency was more
remarkable for AMUSE dataset because of its lower overall
accuracy (i.e., there is still room to grow). From these results,
it is clear that SSL has the potential to improve the perfor-
mance of auditory ERP-based BCIs, especially with a small
number of unlabeled data.

C. DIFFERENCES OF EFFECT OF SSL AMONG SUBJECTS
Figs. 6 and 7 plot the changes in BCI accuracy and ITR of
each subject as the number of unlabeled data added for train-
ing is increased incrementally in the AMUSE and PASS2D
datasets, respectively. The horizontal axis is the number of
trials of unlabeled data added in SSL; thus, the leftmost points
are the results of supervised learning. Unlike the previous
subsection, the number of unlabeled data is shown uncor-
rected in order to make comparisons for each individual.
In both figures, each graph denotes a classifier ((a) SWLDA,
(b) SKLDA, (c) STDA, and (d) LS-SVM). Although the BCI
performances of most subjects were incrementally improved
by the four classifiers, for each subject, each classifier showed
different tendencies. For example, the accuracy of subject
‘‘fch’’ in Fig. 6 was incrementally improved by LS-SVM.
However, other three classifiers decreased the accuracy in the
middle or end of the incremental updating. On the other hand,
the accuracy of ‘‘fcl’’ seems to be incrementally increased by
the SWLDA, SKLDA, and STDA, but not by the LS-SVM.
In previous studies, the dimension of features and parame-
ters of classifiers are commonly optimized for each subject
[52], [53]. This results suggest that we will need to select the
best classifier for each subject.

FIGURE 6. BCI accuracy and ITR changes for AMUSE dataset when the
number of unlabeled data is incrementally increased for re-training. The
x-label denotes the number of unlabeled trials measured in testing phase
added to the data in pre-training phase. (a) SWLDA, (b) SKLDA, (c) STDA,
and (d) LS-SVM.

To analyze the effect of SSL from the viewpoints of spatial
patterns of ERPs, the topological maps of P300 and weight
vectors w of the SKLDA classifier are shown in Fig. 8.
The improvement of BCI performance was remarkable for
subject ‘‘fcj’’ by SKLDA classifier in AMUSE dataset; thus,
we selected this setting for the visualization. In addition,
the dimensions of the weight vectors of SWLDA, STDA,
and LS-SVM were reduced from theMP-dimensions, but the
weight vectors of SKLDA remained full (2900 for AMUSE
dataset and 3150 for PASS2D dataset), hence the weights
could be visualized as topography. The feature dimensions
selected by the SWLDA was 972 for AMUSE dataset and
1108 for PASS2D dataset averaged across subjects and trials.
The selected dimensions were also used for LS-SVM. STDA
projected the feature vectors from the full dimensionality to
four dimensions (L = 2) after finding two projection matri-
ces. The color gradation of left four maps in the figure indi-
cates the strength of peak amplitude of P300. In contrast
to the color gradation of nontarget which is not extremely
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FIGURE 7. BCI accuracy and ITR changes for PASS2D dataset when the
number of unlabeled data is incrementally increased for re-training. The
x-label denotes the number of unlabeled trials measured in testing phase
added to the data in pre-training phase. (a) SWLDA, (b) SKLDA, (c) STDA,
and (d) LS-SVM.

different between pre-training and testing phase, the strength
of target P300 was apparently increased in parietal area in
testing phase compared to pre-training phase. Following the
changes of P300, the value of weight vectors in position FCz
was increased in testing phase compared to pre-training phase
(see right maps in Fig. 8). Halder et al. showed that there is
training effect in auditory ERP-based BCI by which the peaks
of target P300 in parietal become stronger as testing sessions
are increased [54]. It suggests that one of the reasons why the
SSL improved the accuracy is, the updating weight vectors
followed the increase of peak strength of P300 in parietal
area.

The changes of topographic maps of P300 and weight
vectors of the SKLDA classifier for subject ‘‘nw’’ of PASS2D
dataset is shown in Fig. 9. We assessed the reason of accuracy
decreasing in SSL during testing phase by checking topolog-
ical maps. The leftmost topographic maps show the weight
vectors of SKLDA and target P300 in pre-training phase.
The other maps show the sequential changes of updated
weight vectors and P300. The subject ‘‘nw’’ has 96 tri-
als in testing phase, thus 95-th trial is the last update of
weight vector. As shown in Fig. 7, the accuracywas decreased

while updating weight vectors by SKLDA with SSL. The
reason can be explained by the Fig. 9. The strength of peaks
of P300 in parietal area was decreased around 24-th trial and
increased again after 48-th trial. This changes indicated that
the weight vectors trained in pre-training phase is more suit-
able for the P300 after 48-th trial than updated weight vectors
at 24-th trial. During the testing phase, subjects were forced
to be more focused. Changing from the pre-training phase
to the actual BCI test task may cause some subjects to feel
fatigue and emotional changes after the pre-training phase.
They indicated that the BCI causes considerable fatigue,
and would not prefer to use it very often [6]. Therefore,
it is difficult to increase the peak of P300 linearly and it
probably leads to the negative effect of SSL. Interestingly,
the decrease of BCI performance was mitigated when the
STDA and LS-SVM classifiers were applied. The projected
features of STDA and support vectors of LS-SVM probably
prevented the reduction. It suggests that combining feature
extraction methods and the SKLDA would be effective for
solving the accuracy reduction issue. Furthermore, applying
an SSL technique after collecting some trial unlabeled data
instead of every trial would be useful.

Tables 1 and 2 summarise individual accuracy and
ITR of classifiers when all unlabeled data were used for
SSL and were not used for re-training classifiers. From
subsections III-A and III-B, SSL has been proven to improve
the averaged BCI performance of auditory ERP-based BCI.
However, when we focus on each individual, some subjects’
accuracy decreased by SSL. In addition, different subjects
resulted in the decline of BCI performance depending on the
classifiers. It would be necessary to optimize the selection
of classifiers for each individual as well. It has also been
confirmed in previous studies that the trend of improvement
in BCI accuracy stops and the accuracy stabilizes as the
number of additional unlabeled data increases [22], [55]. This
means that the more the unlabeled data increased, the weaker
the effect of SSL becomes. The used datasets included a
sufficient number of pre-training data. Therefore, the param-
eters of classifiers would have already been sophisticated
before re-training and the SSL not changing the parameter
significantly would lead to the stable BCI accuracy.

D. COMPARISON WITH PREVIOUS STUDIES
We calculated ITR to compare our results with other pre-
vious researches, even if their paradigms are different.
A previous study using SKLDA showed that an SSL tech-
nique improved the ITR of MI-based BCI from 0.32 bits/min
to 0.84 bits/min [25]. Our results using SKLDA classifiers
showed that the ITRs were improved from 6.37 bits/min to
7.15 bits/min in AMUSE dataset, and from 5.22 bits/min
to 5.53 bits/min in PASS2D dataset. Furthermore, there has
been a previous study on visual ERP-based BCI using SVM
classifiers. Li et al. showed that the ITR improved from
9.12 bits/min to 14.03 bits/min [22]. Compared to the study,
our results showed less improvements of ITRs using LS-SVM
classifiers (from 6.44 bits/min to 6.97 bits/min in AMUSE
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FIGURE 8. The topographic maps for subject ‘‘fcj’’ in AMUSE dataset. Left maps show the peak of P300 for target and nontarget recorded in
pre-trainig phase and testing phase. Right maps show the strength of weight vectors for P300 trained by SKLDA.

FIGURE 9. The topographic maps of weight vectors and P300 for subject ‘‘nw’’ in PASS2D dataset. The leftmost topographic maps show the
weight vectors and P300 in pre-trainig phase. Other maps show the change of updated weight vectors and P300 in testing phase.

dataset and from 5.28 bits/min to 5.46 bits/min in PASS2D
dataset). It might be attributed to the difference of number of
data used for training backbone classifiers. In the previous
study, there were only three trials of training data. Thus,
the effect of the new data and the range of improvement in
accuracy would have been greater. Although it is not possible
to show a consistent trend because the experimental setting
is not the same across studies, this study could show that
SSL is effective for the four mentioned classifiers in auditory
ERP-based BCIs.

E. CALCULATION TIME
In the case of the setting mentioned in the previous section,
the learning process of the SSL techniques is performed on

a trial-by-trial basis in the testing phase by adding testing
data to the data obtained in the pre-training phase. Here,
the high computational cost of the incremental re-training
makes command selection time consuming, and it has a
negative impact on the performance of the BCI. Thus, it is
important to clarify the relationship between the addition
of unlabeled data and the computational cost of re-training.
Fig. 10 shows the computation time for re-training four
classifiers by SSL techniques. To determine the computa-
tion time, a laptop with 64-bit Windows 10 was used for
the simulation. The CPU was an Intel Core i7-10710U,
16 GB of RAM, and data were recorded and read on
a 512 GB SSD. The analysis code was implemented in
Python 3.6.
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TABLE 1. BCI accuracy for backbone classifiers (SWLDA, SLDA, STDA, and LS-SVM) and SSL combined techniques. The top table and the bottom table
present the results for AMUSE dataset and PASS2D dataset, respectively.

During the actual ERP-based BCI operation, there is a
possibility that re-training for each command selection may
be required in time. In the BCI system, the presentation
of the whole auditory stimuli is followed by estimation of
the target sound. Therefore, there is one trial between the
completion of the command selection and the start of the next
command estimation. If the calculation time for re-training is

less than the time length of the trial, the negative effect of SSL
techniques on BCI performance can be avoided. One trial of
sound stimulation required 15.62 s for the AMUSE dataset
and 30.25 s for the PASS2D dataset in the testing phase. They
are shown in Fig. 10 as purple dash line.

Among the four classifiers, SWLDA had the lowest com-
putational cost, and the re-training time did not exceed the
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TABLE 2. ITR for backbone classifiers (SWLDA, SLDA, STDA, and LS-SVM) and SSL combined techniques. The top table and the bottom table present the
results for AMUSE dataset and PASS2D dataset, respectively.

stimulus time for both datasets. i.e., even a paradigm other
than an ERP-based BCI paradigm could use SWLDA for
semi-supervised BCI without loss of interval training time.
The plots show that it is easy to infer class label of testing data
within the acceptable processing time for SWLDA, SKLDA,
and LS-SVM, but difficult for STDA. For SWLDA and
SKLDA, re-training time increases linearly. Therefore, the

number of additional unlabeled data affecting the BCI per-
formance can be predicted easily. The calculation cost of
LS-SVM increases with the number of total training samples
(the complexity order is O(N 3) [56]). The time length was
initially less than one second, but it increased drastically fol-
lowing the increasing of trials and exceeded the time limit for
selecting one command in the AMUSE and PASS2D datasets.
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FIGURE 10. Calculation time for re-training the four classifiers by SSL
techniques. The vertical axis denotes number of incremental learning in
testing phase. (a) AMUSE dataset and (b) PASS2D dataset. The purple
dash line denotes the time length of one trial in testing phase.

The estimation of the processing time of STDA is more
difficult. STDA optimizes two projection matrices, and trans-
forms the original samples into low-dimensional features, and
re-trains new classifier. The more the data is accumulated,
the more difficult it is to optimize the projection matrices.
Such a method with multiple processes seems to be incom-
patible with SSL.

In this study we updated the classifiers in every trial in
testing phase. However, updating in every trial is not neces-
sary. Updating classifiers every few trials is also expected to
raise the BCI performance. Therefore, we should determine
the timing of applying SSL in actual online BCI applications
considering its processing time. We hope that our results
concerning processing time will help the future designs.

F. LIMITATIONS
There are three limitations in this study:

(1) Lack of consideration of subjects’ motivation: The
simulation results do not consider using an SSL technique
at the time of measurement. If the subject participated in the
experimental task, the online testing phase shows the results
on the screen or speaker and notifies the subject regarding
the command that was selected. This feedback effect raises
the motivation of subjects and improves the BCI accuracy
[31], [57]. If more accurate feedback is returned for SSL,
subjects may be more motivated and focused on the task,
which can result in more discrimination of unlabeled data.
Therefore, it is necessary to prepare a BCI that incorporates
SSL and validates the case of online testing and measurement
simultaneously.

(2) Variation in the number of trials during the testing
phase: The number of trials of the labeled data (in the pre-
training phase) was the same across subjects in both datasets
(AMUSE dataset: 48 trials, PASS2D dataset: 27 trials).
However, the number of trials in the testing phase varied
across subjects, thereby making it impossible to assess the

same number of trials. In particular, a few subjects had
extremely low numbers of unlabeled data compared to other
subjects (see Figs. 6 and 7). Since matching the number of
unlabeled data to the lowest state resulted in a very small
number of trials that could be validated, the equalization
process was discarded in this study, and the incremental
update strategy was conducted using the number of trials con-
ducted for each subject. One future work is to investigate the
effect of longer-term SSL with some amount of data for each
subject.

(3) Data reliability: All data, including the original training
data and the newly added unlabeled data, were treated uni-
formly. Therefore, the quality of the data is not considered,
and there is a concern that the effect of poor quality data
may be significant. Furthermore, when the estimated labels of
unlabeled data in the testing phase are different from the true
labels, the accuracy of the classification model will decrease.
The problem is related to user’s motivation or classifier’s
incompleteness; if the user is not focused on the selection of
commands or is disheartened while playing BCI, ERPs will
not occur and all data will be classified as nontarget. In fact,
immature classification models often assign incorrect labels
to unlabeled data. Our evaluation showed that the accuracy
worsened with SSL based on a low-accuracy classifier before
re-training started (see Tables. 1 and 2). To avoid such a
decrease in accuracy, it may be useful to calculate measures
such as data reliability and reflect those values as constraints
in SSL. This method using unlabeled data more intelligently
is called safe SSL [58], [59], and it has the potential to
improve our results in future studies.

IV. CONCLUSION
This study investigated the adaptability of SSL to auditory
ERP-based BCIs. Four classifiers (SWLDA, SKLDA, STDA,
and LS-SVM) and their SSL expansion versions were applied
to two public datasets (AMUSE and PASS2D).

As subject averages, the BCI accuracies and ITRs for all
four classifiers were improved by combining SSL techniques
into the backbone classifiers. Thus, we verified the positive
effect of SSL on auditory ERP-based BCIs regardless of tra-
ditional and advanced ML classifiers. However, the sequen-
tial plots, which showed the changes in BCI accuracy with
incremental updates of the classifiers and the changes in EEG
topographical maps, suggested that the BCI accuracy was
sometimes deteriorated by SSL especially in the beginning
of testing phase for a few subjects because of weakening of
the ERP. In addition, it was revealed that except SWLDA,
the remaining three classifiers cannot be applied for updating
parameters in every trial of auditory ERP-based BCIs because
of their high computational cost. Thus, auditory ERP-based
BCI designers should update backbone classifiers by SSL
techniques when some trials were finished and should make
SSL techniques more stable. We expect that our study will
encourage future researchers working on auditory paradigms
to use SSL techniques and that it will help improve the
performance of their BCI frameworks.
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