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Abstract 

In engineering, the combustion chamber with a backward-facing step is very popular, 

and it is a kind of flame stabilizer. In this type of combustion chamber, there will be 

shedding vortices at the step due to the instability of the flow field. The shedding 

vortices will carry reactants to move downstream and burn, resulting in unstable heat 

release and then pressure and velocity fluctuations of the acoustic field, thereby, finally, 

forming a combustion-vortex-acoustic interaction process. If a positive feedback loop 

is formed between the unstable heat release and the pressure fluctuation of acoustic 

field, combustion instability will occur, and it is also referred to as thermoacoustic 

oscillation due to vortex shedding. Combustion instability frequently occurs in many 

practical systems or equipment, and its induced significant pressure oscillations have a 

serious influence on the normal operation of the equipment. Recently, the combustion 

instability has been extensively studied experimentally, but the theoretical investigation 

on its nature is still rare. Since combustion instability is a complicated nonlinear 

phenomenon, it is necessary to study its nature from the viewpoint of nonlinear 

dynamics. 

Based on the one-dimensional simplified model of thermoacoustic instability 

involving vortex shedding proposed by Matveev and Culick, the typical nonlinear 

phenomenon in thermoacoustic oscillation induced by vortex shedding is studied. The 

study focuses on the initial value sensitivity of the system, the influence of key 

parameters on thermoacoustic oscillation, and the phenomenon of vortex-acoustic lock-

in. Firstly, the Galerkin method is used to approximate the governing equation, and the 

partial differential equations are reduced to a set of ordinary differential equations. Then, 

the first ten modes are selected, and the pressure and velocity fluctuations of sound field 

under different system parameters are obtained by MATLAB program. Finally, the 

thermoacoustic instability of the system under different initial disturbances, the 

influences of different steady flow velocity on the thermoacoustic oscillation of the 
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system, and the phenomenon of vortex-acoustic lock-in in thermoacoustic oscillation 

are studied in detail. Furthermore, the influences of fluctuation of upstream velocity in 

combustor on the thermoacoustic oscillation is studied. Besides, the influences of 

external harmonic excitation on the thermoacoustic system is also studied. 

The results show that the system of thermoacoustic oscillation involving vortex 

shedding is extremely sensitive to initial values, and there are a rich variety of nonlinear 

phenomena. With steady flow velocity increasing, the amplitude of pressure fluctuation 

augments generally. However, the similar structures are found in several intervals of 

steady flow velocity, and the amplitude first decreases and then increases. In particular, 

it is verified that the system oscillates periodically by integer (𝑓𝑝/𝑓𝑠) multiple of the 

vortex impinging frequency (𝑓𝑠), that is, the vortex-acoustic frequency locking with the 

number of revolutions 𝑓𝑝/𝑓𝑠, which is found in experiment and can be regarded as an 

important characteristic of periodic thermoacoustic oscillation. Furthermore, the 

thermoacoustic oscillation of the system can be controlled by the fluctuation of 

mainstream velocity. When the frequency of fluctuating mainstream velocity is positive 

integer times of the frequency of steady vortex shedding, the intensity of the 

thermoacoustic oscillation is significantly weaker than that when the mainstream 

velocity is stable. Besides, the thermoacoustic oscillation of the system has periodic 

and quasi-periodic solutions under external sinusoidal excitation. And the 

thermoacoustic oscillation of the system can be controlled by choosing the frequency 

and amplitude of the external excitation reasonably. In a word, the phenomenon of 

thermoacoustic instability and the mechanism of vortex-acoustic lock-in are studied 

theoretically based on nonlinear dynamics, which is of great significance to avoid the 

harm of thermoacoustic oscillation and make rational use of it. 

 

KEY WORDS： Combustion instability, Thermoacoustic oscillation, Vortex shedding, 

Vortex-acoustic lock-in, Nonlinear dynamics 
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Chapter 1 Introduction 

1.1 Background of the study 

The combustion of reactants in a confined volume may be accompanied by the 

development of significant pressure oscillations. If these pressure oscillations occur as 

a result of unsteady heat release, the phenomenon is often referred to as combustion 

instability. Combustion instability occurs in many practical systems, such as power 

plants, jet engine afterburners, and rocket engines. These instabilities are spontaneously 

excited by a feedback loop between an oscillatory combustion process and one of the 

natural acoustic modes of the combustor. In general, the occurrence of combustion 

instabilities in different kinds of combustors will bring many plaguing problems, for 

example, the large-amplitude pressure and velocity oscillations will lead to the thrust 

oscillations of jet engine, the severe vibrations will disturb the operation of the control 

system, combustion oscillations will increase the thermal stresses on the combustion 

chamber walls, combustion oscillations will increase the mechanical loads and lead to 

low cycle or high cycle fatigue of system components, and combustion oscillations 

may lead to the flameout or flame flashback of combustion chamber [1-3]. These 

phenomena can lead to premature wear of components, which can lead to catastrophic 

system or component damage. Therefore, over the past few decades, a great deal of 

research and development work has been undertaken to clarify the processes that cause 

these instabilities and to develop ways to prevent them. 

The mechanism of combustion instability was explained in reference [1]. Figure 1.1 

summarizes the conditions required for a combustion instability to spontaneously occur. 

The upper portion of Fig. 1.1 shows an unstable combustion chamber with reactants 

entering from the left and combustion products exiting from the nozzle on the right. 

The interaction between one of the acoustic mode of the combustion chamber and the 

heat release oscillations transfers or removes energy from the acoustic mode. The 

combustion process adds (or removes) energy from the acoustic oscillations locally 
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depending on the positive (or negative) of the integral in Fig. 1.1, which is often referred 

to as Rayleigh’s integral [4]. The sign of the Rayleigh’s integral depends on the phase 

difference between the heat release and pressure oscillations, and is positive (negative) 

when the phase difference is less than (greater than) 90 degrees. As shown in Fig. 1.1, 

combustion instability spontaneously occurs only when the energy provided to the 

acoustic mode by the combustion process exceeds the energy losses of the mode caused 

by, such as the radiation and convection of acoustic energy, viscous dissipation and heat 

transfer. Therefore, as long as the amplitude of the driving exceeds the amplitude of the 

damping process, the energy of the mode will increase with time. When this occurs, the 

amplitude of the oscillation initially increases exponentially with time until it saturates 

at a certain limit cycle oscillation. In this case, the time averages of the driving and 

damping processes are equal, and no net energy is added to the oscillating process, 

which is a self-excited oscillation process [1]. 

 

Fig. 1.1 Summary of conditions required for a combustion instability to occur [1]. 
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Combustion instabilities are characterized by rapid fluctuations of heat release and 

pressure, and large-amplitude oscillations of one or more natural acoustic modes of the 

combustor [1]. Fluctuations in heat release rate arise due to acoustic fluctuations. 

Combustion instability is caused when the fluctuating heat release rate and the acoustic 

field form a positive feedback loop [5], that is, the unstable heat release induced by the 

combustion of reactant lead to the oscillation of acoustic field, and the oscillation of 

acoustic field in turn strengthens the fluctuation of heat release, thus forming a positive 

feedback loop. Because in all cases of combustion instabilities, the acoustic oscillations 

are excited by thermal sources, the resulting phenomena are often referred to as 

thermoacoustic instabilities or thermoacoustic oscillations. 

Actually, thermoacoustic oscillations are complex phenomena dominated by 

nonlinear processes. Since the initial amplitudes of most instabilities are usually quite 

small, their properties can be described by the linear wave equation [6].The frequencies 

and mode shapes of these oscillations and the conditions for their spontaneous 

occurrence are determined by the solution of these equations. However, linear analysis 

cannot predict the magnitude of the limit cycle amplitude attained by the instability, 

because it is controlled by nonlinear process. In addition, nonlinear processes may 

allow large-amplitude perturbations whose amplitude exceeds a certain threshold value 

to trigger the instability of linear stable systems. Therefore, both the characteristics of 

the limit cycle oscillation and the conditions for the instability triggered by the finite 

amplitude perturbations can only be determined by solving the nonlinear equations 

describing the dynamics of the system [7, 8]. Although the Rayleigh’s criterion and 

linear analysis can be used to explain the mechanism of occurrence and maintain of 

thermoacoustic oscillation, the state of the system after the instability cannot be 

predicted, and the complex nonlinear phenomena such as mode coupling, frequency 

lock-in, hysteresis, bifurcation and chaos which may exist in the thermoacoustic 

oscillation cannot be analyzed. Therefore, it is necessary to use the analysis method 

based on nonlinear dynamics to study the phenomenon of thermoacoustic instability 

and reveal the mechanism of its occurrence and development, which is of great 



8 

 

significance to avoid the harm of thermoacoustic oscillation and make rational use of 

it. 

1.2 Overview of previous research 

Thermoacoustic instability is a complex phenomenon, and some simplified models 

must be used to understand its nature. In 1850, Sondhauss first discovered the 

thermoacoustic phenomenon and designed the Sondhauss tube to demonstrate it. In 

1859, Rijke designed the Rijke tube to better demonstrate the thermoacoustic 

phenomenon, and the Rijke tube gradually became the most convenient and classic 

model to study the thermoacoustic instability both experimentally and theoretically. 

After that, many scholars have carried out a lot of studies on the thermoacoustic 

oscillation based on this model, including some studies using the analysis method based 

on nonlinear dynamics. Balasubramanian and Sujith [9] investigated the role of non-

normality and nonlinearity in thermoacoustic interaction based on a one-dimensional 

Rijke tube model. Subramanian et al. [10] carried out bifurcation analysis on the 

dynamical behavior of a horizontal Rijke tube model. They obtained the bifurcation 

diagrams including the amplitude of the unstable limit cycles by using the method of 

numerical continuation, and analyzed the subcritical bifurcation for variation of 

parameters and regions of global stability, global instability and bistability. Dang 

Nannan et al. [11] numerically studied the relationship between the stability switching 

behavior of thermoacoustic oscillation and the time delay of heat transfer in Rijke tube 

under two different acoustic damping cases, namely the heavily damped case and the 

weakly damped case. 

With the above background, this study is based on the model of a Rijke tube with a 

backward-facing step, which is a kind of flame stabilizer, and is very common in the 

actual combustion chambers. As early as 1956, Rogers and Marble [12] conducted an 

experimental study on a small two-dimensional combustion chamber. They observed 

the periodic vortex shedding at the edge of the flame stabilizer accompanied by high-

frequency oscillation, and proposed the mechanism of oscillation. After that, many 
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scholars studied the role of vortex shedding in thermoacoustic oscillation through a 

large number of experiments [13-17]. Meanwhile, with the development of 

computational fluid dynamics (CFD) technology, scholars began to use CFD software 

to simulate the process of combustion-vortex-acoustic interaction [18, 19]. Nowadays, 

Large Eddies Simulation (LES) has become the most powerful tool for numerical 

simulation of combustion process and combustion instability [20-22]. 

At present, the research on the thermoacoustic oscillation in the combustor with 

backward-facing step is mainly based on experiment and numerical simulation, but less 

on the theoretical research and mechanism analysis. Because the experimental and 

numerical studies consume a lot of resources and time, it is necessary to study the 

mechanism and evolution of thermoacoustic oscillation involving vortex shedding 

based on the basic model. In this regard, scholars have done a lot of research. Based on 

the simplified model of a combustor with backward-facing step, Matveev and Culick 

[23] derived a reduced order model of the interaction between vortex shedding, acoustic 

field of combustor and combustion process, and used the model to calculate the 

frequency locking of thermoacoustic oscillation process, which was verified by 

comparing with the experimental results. At the same time, they pointed out that the 

simplified model could simulate many nonlinear phenomena in real combustion 

chamber, such as mode coupling, frequency lock-in, hysteresis, bifurcation and chaos. 

Based on the model proposed by Matveev, Tulsyan et al. [24] numerically calculated 

the time series of thermoacoustic oscillation in the system under different parameters, 

and compared the influences of system parameters such as initial disturbance and 

damping coefficient on the thermoacoustic oscillation. Based on the simplified model 

of thermoacoustic oscillation caused by vortex shedding, nonlinear phenomena in the 

interaction between vortex shedding, acoustic field and combustion process were 

studied in references [25-27]. Singaravelu and Mariappan [28] nondimensionalized the 

governing equations of the model and analyzed the linear stability. They derived the 

formula for calculating the Poincaré section in the process of thermoacoustic oscillation, 

and concluded that the stability of the system is related to the eigenvalues of the 
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Poincaré map, thus quantifying the stability of the thermoacoustic interaction. 

Singaravelu and Mariappan [29] further studied the phenomenon of vortex-acoustic 

lock-in in combustion instability based on the non-dimensional governing equation. 

Using the amplitude of velocity fluctuation in the system from zero to peak as the 

criterion to judge the Helmholtz number's transition from vortex shedding mode to 

acoustic mode, they proposed a criterion to judge the vortex-acoustic lock-in and 

compared it with the experimental results. Chakravarthy et al. [30] experimentally 

studied the phenomenon of vortex-acoustic lock-in in the combustion chamber with a 

backward-facing step, and the results showed that vortex-acoustic lock-in is an 

important indicator of combustion instability. 

In the past half century, scholars at home and abroad have carried out a lot of research 

work on thermoacoustic instability, but these work is mainly focused on experimental 

research, and the theoretical research is still scarce. At present, based on the 

thermoacoustic model of vortex shedding proposed by Matveev and Culick [23], the 

influence of some key parameters on the system are analyzed, and some nonlinear 

phenomena such as vortex-acoustic lock-in are found. However, the influence of the 

mainstream velocity on the thermoacoustic oscillation of the system has not been 

studied, and the mechanism of the vortex-acoustic lock-in phenomenon found in the 

experiment has not been analyzed from the viewpoint of nonlinear dynamics. 

1.3 Content of the study 

The study mainly focus on the nonlinear analysis of thermoacoustic instability based 

on the model involving vortex shedding proposed by Matveev and Culick [23]. In the 

Chapter 2, the basic concepts and analysis methods of nonlinear dynamical system are 

introduced briefly. In the Chapter 3, the physical model and the establishment process 

of the governing equations are introduced, including the Rijke tube model and the 

model of combustor with backward-facing step. Chapters 4 to 6 are the main work of 

this study. The similarity and the vortex-acoustic lock-in behaviors with the steady state 

velocity change are firstly studied in Chapter 4. Then in Chapter 5, the frequency-
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locked behaviors under the condition of fluctuating mainstream velocity are studied. 

Furthermore, the influences of external harmonic excitation on the thermoacoustic 

system is studied in Chapter 6. Finally, the main conclusions of this study are 

summarized in Chapter 7. 
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Chapter 2 Fundamental theories 

2.1 Differential dynamical system and phase space 

This chapter mainly introduces the basic concepts and analysis methods of nonlinear 

dynamical system, including the description methods and analysis methods of 

dynamical system, mainly referring to these books [31-35]. 

The governing equations of continuous dynamical systems are generally expressed 

in the form of differential equations. According to whether there are time-dependent 

terms in the equation, it can be classified into autonomous and non-autonomous 

differential equations. But common nonlinear ordinary differential equations can be 

transformed into autonomous first order ordinary differential equations. For example, 

for the following second order ordinary differential equation, 

  ,x f x x  (2.1) 

Let 𝑦 = �̇�, then the above formula can be reduced to the following system of first order 

ordinary differential equations, 

 
 ,

x y

y f x y





 (2.2) 

For the non-autonomous equation, the explicit time variable 𝑡 can be regarded as a 

new variable, that is, the non-autonomous system can be transformed into an 

autonomous system by introducing 𝑧 = 𝑡. For example, the equation 

  ,x f x t  (2.3) 

can be transformed into 

 
 

1

,

z

x f x z





 (2.4) 

Therefore, common differential dynamical systems can be expressed by first order 
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autonomous differential equations, which is called the standard form of dynamical 

equations. 

For a dynamical system, it is written in standard form as follows, 

  x f x  (2.5) 

where 𝒙 is a vector in an 𝑛-dimensional Euclidean space, and its component in the 𝑖-

th direction is 𝑥𝑖. The 𝑅𝑛 space formed by the state variable 𝑥𝑖 is called phase space, 

or state space. Through the phase space, the dynamical characteristics of complex 

system can be displayed by intuitive geometric images. 

2.2 Poincaré mapping 

In order to intuitively analyze the motion process of multivariable dynamical system, 

Poincaré proposed a method: in the 𝑁 -dimensional phase space of 𝑁 -dimensional 

system, an 𝑁 − 1 -dimensional hyperplane (called Poincaré section) was selected to 

study the motion process of points on this section. Because the dimension of the section 

is less than that of the phase space, the distribution of these intersection points is more 

simple and intuitive. Let these intersection points be 𝑃0, 𝑃1, 𝑃2, … , 𝑃𝑛, …, respectively, 

then the continuous equations of motion in phase space can be discretized as the 

mapping between the intersection points, as follows, 

  1n nP T P   (2.6) 

here 𝑇 is called Poincaré Mapping. 

For the periodic motion of a single variable, its trajectory in phase space is a closed 

curve. For the system with two periodic variables (such as the coupled oscillator 

system), its trajectory in the 2 × 2-dimensional phase space is on a two-dimensional 

torus, as shown in Fig. 2.1. If the periods of two variables 𝑥1 and 𝑥2 are equal, the 

trajectories in the phase space always pass through Poincaré section at the same point. 

If the system has two frequencies 𝜔1 and 𝜔2, and the ratio of the two frequencies 
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Ω = 𝜔1/𝜔2 is a rational number, the system is still in periodic motion. Here, the ratio 

of two frequencies Ω is called the rotation number. 

 

Fig. 2.1 Phase trajectories of periodic motion of two variables. 

For quasi periodic motion, the rotation number is an irrational number, and the 

motion in 𝑥1  and 𝑥2  directions cannot be coordinated. Every time the phase 

trajectory passes through the intersection point on the Poincaré section, it turns an 

angular displacement, which is Ω. That is, the intersection of the phase trajectory and 

the Poincaré section will move on the torus at the angular velocity of Ω. This motion 

is ergodic to the torus. 
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Chapter 3 Mathematical and physical model 

3.1 Model of Rijke tube 

3.1.1 Physical model 

Thermoacoustic instability is a complex phenomenon, and to understand its nature 

some simplified models must be used. In this study, the nonlinear analysis of a 

thermoacoustic system is performed, by using a simple model for thermoacoustic 

oscillations in a Rijke tube. 

The Rijke tube model used in the study follows Balasubramanian and Sujith [9], and 

is for the geometry shown in Fig. 3.1. In the horizontal Rijke tube, the influence of 

natural convention on the mean flow rate can be excluded. It is convenient for studying 

the fundamental principles of thermoacoustic instabilities to set up a horizontal Rijke 

tube with an electric heat source. In such a setup, the mean flow is provided by a blower, 

which sucks air in the tube. 

 

Fig. 3.1 Schematic of a horizontal Rijke tube with an electric heater as source. 

3.1.2 Governing equations 

Neglecting the effect of mean flow and mean temperature gradient in the duct, the 

model is governed by the non-dimensional linearized momentum and energy equations 

for the acoustic field as given below in Eqns. (3.1) and (3.2). The scales for non-

dimensionalization are as given in Eqn. (3.3). 
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    1 ( ) f

p u
M p Q t x x
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 (3.2) 

 0 0

0 0
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c ux u p

x t t u p M
L L u p c

 
       (3.3) 

In this model, x  is the distance along the axial direction, L  is the length of the 

duct and t   is time. The flow has a steady state velocity 
0u  , pressure p   and 

temperature T . u  is acoustic velocity and p  is acoustic pressure.   is the ratio 

of specific heats of the medium, 0c  is the speed of sound and M  is the Mach number 

of the mean flow.   is the damping coefficient, 
fx  is the location of the heat source 

and Q  is the heat release rate fluctuations per unit area due to the electrical heater. 

Quantities with tilde are dimensional and those without tilde are non-dimensional. 

The response of the heat transfer from the wire filament to acoustic velocity 

fluctuations is quantified using the correlation given by Heckl [36]. The heat release 

rate fluctuations is given in Eqn. (3.4). 

  
 

 0

0

2 1 1

2 3 33

w w w
V f

L T T d
Q t C u u t

S c p
  

 
     

  

 (3.4) 

here wd  , wL   and wT   are the diameter, length and temperature of the wire 

respectively, S  is the cross sectional area,   is the mean density,   is the thermal 

conductivity and VC  is the specific heat at constant volume of the medium within the 

duct.   is the time lag representing the thermal inertia of the heat transfer. 

The non-dimensional partial differential equations Eqn. (3.1) and Eqn. (3.2) can be 

reduced to a set of ordinary differential equations by expanding the acoustic variables 

in terms of basis functions using the Galerkin technique. The velocity and pressure field 

can be written in terms of the duct’s natural modes as follows, 
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j
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1

, ( )sin( )
N

j

j

M
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    (3.6) 

Substituting the above expansions into Eqn. (3.1) and Eqn. (3.2), the following 

evolution equations are obtained, 

 
j

j

d

dt


  (3.7) 

    2 2 1 1
sin

3 3

j

j j j j f f

d k
k j u t j x

dt M


     



 
       

  

 (3.8) 

where 

  
 

0

0

2
1

23

w w w
V

L T T d
k C u

S c p
  


   (3.9) 

here, 
jk j  refers to the non-dimensional wave number. The governing equations 

(3.1) and (3.2) reduce to two ordinary differential equations (ODEs) for each mode j. 

Then the fourth-order Runge-Kutta algorithm is used to solve the above equations (3.7) 

and (3.8). 

3.2 Model of combustor with backward-facing step 

3.2.1 Physical model 

Combustion chamber with backward step is a very common type of combustion 

chamber. Figure 3.2 shows a simplified model of a combustion chamber with a 

backward-facing step, which is a tube with openings at both ends and a small step inside 

the tube. In order to study this thermoacoustic system, the coordinate system shown in 

Fig. 3.2 was established according to the paper of Matveev and Culick [23], and the 

complex problem was simplified into one-dimensional problem. The total length of the 
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tube is 𝐿 , the position of the backward-facing step is 𝑋𝑠 , and the position of the 

downstream wall of the step is 𝑋𝑐. The reactants enter the combustion chamber at a 

certain mainstream velocity 𝑢0. Because of the instability of the shear layer at the step, 

vortexes will be generated when the fluid flows through the step. When certain 

conditions are met, the vortex carried reactants will fall off from the step, move 

downstream in the concave cavity, and finally hit the downstream wall, resulting in 

centralized combustion and instantaneous heat release. The unstable heat release caused 

by vortex shedding will interact with the pressure and velocity fluctuations of acoustic 

field in the combustion chamber. Under certain conditions, when the unstable heat 

release forms a positive feedback loop with the periodic oscillation of the pressure and 

velocity of acoustic field, the oscillation will continue. This process is the 

thermoacoustic oscillation induced by vortex shedding, which leads to combustion 

instability. 

 

Fig. 3.2 The simplified model of combustor with backward-facing step. 

3.2.2 Vortex shedding model 

In fact, the governing equations of vortex generation, convection and breakdown in 

unsteady flow are all nonlinear. In order to facilitate the study, the vortex shedding 

model developed by Matveev and Culick [23] is introduced. In steady flow, there will 

be regular vortex shedding behind the bluff body, and the frequency of vortex shedding 

is expressed as follows, 

 0
0s

u
f St

d
  (3.10) 
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where 𝑆𝑡  is Strouhal number and 𝑑  is characteristic dimension. In this study, the 

height of backward-facing step is taken as characteristic dimension. In the 

thermoacoustic system, the process of vortex shedding is affected not only by the 

mainstream velocity, but also by the pressure and velocity fluctuations of the acoustic 

field. Therefore, Matveev and Culick [23] proposed a simplified vortex shedding model 

in unsteady flow, in which Strouhal number is taken as the value of steady flow. The 

instantaneous resultant velocity 𝑢(𝑡) = 𝑢0 + 𝑢′(𝑡), and the growth rate of circulation 

of the vortex shedding from the step is expressed as follows, 

  
21

=
2

jd
u t

dt


 (3.11) 

where 𝛤𝑗 is the circulation of the 𝑗-th vortex. When the accumulation of the circulation 

reaches the critical circulation 𝛤𝑠𝑒𝑝, the 𝑗-th vortex will fall off from the step. 𝛤𝑠𝑒𝑝 

can be represented by the instantaneous velocity 𝑢(𝑡) as follows, 

 
 

=
2

sep

u t d

St
  (3.12) 

After the 𝑗-th vortex shedding, it will move downstream from 𝑋𝑠 to 𝑋𝑐 along the 

boundary of the mainstream and the recirculation zone in the cavity at the resultant 

velocity at the instantaneous position of the vortex. The velocity of the shedding vortex 

moving downstream can be expressed as follows, 

  0 ,
j

j

dx
u u x t

dt
    (3.13) 

where, 𝑥𝑗  is the instantaneous position of the 𝑗 -th vortex, and 𝑢′(𝑥𝑗, 𝑡)  is the 

instantaneous pulsating velocity at 𝑥𝑗. 𝛼 is a coefficient less than 1, usually 0.4-0.6 

[28]. In the cavity of segmented solid rocket motor, 𝛼 is usually 0.5-0.6 [37]. 

3.2.3 Thermoacoustic model 

According to the paper of Tulsyan et al. [24], Neglecting all direct influences of 
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temperature gradient, viscous effect and steady flow on the acoustic field, the 

momentum and energy governing equations of the acoustic field in this system can be 

expressed as follows, 

 
0

1
0

p u

x t

  
 

 
 (3.14) 

  0 1
p u

p Q
t x

 
  
  

 
& (3.15) 

where 𝑝′ and 𝑢′ are the pressure fluctuation and velocity fluctuation in the acoustic 

field respectively, 𝜌0  is the average density at steady state, 𝛾  is the specific heat 

capacity ratio, 𝑝0 is the average pressure at the undisturbed state and �̇� is the heat 

release rate. The �̇� term is the source term in the thermoacoustic system and is the 

unstable heat release rate induced by vortex shedding. The shedding vortex with the 

reactants impinges on the downstream wall 𝑋𝑐 and burns, accompanied by heat release. 

Therefore, the heat release rate can be expressed by the delta function in space and time 

[23], as follows, 

    = j j c

j

Q t t x X    &  (3.16) 

The sum in the equation is determined by the number of shedding vortices. 𝛽 is an 

appropriate heat release coefficient, which relates impingement of vortex to heat release 

rate. 𝑡𝑗 is the time when the 𝑗-th vortex with the circulation 𝛤𝑗 impinges and burns. 

𝑋𝑐 is the position of vortex impact, that is, the spatial position of instantaneous heat 

release. It can be seen from the above equation that the heat release rate is 

approximately proportional to the circulation, and the critical circulation of shedding 

vortex represents the intensity of heat release in combustion. 

The Galerkin method is used to reduce the order of partial differential equations (3.14) 

and (3.15) to a series of ordinary differential equations. In order to satisfy the acoustic 

boundary conditions of open tube at both ends, the basis functions of pressure 

fluctuation and velocity fluctuation are respectively selected as follows, 
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where 𝑝0 = 𝜌0𝑐0
2/𝛾, and 𝑐0 is the speed of sound. 𝑘𝑛 = 𝑛𝜋 is the wave number of 

the 𝑛-th mode, where 𝑛 = {1,2,⋯ }. 𝜔𝑛 = 𝑐0𝑘𝑛 refers the angular frequency of the 

𝑛-th duct mode, and 𝜂𝑛(𝑡) is the amplitude of the 𝑛-th mode. 

Substituting the equations (3.17) and (3.18) into equations (3.14) and (3.15), as 

follows, 

    0 0

1 10 0 0

( ) ( )
cos cos 0n n n

n n

n nn

p t k p d t
k x k x

c dt

 

  

 

 

     (3.19) 

      0 0 0

1 1

( ) 1
sin ( ) sin 1n

n n n n

n nn

d t
p k x p c t k k x Q

dt


 



 

 

      (3.20) 

Multiplying each term by sin(𝑘𝑛𝑥), as follows, 
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A family of ordinary differential equations which are projected onto the basis functions 

can be obtained, as follows, 
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According to the paper of Matveev and Culick [23], the damping coefficient is, 
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 (3.22) 

where, 𝑐1 is the damping coefficient of end loss, and 𝑐2 is the damping coefficient of 

boundary layer loss. By artificially introducing the damping term and substituting the 

heat source term (3.16) into equation (3.21), the following equations can be obtained, 
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Equations (3.23) and (3.24) written together represent a kicked oscillator, equation 

(3.25), which will behave like a damped oscillator at all times, with the jump conditions, 

equation (3.26), at the time of kicking. Equation (3.25) is as follows, 

      2( ) 2 ( ) ( ) sinn n n n n n n n c j j

j

t t t c k X t t           && &  (3.25) 

where 𝑐 = −2(𝛾 − 1)𝛽/(𝐿𝑝0) is called the kicking coefficient. There is no heat 

release during the time interval between the two vortex impacts and combustion. 

Therefore, the right end of equation (3.25) equals zero, and the system will behave like 

a damped oscillator. It is assumed that the instantaneous moments before and after the 

impact of the 𝑗 -th vortex are 𝑡𝑗
−  and 𝑡𝑗

+ , respectively. Neglecting the effect of 

damping, the following jump conditions can be obtained by integrating equation (3.25) 

within the time interval [𝑡𝑗
−, 𝑡𝑗

+], 
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 & &
 (3.26) 

At the moment of vortex impact, the amplitude of velocity mode 𝜂𝑛(𝑡)  remains 

unchanged, while the amplitude of pressure mode �̇�𝑛(𝑡) jumps abruptly. 
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Chapter 4 Similarity and vortex-acoustic 

lock-in behaviors 

4.1 Numerical simulation and verification of numerical 

results 

The calculation of the study is completed by MATLAB program. According to the 

results of existing studies and the preliminary calculation, the following parameters can 

be selected to more clearly present the nonlinear characteristics of the model, 𝐿 =

1m,𝑋𝑠 = 0.3m, 𝑋𝑐 = 0.45m, 𝛼 = 0.5, 𝛾 = 1.4, 𝑐0 = 750m/s, 𝑐 = −0.0015, 𝑆𝑡/𝑑 =

10m−1 [24]. The results of calculation with different numbers of Galerkin modes are 

compared. When the number of modes is less than 10, the error of numerical simulation 

is larger. Theoretically, the more the number of modes is, the closer the calculation 

results are to the real results, and the influence of higher-order modes can be taken into 

account. However, the more the number of modes is, the greater the amount of 

calculation is. Matveev and Culick [23] focused on the influence of the number of 

modes on the calculation results. The results showed that the selection of the first 10 

modes could meet the accuracy and convergence of the calculation. Therefore, the first 

10 modes is taken in all the calculations in this study. 

In the process of calculation, the time step is 10−6s, which can meet the accuracy of 

calculation. When there is no shedding vortex impinging on 𝑋𝑐 (i.e. 𝑡 ≠ 𝑡𝑗), the right 

end of equation (3.25) equals zero. The fourth-order Runge-Kutta integral is used to 

calculate 𝜂𝑛(𝑡) and �̇�𝑛(𝑡), and the time step is 𝑑𝑡 = 10−6s. Then, the instantaneous 

pressure and velocity are calculated according to equations (3.17) and (3.18), and the 

circulation and critical circulation at 𝑋𝑠 are calculated by equations (3.11) and (3.12). 

If 𝛤𝑗 ≥ 𝛤𝑠𝑒𝑝, the 𝑗-th vortex falls off and moves downstream, following the velocity in 

equation (3.13). At the same time, the circulation at 𝑋𝑠 is reset to 0, and the calculation 

of circulation of the (𝑗 + 1)-th vortex in the next time step is started. When the 𝑗-th 

shedding vortex hits 𝑋𝑐  (i.e. 𝑡 = 𝑡𝑗 ), �̇�𝑛(𝑡)  jumps abruptly with equation (3.26), 
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while 𝜂𝑛(𝑡)  is invariant. By repeating this process in the whole calculation, the 

pressure and velocity of acoustic field at any time and at any position can be obtained 

from equations (3.17) and (3.18). The calculation results in the study are all based on 

the time series of pressure and velocity at the backward-facing step 𝑋𝑐. 

In order to verify the accuracy of the calculation, the parameter is first set as 

𝛼 = 0.4, 𝑐1 = 0.0225, 𝑐2 = 0.0025, 𝑢0 = 50m/s, and other parameters are the same 

as above. Calculations were carried out under initial perturbations 𝜂1(0) = 0.05 and 

𝜂1(0) = 0.07  (other initial perturbations were all zero, 𝜂𝑛≠1(0) = 0, �̇�𝑛(0) = 0 ) 

respectively, and the results were compared with those in the paper of Tulsyan et al. 

[24]. Figure 4.1 shows the comparison between our results (the upper portion) and those 

in the existing study, and the numerical results are in good agreement with those of 

others. The figure on the left shows the result when 𝜂1(0) = 0.05, and the oscillation 

decays with time. The figure on the right shows the result when 𝜂1(0) = 0.07, and the 

oscillation diverges with time. It can be seen that the difference of initial perturbation 

is very small, but the oscillation of the system shows very different results. 
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Fig. 4.1 Verification of computation model [24]. 

4.2 Initial conditions sensitivity of the system 

In order to further analyze the multiple solutions of the system, the parameters of the 

system are set as 𝛼 = 0.4, 𝑐1 = 0.03375, 𝑐2 = 0.00375, 𝑢0 = 50m/s  [24]. The 

pressure and velocity fluctuations of the system are calculated under two very close 

initial perturbations 𝜂1(0) = 0.01240087  and 𝜂1(0) = 0.01240088  (other initial 

perturbations were all zero, 𝜂𝑛≠1(0) = 0, �̇�𝑛(0) = 0) respectively. 

Figure 4.2 shows the phase diagram after phase space reconstruction and Poincaré 

section. The three-dimensional phase diagram of pressure ratio shown in Fig. 4.2 (a) 

and (c) is obtained by phase space reconstruction of the time series of 𝑝′/𝑝0 after the 

oscillation is stable. The delay time τ in the phase space reconstruction is taken as 100. 

The Poincaré section shown in Fig. 4.2 (b) and (d) is the section at 𝑝′/𝑝0(𝑡) = 0 in 

Fig. 4.2 (a) and (c), respectively. Among them, Fig. 4.2 (a) and (b) correspond to the 

result under 𝜂1(0) = 0.01240087, and Fig. 4.2 (c) and (d) correspond to the result 

under 𝜂1(0) = 0.01240088. From the three-dimensional phase diagram and Poincaré 

section, it can be seen that when 𝜂1(0) = 0.01240087, there are a few finite points on 

the Poincaré section, which indicates that the system eventually tends to periodic 

oscillation with small amplitude. However, when the initial perturbation is 𝜂1(0) =

0.01240088, there is no closed curve on the Poincaré section for a long enough time 

series, and there are a large number of finite points on the Poincaré section, indicating 

that the system finally tends to the complex periodic oscillation with a slightly larger 

amplitude. 

Figure 4.3 (a) and (b) show the time series of the first 0.2 seconds of the pressure 

ratio under 𝜂1(0) = 0.01240088  and 𝜂1(0) = 0.01240088 , respectively. The 

dotted vertical line in the figure shows the moment of pressure jump caused by the 

impact and combustion of the shedding vortex. It can be seen that the time series before 

0.1 seconds are almost the same under two very close initial perturbations. However, 
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for the time series after 0.1 seconds, the amplitude in Fig. 4.3(a) decreases while the 

amplitude in Fig. 4.3(b) increases. This is because the small difference in the initial 

perturbation leads to the small difference in the frequency of vortex shedding and 

circulation, and the accumulation of the difference results in nonlinear effect. Since the 

two initial perturbations are in different regions of attraction, the system eventually 

tends to two different solution branches, so the system has typical nonlinear 

characteristics. 

 

Fig. 4.2 Phase diagram after phase space reconstruction and Poincaré section. 
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Fig. 4.3 Initial time series of pressure ratios under different initial perturbations. 

4.3 Similar structure in the changing process of the amplitude 

of pressure fluctuation 

In order to study the influence of 𝑢0 on the thermoacoustic oscillation of the system, 

𝑢0 is uniformly changed within the interval [5,100], and the 𝑢′ and 𝑝′ of 381 cases 

are calculated respectively. In the calculation, the damping coefficients are 𝑐1 =

0.135, 𝑐2 = 0.015 [15, 23], other parameters are fixed. The initial perturbation is zero 

(𝜂𝑛(0) = �̇�𝑛(0) = 0). After the time series of 𝑝′ is stable in each case, the maximum 

and minimum points of the time series of 𝑝′/𝑝0 after 1.4 seconds in each time interval 

of vortex shedding are obtained, as shown in Fig. 4.4. 

 

Fig. 4.4 Maximum and minimum pressure ratios at different 𝑢0. 

With the increase of 𝑢0 , the frequency of vortex shedding in steady state (𝑓𝑠0 ) 

increases, but the amplitude of pressure fluctuation does not necessarily increase. 

Figure 4.4 shows that the amplitude variation of pressure fluctuation has a similar 

structure under different 𝑢0. Figure 4.5 is a partial enlarged diagram of Fig. 4.4. The 

curves O1-O2, O2-O3, O3-O4, O4-O5, O5-O6 and O6-O7 are similar. O1, O2, O3, O4, 

O5, O6 and O7 are the peak points of each curve. 

The time series of 𝑝′/𝑝0 from O1 to O6 are shown in Fig. 4.6 (a) to (f), respectively. 

The dotted vertical line in the figure is the moment of pressure jump caused by the 
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impact and combustion of the shedding vortex. It can be seen from Fig. 4.6(a) that there 

are seven decaying periodic oscillations of pressure within the time interval between 

two vortex impacts in O1 case. From O1 case to O6 case, the number of periodic 

oscillation of pressure in the time interval between two vortex impacts decreases from 

7 times to 2 times. With the increase of 𝑢0, the time of the first impact of vortex keeps 

moving forward. Meanwhile, the frequency of vortex impact increases, so the 

frequency of heat release increases. Therefore, the number of periods in the interval 

between two vortex impacts decreases. Since the velocity fluctuation 𝑢′ is much less 

than 𝑢0, 𝛤𝑗 is mainly dominated by 𝑢0. As 𝑢0 increases, the critical circulation 𝛤𝑠𝑒𝑝 

increases and the circulation of shedding vortex increases. Further, the pressure jump 

shown by equation (3.26) increases. In other words, the intensity of heat release 

increases, and more energy is added to the acoustic field by the combustion process. 

Therefore, the amplitude of pressure oscillation increases from O1 case to O6 case. 

Meanwhile, by observing the six peak points in Fig. 4.6 (a) to (f), it can be found that 

each pressure jump (heat release) occurs at the peak of the pressure oscillation, which 

will make the oscillation strengthen continuously. From the previous vortex impacts in 

Fig. 4.6(f), it is obvious that the oscillation is strengthened and the amplitude increases 

until it becomes stable. 

 

Fig. 4.5 Partial enlarged diagram of Figure 4.4. 
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Fig. 4.6 𝑝′/𝑝0 time series of O1, O2, O3, O4, O5, O6 cases. 
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In order to study the process in which the amplitudes of different cases on each 

similar curve first decreased and then increased, the time series of 𝑝′/𝑝0 of S1, S2, S3, 

S4, S5 and O7 cases on O6-O7 curve are obtained in Fig. 4.7 (a) to (f), respectively. 

The dotted vertical line in Fig. 4.7 is the moment of pressure jump caused by the impact 

and combustion of the shedding vortex. The 𝑢0 in the six cases are 20 m/s, 24.25 m/s, 

25.75 m/s, 33.5m /s, 37 m/s and 39 m/s, respectively. With the increase of 𝑢0 , the 

circulation of shedding vortex and the intensity of heat release increase. However, the 

amplitude of pressure fluctuation presents a process from decreasing to increasing. 
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Fig. 4.7 𝑝′/𝑝0 time series of S1, S2, S3, S4, S5, O7 cases. 

By observing the enlarged view of the time series of the first four vortex impacts in 

Fig. 4.7 (a) to (f), it can be seen that there is a phase difference between the moment of 

vortex impact and the pressure fluctuation. In S1 case in Fig. 4.7(a), the heat release 

(pressure jump) occurs before the peak of pressure oscillation, so the amplitude is 

smaller than that of O6 case. As 𝑢0  increases, the frequency of vortex impact 

increases, and the time of heat release moves forward. In Fig. 4.7 (b) and (c), the time 

of heat release in S2 and S3 cases is close to the trough of pressure oscillation, and the 

oscillation is weakened, so the amplitude is small. In S4 case in Fig. 4.7(d), the heat 

release occurs at the antinode of the pressure oscillation, and the amplitude is still small. 

In the S5 case in Fig. 4.7(e), since the time of heat release is close to the previous peak 

of pressure oscillation, the oscillation begins to strengthen and the amplitude gradually 

increases. Similarly, in the O7 case in Fig. 4.7(f), since the heat release occurs at the 

previous peak of pressure oscillation, the oscillation is strengthened and the amplitude 

increases. The change process conforms to Rayleigh’s criterion, that is, when the heat 

is added at the highest point or removed at the lowest point of the pressure fluctuation, 

the oscillation is strengthened; on the contrary, the oscillation is weakened. 

As 𝑢0 increases, the similar structure presented by the amplitude change of pressure 

fluctuation will continue. The increase of 𝑢0 leads to the increase of the frequency of 

vortex impact, and then the increase of the frequency of heat release. Therefore, the 

number of period of pressure fluctuation within the interval between two vortex impacts 
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decreases and will eventually be reduced to 1, that is, the frequency ratio of vortex 

shedding and pressure fluctuation becomes 1:1. On each similar curve, the amplitude 

changes from decrease to increase, which is because the increase of 𝑢0 changes the 

time of vortex impact and combustion. The time of heat release moves from the peak 

of pressure oscillation to the previous trough, and then to the previous peak, that is, the 

phase difference between heat release and pressure oscillation changes. According to 

Rayleigh’s criterion, the change of phase difference leads to a similar structure from 

decrease to increase in the change process of the amplitude of pressure fluctuation. 

4.4 Vortex-acoustic lock-in behaviors 

Fast Fourier transform (FFT) was performed for 𝑝′/𝑝0  time series after stable 

oscillation in 381 cases in Section 4.3, and the dominant frequency corresponding to 

the maximum amplitude after FFT was taken as the dominant frequency of pressure 

fluctuation (𝑓𝑝 ). According to equation (3.10), the frequency of vortex shedding in 

steady state is 𝑓𝑠0, and the actual frequency of vortex shedding is 𝑓𝑠. The results shown 

in Fig. 4.8 can be obtained from the frequency ratios 𝑓𝑠0/𝑓𝑝 and 𝑓𝑠/𝑓𝑝. 

 

Fig. 4.8 Vortex-acoustic frequency lock-in. 

It can be seen from Fig. 4.8 that there is a frequency locking relationship between 

the dominant frequency of pressure fluctuation 𝑓𝑝  and the frequency of vortex 

shedding 𝑓𝑠, forming a triangular frequency lock-in region as shown in the figure. In 

Fig. 4.8, there are 8 steps from the upper right to the lower left, and 𝑓𝑠/𝑓𝑝 is 1, 1/2, 1/3, 
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1/4, 1/5, 1/6, 1/7 and 1/8 in turn. The phenomenon is called vortex-acoustic frequency 

lock-in, which can be used as an important indicator of periodic combustion oscillation. 

This phenomenon is essentially due to the stable self-excited oscillation. The 

thermoacoustic oscillation is a process of interaction between the unstable heat release 

rate and the fluctuation of acoustic field in the combustion chamber. After the 

combustion oscillation is stable, a self-sustaining positive feedback loop is formed 

between the heat release caused by the impact and combustion of the shedding vortex 

and the fluctuation of the pressure and velocity of the acoustic field, thus forming a 

stable self-excited oscillation. In the calculation model, the unsteady heat release is 

caused by vortex shedding, so the frequency of vortex shedding is the key factor 

affecting the thermoacoustic oscillation. With the change of 𝑢0 , the frequency of 

vortex shedding changes, and then the frequency of heat release changes. When stable 

self-excited oscillation occurs between heat release and pressure fluctuation, stable 

thermoacoustic oscillation will appear. Meanwhile, the frequency of vortex shedding 

and the frequency of pressure fluctuation present frequency locking phenomenon. 

Figure 4.9 shows the relationship between 𝑓𝑝  and 𝑓𝑠  and the variation of 𝑓𝑠/𝑓𝑝 

with 𝑢0. It can be seen from the figure that with the increase of 𝑢0, the frequency of 

vortex shedding (𝑓𝑠) increases, and the dominant frequency of pressure fluctuation (𝑓𝑝) 

develops towards high frequency, while 𝑓𝑠/𝑓𝑝 is close to 1. The increase of 𝑢0 leads 

to the increase of the frequency of vortex shedding, and then the frequency of heat 

release increases. From the analysis in Section 4.3, it can be found that the number of 

period of pressure fluctuation within the interval between two vortex impacts will 

eventually decrease to 1, so the frequency ratio of vortex-acoustic lock-in eventually 

tends to 1, which is also in agreement with the explanation in Section 4.3. 
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Fig. 4.9 The relationship between 𝑓𝑝 and 𝑓𝑠 and the variation of 𝑓𝑠/𝑓𝑝 with 𝑢0. 

Figure 4.10 shows the 𝑢′ − 𝑝′/𝑝0 phase diagram in six different cases of O1, O2, 

O3, O4, O5 and O6 in Fig. 4.6. The short vertical line in the phase diagram shows the 

moment when the shedding vortex impacts and burns, that is, the pressure jumps 

suddenly, while the velocity remains unchanged. In Fig. 4.10 (a) to (f), 𝑓𝑠/𝑓𝑝  is 

approximately equal to 1/7, 1/6, 1/5, 1/4, 1/3 and 1/2 respectively. Corresponding, the 

phase trajectory in 𝑢′ − 𝑝′/𝑝0  phase diagram rotates 7, 6, 5, 4, 3 and 2 times 

respectively. This phenomenon is in agreement with Fig. 4.6. From Fig. 4.6 (a) to (f), 

the damped oscillator (pressure fluctuation) experiences 7, 6, 5, 4, 3 and 2 periodic 

oscillations respectively between the two adjacent shedding vortices impacting and 

burning. After the oscillation of the system is stable, the damping oscillator is forced 

by the periodic vortex impact and combustion, and the system can be regarded as 

coupling of two oscillators. At this point, the system can be treated as discrete system 

and treated with discrete map. When the two oscillators are coupled, their trajectory in 

the three-dimensional phase space will be limited to a two-dimensional torus. Phase 

angle and frequency are the key factors to determine the motion properties of coupled 

oscillators. Therefore, the proper Poincaré section is selected on torus, and only the 

Poincaré map on the circle is considered, that is, the circle map. When the second 

oscillator rotates one cycle on the two-dimensional torus, the number of turns of the 

first oscillator is the ratio of the frequency of the first oscillator to that of the second 
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oscillator. 

 

Fig. 4.10 𝑢′ − 𝑝′/𝑝0 phase diagram at six different frequency ratios. 

In this thermoacoustic oscillation system, the number of periodic oscillations of the 

damping oscillator in the time interval between two vortex impacts is the number of 

turns of the damping oscillator, in the case that the periodic forced oscillator (vortex 

impact) rotates for one cycle on the two-dimensional torus. The number of turns of the 

damping oscillator is the ratio (𝑓𝑝/𝑓𝑠) of the dominant frequency of pressure fluctuation 

(𝑓𝑝) to the frequency of vortex shedding (𝑓𝑠). The ratio is also in agreement with the 

number of turns of the phase trajectory in Fig. 4.10. Meanwhile, the ratio is an integer, 

so the result of mapping on the selected Poincaré section remains unchanged. The 

thermoacoustic system oscillates periodically by integer ( 𝑓𝑝/𝑓𝑠 ) multiple of the 

frequency (𝑓𝑠) of the periodic forced oscillator (the vortex impinging frequency), that 

is, the frequency locking (also called phase locking or mode locking) with the number 

of revolutions 𝑓𝑝/𝑓𝑠. 
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Chapter 5 Frequency-locked behaviors 

under the condition of fluctuating 

mainstream velocity 

5.1 Numerical simulation 

In practice, the mainstream velocity 𝑢0  of the combustion chamber is not 

necessarily constant. Considering the fluctuation of upstream velocity in combustion 

chamber, the fluctuation term 𝑢𝑎sin(2𝜋𝑓𝑎𝑡)  is added to the mainstream velocity, 

among them, 𝑢𝑎 is the amplitude of fluctuation and 𝑓𝑎 is the frequency of velocity 

fluctuation. In this section, the influence of fluctuation of upstream velocity in 

combustion chamber on the thermoacoustic oscillation is studied. 

Figure 5.1 shows the combustion chamber with a backward-facing step. Replace 𝑢0 

in all equations in Section 3.2 with 𝑢0 + 𝑢𝑎sin(2𝜋𝑓𝑎𝑡), and other physical quantities 

remain the same. The calculation process is the same as the numerical simulation in 

Section 4.1. In the calculation, the damping coefficients are 𝑐1 = 0.135, 𝑐2 = 0.015 

[15, 23], other parameters are the same as those in Section 4.1. The initial perturbation 

is zero (𝜂𝑛(0) = �̇�𝑛(0) = 0). 

 

Fig. 5.1 Schematic of the combustion chamber with a backward-facing step. 

5.2 Frequency-locked behaviors 

In order to study the influence of the frequency (𝑓𝑎) of velocity fluctuation in the 
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upstream of combustor on the thermoacoustic system, the mainstream velocity is set to 

𝑢0 + 𝑢𝑎sin(2𝜋𝑓𝑎𝑡) . After setting the steady flow velocity 𝑢0 = 40m/s  and the 

amplitude of fluctuation 𝑢𝑎 = 4m/s  as 10% of 𝑢0 , 101 cases under the uniform 

change of 𝑓𝑎  from 200Hz to 2200Hz were calculated respectively. According to 

equation (3.10), the frequency of steady vortex shedding can be obtained as follows, 

𝑓𝑠0 = 400Hz. The actual frequency (𝑓𝑠) of vortex shedding can be obtained from the 

average value of the frequency of vortex shedding after the oscillation becomes stable. 

Figure 5.2 shows the frequency-locked relationship between vortex shedding frequency 

𝑓𝑠 and the frequency of mainstream velocity fluctuation 𝑓𝑎, as well as the variation of 

𝑓𝑠/𝑓𝑎 with 𝑓𝑎. Figure 5.2(b) is a larger version of Fig. 5.2(a). It can be seen that there 

are five steps in Fig. 5.2(a), and the frequency-locked phenomena with the ratios of 𝑓𝑠 

and 𝑓𝑎  being 1, 1/2, 1/3, 1/4 and 1/5 respectively appear. The corresponding five 

frequency-locked regions (shown in the gray line in the figure) are respectively close 

to 1, 2, 3, 4 and 5 times of 𝑓𝑎  being 𝑓𝑠0 . It can be seen from Fig. 5.2(c) that the 

frequency of vortex shedding does not continuously increase with the frequency of 

mainstream velocity fluctuation, as 𝑓𝑎 tends to high frequency and 𝑓𝑠/𝑓𝑎 tends to 0. 

In a word, the frequency of vortex shedding does not increase with the increase of the 

frequency of fluctuating mainstream velocity. When the frequency of fluctuating 

mainstream velocity (𝑓𝑎) is a positive integer multiple of the frequency of steady vortex 

shedding (𝑓𝑠0), a frequency-locked region will appear nearby. 
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Fig. 5.2 Frequency-locked phenomenon. 

The fast Fourier transform (FFT) was carried out for the time series of 𝑝′/𝑝0 after 

oscillation becomes stable in 101 cases respectively, and the dominant frequency 

corresponding to the maximum amplitude after FFT was taken as the dominant 

frequency of pressure fluctuation (𝑓𝑝). Figure 5.3 shows the influence of the frequency 

of fluctuating mainstream velocity (𝑓𝑎) on the frequency of vortex shedding (𝑓𝑠) and 

the dominant frequency of pressure fluctuation (𝑓𝑝).It can be seen that with the increase 

of 𝑓𝑎, 𝑓𝑠 only changes slightly in the range of 380Hz to 440Hz without a continuous 

increase. When 𝑓𝑎 is a positive integer multiple of 𝑓𝑠0, 𝑓𝑠 is strictly equal to 𝑓𝑠0 =

400Hz , and a segmented frequency-locking region (shown by the gray slash in the 

figure) appears near this frequency. In each lock-in region, 𝑓𝑠 strictly monotonically 

increases with the increase of 𝑓𝑎. However, between the frequency-locked regions, 𝑓𝑠 

hardly changes. In conclusion, when the frequency of fluctuating mainstream velocity 

is a positive integer multiple of the frequency of steady vortex shedding, the actual 

frequency of vortex shedding is strictly equal to the frequency of steady vortex shedding. 

The frequency of vortex shedding increases slightly with the increase of the frequency 

of fluctuating mainstream velocity only in each lock-in region. Comparing Fig. 5.3 (a) 

and (b), it can be found that 𝑓𝑝 and 𝑓𝑠 is almost equal, and they change with 𝑓𝑎 in 

the same way. Because vortex shedding in the thermoacoustic system leads to unstable 

heat release, the frequency of vortex shedding affects the frequency of unstable heat 

release. When stable self-excited oscillation occurs between the unsteady heat release 

and the pressure fluctuation of acoustic field, stable thermoacoustic oscillation occurs. 
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Therefore, there is a frequency-locked relationship between the frequency of vortex 

shedding and the frequency of pressure fluctuation in acoustic field. When 𝑢0 =

40m/s, the frequency ratio of the vortex-acoustic lock-in is approximately 1. Therefore, 

the frequency of pressure fluctuation in the acoustic field in Fig. 5.3 is almost equal to 

the frequency of vortex shedding. 

 

Fig. 5.3 Influence of the frequency of fluctuating mainstream velocity. 

5.3 Comparison of results under the conditions of constant 

and fluctuating mainstream velocity 

In order to further study the influence of the mainstream velocity fluctuation on the 

thermoacoustic oscillation, the two cases of steady mainstream velocity (mainstream 

velocity equals 𝑢0 ) and the fluctuating mainstream velocity (mainstream velocity 

equals 𝑢0 + 𝑢𝑎sin(2𝜋𝑓𝑎𝑡) ) were compared. After setting the steady flow velocity 

𝑢0 = 40m/s and the amplitude of fluctuation 𝑢𝑎 = 4m/s, the amplitude (Amp) of the 

stabilized𝑝′/𝑝0  time series under 101 different 𝑓𝑎  in Section 5.2 was calculated 

respectively, and the change of Amp with 𝑓𝑎 was obtained as shown in Fig. 5.4. In the 

figure, the red dotted line parallel to the X-axis is the amplitude of the mainstream 

velocity without fluctuation (𝑢0 = 40m/s), and the region marked by the gray slash is 

the frequency-locked region. It can be seen that when 𝑓𝑎 is a multiple frequency of 

𝑓𝑠0, the amplitude is almost the same, and much smaller than that when the mainstream 

velocity is stable. In each individual frequency-locked region, when 𝑓𝑎 is small, the 

amplitude is larger than that when the mainstream velocity is stable. With the increase 
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of 𝑓𝑎, the amplitude decreases sharply. When 𝑓𝑎 is larger than the multiple frequency 

of 𝑓𝑠0, the amplitude further decreases. As 𝑓𝑎 develops towards high frequency, the 

frequency-locked region becomes wider and wider. When the frequency is greater than 

the multiple frequency of 𝑓𝑠0 , more 𝑓𝑎  can lead to the amplitude of pressure 

fluctuation much smaller than that when the mainstream velocity is stable. 

 

Fig. 5.4 The variation of amplitude with the frequency of fluctuating mainstream velocity. 

Figure 5.5 shows the comparison of 𝑝′/𝑝0  time series under the conditions of 

constant and fluctuating mainstream velocity. Figure 5.5(a) shows the time series when 

𝑢0 = 40m/s, and the frequency of vortex shedding is 386Hz. Figure 5.5(b) shows the 

time series when 𝑓𝑎 is 2000Hz, the frequency of vortex shedding is 400Hz, and 𝑓𝑎 is 

5 times the frequency of steady vortex shedding. Figure 5.5 (c) and (d) are the local 

enlarged images corresponding to Fig. 5.5 (a) and (b) respectively, in which the black 

dotted vertical line is the moment when pressure jump caused by the impact and 

combustion of the shedding vortex. It can be seen that when 𝑓𝑎  is the multiple 

frequency of the frequency of steady vortex shedding, the amplitude of thermoacoustic 

oscillation is significantly reduced compared with that when the mainstream velocity is 

stable. Compared with (c) and (d) in Fig. 5.5, the small difference in the frequency of 

the shedding vortex at the initial stage of the oscillation results in the difference in the 

phase difference between the heat release and the pressure fluctuation. Meanwhile, the 
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mainstream velocity added the fluctuation term leads to a small change in the critical 

circulation, which leads to a small difference in the intensity of heat release. In the two 

cases of constant and fluctuating mainstream velocity, the amplitude increases 

continuously to stable, and the amplitude first increases and then decreases until stable, 

respectively. 

 

Fig. 5.5 Comparison of time series between steady and fluctuating mainstream velocity. 

From the above results, it can be found that the velocity fluctuation in upstream of 

the combustor has a certain weakening effect on the thermoacoustic oscillation. Adding 

fluctuation term to the mainstream velocity can be regarded as external excitation. 

When 𝑓𝑎 is the multiple frequency of the frequency of steady vortex shedding (𝑓𝑠0), 
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the intensity of thermoacoustic oscillation will be weakened. If 𝑓𝑎 is larger than the 

multiple frequency of 𝑓𝑠0 , and is in the frequency-locked region, the amplitude of 

thermoacoustic oscillation will be further reduced. 
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Chapter 6 Study on the influences of 

harmonic excitation on the thermoacoustic 

system 

6.1 Non-dimensionalization of governing equations 

In order to study the influence of parameters on the characteristics of the system more 

conveniently, the governing equations are non-dimensionalized first. The physical 

dimensions of model are total length of the tube (𝐿), position of the backward-facing 

step (𝑋𝑠 ), position of the downstream wall of the step (𝑋𝑐 ) and the height of the 

backward-facing step (𝑑 ). The steady state quantities are mainstream velocity (𝑢0 ), 

average pressure (𝑝0 ), average density (𝜌0 ) and the speed of sound (𝑐0 ). The other 

dimensional quantities are denoted with a tilde above them. In case of non-dimensional 

quantities the tildes are dropped. Equations (3.10) to (3.16) are expressed by 

dimensional quantities as follows, 
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To proceed further, the variables in the above equations governing the vortex 

shedding process and the acoustic flow field are non-dimensionalized as follows, 
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where 𝑀  is the Mach number. Therefore, in case of a steady state flow, the non-

dimensional vortex shedding frequency (𝑓𝑠0) is given by, 
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The non-dimensional time period of steady-state vortex shedding (𝑡𝑠0) is given by, 
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The non-dimensional rate of circulation production is expressed as follows, 
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The non-dimensional critical circulation (𝛤𝑠𝑒𝑝) is given by, 

 
     

 
0

0 0

1 1
= = 1 ,

2 2 2
sep s

u u t du t d d L
M u X L t

c L St c L St St


      

%% %%
 (6.12) 

The non-dimensional velocity of the shedding vortex moving downstream can be 

expressed as follows, 
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Equations (6.5) and (6.6) can be rewritten as, 
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where heat release rate (�̃̇�) is given by, 
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Since 𝑝0 = 𝜌0𝑐0
2/𝛾 , the non-dimensional momentum and energy equations, which 

govern the acoustic field of the system, are expressed as follows, 
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By artificially introducing the damping term, equation (6.18) can be written as, 
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where is 𝜁  an artificially added acoustic damping term, and 𝐵  is an appropriate 

coefficient of non-dimensional heat release rate. 

The non-dimensional partial differential equations (6.17) and (6.19) are reduced to a 
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set of ordinary differential equations (ODEs) by projecting them onto the space 

expanded by basis functions using the Galerkin technique. The acoustic mode in the 

absence of heat source is selected as the basis functions. In order to satisfy the acoustic 

boundary conditions of open tube at both ends, the Galerkin decomposition of velocity 

fluctuation (𝑢′) and pressure fluctuation (𝑝′) are respectively selected as follows, 
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where 𝑈𝑛, 𝑃𝑛 are the amplitude of the 𝑛-th Galerkin modes and 𝑘𝑛 = 𝑛𝜋 is the non-

dimensional wave number of the 𝑛-th mode. 𝑛 = {1,2,⋯𝑁}, where 𝑁 is the number 

of Galerkin modes. The non-dimensional angular frequency of the 𝑛-th duct mode is 

𝜔𝑛 = 𝑛𝜋. 

Substituting the equations (6.20) and (6.21) into equations (6.17) and (6.19), the 

following set of ODEs can be obtained, 
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In equation (6.23), the damping term 𝜁 is rewritten as a frequency-dependent damping 

term 𝜁𝑛 as follows, 
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where, 𝑐1 is the damping coefficient which is responsible for the end loses, and 𝑐2 is 

the damping coefficient which is responsible for the loses due to boundary layers. 

Substituting 𝜔𝑛 = 𝑛𝜋 into equation (6.24) gives, 
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The system of coupled first order differential equations (6.22) and (6.23) can be 

rewritten as a second order differential equation in 𝑈𝑛 as follows, 
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Equation (6.26) represents a kicked oscillator, which behaves like a damped oscillator 

when the kicks are absent, with the jump conditions at the time of kicking. There is no 

heat release during the time interval between the two impacts and combustion of vortex. 

Therefore, the right end of equation (6.26) equals zero, and the system will behave like 

a damped oscillator. It is assumed that the time instants just before and after the 

breakdown of the 𝑗 -th vortex are 𝑡𝑗
−  and 𝑡𝑗

+ , respectively. Neglecting the effect of 

damping, the following jump conditions can be obtained by integrating equations (6.22) 

and (6.23) within the time interval [𝑡𝑗
−, 𝑡𝑗

+], 
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When a vortex impinges on the combustor wall, the amplitude of velocity mode 𝑈𝑛 

remains unchanged, while the amplitude of pressure mode 𝑃𝑛  jumps abruptly. The 

strength of the 𝑗-th kick for a fixed geometric configuration is given by 𝐵𝛤𝑗/𝑀. 

6.2 Influences of system parameters on the thermoacoustic 

system 

The free parameters of the system can be classified into geometric parameters 

{𝑋𝑠, 𝑋𝑐, 𝑑, 𝐿} and flow parameters {𝑐1, 𝑐2, 𝛼, 𝑆𝑡,𝑀, 𝐵}. In this study, the geometry of 

the combustor is fixed and only the flow parameters are varied. 𝛼 is fixed to be 0.6 for 

all the following cases [37]. The values of the damping coefficients are set as 𝑐1 =
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0.315, 𝑐2 = 0.015, which are same as those given in Sterling and Zukoski [38]. The 

chosen geometric and flow parameters are shown in Table 6.1. The geometry of the 

configuration is similar to the one investigated by Chakravarthy et al. [39]. The Mach 

number investigated is 𝑀 ≤ 1, because of the approximation of low Mach number in 

the study. 

Parameter Symbol Value 

Length of combustor 𝐿 1 

Location of vortex separation 𝑋𝑠 0.3 

Location of vortex breakdown 𝑋𝑐 0.4 

Step height 𝑑 0.0224 

Vortex convection coefficient 𝛼 0.6 

Strouhal number 𝑆𝑡 0.14 

Damping coefficient 𝑐1 0.315 

Damping coefficient 𝑐2 0.015 

Table 6.1 System parameters chosen for the study. 

For the simulation in this chapter, the number of Galerkin modes is set as 𝑁 = 32, 

which is higher than the number chosen in Chapter 4 and 5. Firstly, the influences of 

different time steps on the numerical simulation results are studied. The Mach number 

is set as 𝑀 = 0.029, and the coefficient of non-dimensional heat release rate is set to 

be 𝐵 = 0.048. The parameters of the system are same as those given in Fig. 4(a,b) in 

reference [28], so as to verify the validity of the code in this study. Figure 6.1 shows 

the comparison of the results at different time steps, which are set to be 𝑑𝑡 =

10−3, 10−4, 10−5, respectively. It can be seen from Fig. 6.1 that the time step has a great 

influence on the simulation results. As the time step increases from 10−4 to 10−5, the 

computed 𝑢′ and 𝑝′ change very little. Therefore, 10−4 is selected as the time step 

in all subsequent simulations. 
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(a) 𝑢′ − 𝑡 series 
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(b) 𝑝′ − 𝑡 series 

Fig. 6.1 Comparison of the results at different time steps (𝑑𝑡 = 10−3, 10−4, 10−5). 

Next, the influences of different number of Galerkin modes on the numerical 

simulation results are discussed. Figure 6.2 shows the comparison of the results at 

different number of Galerkin modes, which are set to be 𝑁 = 5,10,15,20,25,32,40,48, 

respectively. It can be seen from Fig. 6.2(a) that the computed 𝑢′ change very little, as 

the number of Galerkin modes 𝑁 ≥ 15. However, the computed 𝑢′ at the moment of 
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vortex breakdown is quite different under different number of modes. In Fig. 6.2(b), the 

computed 𝑝′ change very little, as the number of Galerkin modes 𝑁 ≥ 20. However, 

different number of modes lead to different computed 𝑝′  at the moment of vortex 

breakdown. Except at the moment of vortex breakdown, the simulation results will not 

be affected, as the mode number 𝑁 ≥ 20. Therefore, in this chapter, the mode number 

is set as 𝑁 = 32 in the simulations. 

 

(a) 𝑢′ − 𝑡 series 
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(b) 𝑝′ − 𝑡 series 

Fig. 6.2 Comparison of the results at different number of Galerkin modes (𝑁 =

5,10,15,20,25,32,40,48). 

𝑀 and 𝐵 are two key parameters of the system, so their influences on the system is 

discussed in this section. 𝐵  is fixed at 0.5, and 𝑀 =

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 , respectively. Figure 6.3 shows 

the 𝑢′ − 𝑡 series at different 𝑀. We can see that the value of 𝑀 mainly affects the 
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frequency of the thermoacoustic oscillation, but hardly affects the amplitude of the 

thermoacoustic oscillation. The conclusion is agreement with Section 4.3. 𝑀 mainly 

determines the frequency of vortex shedding. The steady-state frequency of vortex 

shedding increases with the increase of 𝑀. 
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Fig. 6.3 The 𝑢′ − 𝑡 series at different 𝑀 (𝑀 =(a)0.01, (b)0.02, (c)0.03, (d)0.04, (e)0.05, (f)0.06, 

(g)0.07, (h)0.08, (i)0.09, (j)0.1). 

Next, 𝑀  is fixed at 0.05, and 𝐵 = 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.33, 1.66, 2 , 

respectively. Figure 6.4 shows the 𝑢′ − 𝑡 series and 𝑝′ − 𝑡 series at different 𝐵. We 

can see that the value of 𝐵 mainly affects the heat release as the vortex breakdown, 

but hardly affects the frequency of the thermoacoustic oscillation. In other words, 𝐵 

mainly affects the amplitude of pressure jump. The larger 𝐵  is, the more heat is 

released, and the greater the amplitude of pressure jump is. 
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Fig. 6.4 The 𝑢′ − 𝑡 series and 𝑝′ − 𝑡 series at different 𝐵 (𝐵 =(a)0.01, (b)0.05, (c)0.1, (d)0.25, 

(e)0.5, (f)0.75, (g)1, (h)1.33, (i)1.66, (j)2). 

6.3 Influences of harmonic excitation on the thermoacoustic 

system 

In the early stage, Kashinath and Waugh [40, 41] studied the horizontal Rijke tube 

with external excitation and proposed how to add external excitation to the 

mathematical model. Kashinath et al. showed that this excitation could be achieved by 

placing a loudspeaker in the Rijke tube. Gopalakrishnan [42] verified that the model is 

in good agreement with the experimental results. Similar to the horizontal Rijke tube 

with external excitation, the governing equation of the model with external excitation 

is as follows, 
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The system of coupled first order differential equations (6.28) and (6.29) can be 

rewritten as a second order differential equation in 𝑈𝑛 as follows, 
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where 𝐴𝑛 , 𝑓𝑒  and 𝜙𝑒  denote the non-dimensional amplitude, frequency and initial 

phase of the harmonic excitation, respectively. Neglecting the effect of damping, the 

same jump conditions as equation (6.27) can be obtained by integrating equations (6.28) 

and (6.29) within the time interval [𝑡𝑗
−, 𝑡𝑗

+]. 

In the simulation of this section, the selection of system parameters is the same as 

that in Table 6.1. The Mach number is set as 𝑀 = 0.05, and 𝐵 is set to be 1. The 

influence on each mode is different, as the excitation is placed in different positions in 

the tube. For the convenience of the study, the non-dimensional amplitude of the 

harmonic excitation 𝐴1 = 𝐴,  𝐴𝑛 = 0(𝑛 ≠ 1). Actually, it can be achieved by placing 

the loudspeaker in the middle of the tube. The initial phase of the harmonic excitation 

is set as 𝜙𝑒 = 0. Firstly, the influences of the frequency of sinusoidal excitation on the 

thermoacoustic system is studied. 𝐴  is fixed at 0.1, and 𝑓𝑒 = 0.1, 0.5, 1, 1.5, 3, 5 , 

respectively. Figure 6.5 shows the 𝑢′ − 𝑡 series at different 𝑓𝑒. We can see that the 

frequency of vortex shedding is almost constant with the change of frequency 𝑓𝑒, at 

this amplitude 𝐴 = 0.1. Comparing Fig. 6.5 (a) (c) (d) with Fig. 6.4 (g), it can be seen 

that the amplitude of 𝑢′ under these three frequencies of excitation is slightly larger 

than that without excitation. While, comparing Fig. 6.5 (e) (f) with Fig. 6.4 (g), it can 

be seen that the amplitude of 𝑢′ under these two frequencies of excitation is almost 

the same as that without excitation. Especially, it can be seen from Fig. 6.5 (b) and Fig. 

6.4 (g) that the amplitude of 𝑢′ at this frequency of excitation is obviously larger than 

that without excitation, and the thermoacoustic oscillation is enhanced at this frequency 

of excitation. 
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Fig. 6.5 The 𝑢′ − 𝑡 series at different 𝑓𝑒 (𝑓𝑒 =(a)0.1, (b)0.5, (c)1, (d)1.5, (e)3, (f)5). 
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Figure 6.6 shows the 𝑝′ − 𝑢′ phase diagram at different 𝑓𝑒 and the corresponding 

Poincaré section. In Fig. 6.6, the pictures on the left is the 𝑝′ − 𝑢′ phase diagram, and 

the pictures on the right is the Poincaré section, which is taken at intervals of 1/𝑓𝑒. In 

Fig. 6.6 (a) (d) (e) (f), with the increase of time, the points on the Poincaré section will 

eventually form a closed curve, which indicates that the system of thermoacoustic 

oscillation has a quasi-periodic solution. While in Fig. 6.6 (b) and (c), with the increase 

of time, there are finite points on the Poincaré section, which indicates that the system 

of thermoacoustic oscillation has periodic solution. It can be seen from Fig. 6.6 that the 

system changes from quasi-periodic oscillation to periodic oscillation, and then to 

quasi-periodic oscillation, with the increase of frequency of excitation. 
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Fig. 6.6 The 𝑝′ − 𝑢′ phase diagram at different 𝑓𝑒 and the corresponding Poincaré section 

(𝑓𝑒 =(a)0.1, (b)0.5, (c)1, (d)1.5, (e)3, (f)5). 

Next, the influences of the non-dimensional amplitude of sinusoidal excitation on the 

thermoacoustic system is studied. Fixed 𝑓𝑒 = 1.5 , 𝐴 = 0.05, 0.1, 0.5, 1, 1.5, 3 

respectively, the results in Fig. 6.7 can be obtained. Figure 6.7 shows the 𝑢′ − 𝑡 series 

at different 𝐴 . Comparing Fig. 6.7 (a) (b) with Fig. 6.4 (g), it can be seen that the 

amplitude of 𝑢′ under these two amplitudes of excitation is slightly larger than that 

without excitation. While, comparing Fig. 6.7 (c)-(f) with Fig. 6.4 (g), it can be seen 

that the amplitude of 𝑢′ under these four amplitudes of excitation is obviously larger 

than that without excitation, and the thermoacoustic oscillation is enhanced under these 

four amplitudes of excitation. And the amplitude of thermoacoustic oscillation 

increases with the increase of the amplitude of excitation. 
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Fig. 6.7 The 𝑢′ − 𝑡 series at different 𝐴 (𝐴 =(a)0.05, (b)0.1, (c)0.5, (d)1, (e)1.5, (f)3). 

Figure 6.8 shows the 𝑝′ − 𝑢′  phase diagram at different 𝐴 , at 𝑓𝑒 = 1.5  and the 

corresponding Poincaré section. In Fig. 6.8, the pictures on the left is the 𝑝′ − 𝑢′ phase 

diagram, and the pictures on the right is the Poincaré section, which is taken at intervals 

of 1/𝑓𝑒. In Fig. 6.8 (a) and (b), with the increase of time, the points on the Poincaré 

section will eventually form a closed curve, which indicates that the system of 

thermoacoustic oscillation has a quasi-periodic solution. While in Fig. 6.8 (c)-(f), with 

the increase of time, there are finite points on the Poincaré section, which indicates that 

the system of thermoacoustic oscillation has periodic solution. It can be seen from Fig. 

6.8 that the system changes from quasi-periodic oscillation to periodic oscillation, with 

the increase of the amplitude of excitation. 
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Fig. 6.8 The 𝑝′ − 𝑢′ phase diagram at different 𝐴 and the corresponding Poincaré section 

(𝐴 =(a)0.05, (b)0.1, (c)0.5, (d)1, (e)1.5, (f)3). 

Fixed 𝑓𝑒 = 5, 𝐴 = 0.05, 0.1, 0.5, 1, 1.5, 3 respectively, the results in Fig. 6.9 can be 

obtained. Figure 6.9 shows the 𝑢′ − 𝑡  series and 𝑝′ − 𝑡  series at different 𝐴 . 

Comparing Fig. 6.9 with Fig. 6.4 (g), it can be seen that the frequency of vortex 

shedding is almost constant with the change of amplitude 𝐴, at this frequency 𝑓𝑒 = 5. 

Interestingly, it can be seen that the amplitude of 𝑢′  under these amplitudes of 

excitation (𝐴) is almost the same as that without excitation. While, the amplitude and 

of frequency of 𝑝′ increases with the increase of the amplitude of excitation. 
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Fig. 6.9 The 𝑢′ − 𝑡 series and 𝑝′ − 𝑡 series at different 𝐴 (𝐴 =(a)0.05, (b)0.1, (c)0.5, (d)1, 

(e)1.5, (f)3). 



72 

 

Figure 6.10 shows the 𝑝′ − 𝑢′ phase diagram under different 𝐴, at 𝑓𝑒 = 5 and the 

corresponding Poincaré section. In Fig. 6.10, the pictures on the left is the 𝑝′ − 𝑢′ 

phase diagram, and the pictures on the right is the Poincaré section, which is taken at 

intervals of 1/𝑓𝑒 . In Fig. 6.10, with the increase of time, the points on the Poincaré 

section will eventually form a closed curve, which indicates that the system of 

thermoacoustic oscillation has a quasi-periodic solution. It can be seen that the system 

is always quasi-periodic oscillation, with the increase of the amplitude of excitation. 

But the width of the torus in the 𝑝′ − 𝑢′ phase diagram increases, as the amplitude of 

excitation increases. 
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Fig. 6.10 The 𝑝′ − 𝑢′ phase diagram at different 𝐴 and the corresponding Poincaré section 

(𝐴 =(a)0.05, (b)0.1, (c)0.5, (d)1, (e)1.5, (f)3). 

The influences of the amplitude and frequency of sinusoidal excitation on the 

thermoacoustic system is preliminarily studied in this section. Further research is 

needed in the future. 
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Chapter 7 Conclusions 

Based on the thermoacoustic model involving vortex shedding proposed by Matveev 

and Culick, the vortex shedding model is introduced to establish the governing 

equations of thermoacoustic oscillation. Then, the governing equations are reduced to 

a series of ordinary differential equations by Galerkin method and solved numerically. 

The pressure and velocity fluctuations of the acoustic field are obtained. The influence 

of 𝑢0 on the thermoacoustic oscillation of the system and the vortex-acoustic lock-in 

behavior in the thermoacoustic oscillation are studied in detail. Furthermore, the 

influences of fluctuation of upstream velocity in combustor on the thermoacoustic 

oscillation is studied. Besides, the influences of external harmonic excitation on the 

thermoacoustic system is also studied. The main conclusions of this study have been 

drawn as follows, 

(1) The thermoacoustic oscillation system involving vortex shedding is very sensitive 

to the initial conditions and is a typical nonlinear dynamic system. The slight difference 

of initial perturbation leads to different nonlinear effects, and the system presents multi-

solution characteristics. 

(2) As 𝑢0 increases, the frequency of steady vortex shedding (𝑓𝑠0) increases, but the 

amplitude of pressure fluctuation does not necessarily increase continuously. With the 

increase of 𝑢0 , the circulation of shedding vortex and the intensity of heat release 

increase, and the amplitude of pressure fluctuation generally increases. However, the 

amplitude of pressure fluctuation repeats a similar structure that first decreases and 

then increases in each small region during the change of 𝑢0 .The phase difference 

between the moment of vortex impact and combustion and the pressure fluctuation 

affects the change of amplitude. At the maximum point of the change of amplitude, the 

vortex impact and combustion occurs at the peak of pressure oscillation, which 

strengthens the oscillation and is in agreement with Rayleigh’s criterion. 

(3) The thermoacoustic oscillation of the model under different 𝑢0  presents the 



76 

 

phenomenon of vortex-acoustic frequency lock-in. Finally, the thermoacoustic system 

will oscillate periodically by integer (𝑓𝑝/𝑓𝑠) multiple of the frequency (𝑓𝑠) of the vortex 

impinging, that is, the frequency lock-in with the number of revolutions 𝑓𝑝/𝑓𝑠. In this 

study, a triangle region of vortex-acoustic frequency lock-in with 𝑓𝑠/𝑓𝑝 of 1, 1/2, 1/3, 

1/4, 1/5, 1/6, 1/7 and 1/8 is formed. This phenomenon can be regarded as an important 

feature of periodic combustion oscillation. 

(4) When the frequency of fluctuating mainstream velocity is a positive integer 

multiple of the frequency of steady vortex shedding, the actual frequency of vortex 

shedding is strictly equal to the frequency of steady vortex shedding, and the segmented 

frequency-locked region appears near the frequency. In each frequency-locked region, 

the frequency of vortex shedding strictly monotonically increases with the increase of 

the frequency of fluctuating mainstream velocity, while the frequency of vortex 

shedding almost does not change between the frequency-locked regions. 

(5) The thermoacoustic oscillation of the system can be controlled by the fluctuation 

of mainstream velocity. When the frequency of fluctuating mainstream velocity is 

positive integer times of the frequency of steady vortex shedding, the intensity of the 

thermoacoustic oscillation is significantly weaker than that when the mainstream 

velocity is stable. If the frequency of fluctuating mainstream velocity is greater than the 

multiple frequency of the frequency of steady vortex shedding, and is in the frequency-

locked region, the amplitude of thermoacoustic oscillation will be further decreased. As 

the frequency of fluctuating mainstream velocity develops towards high frequency, the 

frequency-locked region becomes wider and wider, and the higher frequency of 

fluctuating mainstream velocity in frequency-locked region is more likely to reduce the 

amplitude of thermoacoustic oscillation. 

(6) The thermoacoustic oscillation of the system has periodic and quasi-periodic 

solutions under external sinusoidal excitation. The thermoacoustic oscillation of the 

system can be controlled by choosing the frequency and amplitude of the external 

excitation reasonably. 
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