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Abstract 

Facial expression recognition (FER) is a process of automatically recognizing and 

inferring the performance of human emotional states on the face through artificial 

intelligence technology. As the most important part of recognizing human emotion, 

FER technology crosses and integrates physiology, psychology, image processing, 

machine vision, pattern recognition, and other research fields. It has received 

extensive attention in the fields of human-computer interaction, information security, 

robotics, automation, medical care, communication technology, autonomous driving, 

etc. Although decades of research work on FER have been carried out, in actual 

situations, realizing accurate and effective FER is still a challenging problem. In 

recent years, with the success of deep learning technology in various fields, more and 

more deep neural networks are used to learn the discriminative representation of 

automatic FER. This thesis studies FER by combining traditional machine learning 

methods and constructing efficient deep model architecture. The main contributions of 

this thesis are summarized as follows: 

(1) This thesis first reviewed and summarized the currently widely used methods 

and existing problems in FER. After fully understanding the limitations of the 

traditional handcrafted features, a multi-stream neural network model combining the 

manually extracted LBP-TOP features and the deep learning model is proposed to 

recognize the dynamic process of facial expression changes. In the multi-stream 

neural network proposed in this thesis, to recognize dynamic facial expressions, the 

cascaded CNN-RNN model is used to extract the features of the input facial 

expression image sequence from space expand to time series. At the same time, the 

handcrafted features LBP-TOP is used to directly extract the spatiotemporal features 

of the image sequence, and then the CNN and RNN networks are used to process the 

spatiotemporal features. Finally, through the fusion of the two streams of features, and 

through experiments on the public database, it is proved that the handcrafted 



 

 

spatiotemporal features can effectively supplement the CNN-RNN model and 

improve the results of FER.  

(2) Application-oriented FER faces two challenges. One is the transition of FER 

from laboratory control to challenging in-the-wild conditions, and the other is the 

recent challenge of decentralizing deep network application technology to mobile 

platforms. Simply using larger and deeper neural network models for recognition 

tasks can no longer cope with this problem. In recent years, FER has been proved to 

be more natural and effective from consecutive frames. The motivation of this thesis 

becomes to create a lightweight network that processes dynamic facial expression 

sequences. After studying the amount of calculation of the model architecture, the 

MobileNet series with a deep separable convolution architecture is chosen as the basic 

model of the CNN part and used GRU as the frame-to-sequence approach part to 

construct a lightweight CNN-RNN cascade network. The performance improvement 

is demonstrated by using the proposed technique on both the laboratory control and 

in-the-wild conditions databases.  

(3) Through previous research, first the supplementary ability of handcrafted 

features extraction for deep learning methods is verified. Then the application of the 

lightweight depth model in FER is discussed. Further used the updated technology to 

combine the advantages of local binary convolution (LBC) and deep separable 

networks and proposed a new model architecture. Inspired by model pruning and SE 

optimization, using the feature that the convolution kernel parameters in LBC are not 

trainable, this thesis proposes a pruning method on depthwise LBC and SE 

optimization model architecture. Experiments were not only conducted on the general 

image classification database, but also on the in-the-wild conditions facial expression 

databases. The experimental results prove the effectiveness of our proposed model 

and pruning method. 

 



 

 

Chapter 1  

Introduction 

1.1  Background and Significant  

Create Human-Machine Interaction (HMI) systems that able to reach the full 

emotional and social capabilities for rich and robust interaction with human beings 

will be a long and arduous but important task. Humanoid robots are required not only 

to have a Human-like appearance but also to possess the ability of emotional 

interaction [1,2]. Facial expression recognition (FER) is a vital research field to reach 

this goal since facial expression is one of the most powerful, natural, and universal 

signals for human beings to convey their emotional states and intentions [3,4]. In fact, 

it is not limited to HMI systems. Due to the actual importance of automatic facial 

expression analysis in the fields of social robots, medical care, driver fatigue 

monitoring, etc., a lot of research on automatic facial expression analysis has been 

carried out. As early as the twentieth century, Ekman and Friesen [5] defined six basic 

emotions based on a cross-culture study [6], which indicated that humans perceive 

certain basic emotions in the same way regardless of culture. These prototypical facial 

expressions are anger, disgust, fear, happiness, sadness, and surprise. Contempt was 

subsequently added as one of the basic emotions [7]. Recently, advanced research on 

neuroscience and psychology argued that the model of six basic emotions is 

culture-specific and not universal [8].  

Research of FER is widely considered to have started with psychologists 

decomposed facial expressions as a combination of facial muscle activations, which 
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called Facial Action Units (AUs) under the form of the Facial Action Coding System 

(FACS) [9]. However, this emotional description model and a continuous model using 

emotional dimensions [10] are considered to represent a wider range of emotions. Due 

to the groundbreaking research on discrete basic emotions and the direct and intuitive 

definition of facial expressions, the classification model for describing emotions based 

on basic emotions is still the most popular view of FER. And in this thesis, I will limit 

my research on FER based on classification models with basic emotions.  

In the process of researching FER, according to its characteristics, it can be divided 

into two categories: static image FER and dynamic sequence FER. In static-based 

methods, the feature representation is encoded with only spatial information from the 

current single image, whereas dynamic-based methods consider the temporal relation 

among contiguous frames in the input facial expression sequence. In addition, other 

modalities, such as audio and physiological channels, have also been used in 

multi-modal systems to aid expression recognition.  

In the traditional method of FER, handcrafted features are mainly used to extract 

geometric-based and appearance-based feature of the target face region that needs to 

be recognized. The former refers to the FER systems, which extract local facial 

features including shape, positions, and angles between various facial elements, i.e., 

ear, eye, mouth, and nose, and the feature vector is illustrated based on the 

geometrical relationship. The latter refers to the FER systems, which describe the 

appearance and employ texture information of the face as a feature vector. The 

appearance-based approaches can obtain a higher recognition rate and are more 

popular than geometric-based methods since it is a complicated task to find the 

efficient and proper geometric features in unconstrained environments and real-world 

applications. However, research in recent years, especially the collection of relatively 

sufficient training data from challenging realistic scenarios, has promoted the 

transformation of FER from laboratory control to in-the-wild environments. This 

brings many challenges such as FER based on traditional methods. It is widely 

recognized that although the laboratory-controlled FER system achieves a very high 

accuracy of about 97%, the technology transfer from the laboratory to the actual 

application faces a huge obstacle of extremely low accuracy, approximately 50%. 

At the same time, due to the rapid development of computer technology, especially 

chip processing technology (such as GPU units), deep learning technology has 
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developed rapidly. Thanks to the well-designed network architecture, research in 

various fields began to transfer to deep learning methods, achieving the most 

advanced recognition accuracy and greatly exceeding previous results. With more 

effective facial expression training data, deep learning techniques are increasingly 

being used to deal with the challenging factors of emotion recognition. In such a 

situation, FER's research methods have changed from handcrafted features to deep 

learning, and the research goal has changed from laboratory control to in-the-wild 

conditions.  

1.2  Motivation & Research Contents  

Although deep learning has powerful feature learning capabilities, problems still 

exist when applied to FER. 

First, deep neural networks need a lot of training data to avoid overfitting. However, 

the existing facial expression databases are not enough to train well-known neural 

networks with deep architecture, which have achieved the most promising results in 

object recognition tasks.  

Second, due to different personal attributes, such as age, gender, ethnic background, 

and expression level, there are high levels of inter-subject differences [11]. In addition 

to the subject's identity bias, changes in posture, lighting, and occlusion are also 

common in unconstrained facial expression scenes. These factors are nonlinearly 

coupled with facial expressions, thus strengthening the requirements for deep 

networks to resolve large intra-class variability and learn effective expression-specific 

representations. 

Third, compared to the image classification task, FER is a subtask of face 

recognition, and the features that need to be extracted are concentrated in the range of 

the face. The granularity of its features is also much smaller than that of image 

classification tasks. This also requires the features extracted by deep neural networks 

to be more targeted.  

Fourth, with the development of smart devices and mobile platforms, in the absence 
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of specific hardware (e.g. GPU units), the computing speed of deep neural networks 

does not dominate. In tasks including FER, some scenarios require real-time 

performance, which also means that there are further requirements in the deep 

network architecture and other processing including pre-processing. 

In this thesis, we introduced some research progress in solving the 

above-mentioned deep FER problem. We try to combine the advantages of 

handcrafted features and deep learning technology to solve the problem of FER. At 

the same time, new deep learning network architectures were proposed, and solutions 

to existing problems are discussed based on ensuring lightweight and effectiveness.  

This thesis revolves around the above challenges. The main research contents 

mainly include three parts. 

(1) Multi-Stream Network for Dynamic FER  

There are two main research objectives of FER, based on static images and based 

on dynamic image sequences. In recent years, facial expression recognition from 

consecutive frames has been proven to be more natural and effective. Under such a 

premise, it is very important and necessary to study the spatial and temporal 

characteristics of dynamic FER image sequences.  

This chapter attempts to add the handcrafted LBP-TOP feature to directly extract 

the spatiotemporal features of the image sequence, and then use it as a stream of the 

deep network. At the same time, the general CNN-RNN cascade model with image 

sequence as input is used as another stream. Through the spatiotemporal features of 

multiple streams, using handcrafted features as a supplement to the deep network, we 

can get better results than using the deep model alone.  

(2) Real-time FER System using CNN-GRU  

For the FER task, many proposed CNN architectures are deeply influenced by 

image classification research. The CNN network has been used as a feature extractor 

in FER on a static level. To further improve the recognition effect of FER in the real 

world, the researchers introduced temporary information of dynamic FER. But the 

usual dynamic FER research does not consider the real-time capabilities of mobile 

devices.  

To further solve this problem, this chapter attempts to analyze the impact of the 
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deep model architecture on the number of model parameters and calculations and 

proposes a cascade model based on the MobileNet series model and GRU. And based 

on this model, a real-time FER system is constructed to recognize dynamic facial 

expressions. And discussed the pre-processing of the whole system. 

(3) Pruning LBC network for FER 

In recent years, with the development and wide application of deep learning, due to 

higher requirements for model results, deep learning network architecture has become 

deeper and more complex. This is followed by exponential growth in model 

parameters and memory requirements. In addition to reducing the number of 

parameters and calculations required by changing the model architecture, methods 

such as model pruning and quantification have also been proposed to solve this 

problem.  

In this chapter, we propose a basic network structure based on mobile inverted 

bottleneck convolutional layer and squeeze-and-excitation optimization. By changing 

its inverted bottleneck expand ratio, adjusting the number of LBC kernels in each 

LBC layer. By increasing the expansion ratio of the inverse bottleneck structure in the 

model, a large model with higher accuracy but a huge amount of parameters can be 

obtained through training. According to the SE optimization weight, we perform 

channel-based model pruning of the basic model and only retain the depthwise LBC 

convolution channel that contributes more to the result. Through the method of model 

pruning, only more reasonable LBC parameters are retained, so that the recognition 

rate of the model is higher and the model parameters are less. Using this method, we 

have obtained a model with good results on the image classification database and the 

FER database, while the number of parameters and calculations of the model is 

maintained at a low level. 

1.3  Thesis Organization  

This thesis mainly studies and analysis the research with the FER task. The whole 

thesis covers the basic theories, methodology, experiment, and discussions about FER, 
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which is organized in the rest chapters as follows: 

Chapter 1: Talks about the motivation and significance of the FER task, and 

introduces the main research contents and organizational structure of this thesis. 

Chapter 2: Introduces the background and related works of the FER task. This 

chapter first introduces some existing psychological emotion models and publicly 

FER database. Then the research status and progress of FER technology in recent 

years is reviewed. 

Chapter 3: Introduces the multi-stream neural network that integrates deep learning 

and handcrafted feature extraction. By studying the influence of manually extracted 

LBP-TOP spatiotemporal features on the deep learning network, we try to merge the 

handcrafted features with the deep model. 

Chapter 4: After studying the parameters and calculations of the deep learning 

model architecture, a lightweight cascaded network for processing dynamic facial 

expression sequences is proposed. The effects of different pretreatments on the results 

and speed of FER under different conditions are discussed. 

Chapter 5: Further use of local binary convolution (LBC) and efficient network 

architecture, combined with the technical characteristics of model pruning and SE 

optimization, proposes a pruning method based on depthwise LBC and SE 

optimization model architecture.  

Chapter 6: Concludes the whole thesis and discusses future works. 

 



 

 

Chapter 2  

Related Works 

2.1  Introduction of Databases 

The research object of this thesis is mainly for these two types of facial expression 

data. Laboratory-controlled database collects data from the photographed persons in a 

fixed light/angle. The person being photographed usually makes expressions 

corresponding to the basic emotions either actively or passively. On the other hand, 

in-the-wild conditions database is more to collect specific facial images or video clips 

from the Internet or movies and manually labeled by professional personnel. Such 

databases have relatively more complicated conditions such as illumination and 

posture, and the background is more cluttered, making it more difficult to recognize. 

This thesis has conducted FER research of these two kinds of datasets, which are 

listed below: 

CK+ [12]: The Extended CohnKanade (CK+) database is the most extensively used 

laboratory-controlled database for evaluating FER systems. CK+ contains 593 video 

sequences from 123 subjects. The sequences vary in duration from 10 to 60 frames 

and show a shift from a neutral facial expression to the peak expression. Among these 

videos, 327 sequences from 118 subjects are labeled with seven basic expression 

labels (anger, contempt, disgust, fear, happiness, sadness, and surprise) based on the 

Facial Action Coding System (FACS). Because CK+ does not provide specified 

training, validation, and test sets, the algorithms evaluated on this database are not 

uniform. For static-based methods, the most common data selection method is to 
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extract the last one to three frames with peak formation and the first frame (neutral 

face) of each sequence. Then, the subjects are divided into n groups for 

person-independent n-fold cross-validation experiments, were commonly selected 

values of n are 5, 8, and 10. 

Oulu-CASIA [13]: The Oulu-CASIA database includes 2,880 image sequences 

collected from 80 subjects labeled with six basic emotion labels: anger, disgust, fear, 

happiness, sadness, and surprise. Each of the videos is captured with one of two 

imaging systems, i.e., near-infrared (NIR) or visible light (VIS), under three different 

illumination conditions. Similar to CK+, the first frame is neutral and the last frame 

has the peak expression. Typically, only the last three peak frames and the first frame 

(neutral face) from the 480 videos collected by the VIS System under normal indoor 

illumination are employed for 10-fold cross-validation experiments. 

Ren-VFEdb [14]: REN-VFEdb is a self-collection database composed of six basic 

facial expression classes (anger, disgust, fear, happiness, sadness, and surprise) for 40 

people in the 20’s to 40’s (26 men and 14 women). The database consists of three sets 

of data per facial expression (with different expression intensity) per person, for a 

total of 18 data per person. The duration of the video from non-expression to a certain 

expression was five to seven seconds, incorporating the expression face as the onset to 

peak formation of a certain expression. In each video, we intercepted the same 

10-frame-sequence to represent the expression change process from the 

non-expression frame. Among all 720 sequences, we excluded a part of the sequence 

that was not recorded correctly, and then deleted the sequence where the facial 

expression was always expressionless and there was no visible change. There are also 

some sequences where the landmarks are marked incorrectly due to the occlusion of 

the hat and hair. Finally, 407 sequences were selected for the experiment.  

FER2013 [15]: The FER2013 database was introduced during the ICML 2013 

Challenges in Representation Learning. FER2013 is a large-scale and unconstrained 

database collected automatically by the Google image search API. All images have 

been registered and resized to 48*48 pixels after rejecting wrongfully labeled frames 

and adjusting the cropped region. FER2013 contains 28,709 training images, 3,589 

validation images, and 3,589 test images with seven expression labels (anger, disgust, 

fear, happiness, sadness, surprise, and neutral). 
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SFEW [16]: The Static Facial Expressions in the Wild (SFEW) was created by 

selecting static frames from the AFEW database by computing key frames based on 

facial point clustering. The most commonly used version, SFEW 2.0, was the 

benchmarking data for the SReco sub-challenge in EmotiW 2015 [17]. SFEW 2.0 has 

been divided into three sets: Train (958 samples), Val (436 samples), and Test (372 

samples). Each of the images is assigned to one of seven expression categories, i.e., 

anger, disgust, fear, neutral, happiness, sadness, and surprise. The expression labels of 

the training and validation sets are publicly available, whereas those of the testing set 

are held back by the challenge organizer. 

AFEW [18]: The Acted Facial Expressions in the Wild (AFEW) database was first 

established and introduced in [19] and has served as an evaluation platform for the 

annual Emotion Recognition In The Wild Challenge (EmotiW) since 2013. AFEW 

contains video clips collected from different movies with spontaneous expressions, 

various head poses, occlusions, and illuminations. AFEW is a temporal and 

multimodal database that provides vastly different environmental conditions in both 

audio and video. Samples are labeled with seven expressions: anger, disgust, fear, 

happiness, sadness, surprise, and neutral. The annotation of expressions has been 

continuously updated, and reality TV show data have been continuously added. The 

AFEW 7.0 in EmotiW 2017 [20] is independently divided into three data partitions in 

terms of subject and movie/TV source: Train (773 samples), Val (383 samples), and 

Test (653 samples), which ensures data in the three sets belong to mutually exclusive 

movies and actors. 

Table 1.1 provides an overview of these datasets, including the main reference, 

number of subjects, number of image or video samples, collection environment, 

expression distribution, and additional information. Figure1.1 showing some sample 

images of facial expressions in a different database. 

In addition to the above FER database, we also used the image classification 

database in the experiment of the Pruning LBC network: 

CIFAR10 [21] is an image classification dataset containing a training set of 50K 

and a testing set of 10K 32 × 32 color images across the following 10 classes: 

airplanes, automobiles, birds, cats, deers, dogs, frogs, horses, ships, and trucks. 

Basically, all image classification models will be verified in the CIFAR10 database. 
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Table 2.1 An overview of the facial expression datasets. 

P = Posed; S = Spontaneous; Condit. = Collection condition; Elicit. = Elicitation method. 

Database Samples Subject Condit. Elicit. Expression distribution 

CK+ [12] 
593 image 

sequences 
123 Lab P & S 

6 basic expressions plus 

contempt and neutral 

Oulu-CASIA 

[13] 

2,880 image 

sequences 
80 Lab P 6 basic expressions 

Ren-VFEdb 

[14] 

407 image 

sequences 
40 Lab P 6 basic expressions 

FER2013 [15] 35,887 images N/A Web P & S 6 basic expressions plus neutral 

SFEW [16] 1,766 images N/A Movie P & S 6 basic expressions plus neutral 

AFEW [18] 1809 videos N/A Movie P & S 6 basic expressions plus neutral 

 

 

 

 

 

 

Figure 2.1 Sample images of facial expressions in different databases.  

From left to right are CK+(Neutral), CK+(Peak), Fer2013, and SFEW (Cropped image from 

AFEW). 
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2.2  FER Based on Handcrafted Features 

Early FER research mostly focused on hand-crafted features, which can be broadly 

divided into two groups: static FER (frame-based) and dynamic FER 

(sequence-based). The static FER only focused on static facial features extracted by 

hand-crafted features from the selected expressional (peak) frames of expression 

sequences. The effectiveness of various types of appearance features (e.g., local 

binary patterns (LBPs) [22], local phase quantization (LPQ) [23], etc.) has been 

investigated. Also, to reduce the effect of feature confusion between facial identity 

and facial expression, some methods utilized either appearance difference [24] and 

geometrical difference [25], or even both differences [25] between the non-expression 

(neutral) face and the expressional face. However, the methods based on the static 

frame could be difficult to recognize in real-world situations, such as the situations 

when the expression intensity is small (i.e., subtle and micro-expressions) or the 

non-expression face frame of the subject is unavailable beforehand [27]. 

On the other hand, research works have utilized temporal relations in facial 

expression sequences, cause the dynamic process of expression change to give more 

information to been recognized. By utilizing a probabilistic graphical model (e.g., 

Hidden Markov Model [28], conditional random field [29,30], etc.) to process the 

static facial features extracted by each frame of expression sequence. Also, the 

spatiotemporal feature has been utilized to capture expression dynamics. By 

considering the space-time transition T, the spatiotemporal features, such as local 

binary patterns from three orthogonal planes (LBP-TOP) [31] and local phase 

quantization from three orthogonal planes (LPQ-TOP) [32,33], were obtained by 

extending LBP and LPQ into the three orthogonal planes (XY plane: appearance, XT 

planes: horizontal motion, and YT plane: vertical motion). Those methods have 

shown an improvement with the recognition performance compared to the static 

features; they also have the following disadvantages. The static feature also has a 

feature confusion problem by encoding facial identity. Moreover, those methods 
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adopt temporal normalization to obtain expression sequences into a specific number 

of frames, which could result in the loss of temporal scale information and could be 

negatively affected by the different characteristics of the facial expression. 

2.3  Deep FER Networks 

Deep learning has recently become a hot research topic and has achieved 

state-of-the-art performance for a variety of applications. Deep neural networks 

represented by CNN have been widely used in various computer vision applications, 

including FER. At the beginning of the 21st century, several studies in the FER 

literature [34,35] found that the CNN is robust to face location changes and scale 

variations and behaves better than the multilayer perceptron (MLP) in the case of 

previously unseen face pose variations. [36] employed the CNN to address the 

problems of subject independence as well as translation, rotation, and scale invariance 

in the recognition of facial expressions.  

In [37], a CNN was utilized to learn a spatial feature representation. By only 

considering the spatial feature, the method did not utilize the facial expression 

dynamic feature, which could be limited by subtle and micro-expressions. In [38,39], 

an RNN was utilized with conventional CNN to encode dynamics in the sequence for 

the classification of facial expression. The methods showed that the architectures of 

CNN with RNN can improve recognition performances compared to conventional 

CNN. In [30], a Conditional Random Fields (CRF) module was replaced by the RNN, 

to recognize the sequence of the static features encoded by CNN for classification of 

facial expression. In [41], a 3D CNN was utilized to learn spatiotemporal features 

from facial action parts. In [42], a simplified 3D CNN was also utilized to learn the 

spatiotemporal appearance features of the sequence, and also utilized a temporal 

geometric feature to jointly learned to reduce the effect of the identity on the learned 

spatiotemporal appearance features. In [43], both a 3D CNN was utilized to learn the 

spatiotemporal appearance features and an RNN to encode the sequence of facial 

expressions. 3D CNN able to extract the dynamics of expression, but also need more 

computation with the 3D convolution. And a large number of parameters (weights and 



Model Pruning  13  

 

biases) in 3D convolution layers because the learning processes harder. 

As mentioned before, direct training of deep networks on relatively small facial 

expression datasets is prone to overfitting. To mitigate this problem, many studies 

used additional task-oriented data to pre-train their self-built networks from scratch or 

fine-tuned on well-known pre-trained models (e.g., AlexNet [44], VGG [45], 

VGG-face [46], and GoogleNet [47]). Further multi-stage fine-tuning strategy [48] 

can achieve better performance: after the first-stage fine-tuning using FER2013 on 

pre-trained models, a second-stage fine-tuning based on the training part of the target 

dataset is employed to refine the models to adapt to a more specific dataset.  

Although handcrafted features such as LBP-TOP have gradually declined with the 

development of deep learning, there are still many studies looking for a method of 

fusion of manual features and deep learning. A novel mapped LBP feature [49] was 

proposed for illumination-invariant FER. Scale-invariant feature transform (SIFT) 

[50]) features that are robust against image scaling and rotation are employed [51] for 

multiview FER tasks. In [52], LBP-TOP is applied to part of the convolutional layer 

of CNN to extract spatiotemporal features. In [53], the LBP-TOP feature histogram 

extracted directly from the image sequence, and the features extracted by CNN are 

fused to identify emotions. At the same time, the ideas of LBP and LBP-TOP have 

also been transformed into non-trainable convolution kernels and have been applied to 

CNN [54,55]. These studies that incorporate deep learning and LBP-TOP features all 

prove the effectiveness. 

2.4  Model Pruning 

With the good results of deep neural networks in various fields, the computing 

resources required by the model also increase. Model size, memory footprint, number 

of calculation operations (FLOPs), and power consumption are the main aspects that 

hinder the use of deep neural networks in certain resource-constrained environments. 

Those large models may not be stored and cannot be run in real-time on embedded 

systems. To solve this problem, many methods have been proposed, such as low-rank 
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approximation of weights [56,57], weight quantization [58,59], knowledge distillation 

[60], and model pruning, where model pruning has attracted much attention due to its 

competitive performance and compatibility. 

In the work of the early 1990s, when the weight is set to zero, the second-order 

Taylor approximation method with increased network loss function is used for 

pruning. In Optimal Brain Damage [61], the saliency for each parameter was 

computed using a diagonal Hessian approximation, and the low saliency parameters 

were pruned from the network, and the network is retrained. In Optimal Brain 

Surgeon [62], the saliency of each parameter was calculated using the inverse Hessian 

matrix, the low saliency weight was pruned, and all other weights in the network are 

updated with second-order information. More recently, paper [63] proposed to trim 

the weight of the network to a small extent, and further integrate this technology into 

the deep compression pipeline [64] to obtain a highly compressed model. Besides, 

many researchers have proposed various algorithms to iteratively remove redundant 

neurons, use Variational Dropout to trim excess weights [65], and learn sparse 

networks through regularization of the L0 paradigm based on random gates [66]. But, 

one disadvantage of these unstructured pruning methods is that the resulting weight 

matrix is sparse, and if there is no dedicated hardware/library, it cannot cause 

compression and acceleration [64]. 

In contrast, the structured pruning method is pruning at the channel or even at the 

level. Since the original convolution structure is still retained, no dedicated 

hardware/library is required to achieve these benefits. Among the structured pruning 

methods, channel pruning [67,68,69] is the most popular method because it operates 

at the most granular level while still being suitable for conventional deep learning 

frameworks. There are three classic ideas for the channel pruning algorithm. The first 

is based on the importance factor [69], that is, to evaluate the effectiveness of a 

channel, and to constrain some channels to make the model structure itself sparse, so 

that pruning is based on this. The second is to use reconstruction errors to guide 

pruning [67,68], indirectly measuring the impact of a channel on the output. The third 

is to measure the sensitivity of the channel based on the change of the optimization 

target. However, the paper [70] pointed out that, for structured pruning, after 

obtaining the compression model through the pruning algorithm, it is better to 

initialize and train the compression model randomly instead of using the weights of 



Model Pruning  15  

 

the large network for fine-tuning. For the final compressed small model, the network 

architecture obtained by the pruning algorithm is more important than the "important" 

weight obtained by the pruning. The model through the pruning algorithm can provide 

design guidance for designing an effective network architecture. For most 

convolutional neural networks, fine-tuned convolution kernels from large networks 

are more likely to cause the model to fall into overfitting. 

 

 





 

 

Chapter 3  

Multi-Stream Network for Dynamic 

FER 

3.1  Introduction 

The previous chapter describes that it is generally believed that FER's research began 

when psychologists decomposed facial expressions into combinations of facial muscle 

activations, which are called facial action units (AU) in the form of the Facial Action 

Coding System (FACS). Further, the researchers tried to use other hand-made features 

to identify static and dynamic facial images. In recent work, deep learning methods 

have been used in FER, and the recognition accuracy has been improved to an 

acceptable level in a simple environment. Although research work has been done on 

FER, achieving accurate and effective FER is still a challenging problem in the real 

situation, where facial expression could be influenced widely in expression intensity, 

such as the micro-expression and exaggerated expressions [21,22,23], and the imaging 

conditions are also complex because of the illumination and angle conditions. 

Therefore, a robust FER method that expresses intensity variation is of paramount 

importance for practical FER.  

Due to the convenience of data processing and the availability of relevant training 

and testing materials, a large number of existing research perform FER tasks based on 

static images without considering temporal information. But FER can benefit from the 

temporal correlation of consecutive frames in the sequence. How to extend spatial 
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information to spatiotemporal information is the key to dynamic FER. Under the 

existing deep learning framework, common methods include CNN-RNN cascaded 

network, 3D CNN, multi-stream network ensemble, and other methods. Among them, 

RNN and its variants (such as LSTM, GRU) and 3D CNN are the basic networks for 

learning spatiotemporal features. However, the performance of these networks is 

almost unsatisfactory. RNN cannot capture powerful convolution features. The 3D 

filter in 3D CNN is applied to very short video clips, ignoring long-distance dynamics. 

In addition, training such a large network is a computational problem, especially for 

dynamic FER with insufficient video data. The cascaded network is proposed to first 

extract the discriminative representation of facial expression images, and then input 

these features into the sequence network to enhance temporal information coding. 

However, this model introduces additional parameters to capture sequence information. 

The feature learning network (for example, CNN) and temporal information coding 

network (for example, LSTM) in the current work are not jointly trained, which may 

lead to unsatisfactory parameter settings.  

In our research, we are inspired by action recognition research. Like FER, action 

recognition also studies the problem of sequence recognition. In paper [71], 

Two-stream-CNN architectures were utilized to extract both spatial and temporal 

features in two different streams, and then fuse the two-stream recognition probability 

distributions. The method is shown multi-stream architecture able to fuse the different 

features, which are extracted from focused information. Multi-stream network 

integration is used to train multiple networks for spatial and temporal information, and 

then merge the network output in the final stage. Optical flow and facial landmark 

trajectories can be used as temporal representations to coordinate spatial 

representations. One of the disadvantages of this framework is the pre-calculation and 

storage consumption of optical flow or landmark trajectory vectors.  

Based on these studies, in this chapter, we propose a multi-stream architecture based 

on cascaded deep convolutional neural networks (CNN) and gated recurrent units 

(GRU). And use LBP-TOP as the input of another stream to replace the computational 

cost of optical flow. In this architecture, spatial features and temporal features were 

cascaded, and handcrafted spatiotemporal features are fused to extract the features of 

dynamic FER. The contributions of this chapter are summarized as follows: 

(1) The first stream utilized CNN to extract the static feature and Gated Recurrent 
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Unit (GRU) to extract the sequence feature. About the static feature, we selected the 

apex expression frame of each sequence to train a CNN model. To avoid the overfitting 

problem since the number of samples of each database was small, we utilized the data 

augmentation and fine-tuning method. We utilized DTAN [42, 72] liked CNN as the 

static feature extractor.  

(2) After extracting the static features from the static expression frames, we 

utilized the GRU network to extract the dynamic features of the sequence. After the 

static CNN to extract the static feature, we not only utilized extracted features as the 

input of the dynamic network but also utilized softmax outputs as another input. Our 

CNN-GRU cascade model utilized two GRU layers to process both two sets of inputs 

separately, and then extract the dynamic features of the expression sequence as two 

CNN-GRU streams. 

(3) The second stream part aimed to extract the spatiotemporal feature of the 

expression sequence. As a supplement stream of the mainstream, we utilized the 

LBP-TOP feature to extract spatiotemporal information, which was utilized in the FER 

field commonly. Two of the most important properties of the LBP-TOP are its 

robustness to monotonic gray-scale changes caused, and its computational simplicity. 

With these properties, we utilized two CNN-GRU networks to process the XT & YT 

orthogonal planes of the LBP-TOP feature. We utilized Bi-GRU in our model. Each 

frame of the LBP-TOP feature map was extracted by the CNN part and combined into a 

feature sequence and processed by the GRU part. Both XT and YT as two streams of 

the overall model. 

(4) After extracted the RGB feature and the LBP-TOP feature by four streams of 

the proposed method, we not only calculated the accuracy level of each stream but also 

calculated the accuracy of averaged outputs. The supplement stream helped the 

mainstream to recognize expressions with similar representation and improve 

recognition performances compared to each stream. The whole method considered 

computational speed, which makes it possible to analyze images in challenging 

real-time settings. 

In this work, extensive and comprehensive experiments have been conducted on a 

self-collection database Ren-VFEdb [14] for deliberate expressions with different 

expression intensity, and also conducted on the two benchmark databases CK+ 
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database [12] and Oulu-CASIA dataset [13] is comparable with state-of-the-art 

methods. Experimental results on the self-collection database got an accuracy of 79.0%, 

prove the effectiveness of the proposed method on variable expression intensity. 

Experimental results on benchmark datasets got the recognition accuracy with 98.7% 

on CK+ database and 88.7% on Oulu-CASIA database, showing that the expression 

class separability of the multi-stream method representation was improved in terms of 

the recognition rate with the state-of-the-art methods. 

The remainder of this chapter is organized as follows. Section 3.2 detailed the 

proposed FER method with multi-stream architecture. Section 3.3 presented 

experimental results to verify the effectiveness of the proposed method. Section 3.4 

discussed the details of differences with related research. Finally, Section 3.5 

summarizes our works and outlines the direction of future work. 

3.2  FER With Multi-Stream-CNN 

3.2.1 Overview of the Proposed Method 

Figure 3.1 shows an overview of the proposed multi-stream network method for FER. 

The proposed architecture consists of two main parts: 1) static feature extracted by a 

plain CNN model, then expanded into sequence level with GRU, and 2) spatiotemporal 

feature extracted by LBP-TOP to created XT & YT orthogonal planes feature, then 

processed by two CNN-GRU networks. In the first part, static image data were selected 

from the database and utilized the most expressional frame as the expression static 

image. From the static image, we trained DTAN [42,72] liked CNN to recognize the 

static expression image. In this part, [42] showing the FRE task could achieve good 

results on such a plain model. We created a plain CNN with 3 convolutions and pooling 

blocks, to extract the probability distribution of each expression image. Back to the 

sequence of expression, representative frames of different expression-states able to 
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extract different features.  In our research, we tried to make CNN learn the unique 

representation of different expressions, we utilized GRU to find the most representative 

feature, as the probability of each frame in the whole expression process in our work. 

As we were not extracted the expression changing process feature, the second stream 

part was proposed to supplement the first stream part. In this part, two CNN-GRU 

networks were trained to extract the feature of the XT & YT orthogonal planes created 

by LBP-TOP. LBP-TOP is a very common spatiotemporal feature, especially in FER. 

By calculating the adjacent frames change the LBP-TOP able to create the 

spatiotemporal feature and expressed it as a grayscale image, which also able to process 

by CNN. After extract the two parts' features, we fused the four streams' features to 

recognize the expression. The details of each step of the proposed method are described 

in the following subsections. 

 

Figure 3.1 Overview of the proposed multi-stream model with CNN-GRU stream and 

LBP-TOP stream. 

(a) is the input as expression sequence. (b) is the peak frame extracted from sequence. (c) was 

the LBP-TOP feature extracted from sequence. (d) is the static network trained by only peak 

expression frame. (e) is the CNN-GRU and utilized static feature sequence as input. (f) is the 

CNN-GRU but utilized probability distribution sequence as input. (g) is spatio-temporal 

network utilizing the LBP-TOP XT feature. (h) is spatio-temporal network utilizing the 

LBP-TOP YT feature. (e),(f),(g) and (h) are the four streams of the proposed model 

architecture. 
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3.2.2 Pretreatment and Data Augmentation 

In this work, the facial expression sequence was pretreated to adapt our method. In 

this work, we register facial images in each of the databases utilizing research standard 

techniques. We utilized the Active Shape Model (ASM) [73] to extract facial 

landmarks. ASM utilizes the shape of the object to fit the facial image training set to 

extract 68 landmark points, especially the three landmark points of eyes and nose. We 

utilized these three points to register faces to an average face in an affine transformation, 

to make the preprocessed image maintain a relatively stable state when utilized as input 

to the model. Finally, a fixed rectangle around the average face is considered as the face 

region. 

Once the face image has been registered, since [42,72] suggested that decreasing 

image resolution does not greatly impact the accuracy, the images were resized into 

64×64 pixels for the next process. 

For the static CNN part, we selected the expressional facial frame of the sequence as 

the dataset, which often is the last frame in most databases. After static CNN trained, 

we utilized transfer learning to expanded into a sequence. In this part, we utilized GRU 

and feed the model with the sequence of the whole expression changed from 

non-expression frame to apex expression-statue. The sequence also normalized to a 

specific number of frames, which utilized 10 frames in our work. 

 For the spatiotemporal stream, each sequence is calculated with the LBP-TOP 

feature, and each frame of the LBP-TOP feature is treated as a channel of the input 

sample. The sequence of each expression was considered as an image with 

multi-channels and process with the proposed spatiotemporal stream CNN. 

To avoid the over-fitting problem, we utilized the data augmentation method. 

Although in the pretreatment part, we corrected the head rotation data in the data by the 

positions of the eyes and nose, this is the result of an affine transformation. Therefore, 

we artificially added some rotated and horizontally flipped face images through data 

augmentation, thereby increasing the generalization ability of our model. Data 

augmentation is only applied to the training data of the model, and it is also a common 

method to make up for the insufficient number of samples in the database. For dynamic 

image sequences, we applied the same rotation and horizontal flip parameters to the 
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same sequence. 

3.2.3 RGB Sequence Stream Part 

  Since the AlexNet [44] got great success on the ILSVRC test, CNN also got great 

development. GoogLeNet [47] and ResNet [74] bring the CNN architecture going 

deeper. InceptionResNet [75] combined those two architectures got a better result. In 

[37] have shown the Inception architecture also has remarkable results in FER. In [42], 

a plain 3D CNN model was proved decreasing image resolution also worked on 

sequence-based FRE task, and in [72] showed that plain CNN architecture also worked 

Figure 3.2 The spatial feature extraction model utilized peak expression frame as input. 

Left part is a Convolutional Block with 2 convolutional layer and 1 max pooling layer. Right 

part is the network an architecture with 3 Convolutional Block. Output of the spatial feature 

extraction model is a probability distribution of emotional classes. 
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on the frame-based task. The CNN model in our work has only 6 convolutional layers, 

the plain model also avoids training a large number of parameters. 

In our proposed architecture, the spatial part extracts the feature on the static frame of 

facial expression. Normally, the expression sequence in our database changed from 

non-expression frame to expression frame and showing the changing process. From the 

sequence of facial expressions, we selected the expression frame for our spatial stream 

CNN to extract, which is usually the final framework of the expression sequence. 

Then we build the spatial feature extract model, the architecture has shown in Figure 

3.2. After the convolutions and pooling blocks, we utilized the Global Average Pooling 

(GAP) layer and 2 fully connected layers. We also utilized ReLU as an activation 

function for each convolution layer and dropout was also applied after the fully 

connected layers to prevent overfitting. A softmax layer was utilized to calculate the 

probability distribution of static frame expression. The convolution kernel size is 3×3 in 

all layers. The filter number of 6 layers were 64, 64, 128, 128, 256, 256. The output 

dimension of 2 fully connected layers is 128, the dropout rate is set as 0.7. 

 After the spatial feature extract model is trained by the selected static expression 

frames, we utilize this trained model and transferred it into the sequence feature extract 

network. We not only utilized the feature extracted by pre-trained static CNN but also 

utilized probability distribution of the static classification as another feature 

Figure 3.3 The CNN-GRU temporal feature extraction model. 

Utilize trained static model to process each frame of sequence with fine-tuning. The left 

side is the static feature sequence network. The right side is the probability distribution 

sequence network. 
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representation, the sequences of the whole expression process were extracted to create 

two feature sequences. Two GRU layers with 128 hidden states were added to analyze 

those two feature sequences, next for 2 fully connected layers with 128 nodes and a 

dropout layer with a 0.7 rate for each part. We added softmax at the end of each stream 

to pre-train the end-to-end model. The architecture has shown in Figure 3.3. In this part, 

we attempt to extract the feature able to represent the facial expression and the change 

process mostly. 

3.2.4 LBP-TOP Stream Part 

The LBP-TOP stream part aims to extract auxiliary change information from the 

expression sequence. First, the traditional LBP-TOP method is utilized to extract 

spatiotemporal features from the expression image sequence and establish 

spatiotemporal feature maps. Then utilized CNN to process the extracted 

spatiotemporal features. Instead of utilizing RNN or 3D-CNN architecture network, we 

extracted the spatiotemporal feature from sequence and utilized plain CNN architecture 

which similar to a static stream to extract the temporal information. The optical flow 

Figure 3.4. An example of LBP-TOP feature. 

Treat the LBP-xt and LBP-yt as the input of LBP-TOP network. 
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was extracted as a spatiotemporal feature in action recognition research. But in our 

method, we selected LBP-TOP as the spatiotemporal feature.  

 By consider the space-time transition T with LBP, LBP-TOP could extract features 

on three orthogonal planes as XY, XT, YT. Set t as the length of expression sequence, 

LBP-TOP gets the XT and YT feature with the length of t-2. For each frame in 

sequence LBP-TOP needs one frame before and one frame after this frame, a total of 

three frames to extract the temporal information. We set t=10 for each sequence by 

downsampling or upsampling from the original dataset sequence. And extracted t-2=8 

frames XT and YT LBP-TOP feature frames. The XY orthogonal plane feature 

extracted by LBP-TOP (also the normal LBP feature) shown the static feature of each 

frame. Since we extract the static feature by spatial stream part from the original 

expression frame, only XT, YT orthogonal planes LBP-TOP feature is needed and as 

the input of our temporal stream. Figure 3.4 shows the LBP-TOP feature image. With a 

frameset (t-1, t, t+1), LBP-TOP outputs three feature images. The XT and YT showing 

the X-direction and Y-direction variations with time information. 

Each orthogonal plane was trained by a plain architecture CNN-GRU. The 

Figure 3.5 The LBP-TOP CNN network utilized LBP XT & YT feature extracted from whole 

expression sequence. We utilized 2 networks to process the LBP-TOP feature maps. Each 

network utilized 3 convolutional Blocks with same architecture in static network in CNN 
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architecture has shown in Figure 3.5. Both XT &YT have 3 convolutional blocks same 

as static stream CNN in the CNN part. After CNN performs feature extraction on each 

feature map, the entire 8-frame LBP-TOP feature maps constitute one feature sequence 

and utilized a layer of Bi-GRU with 128 hidden states to analyze it. The merge mode of 

the Bi-GRU is the summation. Next for 1 fully connected layer with 128 nodes and a 

dropout layer with a 0.7 rate. The input of each network with all frame’s XT or YT 

orthogonal plane feature to create feature maps. We pre-trained two end-to-end nets for 

each orthogonal plane by calculated softmax as output.  

In this part, we also trained the parameters in the network from a random start.  

3.2.5 Fusion Model & Visualization of CNN Filters. 

 Through the CNN-GRU streams, we got two 128-dimensional feature vectors from 

feature sequence and probability distribution sequence as F1 & F2. From the LBP-TOP 

CNN stream, we got two 128-dimensional feature vectors from XT & YT as F3 & F4. 

We concatenate the F1~F4 of the four streams got a 512-dimensional feature vector as 

Figure 3.6. Visualization of two streams filter. 

The first line was the plain CNN stream. From left to right were input image, and after 2, 4, 

6 convolutional layers feature maps. The second line & third line were XT & YT LBP-TOP 

CNN stream. From left to right were LBP-TOP feature maps, and after 2, 4, 6 convolutional 

layers feature maps. 
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the fusion feature vector, and finally utilized softmax for classification. 

In Figure 3.6, both plain CNN stream and LBP-TOP CNN-GRU stream filters’ 

visualization were shown. In this part, we extract the features of specific layers of the 

trained network and make it more similar to the input image through several iterations. 

Figure 3.6 shows the visualization of the first convolution filter of different convolution 

layers. The second line & third line showing XT and YT feature maps of LBP-TOP 

CNN-GRU, and the visualization of different convolutional layers. Two streams of 

CNN have performed feature extraction on different face parts separately.  

3.3  Experiments 

3.3.1 Experimental Setup 

This work mainly aimed with FER on sequence level, databases of independent, 

irrelevant still images containing only facial expressions cannot be examined by our 

method. By considering the openness and the comparability, we conducted experiments 

on a self-collection database Ren-VFEdb [14] for deliberate expressions with different 

expression intensity, and evaluate our proposed method on two benchmark databases 

CK+ database [12], and Oulu-CASIA dataset [13] for deliberate expressions.  

All the experiments in this chapter were conducted in a subject-independent manner, 

such that the subjects in the training set were excluded from the test set.  

The input of each database was pretreatment with resized the face frames to 64×64 

pixels and then utilized data augmentation. The last frame of each sequence was 

extracted to train the static CNN network. And sequence was first utilized 

downsampling or upsampling into 10 frames to do the experiments in a temporal 

network. In each sequence, we also extracted the LBP-TOP feature into XT & YT parts. 

Each frame was resized into 64×64 in 10 frames and extracted LBP-TOP feature with 
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62×62 in 8 frames for the LBP-TOP network to do the experiment.  

3.3.2 Experimental Result of Self-collection Database.  

Table 3.1 shows the experimental results of our self-collection database Ren-VFEdb. 

The static network means the result of a static network trained by the last frame of each 

sequence. The CNN-GRU means the result of the expanded static network with GRU of 

sequence recognition. SF means Static Feature, and PD means Probability Distribution. 

The LBP-TOP shows results of both the XT & YT CNN-GRU networks. The final 

Multi-Stream Network shows the fusion result of the above four streams. 

 

Table 3.1 Experimental results of REN-VFEdb. 

Accuracy (%) REN-VFEdb 

Static Plain CNN  72.4 

(a) CNN + GRU with SF sequence 73.1 

(b) CNN + GRU with PD sequence 72.7 

(c) CNN + GRU with LBP-TOP XT 69.1 

(d) CNN + GRU with LBP-TOP YT 72.1 

Fusion Network with (a) & (b) 74.6 

LBP-TOP Fusion Network with (c) & (d) 72.9 

Fusion Multi-Stream Network 79.0 

 

In our database, the temporal network result was a little bit higher than the static 

network. The model accuracy of the static feature sequence got 73.1%, and the model 

accuracy of the probability distribution sequence got 72.7%. The fusion model of these 

two streams obtained a relatively high accuracy of 75.6%. The accuracy of the 

LBP-TOP network got 69.1% & 72.1% in XT and YT models. The YT model shows 

higher accuracy than the XT model. The fusion model of LBP-TOP with both XT and 

YT obtained higher accuracy of 72.9%. And the final fusion multi-stream network got 

much higher results than each stream network, got 79.0%.  

Figure.3.7(a) shows the confusion matrices of each proposed network in 
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REN-VFEdb. 

3.3.3 Experimental Result Of Benchmark Database  

Table 3.2 showing the experimental results of the CK+ and Oulu-CASIA database.  

 

Table 3.2 Experimental results of CK+ and OULU-CASIA database 

Accuracy (%) CK+ Oulu-CASIA 

Static Plain CNN 97.1 83.4 

(a) CNN + GRU with SF sequence 97.3 83.7 

(b) CNN + GRU with PD sequence 96.8 81.6 

(c) CNN + GRU with LBP-TOP XT 92.9 76.3 

(d) CNN + GRU with LBP-TOP YT 94.4 78.1 

Fusion Network with (a) & (b) 97.5 84.1 

LBP-TOP Fusion Network with (c) & (d) 94.4 80.0 

Fusion Multi-Stream Network 98.7 88.7 

 

In the CK+ database, the static network got an accuracy of 97.1%, And after utilized 

the GRU of frames’ static feature and probability distribution, the accuracy was 97.3% 

and 96.8%. The fusion model of those two streams got 97.5%.  

And in the Oulu-CASIA database, the result of the static network got an accuracy of 

83.4%, and the CNN-GRU network of static feature and probability distribution 

accuracy got 83.7% & 81.6%. The fusion model of those two streams got 84.1%.  

Both the probability distribution part was lower than the static network. Considering 

that the static model and the dynamic model have different inputs, the amount of data 

that the model needs to process is not an order of magnitude at all. And the accuracy of 

the static model has a good level, the probability distribution of its output results is 

more inclined to the form of a one-hot vector. CNN-GRU with probability distribution 

sequence got lower accuracy also reasonable.  
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The LBP-TOP networks with XT & YT were not as good as the above networks. In 

CK+ database, XT &YT network got accuracy of 92.9% & 94.4%. The fusion model 

with both XT and YT got an accuracy of 94.4%. Compared with the YT stream, the 

results did not improve. 

In Oulu-CASIA database, XT &YT network got accuracy of 76.3% & 78.1%. The 

results also showing that the YT feature got higher recognition accuracy. The fusion 

model with both XT and YT got an accuracy of 80.0%. Compared with the respective 

XT and YT streams, the result has improved. 

Figure 3.7(b) shows the confusion matrices of each proposed network in the CK+ 

database. The accuracy rate of the final fusion stream network that fused the above four 

streams and reached 98.7%. In Table 3.3 we show the comparison of our results with 

the state-of-the-art in CK+ database. 

 

Table 3.3 Comparison with state-of-the-art in the CK+ database. 

CK+ Database Accuracy (%) 

Sparsere presentation [27]  84.4 

SPSD [77] 88.5 

AUDN [78] 92.1 

Inception [37] 93.2 

3DCNN [41]  92.4 

lp normMKL multiclass-SVM [79]  93.6 

Inception-ResNet+CRF [30]  93.0 

3DInception-ResNet+landmarks [43]  93.2 

LBP-TOP+VLBP [31]  95.2 

Two-Stream-CNN [40] 93.7 

DTAGN [42] 97.3 

Fusion Multi-Stream Network 98.7 

 

Figure 3.7 (c) shows the confusion matrices of each proposed network in the 

Oulu-CASIA database. The accuracy rate of the final fusion stream network that fused 

the above four streams and reached 88.7%. Table 3.4 shows the comparison of our 

results with state-of-the-art in the Oulu-CASIA database. 
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Table 3.4 Comparison with state-of-the-art in the Oulu-CASIA database. 

OULU-CAISA Database Accuracy (%) 

LBP-TOP [31]  68.1 

HOG 3D [80] 70.6 

AdaLBP [13] 73.5 

Atlases [81] 75.5 

STM-ExpLet [82] 74.6 

DTAGN [42] 81.4 

Peak-Piloted [83] 84.6 

Fusion Multi-Stream Network  88.7 

 

The results in the two standard databases show that the results of the four-stream 

fusion model are better than the results of any single stream model. In particular, the 

accuracy in two models of the LBP-TOP streams is lower than the CNN-GRU models 

of the RGB image sequence. However, the result of the fusion model has increased 

substantially. This also further proves the effectiveness of our fusion model method. 

 

 

 

(a) REN-VFEdb. 

 

 

(a) REN-VFEdb. 

 

(b) CK+. 

 

 

(b) CK+. 

 

(c) Oulu-CASIA. 

 

 

Figure 3.7 The 

confusion matrices 

of proposed Fusion 

Multi-Stream 

Network in (a) 

REN-VFEdb, (b) 

CK+, and (c) 

Oulu-CASIA 

database.(c) 

Oulu-CASIA. 

 

Figure 3.7 The confusion matrices of proposed Fusion Multi-Stream Network in (a) 

REN-VFEdb, (b) CK+, and (c) Oulu-CASIA database. 
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3.4  Discussion 

3.4.1 RNN vs. MaxPooling 

In this work, we utilized GRU in the first stream to extract the dynamic feature of the 

sequence. But in our experiments, we also tried to utilize the MaxPooling layer to find 

out the impatience of each frame’s static feature.  

In [76], Pooling layers were proposed to process the feature vectors extracted by 

CNN to do the action recognition. In the early stages, we utilized fine-tuning the 

well-known Inception-ResNet-v2 architecture as the base static CNN architecture.  

Compared to the proposed plain CNN architecture, Inception-ResNet-v2 has many 

more parameters to train. Pooling layers were helpful in avoided to train a large number 

of parameters in RNN or 3DCNN networks. But with further experiments, the plain 

CNN architecture reduced parameters and get higher accuracy performance than 

Inception-ResNet-v2. Since the pooling layer has no trainable parameters, we replace it 

with GRU to improve accuracy performance. Although the pooling layer has similar 

accuracy performance and lower parameter numbers, we finally choose GRU for better 

performance. Table 3.5 showing the accuracy of Inception-ResNet-v2+MaxPooling 

comparing with plain CNN-GRU in the CK+ database.  

 

Table 3.5 Comparison of GRU and Pooling on the BENCHMARK database. 

Accuracy (%) CK+ Oulu-CASIA 

Inception-ResNet-v2 91.4 83.3 

Inception-ResNet-v2+GRU with PD 90.0 76.5 

Inception-ResNet-v2+GRU with SF 91.9 82.4 

Inception-ResNet-v2+Pooling with SF 93.9 79.2 

Plain CNN 97.1 83.4 

Plain CNN+GRU with PD 96.8 81.6 

Plain CNN+GRU with SF 97.3 83.7 

Plain CNN+Pooling with SF 95.5 80.6 
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3.4.2 LBP-TOP vs. Optical Flow 

In our proposed spatiotemporal stream, we utilized the LBP-TOP feature to replace 

optical flow, which is utilized in the action recognition field normally.  

Optical flow is the pattern of apparent motion of objects between two consecutive 

frames caused by the movement of the object and showing the movement of points 

between frames by a 2D vector field. Optical flow works on several assumptions: the 

pixel intensities of an object do not change between consecutive frames, and 

neighboring pixels have similar motions. Different from action recognition the body 

part or object's motion works like rigid motion in consecutive frames, facial part (eyes, 

mouth) changing between consecutive frames with tiny, non-rigid, and complex. Also, 

the illumination changes are a problem of FER in the real environment. The 

illumination changes have a great influence on the optical flow.  

However, same with LBP, one of the most important properties of the LBP-TOP is 

its robustness to monotonic gray-scale changes caused. LBP-TOP compares pixels with 

neighboring pixels, and this relation was less affected by illumination variations. 

Another important property is its computational simplicity, which makes it possible to 

analyze images in challenging real-time settings. LBP-TOP has been proved to be very 

effective on FER. 

3.5  Summary 

In this chapter, we presented a Multi-Stream Network for the task of facial 

expression recognition in sequence. Proposed Multi-Stream architecture which extends 

from well-known Two-Stream-CNN for action recognition field. By utilizing plain 

CNN architecture module to extract static expression frame and extended into sequence 

level with GRU by both the static feature and the probability distribution of frames, and 

extract LBP-TOP feature with CNN-GRU networks as spatial-temporal streams part.  

Compared with the RGB sequence CNN-GRU streams' accuracy performance, the 

LBP-TOP streams got lower accuracy performance. However, even if the accuracy of 
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the LBP-TOP stream networks is not as high as the first two streams, the multi-stream 

architecture shows that the LBP-TOP network could still provide information between 

frames and improve the overall accuracy. 

We also evaluated our method on a self-collection database Ren-VFEdb, which got 

79.0% recognition accuracy. We also evaluated our proposed method on two 

benchmark databases CK+ and Oulu- CASIA, and comparison the experiments result 

with many of the state-of-the-art methods. On the CK+ database, the result got 98.7% 

recognition accuracy and 88.7% accuracy on the Oulu-CASIA database.  The results 

showing that our proposed method was effective.  

In future work, we will try other architectures of DNN (3DCNN, etc.) to improve the 

supplemental stream part. And we will do more tests on other facial expression 

databases, especially in the wild environment. We also consider utilizing other stream 

features to improve the recognition performance. 

 

 





 

 

Chapter 4  

CNN-GRU for Real-time FER System 

4.1  Introduction 

The AlexNet [44] had convolution layers with kernel sizes 11, 5, and 3 followed by 

fully connected layers. With the success of AlexNet, researchers tried many 

experiments to improve their performance. By fixed the kernel size to 3 and increased 

the depth of the network, VGG [45] has gained widespread acceptance due to its 

simplicity. Recently there has been lots of progress in algorithmic architecture 

exploration included Inception [47,85], ResNet [74], where the computational cost was 

also much lower than VGG or its higher-performing successors. Also, network 

architectures like MobileNet [86], ShuffleNet [87] keep the computational cost at a low 

level to build lightweight networks. By utilized Inverted residuals block with 

Depthwise Separable Convolutions and Linear Bottlenecks, MobileNetV2 [88] got 

higher performance than MobileNetV1. And MobileNetV3 [84] improved recognition 

performance again and accelerated calculation speed by adding Squeeze-and-Excite 

(SE) block [89] and hswish [84]. These lightweight model architectures make it 

possible to perform real-time recognition tasks on mobile devices. 

The motivation of this chapter was to create a lightweight network deal with dynamic 

facial expression sequences. Based on this idea, we did not choose 3D-CNN to avoid 

large numbers of training parameters but chose the cascade networks of CNN-RNN. In 

the CNN part, we selected MobileNetV3[84] architecture through experiments. And 

reduce the problem of overfitting through transfer learning. At the same time, as the 
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input of CNN, we kept the size of the image small. Although the smaller image size 

cannot reduce the training parameters of the model, it can reduce the amount of 

calculation required. In the RNN part, we did not choose the feature vector sequence 

extracted by CNN but chose the probability distribution of each expression class after 

the softmax layer was processed. We combine the probability distribution of each 

frame in videos into a sequence, as the input of the GRU. Compared with the feature 

vector, the probability distribution has a smaller length, and the GRU utilized 

probability distribution as input also has fewer parameters. 

In this chapter, we propose a real-time dynamic FER system based on MobileNetV3 

and GRU. For the real-time capability of the system, we chose the MobileNetV3 

architecture to minimize the system parameters. The proposed system is extended to a 

frame-to-sequence approach by exploiting temporal information with GRU. Finally, we 

demonstrate the performance improvement by using the proposed system on some 

public datasets. 

In the whole system, we intercepted a certain length of frames as the basic unit of 

expression recognition. In this frame sequence, we first calculate the probability 

distribution of each frame through CNN in real-time. When the last frame of the 

sequence is reached, the probability distribution of each frame is combined into a 

sequence, and the expressions of this sequence are calculated through GRU. In the 

expression database, we also cut the video based on this standard and obtained 6 basic 

expressions and data under natural conditions. The experimental results prove the 

effectiveness of the proposed system. 

The remainder of this chapter is organized as follows. Section 4.2 detailed the 

proposed facial expression recognition system from processing to all networks utilized 

in our work. Section 4.3 presented the whole framework of our system. Section 4.5 

presented experimental results to verify the effectiveness of the proposed method. 

Section 6 discussed the details of differences with related research. Finally, the 

summary was drawn in section 4.6. 
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4.2  FER System with Lightweight Model 

4.2.1 Motivation 

The motivation of our work is very simple: build a model constructed by CNN-RNN 

with as little computation as possible to process facial expression sequences. To 

achieve this goal, we have investigated various existing CNN and RNN structures. One 

way to get an idea of the speed of models is to simply count how many computations it 

does, we can calculate its multiply accumulate operations (MACC) to approximate the 

calculation of the model. In most image processing research, the static image is treated 

as a three-dimensional matrix of size H × W × C, where H is the height of the image, W 

the width, and C the number of channels usually 3 in RGB images. The input and output 

to convolutional layers are also three-dimensional feature maps of size H × W × C. For 

a 2D convolutional layer with kernel size K, the number of MACCs is: 

K × K × Cin × Hout × Wout × Cout          (Equation 4.1) 

The Hout & Wout are the height and width of the output feature map, Cin & Cout are 

the input and output channels of a convolutional layer. We are ignoring the bias and the 

activation function here. Through Equation 4.1, we can see that the calculation amount 

of the CNN model depends on the input image size and the setting of the convolutional 

layer. We reviewed the existing FER methods and proposed a variety of ways to reduce 

the calculation of the proposed FER system. 

4.2.2 Input Image Size 

In papers [42] & [72], the input image size was set as 64 × 64 and 96 × 96, where the 

input size was normally 224 × 224 in most existing image recognition & FER research. 

Both papers proposed a compact CNN to recognize the small size of an input image and 
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got a good recognition accuracy in experiments. In this work, we choose to reduce the 

input image size to reduce the calculation of the proposed method. 

4.2.3 The CNN Model 

Many CNN structures have optimized the structure of the convolutional layer, such 

as the Inception series network. Depthwise-separable convolution was utilized to build 

lightweight models as MobileNets. A depthwise-separable convolution is a 

factorization of a regular convolution into two smaller operations: a depthwise 

convolution and a pointwise convolution. Together they take up a lot less memory 

(fewer weights) and are much faster, with the approximate performance of the regular 

convolutional layer doing. Compared to a regular convolution, the depthwise 

convolution does not combine the input channels. There is always the same number of 

output channels as input channels. The total number of MACCs for a depthwise 

convolution is: 

K × K × Cin × Hout × Wout               (Equation 4.2) 

Compared to Equation 4.1, it does a factor of Cout less work, making this a lot more 

efficient than a regular convolutional layer. 

The depthwise convolution alone will not change the channels of input & output, the 

following part is a pointwise convolution. The pointwise convolution is the same as a 

regular convolution but with a 1×1 kernel, the number of MACCs is: 

1 × 1 × Cin × Hout × Wout × Cout            (Equation 4.3) 

The total mass for a depthwise-separable layer by Equation 4.2 & 4.3 is: 

Cin × Hout × Wout × (K × K + Cout)          (Equation 4.4) 

By comparing this to Equation 4.1 for a regular convolution layer, MACCs are 

reduced by a factor as K × K × Cout / (K × K + Cout), If K=3, MACCs reduced almost 

9 times less costly.  

Depthwise-separable layers are the main building block in MobileNetV1. 

MobileNetV2 utilized an “expansion block” to add more channels to the feature map, 

for an expansion factor, the input channels were expanded into: 
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Cexp = Cin × expansion_factor            (Equation 4.5) 

In the entire block, first, utilize a 1×1 convolutional layer to expand the number of 

channels, and then utilize depthwise-separable convolution, the total MACCs as: 

(K × K + Cout + Cin) × Cexp × Hout × Wout          (Equation 4.6) 

By comparing this to Equation 4.1, MACCs reduced by a factor as: 

K × K × Cout / ((K × K + Cout + Cin) × Expansion_factor)     (Equation 4.7) 

In normal MobileNetV2, set the K=3, Cin=64, Cout=128, Expansion_factor=6, the 

MACCs of an expansion block have roughly the same computational cost but worked 

with 6 times channels.  

While optimized the parameters of each block, MobileNetV3 also added an SE block, 

which allows the network to automatically learn the importance of each feature channel. 

There is no major change in the convolutional layer. The SE block is equivalent to 

adding 2 FC and some elementwise multiplies calculations. The MACCs were Cout × 

(Cout/r) × Cout + Cout, where r is a reduced ratio of SE block. The SE block increases 

accuracy while appropriately increasing the number of parameters. 

In this work, we choose the MobileNetV3 as the CNN architecture to extract the 

static facial expression feature.  

4.2.4 The Frame-to-Sequence Model 

An image sequence in standard facial expression databases usually begins with a 

neutral expression and gradually proceeds to a peak expression. There are two more 

common methods for processing image sequences, which are 3D-CNN [42] and 

CNN-RNN [90, 91]. 

4.2.4.1  3D CNN 

The first method is to utilize 3D CNN. By extending the 2D convolution kernel to 3D, 

to deal with the input sequence as a Four-dimensional matrix of H × W × T × C, where 

adding T as the frame number of sequences. For a 3D convolutional layer with kernel 
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size K, the number of MACCs is: 

K × K × K × Cin × Hout × Wout × Tout × Cout            (Equation 4.8) 

As a MobileNetV3 structure with 3D convolution layers, compared with the 2D 

version Equation 4.6, the MACCs and parameters of each expansion block will have 

exponential growth. 

4.2.4.2  CNN-RNN 

The second method is to utilize the CNN-RNN cascade model. RNN involves doing 

two big matrix multiplies and some elementwise multiplies. Essentially, the MACCs 

the same as 2 FC layers, and so the number of MACCs primarily depends on the size of 

the input, hidden state, and output vectors. LSTM has increased 3 gates and the MACCs 

are four times of simple RNN, while GRU has increased 2 gates and the MACCs are 

three times of simple RNN. The cascade model MACCs will be increased into a little 

more than T times compared with CNN.  

4.2.4.3  Proposed Frame-to-Sequence Model 

In this work, by considering the amount of calculation, we choose the CNN-RNN 

cascade model as our Frame-to-Sequence Model. Here, we use a sequence of 

probability distributions computed from the CNNs of frames in sequence instead of a 

feature vector. The probability distributions with a length of 7 (neutral + six basic 

expressions) while the feature vector computed from the CNNs with a length of 

hundreds will produce a huge difference in calculation. The architecture of our 

CNN-RNN model is composed of a single GRU layer with 128 hidden states and a 

softmax layer.  
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4.2.5 The Framework of The Proposed System 

For this work, we proposed a FER system shown in Figure 4.1. The proposed system 

utilized two stages fine-tuning learning approach to improve the recognition 

performance. The proposed system aims to recognize the dynamic facial expression 

sequence, we have established an end-to-end framework for recognition from videos. 

4.2.6 Two Stages Fine-tuning 

On the CNN part, compared with training the model by utilizing the facial expression 

database directly, we first trained the model on a large-scale face recognition database. 

Existing FER databases are usually on a small scale, and training on these databases 

directly is prone to overfitting. To avoid this situation, pre-training on a larger database 

is a common method. In this work, we utilized the VGGFace database [46] in the field 

of face recognition for pre-training. Compared to utilize the database of object 

Figure 4.1 Proposed FER system, From CNN part to CNN-GRU model utilized two stages of 

fine-tuning. 
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recognition, face recognition can better extract the texture features based on the human 

face, and it is easier to transfer to the research of FER. VGGFace contains 2.6 million 

images of 2622 subjects, images have large variations in pose, age, illumination, 

ethnicity, and profession, which helps our FER system recognize the facial expression 

of the wild condition. 

After pro-trained the CNN model on the face recognition database, we go further 

training the CNN part on static facial expression databases. Training the CNN-GRU 

model on the dynamic database directly has a higher cost, and it is also easier to fall into 

overfitting. 

The overall two stages fine-tuning process is shown in Figure 4.1. The CNN part was 

first trained on the VGGFace database and then transfer into static FER databases. The 

CNN-RNN model was fine-tuned from the CNN part. 

4.2.7 Data Pre-processing  

This work aims to recognize the wild condition facial expression, both the wild 

database and real situation need to pretreatment for our model. For the CK+ database, 

we split the whole sequence into 3 parts: neutral to peak, neutral to neutral, and peak to 

peak. The neutral to neutral intercepts the previous part of the sequence, the peak to 

peak intercepts the last part. The neutral to the peak is downsampling the entire 

sequence. For the AFEW database, we split videos into individual frames. Those 

frames are processed further by filtering the facial images. In our proposed system, we 

employ OpenCV DNN face detection to extract the faces and cropped face images (96 

× 96 pixels). Through the experiment, we found that locating facial landmarks will take 

a long time for the CPU process and affect real-time performance. So, we also did 

experiments without face standardization. In that part, we changed the training method 

as Figure 4.2. For the training part, face images were aligned by locate the 68 facial 

landmarks and then affine transformation. Both aligned face images and unaligned 

images were utilized to training the model, but only unaligned face images were 

utilized for the test. 
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In the real-time FER system, frames captured by the camera will also extract facial 

images through OpenCV DNN face detection. In this part, the CNN-GRU model will 

be separated into CNN and RNN parts. For each frame, the CNN part will extract the 

probability distribution immediately. After reaching a certain frame interval, the  

probability distributions will be spliced into a sequence for recognition by the GRU 

part. The real-time FER system is shown in Figure 4.3. 

 

Figure 4.2 Training model utilized unaligned images. 

Figure 4.3 Proposed FER system on real-time recognition. For each 5 frames output the 

recognition result. 
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4.3  Experiments 

4.3.1 Experimental Setup 

This proposed system was verified on both static and dynamic databases to evaluate 

the CNN model only and whole model performance. For the static database, we utilized 

CK+, FER2013, and SFEW, for the dynamic database we utilized CK+ and AFEW.  

The input of each database was pretreatment with resized the face frames to 96×96 

pixels and then utilized data augmentation. The first and last 3 frames of each sequence 

in CK+ were extracted as neutral and peak expressions to train the static CNN network. 

And we spilled the CK+ database into 3 parts for each sequence and utilized 

downsampling or upsampling into 5 frames to do the experiments in the dynamic 

model.  

4.3.2 Experimental Result of Static Database 

In CNN part experiments, we add the results to choose the MobileNet V2 & V3 as 

the CNN part. We also compared the results between whether to pre-train with 

VGGFace. Besides, we add other databases as the training samples in a single database. 

For example, when training on the CK+ database, we added FER2013 and SFEW. But 

when applying CNN to the CNN-RNN model, the corresponding static and dynamic 

database is independent.  

Table 4.1 showing the experimental results of the CK+, FER2013, and SFEW 

database in the CNN part. In the CK+ database, the CNN part got an accuracy of 98.3%. 

Compared with the direct initialization model, the pre-training on the VGG-face 

database makes the recognition results have higher accuracy. At the same time, 

pre-training on other expression databases will further improve the model effect. The 
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result on the FER2013 database got 73.6% and on the SFEW database got 52.2% has 

proven the effectiveness of pre-training.  

 

Table 4.1 The experimental results of CK+, FER2013, and SFEW databases on static CNN. 

Accuracy (%) CK+ FER2013 SFEW 

MobileNetV2 94.4 70.6 48.7 

MobileNetV3 96.8 71.1 48.9 

MobileNetV2 with pre-train 96.1 72.5 50.8 

MobileNetV3 with pre-train 97.6 73.1 51.9 

MobileNetV2 with cross databases 96.8 72.7 51.0 

MobileNetV3 with cross databases 98.3 73.6 52.2 

 

Figure 4.4 shows the confusion matrices of the CNN part network in each database. 

In both FER2013 & SFEW, Happy emotion has the highest recognition accuracy. 

Followed by Neutral and Surprised. Neutral and Sadness are easier to be confused. 

Anger and Fear are more likely to be mistaken as Sadness and Surprised. Those results 

are also more consistent with our observations on the databases.  

 

 

Figure 4.4 Confusion matrices of the CNN part network. From left to right are CK+, 

FER2013, and SFEW. 
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4.3.3 Experimental Result of Dynamic Database 

Table 4.2 showing the experimental results of the CK+ and AFEW database in the 

whole model. We compared the model performance after adding a layer of LSTM and 

GRU after the CNN part, and GRU has better recognition accuracy. In the CK+ 

database, the dynamic model got an accuracy of 98.7%, and in the AFEW database, the 

accuracy got 48.7%. 

 

Table 4.2 The experimental results of CK+ and AFEW databases on proposed dynamic model. 

Accuracy (%) CK+ AFEW 

MobileNetV3 + LSTM 98.1 48.5 

MobileNetV3 + GRU 98.7 48.8 

 

Figure 4.5 shows the confusion matrices of the proposed dynamic network in each 

database. The static and dynamic results on the CK+ databases are very close, and both 

have high recognition accuracy. Compared with the results of the SFEW database, the 

recognition results of AFEW are roughly the same, but the overall results have 

declined. 

 

Figure 4.5 Confusion matrices of the CNN-GRU network. From left to right are CK+, and 

AFEW. 
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4.3.4 Experimental Result with Unaligned Face 

Images 

We also conducted experiments on unaligned face images. The training set of each 

data set will be doubled because both aligned and unaligned face images were put in. 

The test set only utilized unaligned face images. Table 4.3 showing the experimental 

results of the CK+, and AFEW database in the proposed whole model by testing the 

unaligned image sequence. In the CK+ database, the accuracy of 98.0%, and in the 

AFEW database, the accuracy got 45.5%. Compared with aligning face data, the results 

on the CK+ database have not changed much because the CK+ database is 

lab-controlled, and the face in the database is facing the camera. But the recognition 

accuracy on the AFEW database dropped by 3.3%. It may be because the face part in 

the AFEW database has large changes in orientation and face angle and whether the 

faces are aligned or not has a relatively greater impact.  

 

Table 4.3 The experimental results of CK+ and AFEW databases on the proposed dynamic 

model with an unaligned face image sequence. 

Accuracy (%) CK+ AFEW 

Aligned face data 98.7 48.8 

Unaligned face data 98.0 45.5 

 

4.3.5 Comparison with State-of-the-art 

Table 4.4 showing the comparison of our results with state-of-the-art in the CK+ 

database. Table 4.5 showing the comparison of our results with state-of-the-art in the 

SFEW & AFEW database. We also compared the model parameters. Compared with 

other models, our model has smaller parameters except for DTGAN. The recognition 

accuracy of the DTGAN is lower than our method on the CK+ database, and the results 
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of our experiments on the wild database are even more unacceptable. On the other hand, 

on the AFEW database, we only list these results obtained by the best single models in 

previous works. While our model has acceptable recognition accuracy, it has the 

smallest model parameters. Considering the size of the input image sequence and the 

optimization of the MobileNet series, our model has the least calculation. In the case of 

ensuring recognition accuracy, our model also has the real-time capabilities of mobile 

devices. 

 

Table 4.4 Comparison with state-of-the-art in the CK+ database. 

Method Parameter Number Data type Accuracy (%) 

AUDN [78] - Static 92.1 

Inception-CNN [37] 23.5M Static 93.2 

3DCNN [41] - Dynamic 92.4 

Two-Stream-CNN [40] 55.6M Dynamic 93.7 

DTAGN [42] 1.85M Dynamic 97.3 

FN2EN [92] 4.31M Static 96.8 

Frame attention networks (FAN) [93] 11.2M Dynamic 99.7 

Our MobilieNetV2 2.40M Static 96.8 

Our MobilieNetV3 3.12M Static 98.3 

Our MobilieNetV3+GRU 3.17M Dynamic 98.7 

Our MobilieNetV3+GRU with unaligned 

faces 
3.17M Dynamic 98.0 

 

Table 4.5 Comparison with state-of-the art in the SFEW & AFEW database. 

Method Parameter Number Data set Accuracy (%) 

FN2EN [92] 4.31M SFEW 52.5 

VGGFace-LSTM [94] - AFEW 45.4 

Frame attention networks (FAN) [93] 11.2M AFEW(Static) 51.2 

Our MobilieNetV2 2.40M SFEW 51.0 

Our MobilieNetV3 3.12M SFEW 52.2 

Our MobilieNetV3+GRU 3.17M AFEW 48.8 

Our MobilieNetV3+GRU with unaligned 

faces 
3.17M AFEW 45.5 
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4.4  Summary 

In this chapter, we proposed a real-time dynamic FER System based on CNN-GRU. 

We utilized a variety of methods to make our model have fewer calculations. In our 

CNN part, because of the optimization of the MobileNet series models, we have 

reduced the number of calculations for the CNN part. And we utilized the probability 

distribution of the CNN model’s output as the input of the GRU part, further reducing 

the calculation amount of the entire model. When training the model, we utilized two 

fine-tuning methods. Through pre-training on the VGGFace database, the performance 

of the model was improved. The experiments have been conducted on multiple FER 

databases, and the experimental results have proved the effectiveness of our proposed 

model. We also conducted experiments on unaligned face data. Although the 

experimental results are slightly lower than that of aligned faces, the process of 

landmarking faces is reduced in the overall process, which improves the real-time 

performance of the overall FER system.  

In future work, we will further examine the less computationally intensive and faster 

network architecture and try to integrate the process of face detection and landmarking 

into the network to make a faster and more accurate FER system. 

 

 

 





 

 

Chapter 5  

Pruning LBC Network for FER 

5.1  Introduction 

In the previous research, we focused on the dynamic FER of the deep model of the 

cascade architecture of CNN-RNN. In this chapter, we return to static images and keep 

our attention to the CNN part. In the previous research, we used plain CNN and 

MobileNet to extract features of facial expression images. Although its calculation 

speed is faster than other CNN models, its accuracy is not dominant. In this chapter, we 

try to analyze the specific structure of the convolutional layer and use other techniques 

to improve the CNN part to improve the recognition accuracy while maintaining a 

faster inference speed. 

In recent years, with the development and wide application of deep learning, due to 

higher requirements for deep model results, deeper and more complex deep learning 

network structures have been proposed. But with it comes the exponential growth of 

model parameters and memory requirements, which makes it difficult to implement on 

various hardware platforms, such as mobile devices. To improve the calculation speed 

of the model, in addition to further improving the calculation speed of the hardware, 

many researchers also try to reduce the number of parameters required by changing the 

model structure. In addition, some researchers pay attention to the method of model 

compression to modify the trained model and compress it to minimize the 

computational space and time consumption of the model. Model pruning is a type of 

model compression. It is based on an assumption, or the current consensus, which is the 
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over-parameterization of deep neural networks. Over-parameterization means that we 

need a lot of parameters in the training phase to capture the tiny information in the data, 

and once the training is completed to the inference phase, we do not need so many 

parameters. This assumption supports that we can simplify the model before 

deployment.  

By pruning model parameters with different granularities, model pruning methods 

can be divided into unstructured pruning and structured pruning. In unstructured 

pruning, the weight of the network is pruned at the neuron level, while the structured 

pruning method is pruning at the channel or even level. Compared with unstructured 

pruning, the structured pruning algorithm does not require additional computing library 

support and is more user-friendly in implementation and deployment. By scoring the 

filter or channel of the model, the parts with lower scores are removed, thereby 

reducing the model parameters. The structured pruning method is more of an 

optimization of the model structure. In paper [70], it is pointed out that after pruning, 

the more important thing is the preservation of the model structure rather than its 

parameters. From this point of view, the structured pruning method is also a neural 

architecture search (NAS) [95], but because it only involves layer dimensions, the 

search space is smaller. 

In this context, we thought of the LBC network [54]. LBC is an application based on 

Local Binary Pattern (LBP) [96] features in traditional machine learning and uses a 

non-trainable convolution kernel with only three values of -1, 0, and 1. The convolution 

kernel of LBC is binarized and has advantages over traditional convolution kernels in 

terms of calculation speed and storage space. In the case of the same convolution kernel 

size, the non-trainable convolution kernel parameters reduce the overall training 

difficulty of the model. However, because the LBC kernel is not trainable, the model 

result has a great correlation with the number of kernels. Since the effect of LBC has a 

strong positive correlation with the number of LBC kernels, many randomly generated 

LBC kernels must be redundant. This assumption is in line with the theory of model 

pruning. Model pruning based on LBC not only needs to find the model structure after 

pruning, but it is more important to find the non-trainable LBC kernel parameters. In 

our work, we did not use the existing structured model pruning scoring method but used 

the weight of the data-driven SE block as the evaluation of the channel. At the same 

time, a depthwise convolution layer structure is introduced, so that the LBC kernel 
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corresponds to the SE optimization weight. Compared with the evaluation function of 

the existing model pruning method, the Squeeze-and-Excitation (SE) optimization [89] 

weight is obtained through training, and the relationship with the convolution channel 

is more intuitive. 

In this chapter, we propose a basic network structure based on mobile inverted 

bottleneck [84, 88, 97] convolutional layer and squeeze-and-excitation optimization. 

By changing its inverted bottleneck expand ratio, adjusting the number of LBC kernels 

in each LBC layer. We conducted experiments on the image classification database 

CIFAR10 and FER database FER2013. The result proves the effectiveness of our 

proposed method: in the models with smaller expand ratios, its recognition accuracy 

still maintains the same level. 

The remainder of this chapter is organized as follows. Section 5.2 detailed the 

proposed pruning method based on depthwise LBC network and SE optimization 

architecture. Section 5.3 presented experimental results to verify the effectiveness of 

the proposed method. Finally, Section 5.5 summarizes our works and outlines the 

direction of future work. 

5.2  Model Pruning Based on SE Optimization 

Weight 

In this work, we propose a mobile inverted bottleneck convolutional block based on a 

depthwise LBC layer and SE optimization, and score the LBC kernel according to the 

SE optimization weight, and get the LBC kernels that perform better on the model. By 

expanding the ratio in the Mobile Inverted Bottleneck, we get a large model with more 

LBC kernels and more parameters. According to the statistics of the output of the SE 

weight of each block of the model on the database, we get the score corresponding to 

each LBC kernel. And based on this score, the large model can be pruned. 
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5.2.1 Depthwise LBC Layer and LB Mobile Inverted 

Bottleneck Block 

In this work, we use the LBC kernel to replace the general convolution kernel and 

perform structured pruning to avoid the above problems. In the structure of the LBCNN 

proposed in [54], each LBC block is composed of two parts. The first part is a sparse 

LBC layer with non-trainable parameters. The structure of this layer is the same as the 

standard convolutional layer, the convolution kernel size is set to 3×3 without 

backpropagation. The parameters of the LBC kernel are to first generate a set of all-zero 

matrices and then replace a part of 0 with a random 1 or -1 according to the Bernoulli 

distribution to generate a sparse LBC kernel. The second part is a standard convolution 

layer, the size of the convolution kernel is 1×1. In such an LBC block, it consists of a 

non-trainable convolutional layer and a trainable convolutional layer, so that the model 

can be trained normally. The 1×1 convolutional layer in the second part only provides a 

parameter that can be trained for the previous LBC layer. 

Figure 5.1 showing the difference between the standard LBC and the LBC blocks we 

proposed. In this work, we used depthwise convolution to construct the LBC layer. 

Compared with the standard LBC layer, the depth-separable LBC not only reduces the 

Figure 5.1 The difference between the standard LBC and the LBC blocks we proposed. 

(a) Standard LBC layer; (b) Standard LBC with Residual module; (c) Standard LBC with SE-Residual module; 

(d) Depthwise LBC with Mobile Inverse Bottleneck module; (d) Depthwise LBC with SE-Mobile Inverse 

Bottleneck module. 
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parameters but also corresponds to each input feature map, there is only a 3×3 sparse 

LBC kernel for feature extraction, making the LBC kernel more Intuitively reflect the 

result of its feature extraction. At the same time, we introduced SE optimization to add 

attention weights to the feature maps extracted from the depthwise LBC layer, also to 

use SE optimization weights to replace the 1×1 convolution of the traditional LBC layer. 

In the entire mobile inverted bottleneck, the first and last two 1×1 convolutional layers 

are mainly used to adjust the number of input and output model channels. Even if we 

change the number of LBC kernels through model pruning, the input kernel output of 

the whole block will not change, which is convenient for the model to calculate the 

residual.  

5.2.2 Baseline LB-MBNet Model 

By combining the LBC mobile inverted bottleneck block, we propose our baseline 

model. The mobile inverted bottleneck has applications in many model structures and 

has also been proven to be an efficient model structure. In the EfficientNet [97], the 

input resolution, depth, and width of the model are all quantified, and an optimization 

search is performed to find the best performance model structure under different 

parameters. In our proposed model, the network width is also quantified, but we only 

Figure 5.2 The proposed baseline LB-MBNet model framework. 
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change the number of LBC kernels in the depthwise LBC layer of each block. In the 

input of the model, we added a stem block to perform the first step of processing the 

input image. In this step, we used the standard convolutional layer instead of the LBC 

layer. In the subsequent model pruning, we do not prune the stem part, only pruning the 

block that uses the LBC. The quantization parameter r in the model, which is the 

expansion ratio of the LBC layer in each block, can be individually adjusted to adapt to 

different pruning scales. Figure 5.2 showing the proposed baseline model structure. 

5.2.3 Model Pruning Based on SE Optimization 

Weight 

As mentioned earlier in this chapter, we directly connect the SE block and the 

depth-wise LBC layer and use the SE optimization weight to express the importance of 

the LBC kernels. By setting the hyperparameter r to a larger value, we can get a large 

model with more parameters. Through experiments on the database, we compared the 

accuracy performance of the large model and the small model and concluded that the 

results of the large model have better performance. This is also the basis for our model 

pruning. 

SE optimization is to optimize the attention weight of features in different feature 

channels for each sample. Corresponding to different samples, SE optimization weights 

are also different. But we can calculate the mean value and distribution of SE 

optimization weights in largescale samples, and score the characteristic channels in 

disguised form. Figure 5.3 showing the relationship between each LBC kernel and SE 

optimization weight in the proposed model. For the input Xc, c is the number of input 

feature channels. First, channel expansion is performed through 1×1 convolution to 

obtain Xrc. For Xi (i ∈ 0…rc) is the i-th feature map in Xrc, X’i is the output of the 

depthwise LBC layer. After the processing of the SE block, Wi (i ∈  0…rc) is 

obtained.  
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For each sample, Wrc is the weight of this sample for each feature channel, and it is 

also the weight of the corresponding depthwise LBC kernel. By extracting the SE 

optimization weights of the overall sample of the database, we can count the mean and 

distribution of the SE optimization weights. Figure 5.4 showing the statistics of SE 

optimization weights of the training set on the CIFAR10 database. In most of the blocks 

of (b), The number of SE optimization weights is large, the SE optimization with higher 

weights only accounts for a small part of the overall channel number, and many weights 

are close to 0. This also means that the LBC kernel corresponding to the channels with 

lower weight cannot extract significant features well in the entire data set. By filtering 

the SE optimization weights, we can get better LBC kernel parameters, each of which is 

a 3×3 sparse matrix. After model pruning, the SE weight distribution of the 

reconstructed model (c) is more concentrated than that of (a), and the LBC kernel has 

similar importance. 

Figure 5.3 Relationship between LBC kernel and SE weight, each weight 

corresponds to a 3×3 LBC kernel. 
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Figure 5.4 The statistics of SE optimization weights of the training set on the CIFAR10 

database. 

The statistics of SE optimization weights of the training set on the CIFAR10 database. (a) is 

the model with the expansion ratio r=6, the result obtained by random initialization training; 

(b) is the model with r=80, the result obtained by random initialization training; (c) a is the 

model with the expansion ratio r=6, but the result obtained by pruning and retraining from the 

model with r=80. Each subfigure represents the 3 blocks in stack 1 of each model, the x-axis is 

the mean value of each SE weight, and the y-axis is the proportion of the corresponding 

weights. 
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5.3  Experiments 

5.3.1 Experiment Settings 

For this work, we use the CIFAR10 database for image classification experiments. 

And FER2013 database for FER experiments. 

In our test models, the model depth is fixed. In addition to the stem part, there are 4 

MB blocks with LBC. Except for Block 0, each block is repeated 6 times, and the scale 

of the feature map is halved in the initial layer of each block. Out of the SE block, each 

model has 59 convolutional layers, and there are 18 sets of SE optimization weights 

involving LBC in the last 3 blocks to participate in model pruning. Specific parameters 

are shown in Table 1. Besides, we also set the number of repetitions of each block to 3 

and established a model of 32 convolutional layers. 

 

Table 5.1 Proposed Baseline LB-MBNet-59 Model structure. 

The repeat numbers in () are the parameters of the LB-MBNet-32 Model. 

Stack Operator Resolution Channel Repeat Num Expansion ratio 

Stem Conv3×3 32×32 32 1 - 

0 LB-MBConv, k3×3 32×32 16 1 1 

1 LB-MBConv, k3×3 32×32 64 6 (3) 6 

2 LB-MBConv, k3×3 16×16 128 6 (3) 6 

3 LB-MBConv, k3×3 8×8 256 6 (3) 6 

Top Conv1×1 & Pooling & FC 4×4 512 1 - 

 

For the input data, we use data augmentation to expand the training data. The 

operations include width shift, height shift, and horizontal flip, the shift range is 4 

pixels. All models are compiled using the SGD method, the initial learning rate is set to 

0.1, and decays by 0.1 at 80, 140, and 180 epochs. Each model is first trained for 200 

epochs and then pruned, and then trained again for 200 epochs using the same 

hyperparameters. 
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5.3.2 Experimental Result in CIFAR10 

In this chapter, we will evaluate the effect of the LBC layer in the proposed baseline 

model and compare its performance with that of the standard convolutional layer in the 

CIFAR10 database. At the same time, by changing the value of the expansion ratio r, 

the impact of different model scales on the recognition results is evaluated. Table 5.2 

showing the model recognition result obtained while adjusting the expansion ratio r. 

We calculated the parameters and FLOPS of the model. 

 

Table 5.2 Model recognition result with different expansion ratio r in CIFAR10. 

Model name Accuracy rate (%) Trainable Params FLOPs (10
8
) Ratio to r6 model 

LB-MBNet-59-r6 92.47 7.11M 4.57 1× 

LB-MBNet-59-r10 93.65 11.75M 7.57 1.7× 

LB-MBNet-59-r18 93.81 21.03M 13.6 3.0× 

LB-MBNet-59-r30 94.40 34.96M 22.5 4.9× 

LB-MBNet-59-r60 95.05 69.78M 45.0 9.8× 

LB-MBNet-59-r80 96.06 92.99M 59.9 13.1× 

LB-MBNet-32-r6 92.88 3.19M 2.16 1× 

LB-MBNet-32-r80 95.63 40.84M 27.7 12.8× 

 

From Table 5.2, we can conclude that with the increase of the r, the parameter 

amount and number of calculation operations (FLOPs) of the model also increase 

almost linearly. The accuracy of the model has also increased. When r=6, the 

recognition accuracy of the LB-MBNet-59-r6 Model reached 92.47%, 

LB-MBNet-32-r6 Model reached 92.88%. When r=80, the recognition accuracy of the 

LB-MBNet-59-r80 Model reached 96.06%, LB-MBNet-32-r80 Model reached 95.63%, 

increased 3.59% and 2.75% respectively. 

For the experiment of model pruning, we use the model with the best results and the 

maximum number of parameters as the basic model and obtain the mean value of SE 

optimization weight through 50K samples of the training data set. For different 

optimization scales, we only keep the part with the larger SE optimization weight value 

and pruning the corresponding layers in each block of the model. In our experiment, we 

separately prune the model in segmented and one-shot ways. In the segmented 

experiment, the r-value will gradually drop to the optimal scale we expect. In the 
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one-shot experiment, we use the basic model to directly modify the r-value to the 

optimal scale we expect. Table 5.3 showing the result of model pruning. We use the r80 

model as the basic model for one-shot pruning. Here we transfer the weight of the 

corresponding part to the rebuilt model according to the fixed r. 

 

Table 5.3 Model recognition result with rebuild model from r80 model in CIFAR10. 

Model name 
Accuracy rate 

(%) 
Trainable Params 

FLOPs 

(10
8
) 

Ratio to r6 model 

LB-MBNet-59-r80 96.06 92.99M 59.9 13.1× 

Re-LB-MBNet-59-r40 96.15 46.57M 30.0 6.6× 

Re-LB-MBNet-59-r20 95.76 23.36M 15.0 3.3× 

Re-LB-MBNet-59-r18 95.58 21.03M 13.6 3.0× 

Re-LB-MBNet-59-r10 95.65 11.75M 7.57 1.7× 

Re-LB-MBNet-59-r6 95.24 7.11M 4.57 1× 

Re-LB-MBNet-59-r3 93.97 3.63M 2.33 0.5× 

LB-MBNet-32-r80 95.63 40.84M 27.7 12.8× 

Re-LB-MBNet-32-r6 94.90 3.19M 2.16 1× 

 

From Table 5.3, we can conclude that after the model is pruned, the accuracy rate 

remains at a relatively high level.  

In LB-MBNet-59 Model, compared with the basic r80 model, the accuracy of the r40 

model reaches 96.15%, which is an improvement of 0.09% on the basic model. We 

believe it is because the parameters of the r80 model are relatively high, and the model 

has overfitting. In the case of reducing the half of parameters while maintaining a more 

effective LBC kernel, the results of the r40 model have risen slightly. As we continue to 

reduce the expansion ratio, although the accuracy of the model has dropped slightly, 

compared with the randomly initialized model, the results of the pruning-rebuild model 

are significantly better. When the expansion ratio r is reduced to 6, the model 

parameters and FLOPs return to the level of the basic r6 model we proposed, but the 

rebuilt model result has been improved by 2.77% to 95.24%. At the same time, 

compared with the r80 model at the beginning of pruning, the accuracy rate is only 

reduced by 0.82%, and the parameter amount and FLOPs are reduced by 92% of the r80 

model. This result proves that our proposed method is effective. 

We have further reduced the expansion ratio to r3. At this time, the 

Re-LB-MBNet-59-r3 Model accuracy rate has dropped significantly, reaching 93.97%, 
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which is a 1.27% drop compared to the r6 model. However, compared with the 

randomly initialized r6 model, the parameters and FLOPs of this result decreased by 

50%, but the result increased by 1.50%. We think that because the expansion ratio is too 

small, the generalization ability of the model is not enough, which leads to overfitting at 

93.97%. We believe that because the expansion rate is too small, the generalization 

ability of the model is insufficient, which leads to overfitting, but because the LBC 

kernel is non-trainable, and after the selection by model pruning, the result is better than 

the random initialization.  

In LB-MBNet-32 Model, the accuracy of the rebuilt Re-LB-MBNet-32-r6 model 

reaches 94.90%. Compared with the LB-MBNet-32-r80 model, it has only decreased 

by 0.73%. But compared with the basic LB-MBNet-32-r6 model, it has increased by 

2.02%. Compared with the LB-MBNet-59-r3 model, LB-MBNet-32-r6 has a similar 

level of the result but fewer parameters and FLOPs. 

5.3.3 Compare with State-of-the-art in CIFAR10 

We also compared the results of our proposed method with the state-of-the-art 

methods. At the same time, because many model pruning methods use ResNetV2-56 

[98] as the basic model on the CIFAR10 database for pruning. The baseline model we 

proposed has a similar number of convolutional layers (59 layers). We also compared 

the model pruning method based on ResNetV2-56. But it should be noted that since we 

have applied the SE optimization part in the proposed model, the amount of model 

parameters has also increased. 

Table 5.4 showing the comparison results between our proposed method and 

state-of-the-art methods. 
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Table 5.4 Comparison results with state-of-the-art methods on the CIFAR10 database. 

1 Baseline model of model pruning. 

Methods 
Accuracy 

rate (%) 
Params 

Params 

pruned (%) 

FLOPs 

(10
8
) 

FLOPs 

pruned (%) 

ResNetV2-561[98] 93.01 0.597M - 1.71 - 

Li et al. [99] 93.03 0.516M 13.7 1.24 27.6 

NISP [100] 92.98 0.343M 42.6 0.96 43.6 

DCP-A [101] 93.02 0.177M 70.3 0.90 47.1 

CP [68] 92.01 0.597M 0 0.86 50.0 

AMC [102] 92.11 0.597M 0 0.86 50.0 

GBN-40 [103] 93.34 0.278M 53.5 0.68 60.1 

ResNetV2-1641[98] 94.58 1.73M - 4.97 - 

L1-Sparse[69] 94.92 1.44M 16.8 3.81 23.3 

ResNetV2-1001[98] 95.08 10.48M - 30.3 - 

MobileNetV21[88] 91.93 2.2M - 0.88 - 

AutoSlim-MobileNetV2[104] 93.20 1.5M 31.8 0.88 0 

MobileNetV3[84] 92.97 1.52M - 0.35 - 

LB-MBNet-59-r6
1
 92.35 7.11M - 4.57 - 

Re-LB-MBNet-59-r6 95.24 7.11M 0 4.57 0 

Re-LB-MBNet-59-r3 93.97 3.63M 48.9 2.33 49 

LB-MBNet-32-r6
1
 92.88 3.19M - 2.16 - 

Re-LB-MBNet-32-r6 94.90 3.19M 0 2.16 0 

 

Compared with the state-of-the-art method, although the overall model we proposed 

is not superior in terms of parameters and FLOPs. But first, the result of our method is 

the best. Secondly, the LBC kernel is used in our method, which is a 50% sparse 

convolution kernel. These zero calculations are still counted in FLOPs before using 

further suitable tools. Among the Re-LB-MBNet-59-r6 models, the most similar result 

is the Res-NetV2-1001[98] model, but the model parameters are much less, and the 

FLOPs are only about 15%. Besides, in the Re-LB-MBNet-32-r6 model, the closest 

results are the Res-NetV2-164[98] and L1-Sparse[69] models. Although our models 

have more model parameters and fewer FLOPs. 

Besides, the proposed method uses data-driven SE optimization weights as the 

evaluation of pruning, and the results are obtained based on the results of model 

training, which are more accurate than some manually designed evaluation indicators. 
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The basic model we proposed can evolve towards faster and more miniaturization. It is 

necessary to further optimize the depth and width of the model. However, this has 

already involved the research field of NAS and has not been carried out in this chapter. 

Experimental results have been able to prove the effectiveness of our current proposed 

method. 

5.3.4 Experimental Result in FER2013 

In this chapter, we will evaluate the effect of the LBC layer in the proposed 

baseline model in the FER2013 database and change the value of the expansion ratio r, 

the impact of different model scales on the recognition results is evaluated. The input 

image of the CIFAR10 database is 32×32, while the image in FER2013 is 48×48. We 

also change the input of the model to 48×48. Compared with the image classification 

database, the FER database has a smaller number of samples, and because the images 

are concentrated in the face part, the training of the model is easier to overfit. This is 

especially obvious when the expansion ratio r is increased. We set the number of 

layers of the baseline model to 59 and 32, which correspond to the Repeat Num in 

Table 5.1 as 6 and 3. Table 5.5 showing the model recognition result obtained while 

adjusting the expansion ratio r. We calculated the parameters and FLOPS of the model. 

 

Table 5.5 Model recognition result with different expansion ratio r in FER2013. 

Model name Accuracy rate (%) Trainable Params FLOPs (10
8
) Ratio to r3 model 

LB-MBNet-59-r3 69.56 3.63M 2.33 1× 

LB-MBNet-59-r20 71.79 23.35M 15.0 6.4× 

LB-MBNet-59-r50 70.74 58.17M 37.5 16.1× 

LB-MBNet-59-r100 69.74 116.20M 74.9 32.1× 

LB-MBNet-32-r3 68.78 1.67M 1.12 1× 

LB-MBNet-32-r20 70.17 10.31M 6.99 6.2× 

LB-MBNet-32-r50 70.72 25.58M 17.4 15.5× 

LB-MBNet-32-r100 71.19 51.01M 34.6 30.6× 

 

It can be seen from Table 5.5 that when the model parameters increase to a certain 
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level, the accuracy rate reaches the best, and then as the model parameters increase, 

the accuracy rate will decrease instead. On this basis, we further reduce the expansion 

ratio r for retraining, and the retrained model results are shown in Table 5.6. 

 

Table 5.6 Model recognition result with rebuild model from r100 model in FER2013. 

Model name 
Accuracy rate 

(%) 
Trainable Params 

FLOPs 

(10
8
) 

Ratio to r3 model 

LB-MBNet-59-r3 69.56 3.63M 2.33 1× 

LB-MBNet-59-r20 71.79 23.35M 15.0 6.4× 

Re-LB-MBNet-59-r3 70.46 3.63M 22.5 1× 

Re-LB-MBNet-59-r20 72.15 23.35M 15.0 6.4× 

LB-MBNet-32-r3 68.78 1.67M 1.12 1× 

LB-MBNet-32-r100 71.19 51.01M 34.6 30.6× 

Re-LB-MBNet-32-r3 70.05 1.67M 1.12 1× 

Re-LB-MBNet-32-r20 72.07 10.31M 6.99 6.2× 

 

It can be seen from Table 5.6 that after retraining, the overall accuracy is not only 

better than the model with r=3, but also does not cause overfitting due to too many 

model parameters, and the result is better than the model with r=100. In the 

Re-LB-MBNet-59-r20 model, the recognition accuracy reaches 72.15%, best in our 

overall experiments in FER2013. 

5.4  Summary 

Inspired by LBC and SE optimization, we propose a depthwise LBC and SE 

optimization model structure in this chapter. The importance of the non-trainable LBC 

kernel is obtained through statistical data-driven SE optimization weights. By 

increasing the expansion ratio of the inverse bottleneck structure in the model, a large 

model with higher accuracy but a huge amount of parameters can be obtained through 

training. According to the SE optimization weight, we perform channel-based model 

pruning of the basic model and only retain the depthwise LBC convolution channel that 

contributes more to the result. Our experimental results of image classification on the 

CIFAR-10 database and FER task on FER2013 prove the effectiveness of our proposed 
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method. 

As we envisioned, the method of superimposing the non-trainable layer and the 

trainable layer can reduce the training parameters while allowing the model to be 

normally constructed into an end-to-end structure. But the initialization of the 

non-trainable layer is very important. All parameters in the standard convolutional 

network can be trained, and reasonable parameters can be found through the 

optimization method of the model. However, in a convolution model with non-trainable 

parameters, it is necessary to filter out reasonable parameters through the methods like 

model pruning. In this work, not only the advantages of LBC are maintained, which has 

a sparse and non-trainable binary convolution kernel, and at the same time, more 

reasonable LBC parameters are found through the method of model pruning, the model 

with high recognition accuracy and less of the model parameters is obtained. Compared 

with the traditional structured model pruning method, this work not only optimizes the 

model structure but also optimizes the non-trainable parameters. 

 

 

 

 



 

 

Chapter 6  

Conclusion and Future Work 

6.1  Conclusion 

This thesis focuses on facial expression recognition research and has proposed 

some related methods for perusing more accurate expression prediction. The concrete 

summaries and contributions are displayed as follows: 

1) A multi-stream CNN-RNN cascade network based on the fusion of RGB 

expression sequences and LBP-TOP spatiotemporal features is proposed to 

identify dynamic FER tasks. The experimental results prove that the LBP-TOP 

feature can supplement the features extracted by deep learning, realize 

information enhancement, and make up for the neglected or missing 

information in the basic network. 

2) A real-time FER system is proposed to recognize dynamic FER tasks. Through 

the study of the internal calculation of the depth model, the real-time of the 

overall system is realized. At the same time, other processing parts of the FER 

system were discussed. 

3) A static image recognition model based on depthwise LBC and SE blocks is 

proposed, and the model pruning method is used to optimize the parameters 

and calculations of the model in the part of training and inference. While 

maintaining good recognition accuracy, the speed of reasoning is greatly 

improved. The experiment has obtained good results in both the image 

classification task and the FER task, which proves the effectiveness of the 
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proposed method. 

6.2  Future Work 

There is still much room for improvement in our work. In the dynamic FER task, 

we only studied the CNN-RNN cascade model. In the process of facial expression 

changes, appropriate handcrafted features can supplement the deep network. This 

thesis has conducted some works, but not completely. And 3D CNN needs to be 

improved in the dynamic FER task to meet the requirements of the real-time system. 

Future work will try to explore more effective methods to integrate handcrafted 

features, cascaded networks, and 3D CNN, and study better fusion and extraction 

methods for spatial and temporal features in dynamic FER. In our research on model 

architecture and lightweight models, it is also limited to the recognition of static 

images. For example, the LBC module also has a lot of room for expansion towards 

3D convolution. Untrainable convolution kernels and normal convolutional networks 

can also be merged by more free methods.  

Furthermore, FER research will also develop into multi-label, more complex 

recognition targets. Emotion recognition tasks will also further integrate multi-modal 

research such as facial expressions, speech, and text, to sort and recognize human 

emotions from a more macro perspective, can form new research directions 
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