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Abstract
This research investigates forecasting of wind speed and direction based

on deep learning to create an accurate forecasting model that can support

the growth of wind power generation. The proposed forecasting model

is composed of three dimensional convolutional neural network (3DCNN),

deep convolutional long short-term memory (DCLSTM), two dimensional

convolutional neural network (2DCNN) which called 3CNN-CLSTM-2CNN

model. The proposed forecasting model combines the merit of convolutional

neural network (CNN) and convolutional long short-term memory (CLSTM)

for improving forecasting accuracy of wind speed and direction. The input of

the forecasting model is time sequence images of wind speed and direction

that represented an image on two dimensional coordinate (2D-coordinate).

The actual observed data are taken from Automated Meteorological Data Ac-

quisition System (AMeDAS), Japan. The proposed model forecasts one hour

ahead and the forecasting accuracy of the proposed model was evaluated by

the root mean square error (RMSE) between actual observed data and fore-

casted data. For verifying the effectiveness of the proposed model in com-

parison to fully connected long short-term memory (FC-LSTM), DCLSTM,

3CNN-CLSTM (3DCNN combines DCLSTM). It was confirmed that 3CNN-

CLSTM-2CNN model is the strongest performance in all models. Besides

that, 3CNN-CLSTM-2CNN model is compared in four cities (Tokushima,

Takamatsu, Hiketa, and Choshi) to confirm an applicability to different char-

acteristics of wind conditions. 3CNN-CLSTM-2CNN model is compared in

four cities was evaluated by RMSE, mean absolute error (MAE), and mean

absolute percentage error (MAPE) between forecasted data and actual ob-

served data.
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CHAPTER 1

Introduction

1.1 Overview

Along with increasing population and advancement economy in the world, so the amount

of energy demand more growth that it consequences all countries facing a problem to suit

energy demand and in 2018, global energy consumption dependence on fossil fuels still large

at 79.9% [1]. Depletion of fossil fuels, many countries use alternative energy that is renew-

able energy to reduce dependency on fossil fuels so that can diminish poor effect on health

risks, global warming or greenhouse gases effect due to methane (CH4) and carbon dioxide

(CO2), and environmental pollution [2, 3]. Renewable energy can produce global electricity

at 27.3% by the end of 2019 that is composed of hydropower, wind power, solar photovoltaic

(PV), bio-power, geothermal, concentrated solar power (CSP), and ocean power is shown in

Figure 1.1 [1]. The goal of renewable energy sources can contribute to supply energy at 47.7

% in 2040 [3]. Renewable energy sources potentially provide energy almost zero-emissions

of greenhouse gases and air pollutants [4, 5].

Wind power, among kinds of renewable energy that has benefits in low emission of

CO2, clean, green and low cost of electrical power generation. Wind power has rapidly at-

tracted attention as alternative electrical power generation and the global fastest-growing of

renewable energy. From Figure 1.1, wind power can contribute to global electricity produc-

tion by 5.9%. The trend of global installed wind power capacity is 650.76 GW by the end

of 2019 and has significantly increased every year (2005 - 2019) shown in Figure 1.2 [6].

Likewise in Japan, the trend installed wind power capacity is 4.38 GW by the end of 2019

and increasing significantly rather than one year before that is 3.86 GW that be increased

11.87% [7]. Figure 1.3 indicates ten top countries of wind cumulative installed capacity in

1
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Figure 1.1: Global electricity production, end 2019

Figure 1.2: Global installed wind power capacity 2005 - 2019

2019 [8]. The greatest percentage country of wind installed was China. The second position

was the United States that same percentage as the rest of the world. Japan be included in the

rest of the world with a percentage of 0.7% (4.38 GW) in 2019.

1.2 Problem statement

Each renewable energy has the problem to increase electricity production included wind

power generation. Wind power generation has the main problem that widely outputs fluc-

tuation due to change of wind direction and direction so that difficult for controlling the

production of wind power generation. Cause this problem, the electrical company maintains
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Figure 1.3: Ten top countries of wind cumulative installed capacity in 2019

electrical supply by conventional power generation. Therefore, to solve this problem so that

required accurate forecasting of wind speed and direction for reducing uncertainty generated

a sum of energy in the future. Moreover, this information can offer to the electrical com-

pany is useful for organizing thermal power plant output and stabilizing the electrical power

system.

The forecasting wind method has three kinds: physical method, statistical method, and

artificial intelligence (AI) method. Physical methods such as computational fluid dynam-

ics (CFD), numerical weather prediction (NWP), mesoscale model (MSM) is appropriate

to middle term, long term, large scale area forecast wind, can get an accurate forecast wind

but need full information about a physical factor like temperature, surface roughness, terrain,

weather, hub height, atmospheric data; high computational cost; an impossible account to lo-

cal topography; and limited spatial and temporal resolution [9–11]. Statistical methods such

as clustering analysis, Kringing interpolation, time-series analysis, Von Mises distribution,

auto-regressive integral moving average (ARIMA) use the relationship between observed

data and forecasted data to represent model parameter, finding a mathematical model for

expressing time series, great perform for learning linear features but limited for learning

non-linear features [9, 12–15]. AI method such as support vector regressor (SVR), neural

network (NN), adaptive neural fuzzy inference system (ANFIS), fuzzy logic are good per-

forms for learning complex non-linear features, forecast the future of wind sequence, and

to discover the relationship between output data and input data non-statistically. [13–16].
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Consequently, this doctoral thesis proposes a forecasting model of wind speed and direction

utilize deep NN (DNN) by 3CNN-CLSTM-2CNN. In hopefulness, the proposed forecasting

model can improve forecasting accuracy.

1.3 Research objectives

Each research has to vary objectives depends on object research. This research has

objectives as follows:

1. For determining and proposing an accurate forecasting model to wind speed and direction

The doctoral thesis proposes a forecasting model of wind speed and direction utilize

AI method that is DNN by 3CNN-CLSTM-2CNN. 3CNN-CLSTM-2CNN model combines

three dimensional convolutional neural network (3DCNN), deep convolutional long short-

term memory (DCLSTM), two dimensional convolutional neural network (2DCNN). The

function of 3DCNN and 2DCNN for extracting spatial and temporal features. The function

of CLSTM for extracting spatio-temporal features and analyzing time sequence image data.

The input of the forecasting model utilizes wind speed and direction are converted as an

image on two dimensional coordinate (2D - coordinate).

2. For improving forecasting accuracy

For confirming improving forecasting accuracy and the effectiveness of the forecasting

model is evaluated by the root mean square error (RMSE) between actual observed data and

forecasted data. The 3CNN-CLSTM-2CNN model is simulated several times every season

in one year that is characteristic of Japanese climate and the efficiency of the proposed model

is evaluated by compared fully connected long short-term memory (FC-LSTM), DCLSTM,

and 3CNN-CLSTM (3DCNN combines CLSTM). 3CNN-CLSTM-2CNN model is com-

pared in four cities was evaluated by RMSE, mean absolute error (MAE), and mean absolute

percentage error (MAPE) between forecasted data and actual observed data.

1.4 Research scope and limitations

There are three main methods for forecasting wind such as explained in section 1.2. This

research focused on forecasting wind speed and direction utilize the AI method that is the

DNN model. The research limitations as follows:

1. The input of the forecasting model only utilizes wind speed and direction are converted
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as an image on 2D - coordinate.

2. Data of wind speed and direction are taken from Automated Meteorological Data Acqui-

sition System (AMeDAS), Japan at one hour interval.

3. The forecasting period only uses one hour ahead in forecasting model of wind speed and

direction that forecasting point in Tokushima city, Japan.

Besides, 3CNN-CLSTM-2CNN model applied to other cities that are Takamatsu, Hiketa,

and Choshi cities for confirming proposed model can handle other cities that have different

characteristics from Tokushima city.

4. The forecasting program only uses python with framework Keras and Tensorflow as Back-

end.

1.5 Structure of doctoral thesis

This research proposed a novel forecasting model for wind speed and direction by DNN.

This doctoral thesis was composed of six chapters.

Chapter 1 describes the introduction of the proposed forecasting model includes an overview,

problem statement, objectives, research scope, research limitation, and structure of the doc-

toral thesis.

Chapter 2 explains the fundamentals of the neural network and activation function used to

compose the proposed forecasting model. The Fundamentals of NN be composed of multi-

layer perceptron (MLP), recurrent neural network (RNN), long short-term memory (LSTM),

convolutional neural network (CNN), and convolutional long short-term memory (CLSTM).

The activation function is composed of linear and non-linear activation functions.

Chapter 3 explains the proposed forecasting model of wind speed and direction is composed

of an explanation of wind speed and direction; dataset; learning parameters and procedures;

and model configuration. Model configuration presents FC-LSTM model, DCLSTM model,

3CNN-CLSTM model, and 3CNN-CLSTM-2CNN model.

Chapter 4 explains the forecasting accuracy of wind speed and direction using the 3CNN-

CLSTM-2CNN model. Furthermore, the effectiveness 3CNN-CLSTM-2CNN model is eval-
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uated by comparison FC-LSTM, DCLSTM, and 3CNN-CLSTM models. The forecasting

period uses one hour ahead in Tokushima city, Japan. This chapter presents mathematical

model to get forecasting results, forecasting result of vX and vY , and forecasting results of

wind speed and direction.

Chapter 5 explains regional dedendence of 3CNN-CLSTM-2CNN model in four cities that

are Tokushima, Takamatsu, Hiketa, and Choshi cities for confirming the proposed model

can handle and applicability to different characteristics of wind conditions. This chapter is

composed of wind speed and direction condition in four cities, forecasting results of vX and

vY in four cities, and forecasting results of wind speed and direction in four cities.

Chapter 6 explains conclusions the content of this study which was conducted.



CHAPTER 2

Fundamentals

This chapter explains the general theory about a neural network (NN) that are used

in the forecasting model and activation function. Firstly, section 2.1 introduces multilayer

perceptron (MLP). After that, recurrent neural network (RNN), long short-term memory

(LSTM), convolutional neural network (CNN), and convolutional long short-term memory

(CLSTM) explained in Sections 2.2 - 2.5. The end of this chapter explains the general theory

of activation function. In this section presents linear and non-linear activation functions.

2.1 Multilayer perceptron

Neural network (NN) is a computing model with a simple structure, small neuron net-

work, and interconnected each unit with weights. Multilayer perceptron (MLP) is the basic

form of NN. Basically, MLP consist of the input layer, middle layers, and output layer as

shown in Figure 2.1 [17]. The number of neurons depends on the given problem. The mid-

dle layer can be called the hidden layer that can any number of layer, neuron, and depth.

MLP arranges neurons in every layer and one layer of neurons is connected to neurons

in the previous layer by feed-forward. Every neuron in a layer is fully connected to neurons

in the next layer. Each layer of MLP connected weights and can with or without bias. From

Figure 2.1, MLP uses bias that each weight and bias updated by backpropagation (BP). MLP

can be matching input data to output data that one input one output and multiple inputs

multiple outputs. Besides that, MLP can apply to one input multiple outputs and multiple

7
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Figure 2.1: Basic structure of MLP

inputs one output. The mathematical model of MLP as follows [2, 18],

h1
p = σ

 M∑
q=1

w(1)
pqX(1)

q + b1
p

 (2.1)

hk
p = σ

 M∑
q=1

w(k)
pqh(k−1)

q + bk
p

 (2.2)

op = σ

 M∑
q=1

w(n)
pqh(n−1)

q + bn
p

 (2.3)

where M is number of input data, w is weight, X is input, h is hidden, b is bias, o is output and

σ is activation function. In MLP, the activation function uses non-linear activation function.

2.2 Recurrent neural network

Recurrent neural network (RNN) is a type of NN which can resolve time-series data.

RNN increases the ability of MLP by adding a memory unit to save previous input and output

that used to current computation. RNN has three layers consist of the input layer (X), hidden

layer (h), and output layer (o) is shown in Figure 2.2. From Figure 2.2, the hidden layer gets



2.3　 LONG SHORT-TERM MEMORY 9

Figure 2.2: Structure of RNN

input from the input layer and the hidden layer from the previous time step. Mathematical

calculation of RNN as follows [19, 20],

ht = σ(wXh · Xt + whh · ht−1 + bh) (2.4)

ot = σ(who · ht + bh) (2.5)

where w means weight, σ means activation function and b means bias.

RNN can apply to some structures that are one input to one output, one input to many

outputs, many inputs to one output, and many inputs to many outputs. RNN can be applied

in action recognition, data-driven traffic, vehicle trajectory, etc [19, 21]. RNN has primary

problem as regards vanishing gradient and LSTM is used to resolve it problem.

2.3 Long short-term memory

Long short-term memory (LSTM) is a advance type of RNN which resolve vanishing

gradient problem effectively caused LSTM trained by BP algorithm, improve capability of

RNN, run faster than RNN, make easy to converge, has gates and cell state to control infor-

mation flow [22,23]. LSTM is stable and powerful to learns long range dependency and can

handles short and long-term dependencies effectively that applied by three gates: input gate

for controlling admission of information, forget gate for controlling retain of information,

and output gate for controlling output of information [5, 18, 24].

LSTM is famous choice to learn sequence tasks and compatible for end to end learning.

LSTM can be applied to scene label [25], wind prediction [26], medical diagnostic [27],

speech recognition [28], caption generation [29], etc. Figure 2.3 shows core structure of
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Figure 2.3: Core structure of LSTM

LSTM that is composed of cell state (c), hidden state (h), input gates (i), forget gate (g),

output gate (o), input data (X), and activation function (σ) [18, 24]. Typically, the equation

of LSTM as shown in Eqs. 2.6 – 2.10 [30, 31],

it = σ(wXi · Xt + whi · ht−1 + wci ◦ ct−1 + bi) (2.6)

ct = f t ◦ ct−1 + it ◦ tanh(wXc · Xt + whc · ht−1 + bc) (2.7)

f t = σ(wX f · Xt + wh f · ht−1 + wc f ◦ ct−1 + b f ) (2.8)

ot = σ(wXo · Xt + who · ht−1 + wco ◦ ct + bo) (2.9)

ht = ot ◦ tanh(ct) (2.10)

where b means bias, w means weight and ◦ means hadamard product. Activation function

uses non-linear activation function in LSTM.

2.4 Convolutional neural network

Convolutional neural network (CNN) is a type of NN based on feed forward neural net-

work (FFNN). CNN is efficient and suitable to applied and process some dimensions: 1D

(sound, waveform), 2D (images), 3D (video), 4D (multi video) [32–36]. CNN is most fa-

mous to learns image and video that includes scaling, rotation, translation. CNN can resolve

many computer vision problems: object detection, semantic segmentation, image generation,

etc [37, 38]. The kind of CNN architecture is composed of LeNet, AlexNet, ZFNet (Clar-

ifai), network using blocks (VGG Net), network in network (NiN), network with parallel
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concatenations (GoogleNet), residual networks (ResNet), FractalNet and densely connected

networks (DenseNet) [21, 39].

The simple architecture of CNN is composed of input, convolutional layer, pooling

layer, fully connected (FC) layer, and output as shown in Figure 2.4 [21]. The process of

extract feature maps repeated several times every step iteration and gets results in multiple

feature maps in every convolutional layer. Every layer in CNN uses the kernel for holding

randomly initialize parameters. In two dimensional, the kernel has height and width repre-

sented kernel size. Each convolutional layer uses non-linear activation function. The k-th

convolutional layer as follows [18] :

hk
pq = σ((wk ∗ X)pq + bk) (2.11)

where ′′∗′′ means convolutional operation, w means weight of the filter, X means input, σ

is activation function, and b is the bias of the filter. Activation function uses non-linear

activation function in CNN. The pooling layer has two kinds that narrowed and enlarged

of input size and works with the kernel. The pooling layer to narrow of input size has two

kinds that are max-pooling layer and average pooling layer as shown in Figure 2.5. The

pooling layer to enlarge of input size is called the up-sampling layer as shown in Figure

2.6 [21,40]. FC layer is connected to every neuron with the previous layer and the advantage

to take high-level feature maps as input and return output in the shape of the classification

vector. Convolutional and FC layers have learnable parameters such as bias and weight but

the pooling layer didn’t have it.

The other hyperparameters in convolution are padding and stride. Padding has three

models: full, same, and valid paddings. The Full padding is used to increase dimensional

of output but infrequently used in CNN. The same padding is used to get the same size of

input and output and also most commonly used in CNN. The valid padding is computing

Figure 2.4: Simple structure of CNN
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Figure 2.5: Max-pooling and average pooling operations

Figure 2.6: Up-sampling operations

convolution without padding. Stride is used to modifying the movement of an image or

video. For example, the stride of 1 that meaning the filter will move one unit or pixel at a

time. Figure 2.7 shows illustrates three models of padding with 5x5 size of the input, 3x3

size of the kernel, and stride of 1. In the same padding, the output size of convolution can

determine by [19],

o =
X + 2ps − k f

s
+ 1 (2.12)

where o means output size, X means input size, ps means padding, k f means size of filter

(kernel), and s means stride.
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(a) Full padding (b) Same padding (c) Valid padding

Figure 2.7: Padding operations

2.5 Convolutional long short-term memory

Convolutional long short-term memory (CLSTM) combines advantages CNN and LSTM

for solving image sequences which improve the LSTM model using convolutional structure

in input-to-state transition and state-to-state transition as shown in Figure 2.8. Similarly

LSTM unit, CLSTM unit has cell state (c), hidden state (h), input gates (i), forget gate (g),

output gate (o), input data (X), activation function (σ) and a set of weights (w) for weighted

connections between input-to-state, state-to-state, and state-to-output. Activation function

uses non-linear activation function in CLSTM. The CLSTM can learn and resolve sequence

to sequence process, produce the same size of input and output images, and learn spatio-

temporal features.

The CLSTM can receive feature maps arranged five dimensions: number of samples

data (N), time-series (ts), height (H), width (W), and the number of channels (C). The

product operation ′′·′′ in equation of LSTM is replaced by convolutional operation ′′∗′′ in

equation of CLSTM. The equation of CLSTM as shown in Eqs. 2.13 – 2.17 [23, 31].

it = σ(wXi ∗ Xt + whi ∗ ht−1 + wci ◦ ct−1 + bi) (2.13)
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Figure 2.8: Core structure of CLSTM

f t = σ(wX f ∗ Xt + wh f ∗ ht−1 + wc f ◦ ct−1 + b f ) (2.14)

ct = f t ◦ ct−1 + it ◦ tanh(wXc ∗ Xt + whc ∗ ht−1 + bc) (2.15)

ot = σ(wXo ∗ Xt + who ∗ ht−1 + wco ◦ ct + bo) (2.16)

ht = ot ◦ tanh(ct) (2.17)

CLSTM can be applied to wind prediction [5], rainfall intensity [23], solar irradiation [41],

text recognition [42], gesture recognition [43], etc.

2.6 Activation function

Basically, the activation function has two kinds: linear and non-linear activation func-

tions. Linear activation function is used for preserving a constant and non-linear activation

function is used for producing more variation that uses NN.

2.6.1 Linear activation function

The function of a linear activation function is similar to a straight line that activation

comparable to the input and the mathematical model as follows,

f (Xr) = kXr (2.18)

where Xr means input of activation function, k means fixed constant, and f (Xr) means appro-

priate output of the input. If all layers use linear activation function regardless the number
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Figure 2.9: Linear activation function

of layers, so all network is equal to a single layer with a linear activation function [44]. The

curve of linear activation function as shown in Figure 2.9.

2.6.2 Non-linear activation function

Non-linear functions are more used and make it easy for adapting various data and to

distinguish among output. Common non-linear functions that often used consist of sigmoid,

hyperbolic tangent function (tanh), rectified linear unit (ReLU), and Leaky rectified linear

unit (Leaky ReLU).

The sigmoid function is used in NN. The equation of sigmoid function as follows,

f (Xr) =
1

1 + e−Xr
(2.19)

where f (Xr) is appropriate output of the input, Xr is input of activation function, and k is

fixed constant. Characteristic of sigmoid function can consistent with neurons synapsis in

neurology, derivative can easy to get but now, rarely used due to it has characteristic of soft

saturability in a sigmoid curve. This meaning, a slope of the graph incline to zero if the

input is very small or very big. When the slope of function approaches zero, the gradient

continued to the underlying network to be very small so makes network parameter difficult

to be effectively trained [44, 45]. Figure 2.10 shows curve of sigmoid function.

Tanh function is used in NN and updated from the sigmoid function. The equation of

tanh function as follows,

f (Xr) =
1 − e−2Xr

1 + e−2Xr
(2.20)
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Figure 2.10: Sigmoid function

Figure 2.11: Tanh function

The main merit of tanh function produces a symmetric function zero centered output. Perfor-

mance of tanh function better training than sigmoid function in multilayer neural networks

and convergence rate is higher than sigmoid function but has a gradient diffusion problem.

The limitation of tanh function so has further research and get ReLU function [44–46]. Fig-

ure 2.11 shows curve of tanh function.

ReLU function is a popular activation function in NN. The equation of ReLU function

as follows,

f (Xr) = max(0, Xr)

Xp, Xr > 0

0, Xr < 0
(2.21)

ReLU function is faster computation and learning than sigmoid and tanh functions. The
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Figure 2.12: ReLU function

Figure 2.13: Leaky ReLU function

limitation of ReLU function is sometimes brittle during training that effect activation of

weight update is off so gives zero activation or is called dying ReLU. For resolving the

limitation ReLU function that uses Leaky ReLU [44–46]. The curve of ReLU function as

shown in Figure 2.12.

Leaky ReLU function has a small negative slope to keep and sustain weight update

during training process. The equation of Leaky ReLU function as follows:

f (Xr) =

a · Xr, Xr < 0

Xr, Xr ≥ 0
(2.22)

From Eq. 2.22, a parameter is used to resolve dying ReLU so gradient didn’t get zero during
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training time [44–46]. The curve of Leaky ReLU function as shown in Figure 2.13.



CHAPTER 3

Forecasting Model of Wind Speed and Direction

This chapter explains the proposed forecasting model that firstly explains the definition

of wind speed and direction in section 3.1. Afterward, section 3.2 presents the dataset. The

dataset consists of training data, validation data, and test data. In section 3.2, the process

to get the input image is explained. learning parameters and procedures explains in section

3.3. The last section in this chapter explains forecasting models. The forecasting models be

composed of FC-LSTM, DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN models.

3.1 Wind speed and direction

The wind speed and direction (wind information) are taken from AMeDAS, Japan at

one hour interval in Tokushima city, Japan. besides that, this research applies the forecasting

model to other cities in Japan which are Takamatsu, Hiketa, Choshi. It meant to verify

the forecasting model can suitable or not for other cities that will investigate more deeply

in section 5. Wind direction expressed in 16 direction as shown in Figure 3.1. The wind

information can be represented on 2D-coordinate system by graphic expression as shown in

Figure 3.2. The wind information expressed vX(t) and vY(t) on 2D-coordinate system, that

X and Y-axis accord east (E) - west (W) and north (N) - south (S) directions. From Figure

3.2(b), mathematical model of wind vector components vX(t) and vY(t) are calculated by

vX(t) = v(t) · cosφ(t) (3.1)

vY(t) = v(t) · sinφ(t) (3.2)

where v(t) is wind speed [m/s] and φ(t) is wind direction [◦]. The proposed model forecasts

wind information one hour ahead by considering the capability to pumped-storage hydro-

electricity and adapt thermal power plant.

19
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Figure 3.1: Explanation of wind direction

Figure 3.2: Wind speed and direction on 2D-coordinate system (a) Vector diagram (b) Ex-

planation of component v(t)

3.2 Dataset

Wind information is converted to vX(t) and vY(t) by Eqs. 3.1 and 3.2 and also plotted

to image as shown in Figure 3.2(b). The image is used to input and output data of the

forecasting model and it sizes are set to 128 × 128 pixels. From the training, validation, and

test data, the maximum of wind speed is used to plotting scale customized the size of the

input image and plotted to pX(t) and pY(t) using python imaging library (PIL) by

pX(t) = 64 +
64

vmax
vX(t) (3.3)

pY(t) = 64 − 64
vmax

vY(t) (3.4)

where 64 means half of image size and vmax means maximum of wind speed. The value of

vmax for Tokushima, Takamatsu, and Hiketa cities are 20 m/s. The value of vmax for Choshi

city is 30 m/s.

In order for expressing a change of wind information is used six points at time p(t-5) to

p(t) which is connected and plotted by line that describes one hour data as shown in Figure
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Figure 3.3: Process to get input image

3.3. The point of current data in the image is plotted biggest point for making it different

and expressing time-series. In addition, the time series image uses nine images from m(t-8)

to m(t) that expressing the change transition of the wind vector. This paper is used wind

information for four years: training data uses two years, validation data uses one year and

test data uses one year as shown in Table 3.1.

Table 3.1: Dataset of period

Dataset Period

Training Dec. 2015 - Nov. 2017

Validation Dec. 2017 - Nov. 2018

Test Dec. 2018 - Nov. 2019

3.3 Learning parameters and procedures

The forecasting model is implemented in python with framework Keras and Tensorflow

as backend. Learning parameters of the proposed model as shown in Tabel 3.2. The process

of training and validation were iterated 20 epochs. For training of the model using root mean

square propagation (RMSProp) optimizer with learning rate (lr) and decay factor (ρ) param-

eters. Leaky rectified linear unit (Leaky ReLU) applied as an activation function to speed up
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Table 3.2: Learning parameters of proposed models

Description Data

Optimizer RMSProp
lr 0.001

ρ 0.9

Activation function Leaky ReLU

Epoch 20

Batch size 4

training time and resolve dying ReLU which has a non-zero slope part. The performance of

the proposed forecasting model was evaluated by RMSE that defined as follows,

RMS E =

√√
1
N

N∑
t=1

(Yt − Ŷt)2 (3.5)

where Yt means actual observed data, Ŷt means forecasted data, and N means the number of

learning data.

3.4 Forecasting model

This paper proposed a forecasting model is combined the 3DCNN, CLSTM, and 2DCNN

models that can be called the 3CNN-CLSTM-2CNN model. To verify the effectiveness of

the proposed model was compared FC-LSTM, DCLSTM, and 3CNN-CLSTM models.

3.4.1 FC-LSTM

Fully connected LSTM (FC-LSTM) is a type of LSTM model which uses several LSTM

layers was adjusted with the FC layer for easy learning temporal features [41]. FC-LSTM

is powerful to learn temporal relationship that effect loss spatial information. All gates and

state of FC-LSTM uses one dimensional (1D) vector [18, 23, 41]. FC-LSTM model consists

of an encoder and forecaster network with LSTM units that composed of five LSTM layers

respectively and the last process is used FC layer to produce forecasting results. Configura-

tion of FC-LSTM model shown in Figure 3.4.

Figure 3.5 shows the operation of the encoder and forecaster with the LSTM unit that
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Figure 3.4: Configuration of FC-LSTM model

Figure 3.5: Operation of the encoder and forecaster network in FC-LSTM model

indicated the process from the input layer to the LSTM layer. Firstly, the input sequence was

read in the encoder network. Subsequent to the end time-step of input was finishing read, cell

state (c) and the hidden state (h) of the LSTM layer in the encoder network were taken to the

cell state and the hidden state of the LSTM layer as input in the forecaster network to forecast

output sequence. LSTM layers use 32 cells. The time-series of LSTM model is set to nine

is the same number of time-series in DCLSTM, 3CNN-CLSTM, and 3CNN-CLSTM-2CNN

models.

3.4.2 DCLSTM

CLSTM model combines CNN and LSTM model to improve LSTM model and to re-

solve image sequence. CLSTM can be learning spatio-temporal features and learning pro-

cess sequence to sequence images. This section is used deep convolutional long short-term

memory (DCLSTM) model that developed the CLSTM model. Input and output images of

DCLSTM model are five dimensions: the number of sample (N), time-series (ts), height (H),

width (W), and channel (C). DCLSTM model has five CLSTM layers as shown in Figure

3.6.

DCLSTM model is composed of an encoder and forecaster network. The encoder net-

work consists of a Conv layer and five CLSTM layers. The forecaster network consists of
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Figure 3.6: Configuration of DCLSTM model

five CLSTM layers and a Deconv layer. The stride in Conv layer and Deconv layer are set

to two. The kernel size of Conv layer, Deconv layer, CLSTM layer use five. The channel

size of the Conv layer is 16. The channel size of the CLSTM layers are 32. Fore inputs

use zero arrays in the forecaster network. The last state of the CLSTM layer in the encoder

network is copied to the state of the CLSTM layer in the forecaster network. The size of

input and output images in DCLSTM are the same. In the forecaster network, all states of

CLSTM concatenate become the input of the Deconv layer that uses channel size one to get

the forecasting result.

3.4.3 3CNN-CLSTM

3CNN-CLSTM model combines 3DCNN and DCLSTM models. 3CNN-CLSTM model

can improve DCLSTM that combines the advantage of CNN and CLSTM: decrease training

time, easier for training, improve forecasting accuracy [5]. Cause 3CNN-CLSTM model can

easier for training: the height and weight of feature maps are downsampled use max-pooling

layer till can easy for training in CLSTM layer and to get the same size of output and input

images uses up-sampling layer. Input and output images of 3CNN-CLSTM model are five

dimensions: N, ts, H, W, and C.

Configuration of 3CNN-CLSTM model as shown in Figure 3.7 and composed of en-
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coder network and forecaster network. The encoder network is composed of three Conv

layers, three max-pooling layers, and five CLSTM layers which H and W of feature maps

can be narrowed using the max-pooling layer. The forecaster network is composed of three

Deconv layers, three up-sampling layers, and five CLSTM layers which H and W of feature

maps can be enlarged using the up-sampling layer. The channel size of the Conv layers are

16, 16, 32 respectively. The channel size of the Deconv layers are 32, 16, 1 respectively. The

channel size of the CLSTM layers are 32. The kernel size of CLSTM, Conv, Deconv layers

are set to five.

In the forecaster network, fore input uses zero arrays. In the encoder network, the last

state of the CLSTM layer was copied to the CLSTM layer in the forecaster network. In the

forecaster network, all states CLSTM layers concatenate to input of Deconv layer and the

last Deconv layer uses one for getting forecasting results.

3.4.4 3CNN-CLSTM-2CNN

3CNN-CLSTM-2CNN model combines 3DCNN, DCLSTM, and 2DCNN models. 3CNN-

CLSTM-2CNN model can improve DCLSTM and 3CNN-CLSTM models that combine the

advantage of 3DCNN, DCLSTM, and 2DCNN: decrease training time, easier for training,

improve forecasting accuracy. Cause 3CNN-CLSTM-2CNN model can easier for training

than DCLSTM and 3CNN-CLSTM: the process of enlarged size of output image uses 2D

that four dimensions (N, H, W, and C). Input image of 3CNN-CLSTM-2CNN model is five

dimensions: N, ts, H, W, and C. Configuration of 3CNN-CLSTM-2CNN model as shown

in Figure 3.8. Difference 3CNN-CLSTM and 3CNN-CLSTM-2CNN models is Deconv and

up-sampling layers in 3CNN-CLSTM model uses 3D while 3CNN-CLSTM-2CNN model

uses 2D.

3CNN-CLSTM-2CNN model consists of encoder network and forecaster network. The

encoder network is composed of three Conv layers, three max-pooling layers, and five

CLSTM layers which H and W of feature maps downsampled using the max-pooling layer

and Conv layer. The forecaster network is composed of three Deconv layers, three up-

sampling layers, and five CLSTM layers which H and W of feature maps upsampled using

the up-sampling layer and Deconv layer. The channel size of the Conv layers are 16, 16, 32

respectively. The channel size of the Deconv layers are 32, 16, 1 respectively. The channel

size of the CLSTM layers are 32. The kernel size of CLSTM, Conv, Deconv layers are set to

five.



26 CHAPTER 3 FORECASTING MODEL OF WIND SPEED AND DIRECTION

Figure 3.7: Configuration of 3CNN-CLSTM model

Fore input uses zero arrays in the forecaster network. The last state of the CLSTM layer

in encoder network layer was copied to the CLSTM layer in the forecaster network. all states

CLSTM layers in the forecaster network concatenate as the input of Deconv layer and the

last Deconv layer uses one for getting forecasting results.
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Figure 3.8: Configuration of 3CNN-CLSTM-2CNN model





CHAPTER 4

Forecasting Accuracy

of Wind Speed and Direction

This chapter explains the forecasting results of wind speed and direction and also dis-

cusses the efficiency of the proposed forecasting model in comparison to other models. Sec-

tion 4.1 explains the mathematical model to get the forecasting results. Forecasting results of

vX(t) and vY(t) are explained in section 4.2. Then, section 4.3 explains the forecasting results

of wind speed and direction. In this chapter, the forecasting point in Tokushima city, Japan.

4.1 Mathematical model to get forecasting results

Forecasting results of wind speed and direction are taken from a forecasting image that

calculates a center of gravity (CoG) the largest pixel cluster with a value of zero pixels. The

forecasting position p̂X(t) and p̂Y(t) are converted to v̂X(t) and v̂Y(t) by substracting center

position of an image (64, 64) as defined by,

v̂X(t) =
vmax

64
( p̂X(t) − 64) (4.1)

v̂Y(t) =
vmax

64
(64 − p̂Y(t)) (4.2)

where vmax is the maximum of wind speed, v̂X(t) and v̂Y(t) are wind vector of v̂(t) at X and Y

components. In this chapter, the forecasting model is used in Tokushima city and the value

of vmax is 20 m/s. The forecasting results of wind speed and direction are calculated from

v̂X(t) and v̂Y(t) is given by,

v̂(t) =
√

v̂2
X(t) + v̂2

Y(t) (4.3)

29
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Table 4.1: RMSE of vX for each month

Description RMSE [m/s]

FC-LSTM DCLSTM 3CNN-CLSTM 3CNN-CLSTM-2CNN

Dec. 1.5719 1.2276 1.0840 1.0559

Jan. 1.4376 1.1949 1.0849 1.0094

Feb. 1.4329 1.3186 1.2217 1.1490

Mar. 1.5855 1.3864 1.3274 1.2487

Apr. 1.5400 1.3319 1.1749 1.0887

May 1.4498 1.3184 1.1365 1.0776

Jun. 1.4647 1.3623 1.2022 1.1014

Jul. 1.3852 1.3732 1.1503 1.1066

Aug. 1.7351 1.3056 1.1450 1.0750

Sep. 1.4489 1.3168 1.1555 1.0577

Oct. 1.4131 1.2287 1.0888 1.0201

Nov. 1.3662 1.1535 1.0637 0.9924

Total 1.4900 1.2950 1.1547 1.0836

φ̂(t) = tan−1
(
v̂Y(t)
v̂X(t)

)
(4.4)

where v̂(t) means forecasting wind speed [m/s], and φ̂(t) means forecasting wind direction

[◦].

4.2 Forecasting results of vX and vY

The target forecasting results are short-term time that one hour ahead and evaluated by

RMSE between actual observed data and forecasted data. Before this research analyzes wind

speed and direction, it analyzes forecasting results of vX and vY to all models. The forecasting

result of vX(t) and vY(t) are obtained Eqs. 4.1 and 4.2. Figures 4.1 - 4.4 show the forecasted

and observed vX and vY for five days on Oct., 1-5, 2019. The delay in FC-LSTM model can

reduced effectively uses DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN models. The

forecasting result of vX and vY by 3CNN-CLSTM-2CNN is approaching observed data rather

than other models that it confirms the best forecasting model.

Forecasting error (RMSE) vX and vY of each forecasting model from Dec. 2018 – Nov.

2019 is shown in Table 4.1 and 4.2.
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(a) vX

(b) vY

Figure 4.1: Forecasting result of vX(t) and vY(t) of FC-LSTM model
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(a) vX

(b) vY

Figure 4.2: Forecasting result of vX(t) and vY(t) of DCLSTM model
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(a) vX

(b) vY

Figure 4.3: Forecasting result of vX(t) and vY(t) of 3CNN-CLSTM model
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(a) vX

(b) vY

Figure 4.4: Forecasting result of vX(t) and vY(t) of 3CNN-CLSTM-2CNN model

FC-LSTM model is the lowest forecasting accuracy both in vX and vY . DCLSTM, 3CNN-

CLSTM, 3CNN-CLSTM-2CNN models can improve forecasting accuracy FC-LSTM model.

3CNN-CLSTM-2CNN model is the highest forecasting accuracy and it indicates the best

forecasting model.
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Table 4.2: RMSE of vY for each month

Description RMSE [◦]

FC-LSTM DCLSTM 3CNN-CLSTM 3CNN-CLSTM-2CNN

Dec. 1.3477 1.2999 1.1065 1.0709

Jan. 1.3904 1.2525 1.0259 0.9783

Feb. 1.5440 1.2917 1.1516 1.0684

Mar. 1.5471 1.4776 1.2533 1.2382

Apr. 1.8947 1.5910 1.3222 1.3130

May 1.8076 1.5948 1.3519 1.3019

Jun. 1.5043 1.4700 1.2011 1.1993

Jul. 1.5095 1.4782 1.2894 1.2520

Aug. 1.7020 1.5751 1.4041 1.3662

Sep. 1.6770 1.3044 1.1995 1.1259

Oct. 1.5312 1.2025 0.9895 0.9661

Nov. 1.4805 1.2640 1.0946 1.0056

Total 1.5857 1.4080 1.2062 1.1657

Table 4.3 shows the improvement rate of DCLSTM and 3CNN-CLSTM, 3CNN-CLSTM-

2CNN models is compared FC-LSTM model for each month (Dec. 2018 - Nov. 2019).

In vX, the minimum forecasting accuracy can improve uses DCLSTM, 3CNN-CLSTM,

3CNN-CLSTM-2CNN models are 0.87%, 14.74%, 19.81% severally. In vY , the minimum

forecasting accuracy can improve uses DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN

models are 2.07%, 14.58%, 17.06% severally. The maximum forecasting accuracy in vX

can improve uses DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN models are 24.75%,

34.01%, 38.04% severally. The maximum forecasting accuracy in vY can improve uses

DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN models are 22.22%, 35.38%, 36.91%

severally. 3CNN-CLSTM-2CNN model can improve forecasting accuracy than DCLSTM

and 3CNN-CLSTM models effectively both of vX and vY which is denote benchmark fore-

casting model. The end of Table 4.6 shows a total improvement rate of DCLSTM, 3CNN-

CLSTM, 3CNN-CLSTM-2CNN models which 3CNN-CLSTM-2CNN model can improve

forecasting accuracy more than 10% from DCLSTM model and more than 2% from the

CNN-CLSTM model both in vX and vY .
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Table 4.3: Improvement rate of vX and vY

Improvement rate [%]

Description vX vY

DCLSTM 3CNN- 3CNN-CLSTM DCLSTM 3CNN- 3CNN-CLSTM

CLSTM 2CNN CLSTM 2CNN

Dec. 21.90 31.04 32.83 3.55 17.90 20.54

Jan. 16.88 24.53 29.79 9.92 26.22 29.64

Feb. 7.98 14.74 19.81 16.34 25.41 30.80

Mar. 12.56 16.28 21.24 4.49 18.99 19.97

Apr. 13.51 23.71 29.31 16.03 30.22 30.70

May 9.06 21.61 25.67 11.77 25.21 27.98

Jun. 6.99 17.92 24.80 2.28 20.16 20.28

Jul. 0.87 16.96 20.11 2.07 14.58 17.06

Aug. 24.75 34.01 38.04 7.46 17.50 19.73

Sep. 9.12 20.25 27.00 22.22 28.47 32.86

Oct. 13.05 22.95 27.81 21.47 35.38 36.91

Nov. 15.57 22.14 27.36 14.62 26.07 32.08

Total 13.09 22.50 27.28 11.21 23.93 26.49

4.3 Forecasting results of wind speed and direction

The forecasting results of wind speed and direction are obtained Eqs. 4.3 and 4.4. The

forecasted and observed wind speed and direction for five days on Oct., 1-5, 2019 as shown

in Figures 4.5 - 4.8. The direction 180◦ = (-180)◦ that is graph of wind direction in Figures

4.5 (b) - 4.8 (b). In Figure 4.5, FC-LSTM model has some delay both of wind speed and

direction with rapid change. The delay in FC-LSTM model can reduced effectively uses

DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN models. It confirmed DCLSTM, 3CNN-

CLSTM, 3CNN-CLSTM-2CNN models can extract spatio-temporal feature maps of wind

vector efficiently. The forecasting result of wind speed and direction by 3CNN-CLSTM-

2CNN model is approaching observed data rather than other models that confirm the best

forecasting model.
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(a) Wind speed

(b) Wind direction

Figure 4.5: Forecasting result of wind speed and direction of FC-LSTM model
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(a) Wind speed

(b) Wind direction

Figure 4.6: Forecasting result of wind speed and direction of DCLSTM model
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(a) Wind speed

(b) Wind direction

Figure 4.7: Forecasting result of wind speed and direction of 3CNN-CLSTM model
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(a) Wind speed

(b) Wind direction

Figure 4.8: Forecasting result of wind speed and direction of 3CNN-CLSTM-2CNN model

Forecasting error (RMSE) wind speed and direction of each forecasting model from

Dec. 2018 – Nov. 2019 as shown in Table 4.4 and 4.5. The lowest forecasted accuracy both

in wind speed and direction is the FC-LSTM model. DCLSTM, 3CNN-CLSTM, 3CNN-

CLSTM-2CNN models can improve forecasting accuracy FC-LSTM model. The highest
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Table 4.4: RMSE of wind speed for each month

Description RMSE [m/s]

FC-LSTM DCLSTM 3CNN-CLSTM 3CNN-CLSTM-2CNN

Dec. 1.5711 1.1757 1.0250 1.0000

Jan. 1.4709 1.1174 0.9937 0.9614

Feb. 1.5818 1.2080 1.0793 1.0621

Mar. 1.7188 1.3588 1.2529 1.1866

Apr. 1.9013 1.3054 1.1046 1.0859

May 1.7774 1.3210 1.1040 1.0734

Jun. 1.5231 1.2369 1.0496 0.9943

Jul. 1.4555 1.1673 1.0437 0.9884

Aug. 1.8305 1.2110 1.0733 1.0166

Sep. 1.6754 1.1463 1.0604 0.9749

Oct. 1.5668 1.1071 0.9011 0.8989

Nov. 1.4473 1.1302 0.9865 0.9445

Total 1.6336 1.2098 1.0592 1.0180

forecasting accuracy is 3CNN-CLSTM-2CNN model and it indicates the best forecasting

model.

Table 4.6 shows the improvement rate of DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-

2CNN models by FC-LSTM model for each month (Dec. 2018 - Nov. 2019). The min-

imum forecasting accuracy in wind speed can improve uses DCLSTM, 3CNN-CLSTM,

3CNN-CLSTM-2CNN models are 18.79%, 27.11%, 30.96% successively. The minimum

forecasting accuracy in wind direction can improve uses DCLSTM, 3CNN-CLSTM, 3CNN-

CLSTM-2CNN models are 6.42%, 12.85%, 15.22% successively. In wind speed, the max-

imum forecasting accuracy can improve uses DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-

2CNN models are 33.84%, 42.49%, 44.46% successively. In wind direction, the maximum

forecasting accuracy can improve uses DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN

models are 22.77%, 27.65%, 32.89% successively. 3CNN-CLSTM-2CNN model can im-

prove forecasting accuracy than DCLSTM and 3CNN-CLSTM models effectively both of

wind speed and direction which is denote benchmark forecasting model. The end of Table

4.6 shows a total improvement rate of DCLSTM, 3CNN-CLSTM, 3CNN-CLSTM-2CNN

models which 3CNN-CLSTM-2CNN model can improve forecasting accuracy more than

10% from DCLSTM model and more than 2% from the 3CNN-CLSTM model both in wind
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Table 4.5: RMSE of wind direction for each month

Description RMSE [◦]

FC-LSTM DCLSTM 3CNN-CLSTM 3CNN-CLSTM-2CNN

Dec. 45.4026 42.4878 38.6295 38.4926

Jan. 48.1570 39.8971 34.8401 33.1539

Feb. 48.3768 44.2642 42.1610 39.2633

Mar. 51.8657 47.2563 45.0555 43.9047

Apr. 58.2948 52.5143 45.7598 43.7169

May 55.9057 51.4154 47.4950 44.6378

Jun. 61.8276 55.3180 51.0181 49.6847

Jul. 69.5587 62.2201 56.1623 54.8614

Aug. 70.8288 65.1014 61.4489 58.9434

Sep. 55.6669 42.9920 40.2862 37.3594

Oct. 42.7311 38.9775 35.6747 33.1543

Nov. 46.9310 40.0034 36.6338 34.4474

Total 55.3933 49.3297 45.3598 43.4435

speed and direction.
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Table 4.6: Improvement rate of wind speed and direction

Improvement rate [%]

Description Wind speed Wind direction

DCLSTM 3CNN- 3CNN-CLSTM DCLSTM 3CNN- 3CNN-CLSTM

CLSTM 2CNN CLSTM 2CNN

Dec. 25.17 34.76 36.35 6.42 14.92 15.22

Jan. 24.03 32.44 34.64 17.15 27.65 31.15

Feb. 23.63 31.77 32.85 8.50 12.85 18.84

Mar. 20.94 27.11 30.96 8.89 13.13 15.35

Apr. 31.34 41.90 42.89 9.92 21.50 25.01

May 25.68 37.89 39.61 8.03 15.04 20.16

Jun. 18.79 31.09 34.72 10.53 17.48 19.64

Jul. 19.80 28.29 32.09 10.55 19.26 21.13

Aug. 33.84 41.37 44.46 8.09 13.24 16.78

Sep. 31.58 36.71 41.81 22.77 27.63 32.89

Oct. 29.34 42.49 42.63 8.78 16.51 22.41

Nov. 21.91 31.84 34.74 14.76 21.94 26.60

Total 25.94 35.16 37.68 10.95 18.11 21.57





CHAPTER 5

Regional Dedendence of 3CNN-CLSTM-2CNN

Model in Four Cities

This chapter describes the forecasting results of the 3CNN-CLSTM-2CNN model in

four cities: Tokushima, Takamatsu, Hiketa, and Choshi. Firstly, this chapter explains about

characteristics of each city which can be used to based consideration of choosing these cities.

Every city has different characteristics of wind speed and direction (wind information) that

affected by several factors like seasons and topography. The condition of wind information

must be observed and analyze for the planning of wind power generation. The wind informa-

tion is taken by AMeDAS at one hour interval. Afterward, section 5.2 presents forecasting

results of vX and vY in four cities. The end of chapter presents forecasting results of wind

speed and direction in four cities.

5.1 Wind speed and direction condition in four cities

Tokushima city is located in Tokushima prefecture, Takamatsu and Hiketa cities are

located in Kagawa prefecture, and Choshi city is located in Chiba prefecture. These cities

are good wind positions due to near onshore, near the sea, and near wind power generation.

This research used four years of data by AMeDAS from Dec 2015 - Nov 2019. So that, the

annual wind condition of four cities are showed from 2015 - 2019. Figure 5.1 shows the

annual average wind speed in four cities (2015 - 2019). From Figure 5.1, the high value of

average wind speed is Choshi city, the low value of average wind speed is Takamatsu city,

and in each city, every year the value of the average wind speed is slightly change.

The maximum wind speed of each city is shown in Figure 5.2. The maximum wind

speed is used to specify the value of vmax in Eqs. 3.3 and 3.4. The value of vmax is needed

45
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Figure 5.1: Annual average wind speed in four cities (2015 - 2019)

Figure 5.2: Maximum wind speed in four cities

to determine the wind vector in each city. From Figure 5.2, the value of vmax in Tokushima,

Takamatsu, and Hiketa are 20 m/s and the value of vmax in Choshi city is 30 m/s.

The test data is used for one year from Dec. 2018 - Nov. 2019 ( see Table 3.1). Monthly

average wind speed in four cities based on the test data which is Dec 2018 - Nov. 2019 as

shown in Figure 5.3. Monthly average wind speed in Tokushima, Takamatsu, and Hiketa

cities slightly change but the monthly average wind speed in Choshi city mostly significantly

change.

The annual data and fluctuation of wind speed and direction in four cities obtained from

the value of wind speed and direction one year that Dec. 2018 - Nov 2019. This wind

information is needed to analyze the forecasting result in four cities. The value of fluctuation
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Figure 5.3: Monthly average wind speed in four cities (Dec. 2018 - Nov. 2019)

of wind speed and direction obtained from subtracting between present data and past data.

The meaning negative value both in wind speed and direction that the past data is higher than

the present data.

The percentage of annual wind speed and direction in Tokushima city is shown in Figure

5.4. From Figure 5.4 (a), the maximum value for annual wind speed ranges from 14 - 16 m/s

and the high percentage for annual wind speed ranges 2 - 4 m/s. From Figure 5.4 (b), the

high percentage for annual wind direction is 337.5◦ which the direction is east-south-east

(ESE).

The percentage of fluctuation of wind speed and direction in Tokushima city is shown

in Figures 5.5. From Figure 5.5 (a), the maximum value for fluctuation of wind speed ranges

from 6 - 8 m/s, and the high percentage for fluctuation of wind speed ranges 0 - 2 m/s. From

Figure 5.5 (b), the high percentage for fluctuation of wind direction is 0◦.

The percentage of annual wind speed and direction in Takamatsu city is shown in Figure

5.6. From Figure 5.6 (a), the maximum value for annual wind speed ranges from 10 - 12 m/s

and the high percentage for annual wind speed ranges 0 - 2 m/s. From Figure 5.6 (b), the high

percentage for annual wind direction is 22.5◦ which the direction is east-north-east (ENE).

The percentage of fluctuation of wind speed and direction in Takamatsu city is shown

in Figures 5.7. From Figure 5.7 (a), the maximum value for fluctuation of wind speed ranges

from 6 - 8 m/s, and the high percentage for fluctuation of wind speed ranges 0 - 2 m/s. From

Figure 5.7 (b), the high percentage for fluctuation of wind direction is 0◦.
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(a) Wind speed

(b) Wind direction

Figure 5.4: Annual wind speed and direction in Tokushima city

The percentage of annual wind speed and direction in Hiketa city is shown in Figure

5.8. From Figure 5.8 (a), the maximum value for annual wind speed ranges from 16 - 18

m/s and the high percentage for annual wind speed ranges 2 - 4 m/s. From Figure 5.8 (b),

the high percentage for annual wind direction is 67.5◦ which the direction is north-north-east

(NNE).

The percentage of fluctuation of wind speed and direction in Hiketa city is shown in

Figures 5.9. From Figure 5.9 (a), the maximum value for fluctuation of wind speed ranges

from 8 - 10 m/s, and the high percentage for fluctuation of wind speed ranges 0 - 2 m/s. From

Figure 5.9 (b), the high percentage for fluctuation of wind direction is 0◦.
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The percentage of annual wind speed and direction in Choshi city is shown in Figure

5.10. From Figure 5.10 (a), the maximum value for annual wind speed ranges from 24 - 26

m/s and the high percentage for annual wind speed ranges 2 - 4 m/s. From Figure 5.10 (b), the

high percentage for annual wind direction is 247.5◦ which the direction is south-south-west

(SSW).

The percentage of fluctuation of wind speed and direction in Choshi city is shown in

Figures 5.11. From Figure 5.11 (a), the maximum value for fluctuation of wind speed ranges

from 8 - 10 m/s, and the high percentage for fluctuation of wind speed ranges 0 - 2 m/s. From

Figure 5.11 (b), the high percentage for fluctuation of wind direction is 0◦.

(a) Wind speed

(b) Wind direction

Figure 5.5: Fluctuation of wind speed and direction in Tokushima city
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(a) Wind speed

(b) Wind direction

Figure 5.6: Annual wind speed and direction in Takamatsu city
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(a) Wind speed

(b) Wind direction

Figure 5.7: Fluctuation of wind speed and direction in Takamatsu city
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(a) Wind speed

(b) Wind direction

Figure 5.8: Annual wind speed and direction in Hiketa city
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(a) Wind speed

(b) Wind direction

Figure 5.9: Fluctuation of wind speed and direction in Hiketa city
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(a) Wind speed

(b) Wind direction

Figure 5.10: Annual wind speed and direction in Choshi city
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(a) Wind speed

(b) Wind direction

Figure 5.11: Fluctuation of wind speed and direction in Choshi city
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5.2 Forecasting results of vX and vY in four cities

Firstly, this research calculates and analyzes forecasting results of vX and vY in four

cities by Eqs. 4.1 and 4.2. Forecasting results of vX and vY in four cities show actual observed

data and forecasted data for five days on Oct., 1-5, 2019. Forecasting results of vX and vY in

Tokushima city can see in Figure 4.4. Figure 5.12 shows forecasting results of vX and vY in

Takamatsu city. Figure 5.13 shows forecasting results of vX and vY in Hiketa city. Forecasting

results of vX and vY in Choshi city as shown in Figure 5.14. From Figure 4.4, the different

range between past data and current data is 0.0065 - 1.2887 m/s in vX and 0 - 1.7064 m/s in

vY . From Figure 5.12, the different range between past data and current data is 0 - 1.325 m/s

in vX and 0.0064 - 1.7731 m/s in vY . From Figure 5.13, the different range between past data

and current data is 0.0125 - 1.2111 m/s in vX and 0 - 2.2063 m/s in vY . From Figure 5.14, the

different range between past data and current data is 0 - 1.0474 m/s in vX and 0 - 1.1313 m/s

in vY .

A total forecasting error (RMSE) of vX and vY in four cities from Dec. 2018 – Nov. 2019

as shown in Table 5.1 and to each month as shown in Figure 5.15. The lowest forecasting

accuracy is Choshi city both in vX and vY . The highest forecasting accuracy is Tokushima

city in vX and Takamatsu city in vY .

5.3 Forecasting results of wind speed and direction in four cities

The target forecasting results of wind speed and direction are one hour ahead in four

cities and calculated by Eqs. 4.3 and 4.4. Comparison actual observed and Forecasting

results of wind speed and direction in four cities on five days (Oct., 1-5, 2019) are shown

in Figure 4.8 (Tokushima city), Figure 5.16 (Takamatsu city), Figure 5.17 (Hiketa city), and

Figure 5.18 (Choshi city). From Figure 5.16 (b), Figure 5.17 (b), and 5.18 (b), the direction

of 180◦ = (-180◦). From Figure 4.8, the different range between past and current data is 0 -

1.8 m/s in wind speed and (-45◦) - 67.5◦ in wind direction. From Figure 5.16, the different

range between past and current data is 0 - 1.42 m/s in wind speed and (-67.5◦) - 135◦ in wind

direction. From Figure 5.17, the different range between past and current data is 0-2.06 m/s

in wind speed and (-143.1◦) - 36.5◦ in wind direction. From Figure 5.18, the different range

between past and current data is 0.01-1.12 m/s in wind speed and (-14◦) - 16.2◦ in wind

direction.
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(a) vX

(b) vY

Figure 5.12: Forecasting result of vX and vY in Takamatsu city
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(a) vX

(b) vY

Figure 5.13: Forecasting result of vX and vY in Hiketa city
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(a) vX

(b) vY

Figure 5.14: Forecasting result of vX and vY in Choshi city
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Table 5.1: RMSE of vX and vY in four cities

Description RMSE [m/s]

Tokushima Takamatsu Hiketa Choshi

vX 1.0836 1.1469 1.1084 1.6075

vY 1.1657 1.1264 1.3650 1.7198

(a) vX

(b) vY

Figure 5.15: RMSE of vX and vY in four cities in each month
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In chapter 4 and section 5.2, the error of forecasting results is evaluated by RMSE. In

this section, the forecasting error of wind speed and direction are evaluated by RMSE, mean

absolute error (MAE), and mean absolute percentage error (MAPE). RMSE is used for mean

forecasting. MAE is used for median forecasting. MAPE is used to measure forecasting

accuracy that easily explain and interpret errors in terms of percentage. Equation of RMSE

can see in Eq. 3.5. Equations of MAE and MAPE as follows,

MAE =
1
N

N∑
t=1

|Yt − Ŷt| (5.1)

MAPE =
1
N

N∑
t=1

|Yt − Ŷr

Yt
| ∗ 100 (5.2)

where Ŷt is forecasted data, Yt is actual observed data, and N is the number of learning data.

In this section, the research also calculated the persistent model. The persistent model

means standard model to short-time forecasting model that forecasting output is the current

value of output. The total forecasting error of wind speed and direction in four cities from

Dec. 2018 – Nov. 2019 is shown in Tables 5.2 and 5.3, and to each month in Figures 5.19

- 5.22. The persistent model is evaluated by RMSE. The improvement rate is obtained from

RMSE compared persistent model for each city. From fluctuation graph of wind speed in

four cities (see Figures 5.5 (a), 5.7 (a), 5.9 (a), 5.11 (a)) and standard deviation (SD) in Table

5.2, in order for smallest to largest are Takamatsu, Tokushima, Hiketa, and Choshi cities.

From fluctuation graph of wind direction in four cities (see Figures 5.5 (b), 5.7 (b), 5.9 (b),

5.11 (b)) and SD in Table 5.3, in order to smallest to largest are Choshi, Tokushima, Hiketa,

and Takamatsu cities.

Comparison between forecasting error of wind speed in Tables 5.2 and fluctuation graph

of wind speed in four cities is the same order: Takamatsu (SD = 0.9167 m/s, RMSE = 0.9755

m/s), Tokushima (SD = 1.0153 m/s, RMSE = 1.0180 m/s), Hiketa (SD = 1.1347 m/s, RMSE

= 1.1520 m/s), and Choshi (SD = 1.3513 m/s, RMSE = 1.3969 m/s). Comparison between

forecasting error of wind direction in Tables 5.3 and fluctuation graph of wind direction

in four cities is the same order: Choshi (SD = 30.1256◦, RMSE = 30.4677◦), Tokushima

(SD = 45.3046◦, RMSE = 43.4435◦), Hiketa (SD = 49.7260◦, RMSE = 48.4974◦), and

Takamatsu (SD = 52.9903◦, RMSE = 56.0314◦). So that, the 3CNN-CLSTM-2CNN model

can handle and suitable to apply in four cities although different characteristics of wind speed

and direction. From Tables 5.2 and 5.3, the lowest forecasting accuracy is Hiketa city in wind
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speed and Takamatsu city in wind direction. Afterward, the largest forecasting accuracy is

Choshi city both in wind speed and direction. To calculate MAE is used the absolute value

for evaluating forecasting results. Then, forecasting errors have a small variance so that

MAE is slightly lower than RMSE is shown in Tables 5.2 and 5.3.

(a) Wind speed

(b) Wind direction

Figure 5.16: Forecasting result of wind speed and direction in Takamatsu city
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(a) Wind speed

(b) Wind direction

Figure 5.17: Forecasting result of wind speed and direction in Hiketa city
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(a) Wind speed

(b) Wind direction

Figure 5.18: Forecasting result of wind speed and direction in Choshi city
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Table 5.2: SD and error of wind speed in four cities

Description SD [m/s] Forecasting error improvement

Persistent RMSE [m/s] MAE [m/s] MAPE [%] rate[%]

Tokushima 1.0153 1.2188 1.0180 0.7627 33.8639 16.48

Takamatsu 0.9167 1.1802 0.9755 0.7333 41.8929 17.34

Hiketa 1.1347 1.3767 1.1520 0.8258 41.3432 16.32

Choshi 1.3513 1.8349 1.3969 1.0154 22.6225 23.87

Table 5.3: SD and error of wind direction in four cities

Description SD [◦] Forecasting error improvement

Persistent RMSE [◦] MAE [◦] MAPE [%] rate[%]

Tokushima 45.3046 51.9300 43.4435 26.6390 23.0317 16.34

Takamatsu 52.9903 63.3147 56.0314 38.3026 55.6538 11.50

Hiketa 49.7260 59.5280 48.4974 30.9133 41.2880 18.53

Choshi 30.1256 39.7542 30.4677 17.5200 20.3945 23.36

The result of MAPE in Tables 5.2 and 5.3 shows the lowest result of MAPE in Choshi

city and the highest result of MAPE in Takamatsu city both in wind speed and direction. In

this case, the lower result of MAPE is good so that the forecasting result is more approaching

actual observed data. From Figure 5.19, the range of forecasting accuracy in Tokushima city

is 13.43 - 19.98% in wind speed and 12.87 - 22.86% in wind direction. From Figure 5.20, the

range of forecasting accuracy in Takamatsu city is 11.86 - 19.75% in wind speed and 8.65

- 13.73% in wind direction. From Figure 5.21, the range of forecasting accuracy in Hiketa

city is 6.20 - 19.15% in wind speed and 14.39 - 24.51% in wind direction. From Figure 5.22,

the range of forecasting accuracy in Choshi city is 20.16 - 26.25% in wind speed and 17.42

- 26.49% in wind direction.
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(a) Wind speed

(b) Wind direction

Figure 5.19: Forecasting error of wind speed and direction in Tokushima city
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(a) Wind speed

(b) Wind direction

Figure 5.20: Forecasting error of wind speed and direction in Takamatsu city
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(a) Wind speed

(b) Wind direction

Figure 5.21: Forecasting error of wind speed and direction in Hiketa city
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(a) Wind speed

(b) Wind direction

Figure 5.22: Forecasting error of wind speed and direction in Choshi city





CHAPTER 6

Conclusions

In this doctoral thesis, short-term forecasting wind speed and direction by a deep neural

network (DNN) are mainly discussed. The proposed forecasting model using the 3CNN-

CLSTM-2CNN model. The input of the forecasting model utilizes wind speed and direction

which represent an image on the 2D-coordinate system and make it to the sequential image.

The data of wind speed and direction are obtained by AMeDAS, Japan at one hour interval.

The prediction period of the forecasting model is one hour ahead. For verifying the effec-

tiveness of the proposed forecasting model is evaluated using RMSE and compared by FC-

LSTM, DCLSTM, and 3CNN-CLSTM models. 3CNN-CLSTM-2CNN model is the highest

forecasting accuracy and the forecasting result is approached actual observed data than other

models. DCLSTM, 3CNN-CLSTM, and 3CNN-CLSTM-2CNN models can resolve spatio-

temporal sequence and improve forecasting accuracy better than the FC-LSTM model. In

comparison FC-LSTM model, the 3CNN-CLSTM-2CNN model can improve forecasting

accuracy than DCLSTM, and 3CNN-CLSTM models effectively. 3CNN-CLSTM-2CNN

model can improve forecasting accuracy more than 10% from DCLSTM model and more

than 2% from the CNN-CLSTM model both in wind speed and direction.

3CNN-CLSTM-2CNN model is compared in four cities (Tokushima, Takamatsu, Hiketa,

Choshi) to confirm an applicability to different characteristics of wind conditions. 3CNN-

CLSTM-2CNN model was evaluated by RMSE, MAE, and MAPE between forecasted data

and actual observed data in four cities. For calculating MAE is used the absolute value

for evaluating forecasting results. Afterward, forecasting errors have a small variance so

that MAE is slightly lower than RMSE. In the forecasting error of MAPE, the lower re-

sult of MAPE is good caused the forecasting result is more approaching actual observed

data. The order of fluctuation wind speed and forecasting accuracy of wind speed in four

71



72 CHAPTER 6 CONCLUSIONS

cities are same: Takamatsu (SD = 0.9167 m/s, RMSE = 0.9755 m/s), Tokushima (SD =

1.0153 m/s, RMSE = 1.0180 m/s), Hiketa (SD = 1.1347 m/s, RMSE = 1.1520 m/s), and

Choshi (SD = 1.3513 m/s, RMSE = 1.3969 m/s). The order of fluctuation wind direction

and RMSE of wind direction in four cities are same: Choshi (SD = 30.1256◦, RMSE =

30.4677◦), Tokushima (SD = 45.3046◦, RMSE = 43.4435◦), Hiketa (SD = 49.7260◦, RMSE

= 48.4974◦), and Takamatsu (SD = 52.9903◦, RMSE = 56.0314◦). So that, the 3CNN-

CLSTM-2CNN model can handle and suitable to apply in four cities although different char-

acteristics of wind speed and direction.

The improvement rate of the 3CNN-CLSTM-2CNN model is obtained by comparison

between RMSE of the 3CNN-CLSTM-2CNN model and the persistent model in each city.

The lowest forecasting accuracy is Hiketa city in wind speed and Takamatsu city in wind

direction. The largest forecasting accuracy is Choshi city both in wind speed and wind

direction. The lowest result of MAPE in Choshi city both in wind speed and direction. The

highest result of MAPE in Takamatsu city both in wind speed and direction.

3CNN-CLSTM-2CNN and 3CNN-CLSTM models improve forecasting accuracy than

DCLSTM due to these models uses CNN that can easier for training and reduce training

time. 3CNN-CLSTM-2CNN model can improve accuracy than 3CNN-CLSTM model due

to the last process of 3CNN-CLSTM-2CNN model uses 2DCNN that can easier for training

and effectively to process sequential time.
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