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Abstract 

The most important characteristics of the behaviour of viscoelastic materials are the 

time and temperature dependence of their properties. Viscoelastic models based on 

Prony series are usually used due to easy implementation in finite element analysis 

(FEA) codes. The experimental data are fitted to a Prony series using a user-

convenience number of terms represented by two coefficients. The time coefficients   

are previously fixed in the time scale in order to determine the second parameters of 

the model. Usually, an homogeneous distribution in logarithmic-time scale is used for 

 , which produces accurate fittings when a large number of terms in the Prony series 

are used as well as when the material presents a uniform sigmoidal viscoelastic curve 

along several decades of time. When short-time curves must be fitted or the relaxation 

curve shape is not so uniform distributed along time, the homogeneous distribution of 
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time coefficients could be a significant drawback since a large number of coefficients 

could be needed or even a reasonable fitting with a Prony series model is not possible.   

In this study, an optimized    distributed method for fitting master curves of 

viscoelastic materials based on Prony series model is proposed. The method is based 

on an optimization algorithm strategy to allocate the time coefficients along the time 

scale in order to obtain the best fit. The method is validated by using experimental 

data of temporomandibular joint (TMJ) disc, which is a biological material that 

presents a short-time and high relaxation rate viscoelastic curve. The results show that 

the method improves significantly the fitting of the viscoelastic curves when compared 

with uniform distributed time fittings. 

Furthermore, the optimized coefficients are also used to obtain the complex moduli of 

the material using an analytical conversion, which is compared with the experimental 

complex moduli curves of the material.  
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1. Introduction 

The viscoelastic behaviour is present in a large number of materials used in both 

engineering and biomechanical applications. The advantages of viscoelastic materials, 

such as high-dissipative energy capacity (damping, noise and vibrations reduction or 

shock impact absorber applications), are due to its mechanical properties which could 

be say that are between the perfect solid and the perfect fluid (i.e. Newtonian) 

behaviour (Ferry, 1980; Lakes, 1998; Tschoegl, 2012). Furthermore, the mechanical 

properties of the viscoelastic materials are, at least, time and temperature dependent 

(Christensen, 2003; Ferry, 1980). The advantages and mechanical properties of 

viscoelastic materials can also be seen as drawbacks since, dealing with viscoelastic 

behaviour, i.e. from a design or calculation point of view, implies taking into account 

many variables that must be considered in the material characterization as well as in 



the material model. Many materials, either as natural (wood or biological tissues) or 

artificial processed (polymers, asphalt pavement or foams) presents viscoelastic 

behaviour so a better understanding and characterization of these materials are 

needed. But not only with the objective of improving designs and calculations even to 

having a better understanding of these materials response, i.e. in biomechanical 

applications.  

To characterize the viscoelastic behaviour, experimental tests are carried out in 

rheometers or dynamic mechanical analysis (DMA) equipments. After the 

experimental data is measured, i.e. the relaxation Young’s modulus of the material, a 

viscoelastic mathematical model is fitted to the experimental curve in order to use the 

model in further calculations.  

Although several models have been used and developed in the last decades(Lakes, 

2009; Mainardi, 2010), the generalized Maxwell model is nowadays widely used due to 

its simplicity. The generalized Maxwell model is usually represented and fitted with a 

Prony series (Tzikang, 2000), therefore, hereafter, we use in the text the common term 

Prony series to refer to that viscoelastic model.   

On the other hand, the full characterization of a viscoelastic material, most of the 

times, is not possible due to costs or testing machine limitations. In those cases, 

analytical or empirical interconversions can be used to complete the characterization 

of the different moduli of the material (Emri et al., 2005). All the moduli 

interconversions are fully developed and validated for the Prony series model (Findley 

et al., 1976; Lakes, 1998; Park and Schapery, 1999; Schapery and Park, 1999; Tschoegl, 

2012), being, therefore, easy to implement in finite element analysis (FEA) codes.  

With the aim of fitting the experimental data to the Prony series model, several 

methods have been developed (Cost and Becker, 1970; Emri and Tschoegl, 1993; Park 

and Kim, 2001; Ramkumar et al., 1997; R. A. Schapery, 1962; Richard A. Schapery, 

1962; Tobolsky, 1960; Tobolsky and Murakami, 1959; Tschoegl, 2012; Tschoegl and 

Emri, 1993). Most of these methods are based on setting a set of discrete times as the 

first step, followed by the fitting of the rest of the model coefficients. Although several 

criteria for the allocation of discrete times in the fitting process can be apply (Tschoegl, 



2012), usually, its application is not straightforward, so many commercial algorithms 

(ANSYS, 2013; Herdy, 2003; SIMULIA, 2007; T.A.Instruments, 2001), use an 

homogeneous distribution (in logarithmic-time scale) to fit the experimental data. This 

homogeneous distribution for the discrete times    produces accurate fittings when a 

large number of terms in the Prony’s series can be used as well as when the material 

presents a uniform sigmoidal viscoelastic curve along several decades of time. When 

short-time curves must be fitted or the relaxation curve shape is not so uniform 

distributed along time, the homogeneous distribution of the discrete time coefficients 

could be a significant disadvantage since a large number of coefficients are usually 

needed or even a reasonable fitting with a Prony’s series model is not possible.  

These short viscoelastic curves with different relaxation ratios are usually obtained for 

soft-like materials, such as rubbery-like materials, acoustic isolated foams and almost 

most of the soft tissue biological materials (Barrientos et al., 2016; Fernández et al., 

2013; Lamela et al., 2011; Pioletti et al., 1998; Provenzano et al., 2001; Tanaka et al., 

2014).  

Moreover, it must be therefore taken into account that a simpler viscoelastic model 

with a reduced number of terms is preferred in order to solve complex calculations, 

e.g. finite element (FE) calculations. Therefore, although a good fitting could be 

obtained with a large number of terms, a reduced model with fewer terms or 

parameters, but with the same accuracy, can lead a reduction of the computational 

time as well as a better compression of the material model.  

In the present study, a new optimized discrete times method for fitting Prony’s 

coefficients is proposed. The method is based on an optimization algorithm strategy to 

best allocate the time coefficients along the time scale. The method is validated for 

fitting the experimental relaxation curve of the temporomandibular Joint (TMJ) disc.  

Furthermore, the time optimized allocate Prony series coefficients are used to 

determine the complex moduli (Emri and Tschoegl, 1993; Tschoegl and Emri, 1993) of 

the TMJ disc. Then, the analytical complex moduli is compared with the experimental 

complex moduli of the TMJ disc.  



 

 

2 Viscoelasticity 

Viscoelastic materials can be understood like those materials whose properties are 

somewhere between elastic solids and fluids, i.e. Newtonian fluids. Although its 

behavior is more complex, this point of view allows an easier understanding of the 

viscoelastic mathematical models for this kind of materials. Both elastic solid and 

Newtonian fluid behaviour are each one represented by springs and dashpots, 

respectively. The combination of these two elements allows building linear viscoelastic 

models. The simplest model for the relaxation curve is the Maxwell model. The 

phenomenon of relaxation is produced in a viscoelastic material when is subjected to a 

constant strain. Under applied constant strain, the stress in the material is dismissing 

close to zero when the material would be completely relaxed. This behaviour is 

represented in the Maxwell model with a spring element connected in series with a 

dashpot element (see Figure 1) (Ferry, 1980; Findley et al., 1976; Lakes, 1998; 

Tschoegl, 2012). 

 

Figure 1. Individual and Generalized Maxwell Models. 

When complex relaxation curves have to be fitted, the results obtained with the 

Maxwell model can be not satisfactory so, in general, the generalized Maxwell model is 

used. This model is composed of a convenience number of individual Maxwell 

elements in parallel (see Figure 1). To fit the experimental data with the generalized 

model, this is usually represented by means of Prony series where each term of the 



series is identified with one of the individual Maxwell models. The Prony series for the 

generalized Maxwell model is (Tzikang, 2000): 

             
  

   
        

 

   
    (1)  

 

where    is the instantaneous modulus of the material,    the number of Maxwell 

terms and (  ,   ) the Prony coefficients (   is the i’th prony constant for the i’th prony 

retardation time constant   ). The Prony coefficients can be understood as:    is the 

     percentage change in each term of the Prony series whereas    is the discrete 

time at which the term of Prony series intersects the curve of experimental data. 

Once the relaxation modulus of the material has been fitted, the Prony coefficients, 

(  ,   ), can be used to obtain by interconversion the components of the complex 

modulus      , i.e., storage modulus       and loss modulus         (Emri et al., 

2005; Park and Schapery, 1999; Schapery and Park, 1999; Tschoegl, 2012): 
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2.1 Model fitting with a homogeneous distribution of discrete times 

For each number of the serie’s terms (which vary from 1 and   , being    a user 

convenience number of terms), a Prony series will be built, assuming that i are 

uniformly spaced in the logarithmic time-space, in the following sequence: 
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where         being   the number of experimental data building the master curve. 

Then, the following optimization problem is proposed: 
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To solve the optimization problem, it is converted to the following unconstrained 

optimization problem: 
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In this modified formulation, we have transformed any inequality constraint into a 

minimization problem by the following way: 

        is equivalent to min        

 

being: 

 

        
              

                 
  

(9)  

To solve this issue, Matlab® software is used (MathWorks, 2016) where function 

“fminunc” is applied to solve the optimization problem. This function uses a quasi-

Newton method with cubic line search procedure where the method uses the BFGS 

(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) formula for updating 

the approximation of Hessian matrix. 

2.2 Model fitting with an optimal distribution of discrete times 

In this case, for each number of the series terms   , the following optimization 

problem is solved: 



                                         
 

   
      

   

    

 

                

(10)  

where         being   the number of experimental data building the master curve. 

Internally, in each evaluation of the objective function,    , a similar problem to the 

one raised with homogeneous distribution optimization is solved. To solve this 

problem, the function “fmincon”, implemented in Matlab® is used (MathWorks, 2016). 

This command uses a gradient-based method using an interior-point approach (Byrd et 

al., 2000; Waltz et al., 2006). 

 

3 Experimental Data 

To check the proposed optimized fitting method, experimental data from a previous 

work (Barrientos et al., 2016) was used. The data consist on the viscoelastic curves for 

the temporomandibular joint (TMJ) disc. Both relaxation and complex modulus were 

obtained using a DMTA (T.A. Instruments) equipment and 10 specimens (Barrientos et 

al., 2016). An example of the test set-up is presented in Figure 2. This biological 

material presents short relaxation curves with a relatively high relaxation rate. The 

relaxation modulus, as well as the storage and loss components (real and imaginary 

parts, respectively, of the complex modulus), are presented in Figures 3 and 4. In the 

figures are presented the mean values together with the standard deviation. 



 

Figure 2: Experimental test set-up. 

 

Figure 3. Relaxation modulus for the whole TMJ disc (Barrientos et al. 2016). 
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Figure 4. Storage (E’) and loss (E’’) moduli for the whole TMJ disc (Barrientos et al. 

2016) 

 

4 Results 

4.1 Prony series relaxation fitting: optimal and homogeneous distributions. 

The mean value of the TMJ disc experimental curves was fitted with both 

homogeneous and optimal distributions using from 1 to 10 terms in the Prony series 

model. The errors obtained in each model with the homogeneous as well as with the 

optimal distributions are presented in Figure 5. It can be seen that the optimal 

distribution always has an error lower than in the homogeneous distribution. About 5 

terms, the errors between the homogeneous and optimal distribution decreases but 

remains always more favorable for the optimal distribution. For the case analyzed, the 

optimal distributed model with 4 terms can be considered the best model since 

produces almost the same errors that the 9 or 10 terms models. The fact that, in this 

case, the optimal distributed model with 4 terms produces an accurate fitting depends 

on the time spam and relaxation rate of the experimental curve to fit. So, it would be 

recommended for other experimental curves to perform several fittings using in each 

one a different number of terms. This is due to the fact that each fitting must be 

analyzed independently and, therefore, there is not a direct relation between the 

number of terms used and the accuracy obtained. This fact can be observed in figure 4 

between the optimal 4 and 5 terms models. 
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Figure 5. Evolution of the error with the number of terms of the Prony series for the 

TMJ disc. 

The numerical errors obtained in the fittings for both the homogenous and optimal 

discrete times distributions are presented in Table 1. 

Table 1. Errors obtained in the fittings. 

 
Distribution 

Number of terms in the series fitting 

 

1 2 3 4 5 6 7 8 9 10 

Error [%] 
Homogeneous 17.0851 2.1464 0.3801 0.1133 0.0369 0.0275 0.0256 0.0181 0.0086 0.0123 

Optimal 4.5438 0.2262 0.0306 0.0075 0.0195 0.0167 0.0090 0.0106 0.0071 0.0065 

 

In Figure 6, the fitting of Prony series with increasing number of terms (from 1 to 5) 

can visually be compared for the homogeneous distribution (left) and the optimal 

distribution (right). From figure 6, it can be inferred that the optimal distribution fitting 

converges faster than the homogeneous one. As a rough comparison, 6-7 terms are 

needed in the homogeneous distribution for obtaining a similar error than the 3 terms 

optimal distribution (see Figure 5). 
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Figure 6. Relaxation curve fittings for both homogeneous (left) and optimal (right) 

distributions. 

 

4.2 Interconversion between relaxation and complex moduli: homogeneous and 

optimal distributions. 

Once the relaxation curves are fitted with the user-convenience terms. The Prony 

series coefficients can be used to determine the corresponding complex modulus or, 

that is the same, its real and imaginary components: the storage and loss moduli, 

respectively (see Eqs. (2) and (3)). Although the optimal time distributions fit the 

relaxation experimental data with lower errors than the homogeneous time 

distributions (for the same number of terms), the fact that these optimal discrete 

times predicts with higher accuracy the complex moduli is not a straightforward step.  

In figures 6 and 7, the relaxation-complex modulus interconversions are presented 

using the Prony coefficients obtained for 2 and 4 terms, respectively. In the figures are 

presented both experimental storage (E’) and loss (E’’) moduli together with its 

corresponding predicted curves. 

In both cases, it can be seen that the predicted curves with the optimal distribution 

present a better accuracy than those obtained with the homogeneous distribution. 

Same results are obtained with other comparisons with a different number of terms. 
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Figure 7: Complex modulus interconversion for 2 Prony series terms with 

homogeneous distribution (left) and optimal distribution (right). 

 

 

Figure 8: Complex modulus interconversion for 4 Prony series terms with 

homogeneous distribution (left) and optimal distribution (right). 

 

Conclusions 

The generalized Maxwell model, represented by a Prony series is one of the most used 

viscoelastic models for fitting relaxation experimental data. Although many 

commercial applications or finite element codes include this model, a homogeneous 

discrete time distribution, in logarithmic scale, is usually implemented. However, for 

short time viscoelastic curves or higher relaxations rate, a large number of terms in the 

Prony series can be needed to obtain accurate results. In most of the cases, a limited 
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number of terms can only be used in the implemented models so the optimization of 

the fittings can improve the calculations reducing the number of terms used as well as 

the complexity of the viscoelastic model. 

In this work, it has been proposed and validated an optimal fitting method for 

viscoelastic relaxation curves. The optimization process does not previously fix the 

discrete times of the Prony series,   , being the time coefficients part of the fitting 

process. This allows the allocation of the time coefficients of the model to produce the 

best fit for each number of terms selected. 

The method has been validated for fitting the experimental relaxation curve of the 

temporomandibular Joint (TMJ) disc. From the results, it can be concluded that for the 

same number of terms, the optimal distribution presents always lower errors. The 

errors between the optimal and homogeneous distributions are closer when the 

number of terms used in the fitting process increase being, nevertheless, always lower 

for the optimal distributions.  

For the analyzed case, the model with 4 optimal distributed terms can be considered 

the best fit with an error of 0.0075%. On the other hand, the best fit for the 

homogeneous distribution occurs for 9 terms with an error of 0.0086%. Therefore, it 

can be concluded that the proposed method improves significantly the fitting of the 

viscoelastic curves when compare with uniform distributed time fittings.  

Furthermore, time optimized allocate Prony series coefficients were used to determine 

the complex moduli disc of the TMJ disc. The results show that the optimized fitted 

model can be also used successfully for the interconversion between the relaxation 

modulus (time domain viscoelastic properties) and the complex moduli (frequency 

domain viscoelastic properties). From the results, it is shown that the optimal time 

distribution predicts with higher accuracy the complex modulus when compared with 

the homogeneous time distribution, independently of the number of terms used in the 

interconversion.  
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Appendix A. 

Table A1. Prony series fitting parameters for both homogeneous and optimal 

distributions. 

Number of 
terms  0 1 1 n nE e e     0 1 1 n nE e e    

1 
[180298.480000000 
0.824136899437915 
1.59394160783480] 

[180298.480000000 
0.790641298834234 
0.322619191008081] 

2 

[180298.480000000 
0.707284956635547 
0.293978070709744 
0.120770268412372 
8.64231077866853] 

[180298.480000000 
0.676862461948996 

0.0685651171281151 
0.161502682209828 
13.1397290138809] 

3 

[180298.480000000 
0.673376703487496 
0.126251399040010 

0.0427478277226709 
1.59394160783480 

0.123798872722651 
20.1237362001974] 

[180298.480000000 
0.617563686189283 

0.0463869557979109 
0.138900430634949 
1.50008759822847 

0.100956721878062 
65.7721611364916] 

4 

[180298.480000000 
0.633319663251058 

0.0760306945400917 
0.0522217650402256 
0.578066662786207 

0.0649518678646969 
4.39508107411245 

0.0924974124245412 
33.4161073308003] 

[180298.480000000 
0.573375258226682 

0.0384396848204708 
0.122309844341341 
0.492517002572728 

0.0818891526813639 
6.34991278396463 

0.0926709562646039 
106.481558689669] 

5 

[180298.480000000 
0.608604338867814 

0.0542197440818547 
0.0303225376319685 
0.293978070709744 
0.101624474480116 
1.59394160783480 

0.0163492061424714 
8.64231077866853 

0.0911651105378306 
46.8583888066941] 

[180298.480000000 
0.555613598284982 

0.0360419070273322 
0.122044868675654 
0.367926427644592 

0.0776018004654576 
3.44521016251314 

2.89973123637766e-14 
8.46034177690573 

0.0931430220571901 
47.1953714976349] 

6 

[180298.480000000 
0.508707441498211 

0.0425870761741618 
0.151309350688599 
0.181365909333705 

0.00672291282557246 
0.772384395066749 

0.0943870052690803 
3.28935937263134 

-1.78713787475290e-16 
14.0084200968128 

0.0920410067233453 
59.6577665674181] 

[180298.480000000 
0.596564191679323 

0.0428293235109045 
0.113621692730670 
0.754783504886141 

0.0235777953423940 
5.72612215145064 

0.0321425785981521 
6.69917402670398 

4.63150568244530e-14 
13.9636166715441 

0.0864555822538190 
60.0149005687220] 

7 

[180298.480000000 
0.408219752351044 

0.0355318725252387 
0.235327241728579 
0.126251399040010 

0.0141788152005874 
0.448594870654164 

0.0510141503794219 
1.59394160783480 

0.0589523788855325 
5.66357311549749 

3.15990723170900e-16 

[180298.480000000 
0.546937236520348 

0.0364867850655664 
0.0385071970807493 
0.271652071485464 

0.0660473613409926 
0.248609442252288 

0.0588192209865351 
1.30811026892141 

0.0567704318759862 
5.54205993040787 

-1.14727563386985e-15 



20.1237362001974 
0.0900085651950930 
71.5034043697626] 

20.0788535236374 
0.0908857077109137 
71.9091369435042] 

8 

[180298.480000000 
0.369990955721492 

0.0308630118804967 
0.240850502920411 

0.0952525521386189 
0.0458910141995189 
0.293978070709744 

0.0188356293543053 
0.907304887038130 

0.0622974554542280 
2.80021620679337 

0.0332005677334223 
8.64231077866854 

-4.06792655116561e-16 
26.6727745571547 

0.0905142744188743 
82.3202174507317] 

[180298.480000000 
0.589658272922427 

0.0432669875222498 
0.0303775737583543 
0.600112293532432 

0.0629286716178740 
0.537097786007722 

0.00831289587941676 
0.780621602225845 

0.0326988236074771 
2.51791282224508 

0.0500052612492851 
8.50820603043783 

1.25562906426457e-12 
26.7087835598032 

0.0874363808398120 
82.3417865879124] 

9 

[180298.480000000 
0.376344297113462 

0.0275736637064206 
0.211202644168666 

0.0760306945400917 
0.0321358387691986 
0.209644484454298 

0.0432347021656302 
0.578066662786207 

0.0563927105582293 
1.59394160783480 

0.0285816881683271 
4.39508107411245 

0.0281739078871121 
12.1188489923801 

1.16638469715991e-14 
33.4161073308003 

0.0884982688808037 
92.1404524345236] 

[180298.480000000 
0.280987293878332 

0.0318536667293212 
0.265159986799160 

0.0423189949558151 
0.0896025805541497 
0.230252599397086 

0.0384312876093378 
0.615302475996150 

0.0322037787237573 
1.64288706474620 

0.0403619543960961 
4.42464404784351 

0.0317649841934840 
12.1033969967161 

1.08396364800756e-14 
33.4194270703965 

0.0851108596901352 
92.1407522031724] 

10 

[180298.480000000 
0.302657616979265 

0.0251448773463986 
0.230851656981111 

0.0632264869410725 
0.0983945553297901 
0.158982229097338 

0.0171243013736513 
0.399758873086139 

0.0349530439569653 
1.00518880329232 

0.0443509236939499 
2.52753496742656 

0.0405200111308422 
6.35545580157655 

0.00433176004831986 
15.9807159807243 

2.94682762349771e-16 
40.1833151279606 

0.0967305453309271 
101.040455047234] 

[180298.480000000 
0.258058957462417 

0.0432890549439342 
0.296899712797504 

0.0329483246902424 
0.0419647103995531 
0.182137570185088 

0.0436229754722881 
0.378282411998683 

0.0619516809958969 
0.854724969422352 

7.05574502841438e-05 
2.52434116774581 

0.0715741436824561 
6.31832276371012 

0.00214432685348868 
15.9060488163711 

0.000319792703734464 
40.1359070960688 

0.0916967123211249 
101.052342008355] 

 

 



 
Distribution 

Number of terms in the series fitting 

 

1 2 3 4 5 6 7 8 9 10 

Error [%] 
Homogeneous 17.0851 2.1464 0.3801 0.1133 0.0369 0.0275 0.0256 0.0181 0.0086 0.0123 

Optimal 4.5438 0.2262 0.0306 0.0075 0.0195 0.0167 0.0090 0.0106 0.0071 0.0065 

 

Table1



Number of 
terms  0 1 1 n nE e e     0 1 1 n nE e e    

1 
[180298.480000000 
0.824136899437915 
1.59394160783480] 

[180298.480000000 
0.790641298834234 
0.322619191008081] 

2 

[180298.480000000 
0.707284956635547 
0.293978070709744 
0.120770268412372 
8.64231077866853] 

[180298.480000000 
0.676862461948996 

0.0685651171281151 
0.161502682209828 
13.1397290138809] 

3 

[180298.480000000 
0.673376703487496 
0.126251399040010 

0.0427478277226709 
1.59394160783480 

0.123798872722651 
20.1237362001974] 

[180298.480000000 
0.617563686189283 

0.0463869557979109 
0.138900430634949 
1.50008759822847 

0.100956721878062 
65.7721611364916] 

4 

[180298.480000000 
0.633319663251058 

0.0760306945400917 
0.0522217650402256 
0.578066662786207 

0.0649518678646969 
4.39508107411245 

0.0924974124245412 
33.4161073308003] 

[180298.480000000 
0.573375258226682 

0.0384396848204708 
0.122309844341341 
0.492517002572728 

0.0818891526813639 
6.34991278396463 

0.0926709562646039 
106.481558689669] 

5 

[180298.480000000 
0.608604338867814 

0.0542197440818547 
0.0303225376319685 
0.293978070709744 
0.101624474480116 
1.59394160783480 

0.0163492061424714 
8.64231077866853 

0.0911651105378306 
46.8583888066941] 

[180298.480000000 
0.555613598284982 

0.0360419070273322 
0.122044868675654 
0.367926427644592 

0.0776018004654576 
3.44521016251314 

2.89973123637766e-14 
8.46034177690573 

0.0931430220571901 
47.1953714976349] 

6 

[180298.480000000 
0.508707441498211 

0.0425870761741618 
0.151309350688599 
0.181365909333705 

0.00672291282557246 
0.772384395066749 

0.0943870052690803 
3.28935937263134 

-1.78713787475290e-16 
14.0084200968128 

0.0920410067233453 
59.6577665674181] 

[180298.480000000 
0.596564191679323 

0.0428293235109045 
0.113621692730670 
0.754783504886141 

0.0235777953423940 
5.72612215145064 

0.0321425785981521 
6.69917402670398 

4.63150568244530e-14 
13.9636166715441 

0.0864555822538190 
60.0149005687220] 

7 

[180298.480000000 
0.408219752351044 

0.0355318725252387 
0.235327241728579 
0.126251399040010 

0.0141788152005874 
0.448594870654164 

0.0510141503794219 
1.59394160783480 

0.0589523788855325 
5.66357311549749 

3.15990723170900e-16 
20.1237362001974 

0.0900085651950930 
71.5034043697626] 

[180298.480000000 
0.546937236520348 

0.0364867850655664 
0.0385071970807493 
0.271652071485464 

0.0660473613409926 
0.248609442252288 

0.0588192209865351 
1.30811026892141 

0.0567704318759862 
5.54205993040787 

-1.14727563386985e-15 
20.0788535236374 

0.0908857077109137 
71.9091369435042] 

8 

[180298.480000000 
0.369990955721492 

0.0308630118804967 
0.240850502920411 

0.0952525521386189 
0.0458910141995189 

[180298.480000000 
0.589658272922427 

0.0432669875222498 
0.0303775737583543 
0.600112293532432 

0.0629286716178740 
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0.293978070709744 
0.0188356293543053 
0.907304887038130 

0.0622974554542280 
2.80021620679337 

0.0332005677334223 
8.64231077866854 

-4.06792655116561e-16 
26.6727745571547 

0.0905142744188743 
82.3202174507317] 

0.537097786007722 
0.00831289587941676 

0.780621602225845 
0.0326988236074771 

2.51791282224508 
0.0500052612492851 

8.50820603043783 
1.25562906426457e-12 

26.7087835598032 
0.0874363808398120 
82.3417865879124] 

9 

[180298.480000000 
0.376344297113462 

0.0275736637064206 
0.211202644168666 

0.0760306945400917 
0.0321358387691986 
0.209644484454298 

0.0432347021656302 
0.578066662786207 

0.0563927105582293 
1.59394160783480 

0.0285816881683271 
4.39508107411245 

0.0281739078871121 
12.1188489923801 

1.16638469715991e-14 
33.4161073308003 

0.0884982688808037 
92.1404524345236] 

[180298.480000000 
0.280987293878332 

0.0318536667293212 
0.265159986799160 

0.0423189949558151 
0.0896025805541497 
0.230252599397086 

0.0384312876093378 
0.615302475996150 

0.0322037787237573 
1.64288706474620 

0.0403619543960961 
4.42464404784351 

0.0317649841934840 
12.1033969967161 

1.08396364800756e-14 
33.4194270703965 

0.0851108596901352 
92.1407522031724] 

10 

[180298.480000000 
0.302657616979265 

0.0251448773463986 
0.230851656981111 

0.0632264869410725 
0.0983945553297901 
0.158982229097338 

0.0171243013736513 
0.399758873086139 

0.0349530439569653 
1.00518880329232 

0.0443509236939499 
2.52753496742656 

0.0405200111308422 
6.35545580157655 

0.00433176004831986 
15.9807159807243 

2.94682762349771e-16 
40.1833151279606 

0.0967305453309271 
101.040455047234] 

[180298.480000000 
0.258058957462417 

0.0432890549439342 
0.296899712797504 

0.0329483246902424 
0.0419647103995531 
0.182137570185088 

0.0436229754722881 
0.378282411998683 

0.0619516809958969 
0.854724969422352 

7.05574502841438e-05 
2.52434116774581 

0.0715741436824561 
6.31832276371012 

0.00214432685348868 
15.9060488163711 

0.000319792703734464 
40.1359070960688 

0.0916967123211249 
101.052342008355] 
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