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been evaluated by intravascular imaging in the clinical 
field. Invasive imaging modalities, such as intravascular 
ultrasound (IVUS), are considered the gold-standard 
method to measure the progression of atherosclerotic 
plaques.8,9 Integrated backscatter (IB)-IVUS, which uses 
the average power of backscatter radiofrequency signals, 
enables analysis of tissue components of coronary plaques 
in vivo.10,11 However, little is known about the relationship 
between coronary plaque characteristics and inflammation 
in EAT in humans. Because Tokushima University Graduate 
School of Biomedical Sciences has a laboratory that uses 
fresh cadaveric human bodies, we decided to investigate 
this relationship in cadaveric human hearts.

The aim of the present study was to investigate the 

T he adventitia, the outermost layer of the vessel wall, 
has received considerable attention in recent years. 
Previous studies suggested that neovascularization 

of the adventitial vasa vasorum (VV) plays a key role in the 
development of human atherosclerotic plaques.1–4 Adipo-
cytokines secreted from perivascular adipose tissue have 
direct access to the adjacent arterial wall via diffusion or 
the VV.5,6 Previously, we reported that human coronary 
atherosclerosis is associated with inflammation in epicardial 
adipose tissue (EAT).7 In that study we found that infiltra-
tion of macrophages, and expression of pro- and anti-
inflammatory cytokines, was increased in the epicardial fat 
of patients with coronary artery disease (CAD) compared 
with non-CAD patients.7 However, little is known about 
the relationship between the VV and local inflammation in 
EAT around coronary plaques in humans.

Recently, the characteristics of coronary plaques have 
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Background:  The coronary adventitia has recently attracted attention as a source of inflammation because it harbors nutrient blood 
vessels, termed the vasa vasorum (VV). This study assessed the link between local inflammation in adjacent epicardial adipose 
tissue (EAT) and coronary arterial atherosclerosis in fresh cadavers.

Methods and Results:  Lesion characteristics in the left anterior descending coronary artery of 10 fresh cadaveric hearts were 
evaluated using integrated backscatter intravascular ultrasound (IB-IVUS), and the density of the VV and levels of inflammatory 
molecules from the adjacent EAT were measured for each of the assessed lesions. The lesions were divided into lipid-rich, 
lipid-moderate, and lipid-poor groups according to percentage lipid volume assessed by IB-IVUS. Higher expression of inflammatory 
molecules (i.e., vascular endothelial growth factor A [VEGFA] and VEGFB) was observed in adjacent EAT of lipid-rich (n=11) than 
in lipid-poor (n=11) lesions (7.99±3.37 vs. 0.45±0.85 arbitrary units [AU], respectively, for VEGFA; 0.27±0.15 vs. 0.11±0.07 AU, respectively, 
for VEGFB; P<0.05). The density of adventitial VV was greater in lipid-rich than lipid-poor lesions (1.50±0.58% vs. 0.88±0.23%; 
P<0.05).

Conclusions:  Lipid-rich coronary plaques are associated with adventitial VV and local inflammation in adjacent EAT in fresh cadavers. 
This study suggests that local inflammation of EAT is associated with coronary plaque progression via the VV.
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Board of Tokushima University, we undertook this study 
using 10 fresh, frozen cadavers that had been stored at 
−20°C. Hearts were removed from the cadavers and cleaned 
with normal saline. Then, a guidewire was introduced into 
the left anterior descending artery (LAD) so that the LAD 
could be evaluated by IB-IVUS. For each heart, at least 2 
samples were obtained in which the coronary plaque burden 
was over 25%. For each lesion, the area density of the 
adventitial VV was measured by immunohistological 
examination and the expression of inflammatory molecules 
in the adjacent EAT was determine (Figure 1A). Lesions 
were divided into 3 groups (lipid-rich, lipid-moderate, and 
lipid-poor groups) according to percentage lipid volume 
assessed by IB-IVUS, and VV area density and the expres-
sion inflammatory molecules were compared between 2 
groups (i.e., lipid-rich and lipid-poor groups; Figure 1B).

IVUS Data Acquisition
Following the passage of a 0.014-inch guidewire into the 
LAD, the IVUS catheter (40 MHz; ViewIT; Terumo, 
Tokyo, Japan) was introduced over the wire and positioned 
as distal to the LAD as possible. Saline was infused into 
the LAD via constant manual perfusion pressure to obtain 
clear images. The guidewire was removed from the vessel 
before IVUS in order to reduce associated artifacts. Data 
were collected at an auto pull-back rate of 0.5 mm/s and 
analyzed using an IVUS imaging system (VISIWAVE; 
Terumo). For each lesion, 5 IB-IVUS images (5 mm in 
length) were captured at 1-mm intervals using a motorized 
pull-back system.

Conventional IVUS and IB-IVUS Parameters
IB-IVUS parameters were measured in the LAD of 10 

relationships among coronary plaque characteristics, 
adventitial VV, and inflammation in adjacent EAT using 
fresh cadaveric hearts.

Methods
Cadavers and Study Design
After receiving approval from the Institutional Review 

Figure 1.    (A) Study design for using integrated backscatter intravascular ultrasound (IB-IVUS) and measuring the adventitial vasa 
vasorum (VV) area density and inflammatory molecules in adjacent epicardial adipose tissue (EAT) of cadaveric hearts. (B) Lesion 
classification. In all, 37 lesions were divided into 3 groups (lipid-rich, lipid-moderate, and lipid-poor groups) to measure the VV 
area density and inflammatory molecules.

Figure 2.    Classification according to percentage lipid volume 
of coronary plaques. The lipid-rich group was defined as 
having a value greater than the mean+0.5 SD, whereas the 
lipid-poor group was defined as having a value less than 
mean value−0.5 SD.
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(Agilent Technologies) and Power SYBR Green PCR 
Master Mix (Applied Biosystems). The primer sequences 
used were as follows: VEGFA, 5′-AAGGAGGAGGGCA 
GAATCAT-3′ (sense) and 5′-ATCTGCATGGTGATG 
TTGGA-3′’ (antisense); VEGFB, 5′-GGCTTAGAGCTC 
AACCCAGA-3′ (sense) and 5′-GACAAGGGATGGCA 
GAAGAG-3′ (antisense); VEGFC, 5′-AAAGAACCTG 
CCCCAGAAAT-3′ (sense) and 5′-GAAAATCCTGGCT 
CACAAGC-3′ (antisense); CCL2, 5′-CCCCAGTCACCT  
GCGTTAT-3′ (sense) and 5′-AGATCTCCTTGGCCAC 
AATG-3′ (antisense); ADIPOQ, 5′-GTGATGGCAGAG 
ATGGCAC-3′ (sense) and 5′-ACACTGAATGCTGAGC 
GGTA-3′ (antisense); G3PDH, 5′-TGGGTGTGAACCA 
TGAGAAG-3′ (sense) and 5′-GCTAAGCAGTTGGTG 
GTGC-3′ (antisense). Expression was normalized against 
that of G3PDH and is given in arbitrary units (AU).

Measurement of the Density of the Adventitial VV
Vessels trimmed from the LAD were cut into 5- to 7-mm 
slices and fixed in 10% neutralized formalin. Paraffin-
embedded sections were cut into 5-μm slices. All sections 
were stained with hematoxylin-eosin. Immunohistochemical 
staining was performed using mouse anti-human CD31 
antibody. Adventitial VV area density was calculated using 
the following formula (see Figure 3):

�Adventitial VV area density=VV area/(area of intima+ 
media+adventitia)

Statistical Analysis
All data are expressed as the mean ± SD. The significance 
of differences in each parameter between the lipid-rich and 
lipid-poor groups was determined using unpaired Student’s 
t-test. Significance was set at 2-tailed P<0.05. All statistical 
analyses were performed using EZR (Saitama Medical 
Center, Jichi Medical University, Saitama, Japan), which 
is a graphical user interface for R (R Foundation for 
Statistical Computing, Vienna, Austria). More precisely, 

fresh cadaveric hearts. The cross-sectional lumen area, 
cross-sectional vessel area within the external elastic 
membrane, and plaque area (external elastic membrane area 
minus lumen area) were calculated using software attached 
to the IVUS system. Plaque volume was calculated using 
integration. The distance from the ostium of the LAD to 
the proximal endpoint of the lesions was also measured.

The IB values for each histological category were defined 
by comparing histological images reported in a previous 
study.10 Plaque properties were classified into 4 types by 
combining spectral parameters of posterior scattering 
signals of IVUS: lipid pool, fibrosis, dense fibrosis, or 
calcification. The percentage area of each component was 
automatically measured in each plaque. The percentage 
lipid volume was calculated using integration. Lesions were 
divided into 3 groups (lipid-rich, lipid-moderate, and 
lipid-poor groups). The lipid-rich group was defined as 
having a percentage lipid volume greater than the mean 
value+0.5 SD, whereas the lipid-poor group was defined as 
having a percentage lipid volume less than the mean 
value−0.5 SD (Figure 2). The IVUS measurements were 
conducted independently by 2 physicians who were blinded 
to the cadaver’s clinical characteristics.

Measurement of Inflammatory Molecules
After performing IB-IVUS, the vessels in which the coro-
nary plaque burden was >25% and adjacent EAT for each 
lesion were trimmed from least 2 lesions from 1 LAD. The 
expression of inflammatory molecules (vascular endothelial 
growth factor A [VEGFA], VEGFB, VEGFC, C-C motif 
chemokine ligand 2 [CCL2], adiponectin [ADIPOQ], and 
glycerol-3-phosphate dehydrogenase [G3PHD]) was 
measured in each EAT. Total RNA was extracted using 
the illustra RNAspin RNA Isolation Kit (GE Healthcare). 
cDNA was synthesized from 100 ng total RNA extracted 
from tissues and cells using a QuantiTect Reverse Tran-
scription kit (Qiagen). Real-time quantitative polymerase 
chain reaction (qPCR) was performed using an Mx3000P 

Figure 3.    Representative images 
of coronary artery plaques. (A) 
Image showing a CD31-stained 
coronary artery with an atheroscle-
rotic plaque. (B) Integrated back-
scatter intravascular ultrasound 
image of the lesion shown in (A). 
(C) Image showing the CD31-
stained adventitial vasa vasorum 
(VV; black arrows). (D) Method of 
calculating VV area density. I+M, 
intima+media.
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is shown in Figure 4. Expression of VEGFA and VEGFB 
in adjacent EAT was higher for lipid-rich than in lipid-poor 
lesions (7.99±3.37 vs. 0.45±0.85 AU, respectively, for 
VEGFA; 0.27±0.15 vs. 0.11±0.07 AU, respectively, for 
VEGFB; P<0.05). CCL2 expression was slightly higher in 
lipid-rich lesions (0.50±0.15 vs. 0.30±0.26 AU; P=0.06), 
whereas ADIPOQ expression was slightly higher in lipid-
poor lesions (0.016±0.012 vs. 0.009±0.005 AU; P=0.08).

Pathological VV Area Density
The density of adventitial VV was higher in lipid-rich than 
lipid-poor lesions (1.50±0.58 vs. 0.88±0.23%; P<0.05; 
Figure 5).

Discussion
Recent reports suggested that adipokines and inflammatory 
molecules secreted from the EAT significantly affect the 
myocardium and coronary arteries.13 The quality of the 
EAT, such as inflammatory status, determines cardiac and 
coronary vascular function.14 Several adipokines and 
inflammatory molecules secreted from the EAT can diffuse 
through interstitial fluid across the adventitia, media, and 
intima, and may interact with VV, endothelial cells, and 
vascular smooth muscle cells of the coronary vasculature, 
resulting in inflammation, endothelial and smooth muscle 
cell proliferation, atherogenesis, and destabilization of 
atherosclerotic plaques.5,6 However, little is known about 
the association between local inflammation in the EAT 
and the growth of coronary adventitial VV in vivo. In the 
present study we found that inflammatory molecules in 
adjacent EAT and the progression of VV are associated 
with the characteristics of coronary plaques.

Fresh Frozen Cadaveric Study
In this study we used fresh cadaveric hearts without form-
aldehyde fixation. The advantages of using fresh cadaveric 
hearts include the ability to measure the expression of 
inflammatory molecules under the same conditions as in 
living tissues and the absence of any adverse effects of 
formaldehyde on observers: formaldehyde is toxic, causes 
mucosal irritation, and respiratory damage, and is carcino-
genic. In this study, the cadavers were safely and accurately 
observed in the laboratory.

Inflammation in Adjacent EAT
VEGF induces the migration and proliferation of endo-
thelial cells, increases vascular permeability, and plays a 
role in tumor growth, adipose tissue expansion, age-related 

EZR is a modified version of R commander designed to 
add statistical functions frequently used in biostatistics.12

Results
Baseline Characteristics
Ten fresh, frozen cadavers (5 male, 5 female) were used in 
this study. The mean age was 81.1 years (range 69–96 years). 
None of the cadavers had died of cardiovascular disease. 
The clinical characteristics and causes of death for all 10 
cadavers are given in Table 1.

IVUS Measurements and Lesion Classification
Conventional and IB-IVUS parameters are given in Table 2. 
The 37 lesions were divided into 3 groups according to the 
percentage lipid volume assessed by IB-IVUS. The mean 
percent lipid volume was 32.7±6.0%. There were 11 lesions 
in each of the lipid-rich (percentage lipid volume >35.7%) 
and lipid-poor (percentage lipid volume <29.7%) groups 
(Figure 2). There were significant differences between these 
2 groups in conventional and IB-IVUS parameters. Mean 
vessel area, mean lumen area, and plaque volume were 
larger in the lipid-rich than lipid-poor group, whereas 
percentage fibrous volume, percentage dense fibrous 
volume, and percentage calcified volume were higher in the 
lipid-poor than lipid-rich group.

Expression of Inflammatory Molecules
The expression of inflammatory molecules in adjacent EAT 

Table 2.  Conventional IVUS and Integrated Backscatter IVUS Parameters

All  
(n=37)

Lipid-rich group 
(n=11)

Lipid-poor group 
(n=11) P-value

Distance from the LAD ostium (mm) 34.0±15.2 29.1±13.9 39.1±16.8 0.14　　
Mean vessel area (mm2) 9.1±1.3 11.0±3.0　　 6.9±3.0 0.005

Mean lumen area (mm2) 4.4±0.6 5.2±1.2 3.6±1.5 0.009

Plaque volume (mm3) 18.8±3.3　　 24.1±8.8　　 13.5±6.3　　 0.004

Fibrous volume (%) 55.1±3.7　　 46.0±8.9　　 62.0±4.5　　   0.0003

Lipid volume (%) 32.7±6.0　　 47.5±11.8 19.2±8.1　　   0.0002

Dense fibrous volume (%) 10.4±2.8　　 5.4±3.2 16.1±8.3　　   0.0007

Calcified volume (%) 1.8±0.7 1.0±1.1 2.7±2.1 0.03　　

LAD, left anterior descending artery; IVUS, intravascular ultrasound. Data are given as the mean ± SD.

Table 1.  Baseline Characteristics of the Cadavers Used in 
the Present Study

Cadaver  
No. Age, sex Cause of death*

  1 70, Female Muscular dystrophy

  2 80, Female Caducity

  3 96, Female Pneumonia

  4 70, Male Amyloidosis

  5 77, Male Respiratory failure

  6 95, Female Caducity

  7 69, Female Multiple organ failure

  8 74, Female Brain cancer

  9 93, Male Chronic obstructive pulmonary 
disease

10 87, Female Senile decay

*Causes of death are taken from death certificates.
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progression and morphology.1–6,28 Adventitial focal VV 
formation coincides with early coronary atherosclerotic 
changes, such as focal coronary spasm.29 In clinical settings, 
imaging devices, such as optical coherence tomography 
(OCT), are available to assess the neovessels of coronary 

macular degeneration, and diabetic retinopathy.15,16 CCL2 
is expressed primarily by inflammatory and endothelial cells. 
Expression of CCL2 is upregulated by proinflammatory 
stimuli and tissue injury, which are associated with athero-
sclerotic lesions.17,18 A recent study reported that blood 
CCL2 concentrations were higher in patients with vulner-
able coronary plaques.19 Previously, we reported on the 
relationship between CAD and EAT.6,7,20–22 In the present 
study the expression of VEGFs and CCL2 in focal adjacent 
EAT increased in the lipid-rich group, suggesting that the 
inflammation in focal adjacent EAT is associated with 
coronary plaque vulnerability. Conversely, ADIPOQ 
expression was slightly lower in lipid-rich coronary plaque 
lesions. Previous studies demonstrated a cardioprotective 
action of AdipoQ in vascular endothelial cells, smooth 
muscle cells, and cardiac myocytes.23–25 The findings of the 
present study suggest that AdipoQ inhibits the progression 
of vulnerable plaques.

Plaque Characterization Assessed by IVUS and Adventitial 
VV
In our conventional and IB-IVUS analyses, the large vessels 
had a higher lipid volume than small vessels. Previous 
studies reported that plaque in the proximal segment of the 
LAD has a significantly higher lipid content and lower 
fibrosis content than that in the distal segment.26 One 
possible reason for this is destabilization of atherosclerotic 
plaques resulting from a change in composition caused by 
low shear stress.26,27 The present study suggests that another 
reason is related to the growth of adventitial VV.

Adventitial VV is associated with coronary plaque 

Figure 4.    Expression of inflammatory molecules in adjacent epicardial adipose tissue (EAT). (A) Vascular endothelial growth 
factor A (VEGFA), (B) VEGFB, (C) VEGFC, (D) C-C motif chemokine ligand 2 (CCL2), and (E) adipocyte-specific protein (ADIPOQ) 
expression was compared among the 3 groups (lipid-rich, lipid-moderate, and lipid-poor groups). P-values are for comparisons 
between lipid-poor and lipid-rich lesions. There were no significant differences in the expression of inflammatory molecules in 
adjacent EAT between lipid-moderate lesions and other types of lesions.

Figure 5.    Association between the percentage lipid volume 
and pathological vasa vasorum (VV) area density in lesions in 
the lipid-rich, lipid-moderate, and lipid-poor groups. P-values 
are for comparisons between lipid-poor and lipid-rich lesions. 
There were no significant differences in VV area density 
between lipid-moderate lesions and other types of lesions.
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involved. Third, we did not compare the pathological 
analyses and IB-IVUS findings. However, there was no 
significant pathological lipid core in our sampling sites of 
non-stenotic coronary arteries. Finally, we were unable to 
obtain clinical information for the cadavers other than the 
direct cause of death. Therefore, we cannot exclude the 
possibility that they underwent anti-inflammatory and/or 
immunosuppressive treatments that may have affected 
systemic inflammation.

Conclusions
In fresh cadavers, lipid-rich coronary plaques are associated 
with adventitial VV and local inflammation in adjacent 
EAT. This study suggests that local inflammation of the 
EAT is associated with coronary plaque progression via 
the VV.
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