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Abstract: This study investigates social media trends and proposes a buzz tweet classification method
to explore the factors causing the buzz phenomenon on Twitter. It is difficult to identify the causes
of the buzz phenomenon based solely on texts posted on Twitter. It is expected that by limiting the
tweets to those with attached images and using the characteristics of the images and the relationships
between the text and images, a more detailed analysis than that of with text-only tweets can be
conducted. Therefore, an analysis method was devised based on a multi-task neural network that
uses both the features extracted from the image and text as input and the buzz class (buzz/non-buzz)
and the number of “likes (favorites)” and “retweets (RTs)” as output. The predictions made using
a single feature of the text and image were compared with the predictions using a combination of
multiple features. The differences between buzz and non-buzz features were analyzed based on
the cosine similarity between the text and the image. The buzz class was correctly identified with
a correctness rate of approximately 80% for all combinations of image and text features, with the
combination of BERT and VGG16 providing the highest correctness rate.

Keywords: multi-task learning; buzz classification; social media; trend analysis

1. Introduction

With the development of social networking services (SNSs), information can be shared
and spread in real time among many users. This has led to frequent trends in internet
content. The phenomenon of an explosion of popularity in a short period of time is called
“buzz.” Marketing that utilizes this “buzz” phenomenon is attracting attention as a kind
of corporate strategy. There are many examples of successful buzz marketing, including
Ezaki Glico’s “Pocky Day” event on 11 November, Softbank’s “Free Mobile Phone Bills for
Life Campaign”, and Seven-Eleven’s “Beard Straws” among others. These campaigns have
increased the number of people accessing their websites by utilizing the diffusion power of
SNSs. For marketing purposes, it would be useful if such trends on the web, triggered by
SNS content, could be quickly detected.

In addition, many of the so-called “buzzed” tweets that cause a buzz phenomenon
on Twitter are posted with images. Twitter has a character limit (140 full-size characters
and 280 half-size characters, as of September 2021) for posted text. Therefore, complex
information that is difficult to express in short sentences can be easily conveyed by at-
taching images or links to other pages, which is thought to increase the likelihood of the
buzz phenomenon.

In this study, a method is proposed to classify tweets with images as buzz tweets
or non-buzz tweets based on the image and text features of the post. Tweets that have
been buzzed (buzz tweets) and tweets that have not been buzzed (non-buzz tweets) were
collected. A neural network model was constructed to predict whether a tweet is a buzz
tweet or not, using the text and image features of the tweets as inputs. The proposed method
was evaluated and its effectiveness in correctly classifying the tweets was confirmed.
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2. Related Works

In the following subsections, previous studies on buzz tweet classification are in-
troduced, as well as studies related to information diffusion prediction. The differences
between these studies and ours are discussed.

2.1. Buzz Detection from SNSs

Matsumoto et al. [1] proposed a method of classifying tweets that were buzzed and
those that were not, based on the characteristics of Twitter reply texts. It is difficult to use
Matsumoto et al.’s method for actual prediction because there are not many replies in the
state preceding the buzz. In their research, they did not use objective indicators such as
the number of retweets (RTs) or likes to classify a post. Thus, whether a post had been
buzzed or not was largely based on the subjective judgment of the collector. In this study,
instead of separating buzz from non-buzz tweets based on subjective criteria, the threshold
of the number of likes is set to determine buzz objectively. This method is superior to
conventional methods in terms of versatility and accuracy.

There have been studies focusing on hashtag. Ma et al. [2] identified hashtags based on
their distribution across topics. Tsur et al. [3] predicted hashtags by applying a regression
model to the content and context of the posts. Zhang et al. [4] predicted hashtags using a
nonlinear model. Anusha et al. [5] used hashtags as an indicator to estimate user interest.
They used sentiment analysis to analyze the interest in hashtags and conducted trend anal-
ysis to predict trends in hashtag usage and diffusion. Related studies on buzz prediction
by Jansen et al. [6] and Deusser et al. [7] attempted to detect buzz using Facebook data.

2.2. Research on Predicting Information Diffusion

Alsuwaidan et al. [8] proposed a model to predict information diffusion based on
the mechanism of radiation energy transfer. This model predicts the diffusion graph of
information in the entire community based on certain interests. Their proposed RADDIFF
model accurately captures the information diffusion process in space and time and mea-
sures the level of impact a particular influencer has in each diffusion process. However,
in predicting the graph of information diffusion, the focus is mainly on the influencer, the
community to which the user belongs, and the relevance of other users, which is different
from our approach, which focuses on the tweet content itself to predict buzz tweets.

Fiok et al. [9] studied the prediction of response metrics available on Twitter, such as
“likes,” “replies,” and “retweets.” They used data from the official Twitter account of the
U.S. Navy and developed a feature-based model derived from structured tweet-related
data. In addition, they applied a deep learning feature extraction approach to analyze
the text and defined a task to classify tweets into three classes: low, medium, and high
response tweets, employing four machine learning classifiers. Their best model achieved
an F1 score of 0.655. They concluded that additional information in images and links of the
tweets can be leveraged to significantly improve the performance of the models.

In terms of research on analyzing the diffusion of information on SNSs, Hatua et al. [10]
predicted the amount, sentiment, and impact of tweets by means of long short-term memory
(LSTM). Zhang et al. [11] proposed a cascade model that takes into account the temporal
and structural characteristics of the actual influence cascade. Benabdelkrim et al. [12]
introduced an exhaustive enumeration method to extract target overlapping communities
from a multi-layered local network.

2.3. Predicting the Number of “Likes” for Influencer Recommendations in SNS Advertising

Yamazaki et al. [13] conducted a study to predict the number of tweets based on past
tweet data of users engaged in advertising activities on SNSs, called influencers. Their
study also considered images as features. In our study, the focus is only on the text of
tweets without narrowing down the data to influencers or advertising tweets to make a
wide range of analysis possible.
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Yoo et al. [14] found that when urgent information needs to be disseminated, internal
dissemination through social media networks proceeds much faster than information from
external sources. Riquelme et al. [15] and Anger et al. [16] calculated the social networking
potential (SNP) of tweets by considering the ratio of retweets to mentions. Chen et al. [17]
proposed a multi-view influence role clustering (MIRC) algorithm that groups Twitter users
into five categories. They analyzed the diffusion of tweets and the influence of users. In
addition, there have been several studies on predicting words expected to become popular
in SNSs. Tanaka et al. [18] predicted word trends on Twitter. Chang et al. [19] claimed that
Twitter data can be used to improve both web and tweet rankings. Bhattacharya et al. [20]
used a social annotation-based methodology to first infer the topics of popular Twitter users,
and then transitively infer the interests of the users who follow them. Finally, Li et al. [21]
proposed a learning-to-rank method for the dynamic context of advertising to estimate the
interest of users on specific topics.

3. Materials and Methods

In this section, the steps involved in our proposed method and the techniques used in
each step are outlined.

3.1. Overview of the Proposed Method

Initially, the Twitter API [22] is used to collect data on the number of likes, RTs,
texts, and images of the target tweets. The text of the collected tweets is vectorized
using bidirectional encoder representations from transformers (BERT) [23], and the images
are vectorized using models such as VGG16 [24], ResNet50 [25], Inception V3 [26], and
Xception [27]. A multi-task learning neural network model is created that uses each vector
as an input to predict the number of likes, RTs, and buzz classes.

In this study, the buzz class is defined as follows: a tweet with more than 1000 likes at
the time of collection is called a buzz tweet, and a tweet with less than 1000 likes is called a
non-buzz tweet. The number of RTs is related to the buzz phenomenon, but it is difficult to
determine the threshold because some tweets such as advertisements by official accounts
of companies are retweeted very often.

3.2. Feature Extraction from Tweet Text

In this study, feature vectors are extracted from utterance text using a pre-trained
model of BERT [28], which was created using a corpus of Japanese spoken language, and
published by Retriever Corporation. The Japanese spoken language BERT is said to have
higher expressive power than conventional BERT for utterance texts. The Japanese spoken
language BERT was used because Twitter posts are likely to contain spoken words.

BERT is a large-scale model consisting of a transformer network with an encoder-
decoder structure, which can be trained with a mask language model and a next-sentence
prediction task to acquire a distributed representation of the language that can be applied
to a variety of tasks. In BERT, distributed representations, assigned to special tokens, called
CLS tokens, are often used as distributed representations of sentences in classification tasks.
In this study, the distributed representation of the CLS tokens was extracted as features of
the utterance text. The dimensionality of this feature was 768.

“BertJapaneseTokenizer”, a standard Japanese tokenizer for BERT was used to split
the tweets into word units. As a pre-processing step, link addresses, such as images
in tweets, were removed using pattern matching on regular expressions. The average
768-dimensional vector of variance representation of the CLS tokens obtained for each
line was used as the BERT vector of the input tweet. For the Japanese spoken language
BERT, three models (1–6_layer-wise, TAPT512_60k, DAPT) were prepared. One model
(1–6_layer-wise) fine-tuned the corpus of spoken Japanese (CSJ) from layer 1 to layer 6
of BERT, pertaining to syntactic structures in Japanese. The task-adaptive pretraining
TAPT512_60k model fine-tuned all layers to be task-adaptive, using CSJ. The domain-
adaptive pretraining DAPT128-TAPT512 is a domain-adaptive model based on CSJ and
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parliamentary proceedings data. As the purpose of this study was to obtain text features of
tweets, TAPT512_60k was adapted to all layers of spoken language as the pre-trained model.
The distributed representation of the 768-dimensional CLS tokens was extracted from the
layer immediately preceding the final layer. The vocabulary of this model consisted of
32,000 items.

3.3. Extraction of Image Features

Several pre-trained models were used for feature extraction from images. In this study,
the following seven pre-trained models were trained to classify over 1,000,000 images from
the ImageNet database into 1000 different object categories.

• VGG16: 512 dimensions
• ResNet50: 2048 dimensions
• Inception V3: 2048 dimensions
• Xception: 2048 dimensions
• DenseNet: 1024 dimensions
• NASNet: 4032 dimensions
• InceptionResNetV2: 1536 dimensions

To extract these image features, pre-trained models prepared in the Keras module of
Tensorflow were used. The weights of the network were obtained by carrying out training
on the ImageNet database. In the case of both networks, features were extracted from the
layer immediately preceding the output layer. Although it is possible to fine-tune these
networks, in the proposed method, image features from these seven trained networks are
used to transfer learning for buzz classification. In addition, each image feature is used
separately to compare and identify features that work effectively.

3.4. Multi-Task Learning of RTs, Likes, and Buzz Classes

In the proposed method, the input consists of text and image features, and a neural
network is trained to predict the score of the number of RTs and the number of likes, which
are further converted into four patterns of numerical values in the quartile range, and into
the binary value of buzz/non-buzz (buzz class).

Both the number of RTs and the number of likes tend to increase with the size of the
buzz phenomenon, but the difference between the two values depends on factors such as
the number of followers and the user’s name recognition, so they are trained as separate
prediction targets.

In multi-task learning, learning efficiency and prediction accuracy are expected to
improve more than learning task-specific models [29]. The network for multitask learning
is illustrated in Figure 1. The same loss function, mean square error (MSE), is used for both
RTs and likes. The concatenation layer is used as the sharing layer. Batch normalization is
applied to the input layer.
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The architectures of the multitask and single-task networks are displayed in Figure 2.
In both networks, a dropout function was applied to the third layer. The dropout rate was
assumed to be 0.3. In the layer that outputs the buzz class, the softmax function was used
as the activation function, and in the other output layers, the tanh (hyperbolic tangent
function) was used. This is because normalizing the scores of the number of likes and RTs
in the quartile range may cause the numbers to become negative. Activation functions
other than the output layer are shown in Figure 2.
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4. Experiments
4.1. Dataset

In this experiment, tweets containing keywords that represent topics associated with
a large number of tweets are mainly targeted during the collection period. Examples of
such keywords are listed in Table 1. The period of tweet collection was from March to June
2021, and the search condition for the Twitter API was that the tweets contained keywords
and images. The actual number of tweets collected for the experiment was 508 tweets, with
more than 1000 likes and an additional 9272 tweets.
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Table 1. Example of keywords for tweet collection.

Cat Lover Dog Lover
COVID-19 vaccine declaration of a state of emergency

Taiwan castella Uber Eats
remote class GoTo travel

Because an imbalance in the class balance of the data affects the training of the classifi-
cation model, 508 non-buzz tweets with the same number of tweets were randomly selected
for the experiment along with 508 tweets in the buzz class, which is the minority class.

The most common words included in the tweets were “cats” and “clouds” in the
buzz tweets, and coronavirus-related tweets such as emergency declarations and vaccines
in non-buzz tweets. The frequently appearing words are listed in Table 2. Buzz tweets
contained few words related to coronavirus, indicating that although there were many
tweets on the topic of the coronavirus, the number of likes did not increase.

Table 2. Words that were included in many tweets.

Buzz Non-Buzz

cat emergency
cloud COVID-19
photo vaccine

The average text length of a tweet was 39 characters for buzz tweets and 93 characters
for non-buzz tweets, which was more than twice as long as that of buzz tweets. The buzz
tweets were easier to read because the text was shorter, and the images contained more
information.

From the text of the tweets, the distributed representation vectors were extracted using
spoken BERT and from the attached images. The feature vectors were extracted using any
of the seven models, including VGG16. The images were used after converting the size to
128 × 128 pixels.

Figures 3 and 4 show the distribution of the number of likes for the collected tweets.
Figure 2 shows the distribution of buzz tweets and Figure 3 shows the distribution of
non-buzz tweets.
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4.2. Training Parameters

The training parameters of the neural network are described as follows. The number
of training epochs was 200; the batch size was 512; the ratio of training data to validation
data was 9:1; and Adam (adaptive moment estimation) was used as the optimization
algorithm. A default learning rate of 0.001 was used to determine the learning rate.

4.3. Evaluation Method

We extracted text and image features from the collected tweets, randomly divided
them into training data and test data (4:1). The training and testing (five-part cross-
validation) was repeated to evaluate the results. A multi-task learning neural network was
constructed which accepted the feature vectors from the text and images as input to predict
the number of likes, RTs, and buzz classes. From the output buzz class and the original
tweet information, the correct prediction rate, the receiver operating characteristic curve
(ROC), and the area under curve (AUC) were calculated and evaluated.

In addition, for comparison, a model was created with text or image features as input
alone to evaluate the correct response rate. The correct response rate here refers to accuracy,
which is the percentage of correctly predicted tweets from all prediction results. The
formula in Equation (1) was used to calculate accuracy.

As shown in Table 3, the true positive (TP) is the number of buzz tweets correctly
judged as buzz; true negative (TN) is the number of non-buzz tweets correctly judged as
non-buzz; false positive (FP) is the number of non-buzz tweets incorrectly judged as buzz;
and false negative (FN) is the number of buzz tweets incorrectly judged as non-buzz.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Table 3. Confusion matrix of evaluation basis.

Buzz (True Value) Non-Buzz (True Value)

Buzz (Predicted Value) TP (True Positive) FP (False Positive)
Non-buzz (Predicted Vaue) FN (False Negative) TN (True Negative)

5. Results

Table 4 shows the results of the predicted correct response rate of the buzz class
for each image feature model obtained in the experiment, Table 5 shows the results of
prediction using only text features, and Table 6 shows the results of prediction using only
image features. Table 7 shows the results of prediction using single task learning model.
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Table 4. Comparison of accuracies between text and image features.

Text Feature Image Feature Accuracy

BERT

DenseNet 0.84
InceptionResNetV2 0.82

Inception V3 0.83
NASNet 0.82
ResNet50 0.82
VGG16 0.84

Xception 0.82

Table 5. Accuracy for text features only.

Text Feature Accuracy

BERT 0.82

Table 6. Comparison of accuracies for image features only.

Image Feature Accuracy

DenseNet 0.67
InceptionResNetV2 0.49

Inception V3 0.52
NasNet 0.59

ResNet50 0.71
VGG16 0.75

Xception 0.57

Table 7. Comparison of accuracy in the single task learning.

Text Feature Image Feature Accuracy

BERT

DenseNet 0.84
InceptionResNetV2 0.75

Inception V3 0.75
NasNet 0.75

ResNet50 0.82
VGG16 0.83

Xception 0.68

In addition, the ROC curve and the AUC calculated from the ROC curve are shown in
Table 8. Figure 5 displays the ROC curve for text features and VGG16, which yielded the
highest AUC.

Table 8. AUC comparison for each image feature.

Text Feature Image Feature AUC

BERT

DenseNet 0.84
InceptionResNetV2 0.82

InceptionV3 0.83
NasNet 0.82

ResNet50 0.82
VGG16 0.84

Xception 0.82
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These results show that when both text and image features are used as the input,
there is little difference in the prediction accuracy rate, approximately 80%, irrespective
of the type of image feature. When only text or only image features were used as input,
the correct response rate of 0.82 was the highest prediction result, associated with text
features alone.

In contrast, when using only image features, there was a slight difference in the
correct response rate for each image feature type. The lowest correct rate was 0.49 for
InceptionResnetV2 and the highest was 0.75 for VGG16.

As for the accuracy of the single-task results for predicting buzz/non-buzz, compared
with the multi-task results, the accuracy decreased for all models. This confirms the
effectiveness of multi-task learning. In particular, when Xception is used as an image
feature, the accuracy of a single task changes significantly.

Here, the probability that the tweets were misclassified when predicted using only
image features was investigated by comparing them to the set of tweets that were mis-
classified when predicted using a combination of text and image features. The higher
the probability that the misclassified tweets are included in the set of tweets predicted by
a combination of text and image features, the more the image features contribute to the
prediction. Let X be the set of misclassified tweets in the prediction of the combination of
text features and image features, and Y be the set of misclassified tweets in the prediction
of image features alone; the agreement rate MRerror of misclassification can be expressed as
in Equation (2).

Table 9 shows the MRerror calculated for each type of image feature.

MRerror =
|X ∩Y|
|X| (2)

Table 9. MRerror for each image feature.

Text Feature MRerror

DenseNet 0.54
InceptionResnetV2 0.50

InceptionV3 0.52
NasNet 0.50

ResNet50 0.61
VGG16 0.68

Xception 0.55
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It was observed that the tweets that were misclassified when only image features were
used for prediction were consistent with about half of the tweets that were misclassified
when text and image features were combined. It was also observed that MRerror was
relatively high for image features (ResNet50, VGG16, etc.), which had relatively high
correct prediction rates when only image features were used as the input.

Figures 6 and 7 show the distribution of the number of likes for tweets misclassified
by BERT + VGG16. Figure 6 shows the misclassification of buzz tweets, and Figure 7 shows
the misclassification of non-buzz tweets.
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An example of text and image tweets with high similarity between text features (BERT)
in buzz and non-buzz tweets is displayed in Figure 8. The cosine similarity of text features
(BERT) between these tweets was 0.91, and the cosine similarity between image features
(VGG16) was 0.29. The high similarity between the text features (BERT) indicates that the text
meanings are similar. In contrast, the similarity between the image features was 0.29, which is
not a high value, although the colors and composition of the images seemed to be similar.
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Next, examples with a high similarity between images were analyzed. An example of
a pair of tweets with high similarity in image features is displayed in Figure 9. In the case of
these two tweets, the cosine similarity of VGG16 was 0.912, and the similarity of ResNet50
was 0.949. The cosine similarity was presumably high because the images contain text and
are similar in format and color.
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The cosine similarity of the two BERTs was 0.635, and there was not much similarity
between the texts. The cosine similarity in DenseNet was also high, at 0.902. The non-buzz
tweets were often product information tweets, and the text and images tended to be in a
certain form, so the likes and RTs tended not to increase significantly.

The reason for the increase in the number of likes and RTs of buzz tweets was not
the text itself or the combination of text and images, but the text contained in the images,
which was considered to be interesting. These tweets tended to get more likes and RTs
because they were compiled by tweeting a topic in advance, and then other users replied
to the tweet with their answers, indicating that they found the tweet interesting.

Figure 10 shows another example of a pair of tweets that have high similarity in
image features. The cosine similarity of these tweets was 0.975 in DenseNet. However,
it is difficult to find commonalities between these images, and the white background of
the image and the position of the drawn objects may be the factors contributing to the
increase in cosine similarity. The cosine similarity of BERT was about 0.678; the cosine
similarity of VGG16 was about 0.637; and that of ResNet50 was about 0.872. In BERT, it is
difficult to find similarities between sentences, so these values are reasonable. In VGG16,
the categories of the images are judged to be different and the cosine similarity is thus
lower. This suggests that there are factors other than text, such as user information and
images, that divide tweets with similar text into buzz and non-buzz; tweets with similar
images are likewise divided into buzz and non-buzz tweets. Either there are factors other
than images, or there is a difference in the relationship between text and images, leading to
these results.
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Figure 11 shows the variance representation vector of BERT, the feature vector of
VGG16, and the concatenated vector of BERT and VGG16 for buzz and non-buzz tweets,
dimensionally compressed using a neural autoencoder and visualized using t-SNE. In the
Figure, it is not clear that there is a difference in the respective feature values. To clarify
the factors of the buzz phenomenon, it is necessary to analyze the relationships among
the features, rather than just looking at the distribution trend of each feature. By training
a neural network, it is possible to obtain feature representations of the same number of
dimensions from the intermediate layers of text and images, until they are connected.
Analyzing the correlations between these feature representations provides a clue as to the
cause of buzz.
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6. Discussion

In the prediction of the buzz class, based on the correct prediction rate with only one
of the features (text or image), it can be inferred that the text features are important. The
model with the highest correct prediction rate for image features alone was VGG16 at 0.75.
With both text and image features used as the input, the correct prediction rate of VGG16
for the image features was 0.84, which was higher than that of the other features.

To see if there were any similarities in the misclassification trends, the agreement rate
of misclassified tweets was also examined when using either image or text features as the
only input, as well as combining text and image features. As a result, the tweets with low
predicted correctness using only image features exhibited a large number of misclassified
tweets, but the agreement rate of misclassified tweets was approximately 0.5. This indicates
that approximately half of the misclassified tweets were difficult to classify using only
image features.

Although the prediction accuracy of VGG16 was higher than that of other image
features, even when only image features were used, the same tweets were more likely to be
misclassified when both text and image features were used, suggesting that VGG16 is a
feature that is more effective when combined with BERT.

Based on the results of Figures 5 and 6, it is observed that the rate at which non-buzz
tweets are recognized as buzz tweets is slightly higher for the misclassified tweets. In
addition, although tweets with likes close to the threshold are expected to be misclassified,
this is not the case. In the case of misclassified non-buzz tweets, the misclassification is
attributed to some popular words often found in buzz tweets.

With DenseNet, there were several cases in which the cosine similarity of the image
features was high, such as screenshots of the same game or text in the image. With
DenseNet, there were also a few images which had a high cosine similarity in the use of a
white background. With VGG16, the similarity in the same category was high, and cases
of no images with high similarity were attributed to the rarity of the image in the tweet.
The images in Figure 5 do not seem to be similar to each other, and based on the cosine
similarity results, VGG16 can discriminate the similarity of images more accurately than
DenseNet and ResNet50. The correct response rate for a single image feature model also
suggests that VGG16 contributes to the prediction of buzz.

The similarity between the tweets with higher BERT features may have been due to
the length of the sentences and the fact that both tweets had a word in common (“made” in
this example). In this example, the non-buzz tweet has a “coffee image” attached to the text
“made coffee”. In contrast, the buzz tweet has a text containing the word “star” with an
image of several people posing for a picture (a group photo) attached to it. This indicates
that there is no direct relationship between text and images in buzz tweets, whereas a direct
relationship is observed in non-buzz tweets. Thus, the difference in the relevance of text
and image is considered to be the boundary between buzz and non-buzz tweets. For this
reason, we believe that a model that can extract the relationship between text and images
would be effective, rather than using only one or a combination of both.

7. Conclusions

In this study, a method was proposed to analyze the characteristics of tweet content
as a function of tweet diffusion to classify the buzz class of tweets. Initially, the tweets
were classified into buzz classes. Tweets that had an image and more than 1000 likes were
considered buzz tweets, whereas tweets that had an image and less than 1000 likes were
considered non-buzz tweets. In the proposed method, the text features of the tweets were
extracted using the pre-trained BERT model, and the image features were obtained from
pre-trained models such as VGG16. The neural network was then trained for multiple tasks.
The results of the evaluation experiments showed that the correct response rate for buzz
class prediction with the proposed method using both text and image features was higher
than that using the features alone. However, it is not clear whether BERT or VGG16 is more
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suitable for buzz class prediction, so it is necessary to compare the proposed method using
other options such as the simpler bag-of-words feature.

In this study, the prediction results were not evaluated for the number of likes and RTs
in multi-task learning. Considering the comparison results with the buzz class prediction
model using a single task, it would be effective to consider the number of likes and RTs in
multi-task learning. However, the scale of the dataset used in this study is insufficient to
train a model to predict the number of likes and RTs with high accuracy. In the future, we
would like to construct a larger dataset to evaluate the prediction accuracy (or prediction
error) of the number of likes and RTs.

The textual content of buzz and non-buzz tweets can be positive or negative, short
or long. By analyzing the relationship between text and image content, a more accurate
and flexible model for buzz prediction can be created. In the future, we plan to create a
more accurate buzz prediction model by considering the emotional polarity of the tweet
text, the sender’s profile, and other attributes as features, as well as the relevance of the
attached image.

In addition, recently studied techniques such as capsule networks [30,31], aspect-
oriented sentiment analysis [32–35], hybrid approaches that combine deep learning with
rule-based approaches [36], and the neuro-symbolic concept learner approach [37] can be
used for more accurate feature extraction and buzz analysis.
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