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Abstract

A pentagonal square triangular number is a number which is a
pentagonal number, a square and a triangular number at the same
time. In our previous paper [10], we have shown the only pentago-
nal square triangular number is 1. In this note, we shall continue to
investigate several related problems and give more detailed results
on these subjects.

2010 Mathematics Subject Classification. Primary 11D09; Sec-
ondary 11G05

1 Introduction

The following explanation has been written in the on-line article “Pentagonal
Square Triangular Number” of Wolfram Mathworld [18].

“It is almost certain that no other solution exists except for 1, although no
proof of this fact appears to have yet appeared in print.”
In that article, it is noted that, in 2003 and 2006, J. Silcox has pointed out the
determination of pentagonal square triangular number is equivalent to solve
the following simultaneous Pell equations

x2 − 2y2 = 1, z2 − 6y2 = 1 with even y.

Moreover he noted that this problem has been already solved as the special
case R = 2, S = 6 of W. S. Anglin’s more general results. Actually, in 1996,
W. S. Anglin determined all the positive integer solutions of simultaneous Pell
equations x2 −Ry2 = 1, z2 − Sy2 = 1 for all the cases 0 < R < S ≤ 200 in his
paper [2].
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Since there has been no simple reference for the determination of the pen-
tagonal square triangular number as above, we have given two different detailed
proofs of this fact and also studied several related problems in our previous pa-
per [10]. In this paper, we shall continue to investigate several related problems
in somewhat general setting, which include the problem of the determination
of polygonal square triangular numbers.

Let Pk(n) be the n−th k−gonal number, i.e., the number of dots arranged
as a regular k−gon with n dots on each side. Then Pk(n) is written in the form

Pk(n) =
n((k − 2)n− (k − 4))

2
.

In the following, we will simply denote the set of all the k−gonal numbers
{Pk(n) | n ∈ N} by Pk.

2 Known results

In our previous paper [10], we have shown the following results:

Proposition 2.1 Pa ∩ Pb ∩ Pc = {1} for the case (a, b, c) = (3, 4, 5). More-
over {Pa ∩ Pb ∩ Pc} is also {1} for the other cases (a, b, c) = (3, 4, 7), (3, 4, 8),
(3, 4, 9), (3, 4, 10), (3, 4, 11), (3, 4, 12), (3, 5, 8) and (4, 5, 8).

Remark 2.2 The case (a, b, c) = (3, 4, 5) mentioned above is nothing but the
case of pentagonal square triangular number.

Here we recall some historical facts related to polygonal numbers. Euler is
the first mathematician who considered the problem of determining square tri-
angular numbers. He has treated this problem in his text “Algebra” 1774
(for example, see the section 1 of Dickson’s book [8] “Polygonal, Pyrami-
dal, and Figurate Numbers”). Euler also verified the infiniteness of square
triangular numbers P3 ∩ P4 = {1, 36, 1225, 41616, 1413721, . . .}, which is la-
beled as A001110 in the On-line Encyclopedia of Integer Sequences [15]. From
now on, we shall abbreviate the On-line Encyclopedia of Integer Sequences to
OEIS. It is also known that both of the pentagonal square numbers P4 ∩ P5

= {1, 960400, 94109401, 903638458801, 8676736387298001 . . .} (OEIS A036353)
and the pentagonal triangular numbers P3 ∩ P5 = {1, 210, 40755, 7906276,
1533776805, . . .} (OEIS A014979) are infinite. On the contrary, one can show
P4 ∩ P10 = {1} and more generally |P4 ∩ P2a2+2| < ∞ for any positive integer
a as in [10]. In this paper, we denote the number of elements contained in a
set S by |S| as usual. Now we shall generalize this fact as follows.

Theorem 2.3 Assume a ̸= b, then

|Pa ∩ Pb| < ∞ ⇐⇒ (a− 2)(b− 2) = � except for the case (a, b) = (3, 6)

2

Proof. Without loss of generality, we may assume 3 ≤ a < b. For the sake of
simplicity, we shall put A = a− 2, B = b− 2 and C = c− 2. Assume

Pa(m) = Pb(n) ⇐⇒ m(Am− (A− 2))

2
=

n(Bn− (B − 2))

2
.

Multiplying the both sides by 8AB2, we have

8AB2Pa(m) = (2ABm− (A− 2)B)2 − (A− 2)2B2

= 8AB2Pb(n) = AB((2Bn− (B − 2))2 −AB(B − 2)2.

Substitute X and Y for 2ABm− (A− 2)B and (2Bn− (B − 2)), respectively.
Then we have the following Pell equation

X2 −ABY 2 = (b− 2)(a2(b− 2)− b2(a− 2)).

From the decomposition a2(b − 2) − b2(a − 2) = (a − b)((a − 2)(b − 2) − 4),
the right hand side of the above equation B(A − B)(AB − 4) = (b − 2)(a −
b)((a − 2)(b − 2) − 4) ̸= 0 except for the case (a, b) = (3, 6). In the case
(a, b) = (3, 6), one sees P6(n) = n(2n − 1) = P3(2n − 1). Therefore P6 ⊂ P3

and |P3 ∩ P6| = ∞. If (a, b) ̸= (3, 6) and AB = (a− 2)(b− 2) = � = M2, the
left hand side of the above equation decomposes (X +MY )(X −MY ). Thus
|Pa∩Pb| < ∞ for these cases. Now assume AB = (a−2)(b−2) ̸= �. Then the
above equation is a norm equation from the real quadratic field Q(

√
AB) to Q

with a special solution (X,Y ) = (a(b−2), b). Let (t, u) be the smallest positive
integer solution of the Pell equation x2 − ABy2 = 1. Then all the positive
integer solutions (x, y) of this Pell equation are given by (x, y) = (tk, uk),
where tk, uk satisfies the following binary recurrence sequences.

tk+1 = 2ttk − tk−1, uk+1 = 2tuk − uk−1,

with t0 = 1, t1 = t, u0 = 0, u1 = u. From this recurrence relation, we see
tk ≡ tk (mod t2 − 1). Combing the facts AB|(t2 − 1) and (t, AB) = 1, one
sees tk ≡ tk ≡ 1 (mod AB). Thus we have t2k = 2t2k − 1 ≡ 1 (mod 2AB) and
u2 = 2tkuk ≡ 0 (mod 2). Calculating the following equation

Xk + Yk

√
AB = ((b− 2)a+ b

√
AB)(t2k + u2k

√
AB),

we have a solution of X2
k −ABY 2

k = (b− 2)(a2(b− 2)− b2(a− 2)), where

Xk = (b− 2)(at2k + bu2(a− 2)(b− 2)), Yk = bt2k + a(b− 2)u2k.

Since at2 + bu2k(a − 2)(b − 2) ≡ a ≡ −(a − 4) (mod 2(a − 2)) and bt2k +
a(b− 2)u2k ≡ b ≡ −(b− 4) (mod 2(b− 2)), each solution (Xk, Yk) corresponds
to a different pair (m,n) with Pa(m) = Pb(n). Thus the solutions (m,n) of
Pa(m) = Pb(n) are infinite for this case, which completes the proof.
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2.1 Simultaneous Pell Equations

In the following, we shall restrict ourselves to the cases 6 ̸∈ {a, b, c} from the
above argument. Then one can show the following fact.

Theorem 2.4 Assume (a−2)(b−2) ̸= �, (b−2)(c−2) ̸= � and (c−2)(a−2) ̸=
�. Then |Pa ∩ Pb| = |Pb ∩ Pc| = |Pc ∩ Pa| = ∞, but |Pa ∩ Pb ∩ Pc| < ∞.

Proof. Assume Pa(m) = Pb(n) = Pc(ℓ). Pa(m) = Pb(n) implies A((2Bn −
(B − 2))2 − (B − 2)2) = B((2Am− (A− 2))2 − (A− 2)2) and hence

A(2Bn− (B − 2))2 = B(2Am− (A− 2))2 − (A−B)(AB − 4).

Similarly, Pa(m) = Pc(ℓ) implies

A(2Cℓ− (B − 2))2 = C(2Am− (A− 2))2 − (A− C)(AC − 4),

where we put A = a − 2, B = b − 2, C = c − 2 as above. Therefore we have
A2(2Bn− (B − 2))2(2Cℓ− (B − 2))2

= (B(2Am−(A−2))2−(A−B)(AB−4))(C(2Am−(A−2))2−(A−C)(AC−4)).
Putting X = BC(2Am − (A − 2))2, Y = ABC(2Am − (A − 2))(2Bn − (B −
2))(2Cℓ− (C − 2)), we have

E(a,b,c) : Y
2 = X(X − C(A−B)(AB − 4))(X −B(A− C)(AC − 4)).

Since we may assume 3 ≤ a < b < c and 6 ̸∈ {a, b, c}, we know 1 ≤ A <
B < C and AB,BC,CA ̸= 4. Then we obtain C(A − B)(AB − 4) ̸= 0 and
B(A − C)(AC − 4) ̸= 0. Moreover C(A − B)(AB − 4) − B(A − C)(AC −
4) = A(B − C)(BC − 4) ̸= 0. Therefore E(a,b,c) is a modular elliptic curve
with integer coefficients and the number of integral points on E(a,b,c) is finite
from Siegel’s theorem. Since each triple (m,n, ℓ) which satisfies the condition
Pa(m) = Pb(n) = Pc(ℓ) corresponds to an integer points on E(a,b,c) as above,
we have proved this theorem.

Moreover, in the special case (a, b) = (3, 4), that is, the case of polygonal
square triangular number, we have the following corollary.

Corollary 2.5 Assume c−2 ̸= � and c−2 ̸= 2�. Then |P3∩Pc| = |P4∩Pc| =
∞, and |P3 ∩ P4 ∩ Pc| < ∞.

In general, it has been proved that if R and S are distinct positive integers
then the simultaneous Pell equations

x2 −Ry2 = 1, z2 − Sy2 = 1

possess at most two solutions in positive integers (x, y, z) ([3] and [4]). Since
it is known that there exist infinite families of pairs (R,S) for which the above
equations have two solutions, this result is the best possible results on the
number of solutions of the simultaneous Pell equations. Moreover, it has been
proved that there exists an upper estimate for the number of positive integer
solutions of the following more general equations as in [3].

4

Proposition 2.6 (Bennett) Let R,S be distinct positive integers with U and
V are nonzero integers with RV − SU ̸= 0. Let N(R,S, U, V ) be the number
of positive integer solutions of following simultaneous diophantine equations

x2 −Ry2 = U, z2 − Sy2 = V.

Then N(R,S, U, V ) ≪ 2min{ω(U), ω(V )} log(|U | + |V |), where ω(t) denotes
the number of distinct prime factors of t.

These results follow from a combination of simultaneous Padé approximation
to binomial functions, the theory of linear forms in two logarithms and some
gap principles introduced by Bennett.
Now we shall apply this proposition to our cases. Assume

Pa(m) = Pb(n) = Pc(ℓ).

Put A = a− 2, B = b− 2 and C = c− 2. Then we know

(2BAm−B(A− 2))2 −BA(2Bn− (B − 2))2 = B(B −A)(4−BA).

Similarly we have

(2BCℓ−B(C − 2))2 −BC(2Bn− (B − 2))2 = B(B − C)(4−BC).

Put x = 2BAm − B(A − 2), y = 2Bn − (B − 2), z = 2BCℓ − B(C − 2),
U = B(B − A)(4− BA) and V = B(B − C)(4− BC). Also put R = BA and
S = BC.

Then we have the simultaneous Pell equations

x2 −Ry2 = U, z2 − Sy2 = Y,with RV − SU = B3(A− C)(4−AC) ̸= 0.

Hence we have the following upper estimate for the number of elements in
Pa ∩ Pb ∩ Pc.

Theorem 2.7 Let U be (b− 2)(b− a)(4− (b− 2)(a− 2)) and V be (b− 2)(b−
c)(4− (b− 2)(c− 2)), then

|Pa ∩ Pb ∩ Pc| ≪ 2min{ω(U), ω(V )} log(|U |+ |V |),

where ω(t) denotes the number of distinct prime factors of t.

In our previous paper [10], we could not find any example (a, b, c) with
|Pa ∩Pb ∩Pc| > 1. Now we note there are infinitely many (a, b, c) which satisfy
|Pa ∩ Pb ∩ Pc| ≥ 2.

For the cases (a − 2)(b − 2) ̸= �, there are infinitely many numbers in
Pa ∩ Pb. Hence, we may put Pa ∩ Pb = {c1, c2, . . . , ck, . . .}. Then it is obvious
that at least two elements 1, ck ∈ Pa ∩ Pb ∩ Pck and hence we have shown the
following theorem:

Theorem 2.8 There are infinitely many (a, b, c) with |Pa ∩ Pb ∩ Pc| ≥ 2.

In the following section, we shall investigate the case a = 3, b = 4, i.e., the
cases of polygonal square triangular numbers more precisely.
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3 Polygonal square triangular numbers

Let us recall the definition of Pell number pk and Pell-Lucas number qk. Pell
number pk is defined by the following recurrence relations:

p0 = 0, p1 = 1, and pk+1 = 2pk + pk−1, where k ≥ 1.

Pell-Lucas number qk is defined by the following recurrence relations:

q0 = 2, p1 = 2, and qk+1 = 2qk + qk−1, where k ≥ 1.

For the sake of convenience, we shall list a few examples of Pell numbers {pk}
and Pell-Lucas numbers {qk} as follows.

{pk} = {0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 541, 13860, . . . , } (OEIS A000129),

{qk} = {2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, . . . , } (OEIS A002203).

It is well known that Pell numbers and Pell-Lucas numbers satisfy the fol-
lowing Pell equation

(qk/2)
2 − 2p2k = (−1)k.

Now le us recall the relations

P3(m) = P4(n) ⇐⇒ m(m+ 1)

2
= n2 ⇐⇒ (2m+ 1)2 − 2(2n)2 = 1.

Therefore we see that square triangular number n2 can be represented by 2k−th
Pell number p2k as n = p2k/2 for some k. Put c = (p2k/2)

2. Then one can
verify the following precise version of Theorem 2.7 and 2.8.

Theorem 3.1 For the special case c = p22k/4, we have

2 ≤ |P3 ∩ P4 ∩ Pc| ≪ 2ω(2(c− 2)) log(4 + (c− 2)2)

Proof. One sees that A = 3− 2 = 1 and B = 4− 2 = 2 and C = c− 2. Hence
AB = 2 ̸= �, AC = c−2 = (p2k/2)

2−2 ̸= �. AssumeBC = 2(c−2) = �. Then
c−2 = (p2k/2)

2−2 = 2x2 for some integer x. Then 2|c and x2−2(p2k/4)
2 = −1.

Therefore we know p2k/4 = p2h+1 for some non-negative integer h. Since
n = p2k/2, we have the simultaneous equations

(2m+ 1)2 = 8n2 + 1, x2 = 2(n/2)2 − 1.

Putting Y = 2× 16× x× (2m+ 1) and X = 16n2 − 10, one has the equation

E : Y 2 = X3 − 364X − 2640.

We note the solution of the simultaneous Pell equations corresponds to the
integer point (X,Y ) = (16n2 − 10, 32x(2m+ 1)) on the elliptic curve E. Then

6

the Cremona’s label of this curve E is 1088e2 and this curve has only 3 integer
points (−10, 0), (−12, 0), (22, 0), which imply n = 0,

√
22/4,

√
2 ̸∈ N. It contra-

dicts to the definition n ∈ N and we know BC = 2(c− 2) ̸= �. Hence we have
shown |P3 ∩ P4 ∩ Pc| < ∞ from Corollary 2.5. Finally one can easily calculate
U = 22 and V = 22(c− 2)2 for this case and hence can get the upper estimate
of |P3 ∩P4 ∩Pc| from Theorem 2.7, which completes the proof of this theorem.

3.1 Tridecagonal Square Triangular Numbers

Here we shall show |P3 ∩ P4 ∩ P13| is exactly 2. Let us recall the fact

P3(m) = P4(n) = P13(ℓ) ⇐⇒ m(m+ 1)

2
= n2,

ℓ(11ℓ− 9)

2
= n2.

Thus we have

(2m+ 1)2 = 8n2 + 1, (22ℓ− 9)2 = 88n2 + 81.

It follows that

882n2(22ℓ− 9)2(2m+ 1)2 = 176n2(176n2 + 22)(176n2 + 162).

Putting Y = 88n(22ℓ − 9)(2m + 1), X = 176n2 + 61, we obtain the following
modular elliptic curve

E : Y 2 = X3 +X2 − 7721X + 24079.

Here
m(m+ 1)

2
= n2 =

ℓ(11ℓ− 9)

2
∈ P3 ∩ P4 ∩ P13 corresponds to an integer

points (176n2 + 61, 88n(22ℓ − 9)(2m + 1)) on E(Z). This elliptic curve E’s
Cremona label is 73920cc2 and the Mordell Weil group E(Q) is isomorphic to
Z2 × (Z/2Z)2. The generators of E(Q) are given by Z = ⟨P1 = (25, 252)⟩,
Z = ⟨P2 = (34, 135)⟩. The torsion groups are generated by
Z/2Z = ⟨P3 = (39, 0)⟩, Z/2Z = ⟨P4 = (61, 0)⟩. Finally all the integral points
on E are given by

E(Z) = {(−101, 0), (−89,±480), (−86,±525), (−71,±660), (−38.± 683),
(−5,±528), (7,±432), (25.± 252), (34,±135), (39, 0), (61, 0), (67,±168),
(79,±360), (109,±840), (237.± 3432), (259,±3960), (399,±7800),
(655.± 16632), (1411,±52920), (1789.± 75600), (6397,±511632),
(112399.± 3768300)}.

X = 176n2 + 61 yields that X = 237 = 176 × 12 + 61 and X = 6397 =
176×62+61, i.e., n = 1 or n = 6. Hence we have shown the following theorem.

Theorem 3.2 There exist only two tridecagonal square triangular number 1
and 36.
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3.2 Further problems

In this paper, we have given a rough estimate on the values of |Pa ∩ Pb ∩ Pc|
and shown that there exist (a, b, c) with |Pa∩Pb∩Pc| = 1 and 2. Here we shall
propose several next problems concerning the values of |Pa ∩ Pb ∩ Pc|.

Problem 3.3 Let (a, b, c) be the integers (≥ 3) which satisfy all of (a− 2)(b−
2), (b − 2)(c − 2), (c − 2)(a − 2) ̸= �. Are there any triple (a, b, c) with |Pa ∩
Pb ∩ Pc| = k for some positive integer k ≥ 3? More precisely, are there any
triple (a, b, c) with |Pa ∩ Pb ∩ Pc| = k for any positive integer k ≥ 3?

After the investigations of the above quantitative problems, one may expect
more qualitative problem as follows.

Problem 3.4 Let (a, b, c) be the integers (≥ 3) which satisfy all of (a− 2)(b−
2), (b − 2)(c − 2), (c − 2)(a − 2) ̸= �. Can we characterize triple (a, b, c) with
|Pa ∩ Pb ∩ Pc| = k for given positive integer k?

On the other hand, we have calculated the structure of the elliptic curves
E(a,b,c) for small a, b, c, as by product. Since the examples are very few, we
could not find any characteristic property for these examples but it may be a
natural new problem to investigate the set of these elliptic curves E(a,b,c).

Problem 3.5 Let (a, b, c) be the integers (≥ 3) which satisfy all of (a− 2)(b−
2), (b− 2)(c− 2), (c− 2)(a− 2) ̸= �. Are there any characteristic properties on
the structure of the corresponding elliptic curves E(a,b,c)?

3.3 Relations between polygonal numbers and general-
ized polygonal numbers

The number Pa(m) =
m((a− 2)m− (a− 4))

2
with m ∈ Z is called the gener-

alized a−gonal number. By abuse of notation, we shall denote the generalized
a−gonal number by GPa(m) and the set of all the generalized a−gon num-
bers by GPa. Then Pa(m) ⊂ GPa(m) for any m and Pa ⊂ GPa by definition.
We note it is obvious that 0 ̸∈ Pa ∩ Pb ∩ Pc and 0 ∈ GPa ∩ GPb ∩ GPc.
Hence |Pa ∩ Pb ∩ Pc| < |GPa ∩ GPb ∩ GPc| in general. We have calculated
|Pa ∩ Pb ∩ Pc| and also |GPa ∩ GPb ∩ GPc| for small values a, b, c and verified
|GPa∩GPb∩GPc|−|Pa∩Pb∩Pc| = 1 for many cases and obtained the following
exceptional example.

Example 3.6 In case of (a, b, c) = (4, 5, 9), we have

GP4(m) = GP5(n) = GP7(ℓ) ⇐⇒ (m,n, ℓ) = (10,−8,−5), (0, 0, 0), (1, 1, 1).

Problem 3.7 Let (a, b, c) be the integers (≥ 3). Are there any triple (a, b, c)
with |GPa ∩GPb ∩GPc| − |Pa ∩ Pb ∩ Pc| > 2?
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Abstract

Consider the initial boundary value problem for degenerate dis-
sipative wave equations of Kirchhoff type. When the wave coeffi-
cient ρ > 0 or the initial energy E(0) is small, we show the global
existence theorem.
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1 Introduction

In this paper, we study on the existence of global solutions to the initial
boundary value problem for the following degenerate dissipative wave equations
of Kirchhoff type :




ρu′′ + ∥A1/2u(t)∥2γAu+ u′ = 0 in Ω× [0,∞) ,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω ,

u(x, t) = 0 on ∂Ω× [0,∞) ,

(1.1)

where u = u(x, t) is an unknown real value function, Ω is a bounded domain

in RN with smooth boundary ∂Ω, ′ = ∂/∂t, A = −∆ = −
∑N

j=1 ∂
2/∂x2

j is the

Laplace operator with the domain D(A) = H2(Ω)∩H1
0 (Ω), ∥ · ∥ is the norm of

L2(Ω), and ρ > 0 and γ > 0 are positive constants.
It is well known that Equation (1.1) describes the damped small ampli-

tude vibrations of an elastic, stretched string when the dimension N is one or
membrane when the dimension N is two (see Kirchhoff [6] and Carrier [2]).

The unique global solvability has been considered for the initial data [u0, u1]
belonging to D(A) × D(A1/2) and ∥A1/2u0∥ ̸= 0. When γ ≥ 1, under the
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