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Abstract

Consider the initial boundary value problem for degenerate dis-
sipative wave equations of Kirchhoff type. When the wave coeffi-
cient ρ > 0 or the initial energy E(0) is small, we show the global
existence theorem.
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1 Introduction

In this paper, we study on the existence of global solutions to the initial
boundary value problem for the following degenerate dissipative wave equations
of Kirchhoff type :




ρu′′ + ∥A1/2u(t)∥2γAu+ u′ = 0 in Ω× [0,∞) ,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω ,

u(x, t) = 0 on ∂Ω× [0,∞) ,

(1.1)

where u = u(x, t) is an unknown real value function, Ω is a bounded domain

in RN with smooth boundary ∂Ω, ′ = ∂/∂t, A = −∆ = −
∑N

j=1 ∂
2/∂x2

j is the

Laplace operator with the domain D(A) = H2(Ω)∩H1
0 (Ω), ∥ · ∥ is the norm of

L2(Ω), and ρ > 0 and γ > 0 are positive constants.
It is well known that Equation (1.1) describes the damped small ampli-

tude vibrations of an elastic, stretched string when the dimension N is one or
membrane when the dimension N is two (see Kirchhoff [6] and Carrier [2]).

The unique global solvability has been considered for the initial data [u0, u1]
belonging to D(A) × D(A1/2) and ∥A1/2u0∥ ̸= 0. When γ ≥ 1, under the
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assumption that the initial data [u0, u1] are small Nishihara and Yamada [9]
have shown global existence theorems.

Under the assumption that the coefficient ρ > 0 is small, Ghisi and Gobbino
[4] have derived some decay estimates such that

C ′(1 + t)−
1
γ ≤ ∥Am/2u(t)∥2 ≤ C(1 + t)−

1
γ for m = 1, 2

(see Ghisi [3] for weak dissipative cases, and Nishihara [8], Ono [11] for lower
decay estimates, also [5], [7], [12] for upper decay estimates).

In this paper, we discuss to another smallness condition on the coefficient
ρ > 0 or the initial energy E(0), related to the unique global existence theorem.

We introduce an energy E(t) as

E(t) ≡ ρ∥u′(t)∥2 + 1

γ + 1
M(t)γ+1 with M(t) ≡ ∥A1/2u(t)∥2 . (1.2)

By simple calculation, we see that the energy E(t) has the so-called energy
identity such that

d

dt
E(t) + 2∥u′(t)∥2 = 0 (1.3)

or

E(t) + 2

∫ t

0

∥u′(s)∥2 ds = E(0) (1.4)

where

E(0) = ρ∥u1∥2 +
1

γ + 1
∥A1/2u0∥2(γ+1) . (1.5)

Our main result is as follows.

Theorem 1.1 Let the initial data [u0, u1] belong to D(A)×D(A1/2) and
∥A1/2u0∥ ̸= 0. Suppose that the coefficient ρ > 0 or the initial energy E(0) is
small in the following sense

2(γ + 1)
2γ+1
γ+1 G(0)

1
2B(0)

1
2 ρE(0)

γ
γ+1 < 1 (1.6)

(equivalent to (3.2)) with G(0) and B(0) given by (2.3) and (2.8), respec-
tively. Then, the problem (1.1) admits a unique global solution u(t) in the
class C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩ C2([0,∞);L2(Ω)).

Theorem 1.1 follows from Theorem 3.1 in the continuing sections.
The notations we use in this paper are standard. The symbol (·, ·) means

the inner product in L2(Ω) or sometimes duality between the space X and its
dual X ′. Positive constants will be denoted by C and will change from line to
line.

2

2 Preliminaries

We obtain the following local existence theorem by standard arguments and
we omit the proof here (see [1], [10], [13], [14], and the references cited therein).

Proposition 2.1 Suppose that the initial data [u0, u1] belong to D(A)×D(A1/2)
and ∥A1/2u0∥ ̸= 0. Then the problem (1.1) admits a unique local solution u(t)
in the class C0([0, T );D(A))∩C1([0, T );D(A1/2))∩C2([0, T );L2(Ω)) for some
T = T (∥Au0∥, ∥A1/2u1∥) > 0.

Moreover, if ∥A1/2u(t)∥ ̸= 0 and ∥Au(t)∥+∥A1/2u′(t)∥ < ∞ for t ≥ 0, then
we can take that T = ∞.

In what follows in this section, we assume that M(0) > 0 and the function
u = u(t) is a solution of (1.1) and satisfies

ρ
|M ′(t)|
M(t)

≤ 1

γ + 1
. (2.1)

Proposition 2.2 Under the assumption (2.1), it holds that

∥Au(t)∥2

M(t)
≤ G(t) ≤ G(0) (2.2)

where

G(t) ≡ ∥Au(t)∥2

M(t)
+ ρQ(t) , (2.3)

Q(t) ≡ 1

M(t)γ+1

(
M(t)∥A1/2u′(t)∥2 − 1

4
|M ′(t)|2

)
. (2.4)

Proof. From Equation (1.1), we observe

d

dt

∥Au(t)∥2

M(t)

=
1

M(t)γ+2

(
2(M(t)γAu(t), Au′(t))M(t)− (M(t)γAu(t), Au(t))M ′(t)

)

=
−1

M(t)γ+1

(
2
(
∥A1/2u′(t)∥2 + ρ(A1/2u′′(t), A1/2u′(t))

)
M(t)

−
(
1

2
M ′(t) + ρ

(
1

2
M ′′(t)− ∥A1/2u′(t)∥2

))
M ′(t)

)

= −2Q(t)− ρR(t) (2.5)

where

R(t) ≡ 1

M(t)γ+2

(
2M(t)(A1/2u′′(t), A1/2u′(t))

+M ′(t)
(
∥A1/2u′(t)∥2 − 1

2
M ′′(t)

))
.
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Moreover, we observe

d

dt
Q(t) = −(γ + 2)

M ′(t)

M(t)
Q(t) +R(t) and Q(t) ≥ 0 . (2.6)

From (2.1), (2.5), and (2.6), we have

d

dt
G(t) + 2

(
1 +

γ + 2

2
ρ
M ′(t)

M(t)

)
Q(t) ≤ 0 ,

and hence, we obtain the desired estimate (2.2). □

Proposition 2.3 Under the assumption (2.1), it holds that

∥u′(t)∥2

M(t)2γ+1
≤ B(0) (2.7)

where

B(0) ≡ max

{
∥u1∥2

M(0)2γ+1
, (2(γ + 1))2G(0)

}
. (2.8)

Proof. Multiplying (1.1) by 2M(t)−2γ−1u′ and integrating it over Ω, we have
from the Young inequality that

ρ
d

dt

∥u′(t)∥2

M(t)2γ+1
+ 2

(
1 +

2γ + 1

2
ρ
M ′(t)

M(t)

)
∥u′(t)∥2

M(t)2γ+1
= − M ′(t)

M(t)γ+1

≤ 1

2(γ + 1)

∥u′(t)∥2

M(t)2γ+1
+ 2(γ + 1)

∥Au(t)∥2

M(t)
. (2.9)

Since it follows from (2.1) that

1 +
2γ + 1

2
ρ
M ′(t)

M(t)
≥ 1

2(γ + 1)
, (2.10)

we observe from (2.2) and (2.9) that

ρ
d

dt

∥u′(t)∥2

M(t)2γ+1
+

1

2(γ + 1)

∥u′(t)∥2

M(t)2γ+1
≤ 2(γ + 1)

∥Au(t)∥2

M(t)

≤ 2(γ + 1)G(0) .

Thus, by standard calculation for ODE, we obtain the desired estimate (2.7).
□

Proposition 2.4 Under the assumption (2.1), it holds that

M(t) ≥ C ′(1 + t)−
1
γ (2.11)

with some positive constant C ′.

4

Proof. Multiplying (1.1) by 2M(t)−2γ−1u′ and integrating it over Ω, we have
from the Young inequality that

d

dt

(
ρ
∥u′(t)∥2

M(t)2γ+1
+

1

M(t)γ

)
+ 2

(
1 +

2γ + 1

2
ρ
M ′(t)

M(t)

)
∥u′(t)∥2

M(t)2γ+1

= −(γ + 1)
M ′(t)

M(t)γ+1

≤ 1

γ + 1

∥u′(t)∥2

M(t)2γ+1
+ (γ + 1)3

∥Au(t)∥2

M(t)
,

and from (2.10) that

d

dt

(
ρ
∥u′(t)∥2

M(t)2γ+1
+

1

M(t)γ

)
≤ (γ + 1)3

∥Au(t)∥2

M(t)
≤ (γ + 1)3G(0)

Thus, immediately we obtain

ρ
∥u′(t)∥2

M(t)2γ+1
+

1

M(t)γ
≤ C(1 + t) or M(t)γ ≥ C−1(1 + t)−1

which implies the desired estimate (2.11). □

3 Global Solvability

We introduce the function H(t) (a second order energy) as

H(t) ≡ ρ
∥A1/2u′(t)∥2

M(t)γ
+ ∥Au(t)∥2 . (3.1)

Theorem 3.1 Let the initial data [u0, u1] belong to D(A)×D(A1/2) and M(0) >
0. Suppose that

2ρB(0)
1
2G(0)

1
2 ((γ + 1)E(0))

γ
γ+1 <

1

γ + 1
. (3.2)

Then, the problem (1.1) admits a unique global solution u(t) in the class

C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩ C2([0,∞);L2(Ω))

and this solution u(t) satisfies

ρ
|M ′(t)|
M(t)

<
1

γ + 1
and H(t) ≤ H(0) , (3.3)

∥Au(t)∥2

M(t)
≤ G(0) and

∥u′(t)∥2

M(t)2γ+1
≤ B(0) , (3.4)

C ′(1 + t)−
1
γ ≤ M(t) ≤ ((γ + 1)E(0))

1
γ+1 for t ≥ 0 (3.5)

with E(0), G(0), and B(0) given by (1.5), (2.3), and (2.8), respectively, where
C ′ is some positive constant.
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Proof. Let u(t) be a solution on [0, T ]. Since M(0) > 0, putting

T1 ≡ sup
{
t ∈ [0,∞)

�� M(s) > 0 for 0 ≤ s < t
}
,

we see that T1 > 0. If T1 < T , then

M(t) > 0 for 0 ≤ t < T1 and M(T1) = 0 . (3.6)

Since it follows from (1.4) and (3.2) that

ρ
|M ′(0)|
M(0)

≤ 2ρ

(
∥u1∥2

M(0)2γ+1

) 1
2
(
∥Au0∥2

M(0)

) 1
2

M(0)γ

≤ 2ρB(0)
1
2G(0)

1
2 ((γ + 1)E(0))

1
γ+1 <

1

γ + 1
,

putting

T2 ≡ sup

{
t ∈ [0,∞)

�� ρ |M
′(s)|

M(s)
<

1

γ + 1
for 0 ≤ s < t

}
,

we see that T2 > 0. If T2 < T1, then

ρ
|M ′(t)|
M(t)

<
1

γ + 1
for 0 ≤ t < T2 and ρ

|M ′(T2)|
M(T2)

=
1

γ + 1
. (3.7)

From Proposition 2.2 and Proposition 2.3 we observe

ρ
|M ′(t)|
M(t)

≤ 2ρ

(
∥u′(t)∥2

M(t)2γ+1

) 1
2
(
∥Au(t)∥2

M(t)

) 1
2

M(t)γ

≤ 2ρB(0)
1
2G(0)

1
2 ((γ + 1)E(0))

1
γ+1 <

1

γ + 1
(3.8)

for 0 ≤ t ≤ T2, which is a contradiction to (3.7), and hence, we have that
T2 ≥ T1. Moreover, from Proposition 2.4 we observe

M(t) ≥ C ′(1 + t)−
1
γ > 0 for 0 ≤ t ≤ T1 ,

which is a contradiction to (3.6), and hence, we have that T1 ≥ T .
Multiplying (1.1) by 2M(t)−γAu′ and integrating it over Ω we have

d

dt
H(t) + 2

(
1 +

γ

2
ρ
M ′(t)

M(t)

)
∥A1/2u′(t)∥2

M(t)γ
= 0 .

Since it follows from (3.8) that

1 +
γ

2
ρ
M ′(t)

M(t)
≥ 0 ,

6

we observe

d

dt
H(t) ≤ 0 and H(t) ≤ H(0) (3.9)

for 0 ≤ t ≤ T . Thus, from above argument we see that M(t) > 0 and
∥Au(t)∥ + ∥A1/2u′(t)∥ ≤ C for t ≥ 0. Therefore, by the second argument
of Proposition 2.1, we conclude that the problem (1.1) admits a unique global
solution. Moreover, from Propositions 2.2–2.4, we obtain the desired estimates
(3.3)–(3.5). □
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Proof. Let u(t) be a solution on [0, T ]. Since M(0) > 0, putting

T1 ≡ sup
{
t ∈ [0,∞)

�� M(s) > 0 for 0 ≤ s < t
}
,

we see that T1 > 0. If T1 < T , then

M(t) > 0 for 0 ≤ t < T1 and M(T1) = 0 . (3.6)

Since it follows from (1.4) and (3.2) that

ρ
|M ′(0)|
M(0)

≤ 2ρ

(
∥u1∥2

M(0)2γ+1

) 1
2
(
∥Au0∥2

M(0)

) 1
2

M(0)γ

≤ 2ρB(0)
1
2G(0)

1
2 ((γ + 1)E(0))

1
γ+1 <

1

γ + 1
,

putting

T2 ≡ sup

{
t ∈ [0,∞)

�� ρ |M
′(s)|

M(s)
<

1

γ + 1
for 0 ≤ s < t

}
,

we see that T2 > 0. If T2 < T1, then

ρ
|M ′(t)|
M(t)

<
1

γ + 1
for 0 ≤ t < T2 and ρ

|M ′(T2)|
M(T2)

=
1

γ + 1
. (3.7)

From Proposition 2.2 and Proposition 2.3 we observe

ρ
|M ′(t)|
M(t)

≤ 2ρ

(
∥u′(t)∥2

M(t)2γ+1

) 1
2
(
∥Au(t)∥2

M(t)

) 1
2

M(t)γ

≤ 2ρB(0)
1
2G(0)

1
2 ((γ + 1)E(0))

1
γ+1 <

1

γ + 1
(3.8)

for 0 ≤ t ≤ T2, which is a contradiction to (3.7), and hence, we have that
T2 ≥ T1. Moreover, from Proposition 2.4 we observe

M(t) ≥ C ′(1 + t)−
1
γ > 0 for 0 ≤ t ≤ T1 ,

which is a contradiction to (3.6), and hence, we have that T1 ≥ T .
Multiplying (1.1) by 2M(t)−γAu′ and integrating it over Ω we have

d

dt
H(t) + 2

(
1 +

γ

2
ρ
M ′(t)

M(t)

)
∥A1/2u′(t)∥2

M(t)γ
= 0 .

Since it follows from (3.8) that

1 +
γ

2
ρ
M ′(t)

M(t)
≥ 0 ,

6

we observe

d

dt
H(t) ≤ 0 and H(t) ≤ H(0) (3.9)

for 0 ≤ t ≤ T . Thus, from above argument we see that M(t) > 0 and
∥Au(t)∥ + ∥A1/2u′(t)∥ ≤ C for t ≥ 0. Therefore, by the second argument
of Proposition 2.1, we conclude that the problem (1.1) admits a unique global
solution. Moreover, from Propositions 2.2–2.4, we obtain the desired estimates
(3.3)–(3.5). □

References

[1] A. Arosio and S. Garavaldi, On the mildly degenerate Kirchhoff string,
Math. Methods Appl. Sci. 14 (1991) 177–195.

[2] G.F. Carrier, On the non-linear vibration problem of the elastic string,
Quart. Appl. Math. 3 (1945) 157–165.

[3] M. Ghisi, Hyperbolic-parabolic singular perturbation for mildly degenerate
Kirchhoff equations with weak dissipation, Adv. Differential Equations 17
(2012) 1–36.

[4] M. Ghisi and M. Gobbino, Hyperbolic-parabolic singular perturbation for
mildly degenerate Kirchhoff equations: time-decay estimates, J. Differen-
tial Equations 245 (2008) 2979–3007.

[5] S. Kawashima, M. Nakao, and K. Ono, On the decay property of solutions
to the Cauchy problem of the semilinear wave equation with a dissipative
term, J. Math. Soc. Japan 47 (1995) 617–653.

[6] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1883.

[7] M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem
for the semilinear dissipative wave equations, Math. Z. 214 (1993) 325–
342.

[8] K. Nishihara, Decay properties of solutions of some quasilinear hyperbolic
equations with strong damping, Nonlinear Anal. 21 (1993) 17–21.

[9] K. Nishihara and Y. Yamada, On global solutions of some degenerate
quasilinear hyperbolic equations with dissipative terms, Funkcial. Ekvac.
33 (1990) 151–159.

[10] K. Ono, Global existence and decay properties of solutions for some mildly
degenerate nonlinear dissipative Kirchhoff strings, Funkcial. Ekvac. 40
(1997) 255–270.

7



18 Kosuke Ono

[11] K. Ono, Asymptotic behavior for degenerate nonlinear Kirchhoff type
equations with damping, Funkcial. Ekvac. 43 (2000) 381–393.

[12] K. Ono, On sharp decay estimates of solutions for mildly degenerate dis-
sipative wave equations of Kirchhoff type, Math. Methods Appl. Sci. 34
(2011) 1339–1352.

[13] W.A. Strauss, On continuity of functions with values in various Banach
spaces, Pacific J. Math. 19 (1966) 543–551.

[14] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and
Physics, Springer-Verlag, (Applied Mathematical Sciences), Vol.68, New
York, 1988.

8

Axiomatic Method of Measure
and Integration (XIV).

The Measure and the Integration

on a Riemanniann Manifold

By

Yoshifumi Ito

Professor Emeritus, Tokushima University
209-15 Kamifukuman Hachiman-cho

Tokushima 770-8073, JAPAN
e-mail address : itoyoshifumi@fd5.so-net.ne.jp

(Received September 30, 2021)

Abstract

In this paper, we define the Lebesgue type measure and the Lebesgue
type integral on a Riemannian manifold and study their fundamental
properties. These results are the new results.
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Introduction

This paper is the part XIV of the series of the papers on the axiomatic
method of measure and integration. As for the details, we refer to Ito [5].
Further we refer to Ito [1] ∼ [4], [6] and [7].

In this paper, we define the Lebesgue type measure and the Lebesgue type
integral on a Riemannian manifold and study their fundamental properties.

We assume that a n-dimensional Riemannian manifold M is a Lebesgue
type measure space (M, M, µ). Here we assume n ≥ 1.
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