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We assume that
� = �(��� ��)����

is the system of positive coordinate neighborhoods, each �� is compact and
���; � � �� is a locally finite open covering of � . We denote the partition of
unity associated with the open covering ������� of � as �������. Namely,
for each �, �� is a ��-function on � and it satisfies the conditions (i) � (iii)
in the following:

(i) 0 � �� � 1.

(ii) The support of �� is included in ��.

(iii)
�

���

��(�) = 1� (� � �).

Let (��� ��) be a ��-coodinate neighborhood. ��(��) is an open set in
��. Let (��

�� ��
�� � � � � ��

�) be a system of local coordinates on ��.
For � � ��, this determines the coordinate (��

�(�)� ��
�(�)� � � � � ��

�(�)) of
the point ��(�) in ��. Let ��

�� be the components of � with respect to the
system of positive local coordinates and we express

�� = det(��
��)�

Then the volume element ��� on �� is given by the formula

��� =
�

�����
����

� � � � ���
��

Then assume that (�� � ��) is one another ��-coordinate neighborhood. As-
sume that (��

� � ��
� � � � � � ��

�) is the local coordinate system on �� .

Now, if ��� = �� � �� �= � holds, �� � ���
� is the diffeomorphism from

��(�� � ��) to ��(�� � ��). By expressing with local coordinates, the diffeo-
morphism �� � ���

� is expressed by the formula
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Here the functions ��
��� ��

��� � � � � ��
�� are the ��-functions of the real vari-

ables (��
�� ��

�� � � � � ��
�). Then, on �� � �� , the volume elements ��� and ���
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satisfy the formula
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Here we use the formula

√
Gα =

√
Gβ

∂(x1
β , x

2
β , · · · , xn

β)

∂(x1
α, x

2
α, · · · , xn

α)
.

2 Lebesgue type measure space on the Rieman-
nian manifold

In this section, we define the Lebesgue type measure space (M, M, µ) on
a Riemannian manifold M .

2.1 Lebesgue type measure space on a coordinate neigh-
borhood (U, ψ)

In this paragraph, we study the Lebesgue type measure space on a coordi-
nate neighborhood (U, ψ).

Assume that (U, ψ) is a C∞-coordinate neighborhood on M . Since ψ(U)
is an open set in Rn, it is a Lebesgue measurable set. Therefore we have
the Lebesgue measure space (ψ(U), Nψ, νψ). Namely we have the following
theorem.

Theorem 2.1 Assume that (U, ψ) is a C∞-coordinate neighborhood on
M . Then (ψ(U), Nψ, νψ) is the Lebesgue measure space. Namely we have the
following (1)∼(5):

(1) Nψ is a σ-ring composed of the all Lebesgue measurable sets on ψ(U).

(2) If we have A ∈ Nψ, we have 0 ≤ νψ(A) ≤ ∞.

(3) If Ap ∈ Nψ, (p ≥ 1) are mutually disjoint, we have the equality

νψ(
∑
p

Ap) =
∑
p

νψ(Ap).

4

(4) If, for a certain a > 0, we have A ⊂ ψ(U) which is congruent to [0, a]n,
we have the equality

νψ(A) = an.

(5) If A1, A2 ∈ Nψ are congruent, we have the equality νψ(A1) = νψ(A2).

Definition 2.1 Assume that (U, ψ) is a C∞-coordinate neighborhood.
Then we define the Lebesgue type measure space (U, Mψ, µψ) is a measure
space which satisfies the conditions (i)∼(ii) in the following:

(i) We define B ∈ Mψ if we have ψ(B) ∈ Nψ.

(ii) For B ∈ Mψ, we define µψ(B) by the formula

µψ(B) =

∫

ψ(B)

√
Gψdνψ

Her we define Gψ is equal to

Gψ = det(gψij)

by using the metric tensor gψij concerning the system of positive local coordi-
nates on U . Here the integral on the right hand side of (ii) is the Lebesgue
integral.

Theorem 2.2 We use the notation in Definition 2.1. Then (U, Mψ, µψ)
is the Lebesgue type measure space. Namely we have the following (1)∼(3):

(1) Mψ is a σ-ring on U .

(2) If we have B ∈ Mψ, we have 0 ≤ µψ(B) ≤ ∞.

(3) If Bp ∈ Mψ, (p ≥ 1) are mutually disjoint, we have the equality

µψ(
∑
p

Bp) =
∑
p

µψ(Bp).

Theorem 2.3 Assume that (Uα, ψα) and (Uβ , ψβ) are two C
∞-coordinate

neighborhoods on M . Then, if we denote Mα = Mψα , µα = µψα , Mβ = Mψβ

and µβ = µµβ
, (Uα, Mα, µα) and (Uβ , Mβ , µβ) are two Lebesgue type mea-

sure spaces defined in Definition 2.1. Assume that (x1
α, x2

α, · · · , xn
α) is the

system of local coordinates on Uα and (x1
β , x

2
β , · · · , xn

β) is the system of local

coordinates on Uβ . Assume that gαij and gβij are the component of the Rieman-

nian metric tensors gα and gβ concerning the systems of local coordinates of
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Uα and Uβ respectively. Put Gα = det(gαij) and Gβ = det(gβij). Then we have
the formula

√
Gα =

√
Gβ

∂(x1
β , x

2
β , · · · , xn

β)

∂(x1
α, x

2
α, · · · , xn

α)
.

Then, if, putting Uαβ = Uα ∩ Uβ , we have B ⊂ Uαβ and B ∈ Mα ∩Mβ , we
have the equality

µβ(B) =

∫

ψβ(B)

√
Gβdx

1
βdx

2
β · · · dxn

β

=

∫

ψα(B)

√
Gαdx

1
αdx

2
α · · · dxn

α = µα(B).

2.2 Lebesgue type measure space on a Riemannian man-
ifold M

In this paragraph, we study the Lebesgue type measure space on a Rie-
mannian manifold M .

Definition 2.2 Assume that (M, g) is a n-dimensional Riemannian man-
ifold and a paracompact C∞-manifold and it is oriented with the positive di-
rection.

Assume that S = {(Uα, ψα)}α∈A is a system of C∞-coordinate neighbor-
hoods on M and {χα}α∈A is the partition of unity associated with the open
covering {Uα}α∈A of M . When the family of sets M on M and the set function
µ on M satisfy the axioms (I), (II) in the following, we say that the triplet
(M, M, µ) is the Lebesgue type measure space on M . Then we say that
an element of M is a Lebesgue type measurable set and µ is a Lebesgue
type measure.

(I) We have M =
∪

α Mα. Here we put Mα = Mψα . Namely M is a
σ-algebra on M generated by the family of σ-rings {Mα}α∈A.

(II) We have the conditions (i)∼(iii) in the following:

(i) For B ∈ M, we have 0 ≤ µ(B) ≤ ∞.

(ii) If Bp ∈ M, (p ≥ 1) are mutually disjoint, the direct sum

B =

∞∑
p=1

Bp

6

is an element of M and we have the equality

µ(B) =
∞∑
p=1

µ(Bp).

(iii) For B ∈ M, we have the equality

µ(B) =

∫

B

dµ =
∑
α

∫

B

χαdµ

=
∑
α

∫

B∩Uα

χαdµα =
∑
α

∫

ψα(B∩Uα)

χα

√
Gαdνα.

Here we denote B =
∪

α(B ∩ Uα).

In Definition 2.2, we remark that the definition of the Lebesgue type mea-
sure space (M, M, µ) does not depend on the choice of the system of C∞-
coordinate neighborhoods

S = {(Uα, ψα)}α∈A.

Corollary 2.1 We use the notation in Definition 2.2. Assume that B is
a subset in M . Then the conditions (1)∼(3) in the following are equivalent:

(1) We have B ∈ M.

(2) For an arbitrary α ∈ A, we have B ∩ Uα ∈ Mα and the equality

B =
∪
α

(B ∩ Uα).

(3) For an arbitrary α ∈ A, there exists Bα ∈ Mα such that we have the
equality

B =
∪
α

Bα.

Theorem 2.4 Assume that M is a n-dimensional Riemannian manifold
and a paracompact C∞-manifold and it is oriented with the positive direction.
Assume that S = {(Uα, ψα)}α∈A is a system of C∞-coordinate neighborhoods
and {χα}α∈A is the partition of unity associated with an open covering {Uα}α∈A

of M . We express the family of the Lebesgue type measure spaces on the coor-
dinate neighborhoods as {(Uα, Mα, µα)}α∈A. Now we define M and µ by the
conditions (i) and (ii) in the following:

7
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(i) We have M =
∪

α Mα. Here we put Mα = Mψα .

(ii) For B ∈ M, we define

µ(B) =

∫

B

dµ =
∑
α

∫

B

χαdµ =
∑
α

∫

B∩Uα

χαdµα

=
∑
α

∫

ψα(B∩Uα)

χα(x
1
α, x

2
α, · · · , xn

α)
√

Gαdx
1
αdx

2
α · · · dxn

α.

Here we put B =
∪

α(B ∩ Uα). Then the triplet (M, M, µ) is the Lebesgue
type measure space on M such that we have the conditions (1) and (2) in the
following:

(1) For B ∈ M, we have 0 ≤ µ(B) ≤ ∞.

(2) If Bp ∈ M, (p ≥ 1) are mutually disjoint, the direct sum

B =
∞∑
p=1

Bp

is an element of M and we have the equality

µ(B) =

∞∑
p=1

µ(Bp).

Here (M, M, µ) does not depend on the choice of the system of C∞-coordinate
neighborhoods

S = {(Uα, ψα)}α∈A.

Corollary 2.2 We use the notation in Theorem 2.4. If, for B ∈ M, we
have the conditions B ⊂ Uα and B ∈ Mα, we have the equality

µ(B) =

∫

B

dµ =

∫

ψα(B)

√
Gαdνα.

3 Measurable functions

In this section, we define the concept of the Lebesgue type measurable
functions and study their fundamental properties.

Assume that (M, g) is a n-dimensional Riemannian manifold and (M, M, µ)
is a Lebesgue type measure space on M . Here we assume that n ≥ 1 holds.

8

Assume that a subset E of M is a measurable set.
Here we assume that every considered function f(p) is a extended real-

valued function defined on E. Namely we assume that the range of the function
f(p) is included in the extended real number space R = [−∞, ∞].

We denote the σ-ring of all measurable sets included in E as ME and we
denote the restricted measure on ME of the Lebesgue type measure µ on M
as the same symbol µ．

Then the measure space (E, ME , µ) is the Lebesgue type measure
space on E.

In the sequel, we denote ME as M as the abbreviation.
When we put E(∞) = {p ∈ E; |f(p)| = ∞}, we say that a point p of E(∞)

is a singular point of f(p).
At first, we define a simple function.

Definition 3.1 We define that a function f(p) defined on a measurable
set E of M is a simple function if we have the expression

f(p) =
∞∑
i=1

αjχEj (p) (3.1)

for a countable division ∆ of E:

(∆);E =
∞∑
j=1

Ej = E1 + E2 + · · · . (3.2)

Here αj is a real number or ±∞, (j ≥ 1) and they need not be different each
other. χEj (p) is the defining function of the set Ej , (i ≥ 1).

Then we denote the simple function f(p) as f∆(p).
Here we assume that all the subsets E1, E2, · · · of E are measurable subsets

and they are mutually disjoint.
Further we denote E(∞) = {p ∈ E; |f(p)| = ∞} and we assume that we

have E(∞) ∈ M and µ(E(∞)) = 0.

In Definition 3.1, we define the defining function χA(p) of a set A in the
following:

χA(p) =

{
1, (p ∈ A),
0, (p ̸∈ A).

Nevertheless the expression of a simple function f(p) in the formula (3.1)
has an infinitely many varieties because the form of the division ∆ of E in the
formula (3.2) has an infinitely many varieties.

Even if the range of a simple function f(p) is fixed as above, we often use
the symbol f∆(p) in order to distinguish the simple function of the different
expression in the form of the formula (3.1).
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(i) We have M =
∪
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∑
α

∫

B
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∑
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∑
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∫
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1
α, x

2
α, · · · , xn

α)
√
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1
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2
α · · · dxn

α.
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∪
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√
Gαdνα.
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Then we define a measurable function in the following.

Definition 3.2 We define that an extended real-valued function f(p) de-
fined on a measurable set E of M is a measurable function if we have the
conditions (i) and (ii) in the following:

(i) If we put E(∞) = {p ∈ E; |f(p)| = ∞}, we have E(p) ∈ M and
µ(E(∞)) = 0.

(ii) There exists a sequence of simple functions {fm(p); m ≥ 1} such that
we have the limit

lim
m→∞

fm(p) = f(p) (3.3)

in the sense of point wise convergence on E\E(∞). Here we assume that
we have

Em(∞) = {p; |fm(p)| = ∞} ⊂ E(∞), (m ≥ 1).

The condition (ii) of Definition 3.2 is equivalent to the condition (iii) in the
following:

(iii) At an arbitrary point p in E\E(∞) and for an arbitrary positive number
ε > 0, there exists a certain natural numberm0 such that, for an arbitrary
natural number m such as m ≥ m0, we have the inequality

|fm(p)− f(p)| < ε.

Example 3.1 Assume that E is a measurable set onM . A simple function
f(p) and a continuous function f(p) defined on E are measurable.

Theorem 3.1 Assume that E is a measurable set on M . Assume that
two functions f and g are some measurable functions defined on E. Then the
following functions (1)∼(10) are also the measurable functions defined on E:

(1) f + g. (2) f − g. (3) fg.

(4) f/g. Here we assume that we have g(p) ̸= 0, (p ∈ E).

(5) αf , Here we assume that α is a real constant.

(6) |f |p, Here we assume that p ̸= 0 is a real number.

(7) sup(f, g). (8) inf(f, g).

(9) f+ = sup(f, 0). (10) f− = − inf(f, 0).
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The functions sup(f, g) and inf(f, g) in Theorem 3.1 are defined in the
following:

sup(f, g)(p) = sup(f(p), g(p)), (p ∈ E),

inf(f, g)(p) = inf(f(p), g(p)), (p ∈ E).

Further we have the formulas

f = f+ − f−, |f | = f+ + f−.

Theorem 3.2 If a function f(p) is measurable on E and we have F ⊂ E
and F ∈ ME , the restriction fF (p) = f(p)|F of f(p) on F is measurable on F .

Now we have the notation in the following. If α and β are tow arbitrary
real numbers or ±∞, we put in the following:

E(f > α) = {p ∈ E; f(p) > α},

E(f ≤ α) = {p ∈ E; f(p) ≤ α},

E(f = α) = {p ∈ E; f(p) = α},

E(α < f ≤ β) = {p ∈ E; α < f(p) ≤ β}, (α < β).

Theorem 3.3 Assume that f(p) is a function defined on E. Then the
following four statements are equivalent:

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary real number α, we have E(f ≤ α) ∈ ME .

(3) For an arbitrary real number α, we have E(f ≥ α) ∈ ME .

(4) For an arbitrary real number α, we have E(f < α) ∈ ME .

Corollary 3.1 For a function f(p) defined on E, the following statements
(1) and (2) are equivalent:

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary rational number r, we have E(f > r) ∈ ME .

Corollary 3.2 Assume that a function f(p) defined on E satisfies the
condition in Theorem 3.3. Then each set in the following belongs to ME :

11
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Then we define a measurable function in the following.
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Theorem 3.2 If a function f(p) is measurable on E and we have F ⊂ E
and F ∈ ME , the restriction fF (p) = f(p)|F of f(p) on F is measurable on F .

Now we have the notation in the following. If α and β are tow arbitrary
real numbers or ±∞, we put in the following:

E(f > α) = {p ∈ E; f(p) > α},

E(f ≤ α) = {p ∈ E; f(p) ≤ α},

E(f = α) = {p ∈ E; f(p) = α},

E(α < f ≤ β) = {p ∈ E; α < f(p) ≤ β}, (α < β).

Theorem 3.3 Assume that f(p) is a function defined on E. Then the
following four statements are equivalent:

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary real number α, we have E(f ≤ α) ∈ ME .

(3) For an arbitrary real number α, we have E(f ≥ α) ∈ ME .

(4) For an arbitrary real number α, we have E(f < α) ∈ ME .

Corollary 3.1 For a function f(p) defined on E, the following statements
(1) and (2) are equivalent:

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary rational number r, we have E(f > r) ∈ ME .

Corollary 3.2 Assume that a function f(p) defined on E satisfies the
condition in Theorem 3.3. Then each set in the following belongs to ME :
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(1) E(f = α), Here α is an arbitrary real number.

(2) E(f < ∞). (3) E(f = ∞).

(4) E(f > −∞). (5) E(f = −∞).

Theorem 3.4 For a function f(p) defined on E, the following statements
(1) and (2) are equivalent:

(1) f(p) is measurable on E. Namely there exists a sequence of simple func-
tions {fm(p)} which converges to f(p) at each point in E\E(∞). Here
we assume that we have

Em(∞) = {p ∈ E; |fm(p)| = ∞} ⊂ E(∞), (m ≥ 1).

(2) For an arbitrary real number α, we have E(f > α) ∈ ME .

If f(p) is measurable, there exists a sequence of simple functions which
converges to f(p) at each point in E\E(∞) by virtue of the definition. Then,
by virtue of this theorem, we have the method of constructing such a sequence
of simple functions concretely.

We give this result in the Corollary 3.3 in the following．

Corollary 3.3 Assume that a function f(p) is measurable on E. Then we
put

Ej
m = E

( j

m
≤ f <

j + 1

m

)
, (j = 0, ±1, ±2, · · · )

for each natural number m ≥ 1 and we express the defining function of Ej
m as

Cj
m(p) = χEj

m
(p).

Then, if we define the simple function fm(p) by the formula

fm(p) =
∞∑

j=−∞

j

m
Cj

m(p), (p ∈ E),

the sequence of simple functions {fm(p)} converges to f(p) at each point on
E\E(∞).

Theorem 3.5 If a function f(p) is measurable on E and we have f(p) ≥ 0,
there exists a sequence of simple functions {fm(p)} which converges to f(p) at
each point on E\E(∞) and satisfies the conditions fm(p) ≥ 0, (m ≥ 1).

Theorem 3.6 If the functions fm(p), (m ≥ 1) defined on E are measur-
able, the functions (1) ∼ (5) in following are measurable on E:
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(1) sup
m≥1

fm(p). (2) inf
m≥1

fm(p).

(3) lim
m→∞

fm(p). (4) lim
m→∞

fm(p).

(5) If we have the limit f(p) = lim
m→∞

fm(p) at almost every p ∈ E, f(p) is

measurable on E.

If we have the certain property (P ) for a measurable function f(p) or a
sequence of measurable functions {fm(p)} on E excluding a null set e, we say
that we have the property (P ) for the function f(p) and the sequence of simple
functions {fm(p)} almost everywhere.

For an example, if we have the equality

f(p) = 0, (p ∈ E\e, µ(e) = 0),

f(p) is equal to 0 almost everywhere on E. We express this as

f(p) = 0, (a.e. p ∈ E).

Further, if we have the limit

lim
m→∞

fm(p) = f(p), (p ∈ E\e, µ(e) = 0),

fm(p) converges to f(p) almost everywhere on E.
We express this as

lim
m→∞

fm(p) = f(p), (a.e. p ∈ E).

Then the values of the limit function f(p) on the null set e happen to be
undetermined. But we give the function f(p) one value at each point of such a
null set e and fix its value. Thereby the domain of the function is determined
constantly. Namely, when the domains of some functions are different, we
cannot state a certain determined statement concerning these functions.

In this case, because the value of the Lebesgue type integral of f(p) is not
influenced even if we give any value of f(p) on the null set e, this is the idea
for the clear statement of the proposition.

Theorem 3.7 (Egorov’s Theorem) Assume that E is a measurable set
in M and we have µ(E) < ∞.

Assume that fm(p), (m ≥ 1) are the measurable functions which take the
finite values almost everywhere on E. Further, we assume that there exists the
finite limit f(p) = lim

m→∞
fm(p) almost everywhere on E.

Then, for an arbitrary positive number ε > 0, there exists a set F ∈ ME

such that we have the statements (1) and (2) in the following:
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(1) E(f = α), Here α is an arbitrary real number.

(2) E(f < ∞). (3) E(f = ∞).

(4) E(f > −∞). (5) E(f = −∞).

Theorem 3.4 For a function f(p) defined on E, the following statements
(1) and (2) are equivalent:
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we assume that we have
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If f(p) is measurable, there exists a sequence of simple functions which
converges to f(p) at each point in E\E(∞) by virtue of the definition. Then,
by virtue of this theorem, we have the method of constructing such a sequence
of simple functions concretely.

We give this result in the Corollary 3.3 in the following．
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there exists a sequence of simple functions {fm(p)} which converges to f(p) at
each point on E\E(∞) and satisfies the conditions fm(p) ≥ 0, (m ≥ 1).

Theorem 3.6 If the functions fm(p), (m ≥ 1) defined on E are measur-
able, the functions (1) ∼ (5) in following are measurable on E:
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sequence of measurable functions {fm(p)} on E excluding a null set e, we say
that we have the property (P ) for the function f(p) and the sequence of simple
functions {fm(p)} almost everywhere.

For an example, if we have the equality
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f(p) is equal to 0 almost everywhere on E. We express this as

f(p) = 0, (a.e. p ∈ E).

Further, if we have the limit
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fm(p) converges to f(p) almost everywhere on E.
We express this as
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undetermined. But we give the function f(p) one value at each point of such a
null set e and fix its value. Thereby the domain of the function is determined
constantly. Namely, when the domains of some functions are different, we
cannot state a certain determined statement concerning these functions.

In this case, because the value of the Lebesgue type integral of f(p) is not
influenced even if we give any value of f(p) on the null set e, this is the idea
for the clear statement of the proposition.

Theorem 3.7 (Egorov’s Theorem) Assume that E is a measurable set
in M and we have µ(E) < ∞.

Assume that fm(p), (m ≥ 1) are the measurable functions which take the
finite values almost everywhere on E. Further, we assume that there exists the
finite limit f(p) = lim
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fm(p) almost everywhere on E.

Then, for an arbitrary positive number ε > 0, there exists a set F ∈ ME

such that we have the statements (1) and (2) in the following:
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(1) We have F ⊂ E and µ(E\F ) < ε.

(2) fm(p) converges to f(p) uniformly on F .

Corollary 3.4 In Theorem 3.7, we can take a closed set as F .

By virtue of Egorov’s Theorem and Corollary 3.4, we have the theorem in
the following.

Theorem 3.8 (Luzin’s Theorem) Assume that E is a measurable set
in M . Assume that f(p) is a measurable function which takes a finite value
almost everywhere in E.

Then, for an arbitrary positive number ε > 0, there exists a certain closed
set F ⊂ E such that we have the statements (1) and (2) in the following:

(1) We have µ(E\F ) < ε.

(2) f(p) is continuous on F .

4 Definition of the Lebesgue type integral

In this section, we define the concept of the Lebesgue type integral for the
Lebesgue type measurable functions.

Assume that (M, g) is a n-dimensional Riemannian manifold and the n-
dimensional Riemannian manifoldM is a Lebesgue type measure space (M, M,
µ). Here we assume n ≥ 1. Assume that a subset E of M is a Lebesgue type
measurable set.

Then, by restricting (M, M, µ) on E, we have the n-dimensional Lebesgue
type measure space (E, M, µ) on E.

Then we define the Lebesgue type integral on E of a measurable function
f(p) defined on E and denote it by the symbol

∫

E

f(p)dµ.

　
In the following, we define the Lebesgue type integral of f(p) in the two

steps in the following.

14

(1) The case where f(p) is a simple function

Assume that a function f(p) is expressed as follows:

f(p) =
∞∑
j=1

αjχEj (p), (αj ∈ R, j ≥ 1), (4.1)

E = E1 + E2 + · · · , (Ej ∈ ME , j ≥ 1). (4.2)

Then we define the Lebesgue type integral of f(p) as the sum of the series
on the right hand side of the equality

∫

E

f(p)dµ =

∞∑
j=1

αjµ(Ej) (4.3)

and denote it by the symbol on the left hand side. Here we consider only the
case of the absolute convergence of the series on the right hand side.

The sum of the absolutely convergent series on the right hand side of the
formula (4.3) has the decided value independent of the expression of the func-
tion f(p) such as the formula (4.1). Then we say that f(p) is integrable on
E in the sense of Lebesgue type integral. We also say that it is integrable on
E.

f(p) is integrable on E if and only if |f(p)| is integrable on E.
This equivalence is understood by the following reasoning.
For the absolute value function of the function f(p) in the formula (4.1),

we have the equality

|f(p)| =
∞∑
j=1

|αj |χEj (p). (4.4)

Therefor, we have the equality

∫

E

|f(p)|dµ =

∞∑
j=1

|αj |µ(Ej). (4.5)

Then the series on the right hand side of the formula (4.3) is absolutely
convergent if and only if the series on the right hand side of the formula (4.5)
is convergent.

Remark 4.1 As for the convergence and divergence of this series on the
right hand side of the formula (4.3), we can consider the two cases: (1) conver-
gence and (2) divergence.

By considering precisely, we can consider the cases in the following:

(1) On the case of convergence.

15
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Then we define the Lebesgue type integral on E of a measurable function
f(p) defined on E and denote it by the symbol
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(1) The case where f(p) is a simple function
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f(p) =
∞∑
j=1

αjχEj (p), (αj ∈ R, j ≥ 1), (4.1)

E = E1 + E2 + · · · , (Ej ∈ ME , j ≥ 1). (4.2)

Then we define the Lebesgue type integral of f(p) as the sum of the series
on the right hand side of the equality

∫

E

f(p)dµ =

∞∑
j=1

αjµ(Ej) (4.3)

and denote it by the symbol on the left hand side. Here we consider only the
case of the absolute convergence of the series on the right hand side.

The sum of the absolutely convergent series on the right hand side of the
formula (4.3) has the decided value independent of the expression of the func-
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we have the equality

|f(p)| =
∞∑
j=1

|αj |χEj (p). (4.4)

Therefor, we have the equality

∫

E

|f(p)|dµ =

∞∑
j=1

|αj |µ(Ej). (4.5)

Then the series on the right hand side of the formula (4.3) is absolutely
convergent if and only if the series on the right hand side of the formula (4.5)
is convergent.

Remark 4.1 As for the convergence and divergence of this series on the
right hand side of the formula (4.3), we can consider the two cases: (1) conver-
gence and (2) divergence.

By considering precisely, we can consider the cases in the following:

(1) On the case of convergence.
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(1-i) The case of absolute convergence.

(1-ii) The case of conditional convergence.

(2) In the case of divergence.

(2-i) The case where it converges to either one of ±∞.

(2-ii) The case where it oscillates and it does not converge to a fixed
value.

The case (1-i) is the case of the definition of the Lebesgue type integral and
the case (1-ii) is the case where the integral converges conditionally.

Here, because we consider only the case where a simple function f(p) is
integrable, this means that we consider only the case (1-i) of Remark 4.1.

In general, we study the precise of the situations of convergence and diver-
gence of the Lebesgue type integral afterward in the section of the calculation
of the Lebesgue type integral.

(2) The case where f(p) is a general measurable function

In this case, these exists a sequence of simple functions {fm(p)} which
converges to f(p) at each point on E\E(∞).

Here, if each fm(p) is integrable and we have the limit

lim
m→∞

∫

E

fm(p)dµ, (4.6)

we say that this limit is a Lebesgue type integral of f(p) on E and we denote
it as ∫

E

f(p)dµ = lim
m→∞

∫

E

fm(p)dµ. (4.7)

Further we say that the Lebesgue type integral (4.7) converges absolutely
if the limit (4.6) has the fixed value independent to the choice of a sequence of
integrable simple functions {fm(p)} which converges to f(p) at each point on
E\E(∞).

Then we say that f(p) is integrable on E. The Lebesgue type integral is
usually the Lebesgue type integral in this case.

A function f(p) defined on E is integrable if and only if the absolute value
of the function |f(p)| is integrable on E.

Theorem 4.1 When f(p) is integrable on E, we choose the sequence of
simple functions {fm(p)} as Corollary 3.3. Then the Lebesgue type integral of
f(p) on E is given by the equality

∫

E

f(p)dµ = lim
m→∞

1

m

∞∑
j=−∞

jµ
(
E(

j

m
≤ f <

j + 1

m
)
)
.
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Theorem 4.2 Assume that f(p) is integrable on E. Now, if we put

f+(p) = sup{f(p), 0}, f−(p) = − inf{f(p), 0},

we have the formulas

|f(p)| ≥ f+(p) ≥ 0, |f(p)| ≥ f−(p) ≥ 0,

f(p) = f+(p)− f−(p), |f(p)| = f+(p) + f−(p).

Then both f+(p) and f−(p) are integrable on E and we have the equality
∫

E

f(p)dµ =

∫

E

f+(p)dµ−
∫

E

f−(p)dµ.

Further we have the equality
∫

E

|f(p)|dµ =

∫

E

f+(p)dµ+

∫

E

f−(p)dµ.

Corollary 4.1 Assume that f(p) is integrable on E and g(p) is measurable
on E. Then, if we have the inequality |g(p)| ≤ |f(p)|, g(p) is integrable on E.

Further we say that the Lebesgue type integral (4.7) converges condi-
tionally if the limit (4.6) has the various value depending on the choice of
a sequence of integrable simple functions {fm(p)} which converges to f(p) at
each point on E\E(∞).

If the limit (4.6) does not exist, we say that the Lebesgue type integral
diverges.

Then the Lebesgue type integral does not exist.

Remark 4.2 The case of the conditional convergence of (1-ii) in Remark
4.1 means the case of the conditional convergence of the integral of this simple
function.

In general, we study the precise of the situations of the convergence and
divergence of the Lebesgue type integral afterward in the section of the calcu-
lation of the Lebesgue type integral.

5 Fundamental properties of the Lebesgue type
integral

In this section, we study the fundamental properties of the Lebesgue type
integral on the Riemannian manifold.

17
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Assume that a subset E of M is a measurable set and E is a n-dimensional
Lebesgue type measure space (E, M, µ). Here we assume n ≥ 1.

5.1 Fundamental properties of the Lebesgue type integral

In this paragraph, we study the fundamental properties of the Lebesgue
type integral.

As for the various formulas in the various theorems in this paragraph, we
can prove simply that they are true for the integrable simple functions. For
the general integrable functions, we can prove them by taking the limits of the
various formulas for the integrable simple functions by virtue of the definition
of the Lebesgue type integral. Therefore we omit the precises of the proofs
here.

In the sequel, we assume that E is a measurable set in M .

Theorem 5.1.1 Assume that a function f(p) is integrable on E and a
subset F ⊂ E is measurable. Then the restrictions fF (p) = f(p)|F of f(p) on
F integrable on F and we have the equality

∫

F

fF (p)dµ =

∫

F

f(p)dµ.

Namely the function f(p) is integrable on F .

Theorem 5.1.2 Assume that E and f(x) are the same as in Theorem
5.1.1. Further, assume that E = E1 + E2 is a division of E. Here E1 and E2

are measurable. Then we have the equality
∫

E

f(p)dµ =

∫

E1

f(p)dµ+

∫

E2

f(p)dµ.

Theorem 5.1.3 Assume that two functions f(p) and g(p) are integrable
on E. Then we have the statements (1) and (2) in the following:

(1) f(p) + g(p) is integrable on E and we have the equality

∫

E

{f(p) + g(p)}dµ =

∫

E

f(p)dµ+

∫

E

g(p)dµ.

(2) For an arbitrary real number α, αf(p) is also integrable on E and we
have the equality ∫

E

{αf(p)}dµ = α

∫

E

f(p)dµ.
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Corollary 5.1.1 Assume that two functions f(p) and g(p) are integrable
on E. Then, for two arbitrary real numbers α and β, αf(p)+βg(p) is integrable
on E and we have the equality

∫

E

{αf(p) + βg(p)}dµ = α

∫

E

f(p)dµ+ β

∫

E

g(p)dµ.

Theorem 5.1.4 Assume that two functions f(p) and g(p) are integrable
on E. Then we have the results (1) ∼ (3) in the following:

(1) If we have f(p) ≥ 0, (p ∈ E), we have the inequality

∫

E

f(p)dµ ≥ 0.

(2) If we have f(p) ≥ g(p), (p ∈ E), we have the inequality

∫

E

f(p)dµ ≥
∫

E

g(p)dµ.

(3) We have the inequality

|
∫

E

f(p)dµ| ≤
∫

E

|f(p)|dµ.

Theorem 5.1.5 Assume that a function f(p) is integrable on E. Then
we have the results (1) and (2) in the following:

(1) If we have µ(E) = 0, we have

∫

E

f(p)dµ = 0.

(2) We have µ(E(f = ∞)) = µ(E(f = −∞)) = 0.

Corollary 5.1.2 Assume that two functions f(p) and g(p) are measurable
on E and they are equal almost everywhere on E. Then, if f(p) is integrable
on E, g(p) is also integrable on E and we have the equality

∫

E

f(p)dµ =

∫

E

g(p)dµ.

By virtue of Corollary 5.1.2, if two integrable functions are equal almost
everywhere, we need not distinguish their Lebesgue type integrals.
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Theorem 5.1.6 If a function f(p) is integrable on E, E(f ̸= 0) is equal
to the sum of at most countable subsets of the finite Lebesgue type measures.

Theorem 5.1.7(The first mean value theorem of the integration)
Assume that a function f(p) is a bounded measurable function on E and g(p)
is integrable on E. Then, if we put

m = inf
p∈E

f(p), M = sup
p∈E

f(p),

we have the statements (1) and (2) in the following:

(1) f(p)g(p) is integrable on E.

(2) There exists a real constant α such that we have m ≤ α ≤ M and we
have the equality

∫

E

f(p)|g(p)|dµ = α

∫

E

|g(p)|dµ.

Corollary 5.1.3 Assume that a function f(p) is continuous on a bounded
closed domain and g(p) is integrable on E and we have g(p) ≥ 0, (p ∈ E).
Then there exists a certain point p0 ∈ E such that we have the equality

∫

E

f(p)g(p)dµ = f(p0)

∫

E

g(p)dµ.

Theorem 5.1.8 Assume that E is a measurable set on M and a function
f(p) is integrable on E. Then, for an arbitrary real number ε > 0, there exists
a continuous function fε(p) on M which is identically 0 outside of a certain
bounded measurable set such that we have the inequality

|
∫

E

f(p)dµ−
∫

E

fε(p)dµ| ≤
∫

E

|f(p)− fε(p)|dµ < ε.

5.2 Lebesgue type integral and the limiting processes

In this paragraph, we study the Lebesgue type integral on M and the
limiting processes.

Theorem 5.2.1 Assume that E is a measurable set in M and Em, (m ≥
1) are mutually disjoint measurable subsets of E and we have a division

E = E1 + E2 + · · · .
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Then, if a function f(p) is integrable on E, we have the equality
∫

E

f(p)dµ =

∫

E1

f(p)dµ+

∫

E2

f(p)dµ+ · · · . (5.1)

Further, if a function f(p) is integrable on each Em, (m ≥ 1) and we have
the condition

∞∑
m=1

∫

Em

|f(p)|dµ < ∞,

the function f(p) is integrable on E and we have the equality in the formula
(5.1).

Corollary 5.2.1 Assume that E is a measurable set in M and Em, (m ≥
1) are a monotone increasing sequence of measurable sets and we have the
equality

E =
∞∪

m=1

Em.

Assume that a function f(p) is integrable on E. Then, for an arbitrary positive
number ε > 0, there exists a natural number m0 such that, for any m ≥ m0, we
have the inequality ∫

E\Em

|f(p)|dµ < ε.

Especially we have the equality

lim
m→∞

∫

Em

f(p)dµ =

∫

E

f(p)dµ.

Remark 5.2.1 If the Lebesgue type integral of a function f(p)
∫

E

f(p)dµ

converges conditionally and if we take a special choice of a sequence of mea-
surable sets {Em} such as in Corollary 5.2.1 in the above, we have the limit as
in Corollary 5.2.1.

Corollary 5.2.2 Assume that E is a measurable set in M and a function
f(p) is integrable on E. Now we put

Em = E(|f | < m), (m ≥ 1).

Then, for an arbitrary positive number ε > 0, there exists a certain natural
number m0 such that, for any m ≥ m0, we have the inequality

∫

E\Em

|f(p)|dµ < ε.
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Especially we have the equality

lim
m→∞

∫

Em

f(p)dµ =

∫

E

f(p)dµ.

The Theorem 5.2.2 in the following gives the absolute continuity of the
indefinite integral.

This is the application of Theorem 5.2.1 and Corollary 5.2.2.

Theorem 5.2.2 Assume that E is a measurable set in M and a function
f(p) is integrable on E. Then, for an arbitrary positive number ε > 0, there
exists a certain positive number δ > 0 such that, for any measurable sets e in
E which satisfies the condition µ(e) < δ, we have the inequality

|
∫

e

f(p)dµ| < ε.

Theorem 5.2.3(Lebesgue bounded convergence theorem) Assume
that E is a compact set in M . If a sequence of uniformly bounded measurable
functions {fm(p); m ≥ 1} converges to f(p) almost everywhere in E, we have
the equality

lim
m→∞

∫

E

fm(p)dµ =

∫

E

f(p)dµ.

Theorem 5.2.4(Lebesgue convergence theorem) Assume that E is
a measurable set in M . Here we assume the conditions (1) and (2) in the
following:

(1) A sequence of measurable functions {fm(p); m ≥ 1} on E converges to
a finite limit f(p) almost everywhere on E.

(2) There exists an integrable function Φ(p) such that we have the condition
Φ(p) ≥ 0, (p ∈ E) and we have the inequalities

|fm(p)| ≤ Φ(p), (p ∈ E, m ≥ 1).

Then we have the equality

lim
m→∞

∫

E

fm(p)dµ =

∫

E

f(p)dµ.

By virtue of the Lebesgue convergence theorem, we have the theorem of
termwise integration.
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Theorem 5.2.5 (Theorem of termwise integration) Assume that E
is a measurable set in M and {fm(p); m ≥ 1} is a sequence of measurable
functions on E. Here we put

f(p) = f1(p) + f2(p) + · · · .

Then, if the series on the right hand side converges almost everywhere on
E and there exists an integrable function Φ(p) on E such that we have the
condition Φ(p) ≥ 0, (p ∈ E) and, for an arbitrary natural number m ≥ 1, we
have the inequality

|
m∑
j=1

fj(p)| ≤ Φ(p), (p ∈ E),

we have the termwise integration.
Namely we have the equality

∫

E

f(p)dµ =

∫

E

f1(p)dµ+

∫

E

f2(p)dµ+ · · · .

Corollary 5.2.3 Assume that E, {fm(p); m ≥ 1} and f(p) are the same
as in Theorem 5.2.5. Here we assume that we have either one of the conditions
(i) and (ii) in the following:

(i) There exists a Lebesgue type integrable function Φ(p) on E such that we
have the condition Φ(p) ≥ 0, (p ∈ E) and we have the inequalities

m∑
j=1

|fj(p)| ≤ Φ(p), (p ∈ E, m ≥ 1).

(ii) We have the condition

∞∑
j=1

∫

E

|fj(p)|dµ < ∞.

Then we have the theorem of termwise integration.

Theorem 5.2.6 (Beppo Levi Theorem) Assume that E is a measur-
able set in M and {fm(p); m ≥ 1} is a monotone increasing sequence of inte-
grable functions on E. Further we assume that a monotone increasing sequence

{
∫

E

fm(p)dµ}
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Especially we have the equality

lim
m→∞

∫

Em
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∫

E

f(p)dµ.
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|
∫

e

f(p)dµ| < ε.
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E
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∫

E
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is bounded from above. Then, if we put

lim
m→∞

fm(p) = f(p), (p ∈ E),

the function f(p) has the finite value almost everywhere on E, it is integrable
on E and we have the equality

lim
m→∞

∫

E

fm(p)dµ =

∫

E

f(p)dµ.

We give the results used in the proof of the theorem in the above as two
Corollaries in the following.

Corollary 5.2.4 Assume that, for a measurable set E in M and for a
monotone increasing sequence {Em; m ≥ 1} of measurable sets in E, we have
the equality

E =
∞∪

m=1

Em.

Further, if a measurable function f(p) on E is integrable on each Em, (m ≥ 1)
and we have the condition

lim
m→∞

∫

Em

|f(p)|dµ < ∞,

then f(p) is integrable on E and we have the equality

lim
m→∞

∫

Em

f(p)dµ =

∫

E

f(p)dµ.

Corollary 5.2.5 Assume that E is a measurable set inM and {fm(p); m ≥
1} is a monotone sequence of integrable functions on E. Then, if

lim
m→∞

fm(p) = f(p), (p ∈ E)

has the finite value almost everywhere on E and it is integrable on E, we have
the equality

lim
m→∞

∫

E

fm(p)dµ =

∫

E

f(p)dµ.

Next, as the Corollary of Beppo Levi Theorem, we prove Fatou’s Lemma.
At first, we remark that Fatou’s Lemma is used many times in the following

form.
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Assume that, for the integrable nonnegative functions fm(p), (m ≥ 1) on a
measurable set E，we have the equality

lim
m→∞

fm(p) = f(p), (p ∈ E).

If we have the condition

lim
m→∞

∫

E

fm(p)dµ < ∞,

f(p) is integrable on E and we have the inequality

∫

E

f(p)dµ ≤ lim
m→∞

∫

E

fm(p)dµ.

Here we prove Fatou’s Lemma in a nealy more generalized form.

Theorem 5.2.7 (Fatou’s Lemma) Assume that E is a measurable set
in M and assume that {fm(p); m ≥ 1} is a sequence of integrable nonnegative
functions on E and we have the condition

lim
m→∞

∫

E

fm(p)dµ < ∞.

Then the function
f(p) = lim

m→∞
fm(p)

is integrable on E and we have the inequality
∫

E

f(p)dµ =

∫

E

(
lim

m→∞
fm(p)

)
dµ

≤ lim
m→∞

∫

E

fm(p)dµ.

Theorem 5.2.8 in the following is the result on the differentiation under the
integral symbol

Theorem 5.2.8 Assume that E is a measurable set in M and (a, b) is an
interval in R. Assume that a function f(p, t) is defined on a set E × (a, b) =
{(p, t); p ∈ E, t ∈ (a, b)} and it satisfies the conditions (i) ∼ (iii) in the
following:

(i) For an arbitrary t ∈ (a, b), f(p, t) is integrable on E.

(ii) For almost every p on E, f(p, t) is differentiable with respect to t. Then
we denote the partial derivative of f(p, t) with respect to t as ft(p, t).
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(iii) There exists an integrable function Φ(p) on E such that we have the
condition Φ(p) ≥ 0, (p ∈ E) and we have the inequality

|ft(p, t)| ≤ Φ(p), (p ∈ E, t ∈ (a, b)).

Then, if we put

F (t) =

∫

E

f(p, t)dµ,

F (t) is differentiable on (a, b) and we have the equality

F ′(t) =

∫

E

ft(p, t)dµ.

6 Calculation of the Lebesgue type integral

In this section, we study the calculation of the Lebesgue type integral on
M by the method of approximation of the integral domain by using an approx-
imating direct family of compact sets in the integral domain.

Assume that an integral domain E is a measurable set in M and an inte-
grand function f(p) is measurable on E.

We consider a direct set A and a direct family {Eα; α ∈ A} of compact
sets included in E.

Here we say that a direct family {Eα} converges to E if, for an arbitrary
compact set K included in E, there exists a certain α0 ∈ A such that, for an
arbitrary α such as α ≥ α0, we have K ⊂ Eα. Then we say that the direct
family {Eα} is an approximating direct family of E.

Especially, if we have A = {1, 2, 3, · · · } and E1 ⊂ E2 ⊂ · · · ⊂ Em ⊂ · · · ,
we say that a sequence {Em} converges to E monotonously. In general,
assume that a sequence {Em} converges to E and we put E1 ∪E2 ∪ · · · ∪Em =
Hm, (m = 1, 2, 3 · · · ), the sequence {Hm} converges to E monotonously.

Assume that the set E(∞) of singular points of f(p) has the measure 0.
Then E\E(∞) is also a measurable set.

Further assume that f(p) is integrable on any compact set included in
E\E(∞). In order that such a condition is satisfied, a compact set included in
E\E(∞) and the set E0 of singular points of f(p) must not contact each other.
Namely they are in a certain positive distance away from each other. Thereby
we can construct an approximating direct family {Eα; α ∈ A} of E\E(∞) by
using compact sets Eα, (α ∈ A) included in E\E(∞).

Here we say that a direct family {Eα} of compact sets converging to E\E(∞)
is an approximating direct family of E\E(∞). Then, if, for an approxi-
mating direct family {Eα} of E\E(∞), we have the limit of

I(Eα) =

∫

Eα

f(p)dµ
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in the sense of the Moore-Smith limit, the limit

I = lim
α

I(Eα)

is equal to the Lebesgue type integral of f(p) on E

I =

∫

E

f(p)dµ.

Here we say that this Lebesgue type integral converges absolutely if the
value I of the Lebesgue type integral does not depend on the choice of an
approximating direct family {Eα} of E\E(∞).

On the other hand, we say that this Lebesgue type integral converges
conditionally if the value I depends on the choice of an approximating direct
family {Eα} of E\E(∞).

Further, if the Lebesgue type integral converges absolutely or conditionally,
we say that the Lebesgue type integral exists. If the Lebesgue type integral of
f(p) converges absolutely, we say that f(p) is integrable.

If the Lebesgue type integral does not exist, we say that the Lebesgue type
integral diverges.

A function f(p) is integrable on E if and only if |f(p)| is integrable on E.
Thereby the extended Lebesgue type integral called as usual is well consid-

ered to be the calculation of the Lebesgue type integral by approximating the
integral domain by using an approximating direct family composed of compact
sets.

The Lebesgue type integral is usually considered to be the case of the abso-
lute convergence. We call this as the Lebesgue type integral in a narrow sense.
Against this, if the Lebesgue type integral converges including the case of the
conditional convergence, we call this as the extended Lebesgue type integral.
We remark that the Lebesgue type integral defined in section 2 of this paper
is the definition of the unified Lebesgue type integral of the Lebesgue type
integral in a narrow sense and the extended Lebesgue type integral.

Remark 6.1 Assume that E is a measurable set in M and f(p) is an
extended real-valued measurable function defined on E.

Then there exist a direct family of simple functions {f∆(p)} which converges
to f(p) at each point in E\E(∞) and an approximating direct family {Eα}
composed of compact sets in E\E(∞) such that we have the limits of (I) and
(II) in the following in the sense of Moore-Smith limits:

(I)

∫

E

f(p)dµ = lim
∆

∫

E

f∆(p)dµ,

(II)

∫

E

f(p)dµ = lim
α

∫

Eα

f(p)dµ.

27



45Axiomatic Method of Measure and Integration (XIV)
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Then the Lebesgue type integrals in (I) converges or diverges if and only if
the Lebesgue type integral (II) converges or diverges respectively.

Further, in the case of convergence, the Lebesgue type integral in (I) con-
verges absolutely or converges conditionally if and only if the Lebesgue type
integral in (II) converges absolutely or converges conditionally respectively.

We calculate the Lebesgue type integral in (I) by using the approximation
of f(p) by a direct family of simple functions and the Lebesgue type integral
in (II) by using the approximation of E by an approximating direct family
composed of compact sets in E\E(∞).

Thus, as for the calculation of the Lebesgue type integral, there is either one
of the calculation by using an approximation by functions and the calculation
by using an approximation by integration domains.

In the case of (I), we remark that we may use the approximation by a
sequence of simple functions {fm(p)} instead of the approximation by a direct
family {f∆(p)} of simple functions.

Here, for a function f(p), we put

f+(p) = sup(f(p), 0), f−(p) = − inf(f(p), 0).

Then we have the formulas in the following:

|f(p)| ≥ f+(p) ≥ 0, |f(p)| ≥ f−(p) ≥ 0,

f(p) = f+(p)− f−(p), |f(p)| = f+(p) + f−(p).

Then we have the relations in the Table 6.1 in the following as for the
convergence and divergence of the Lebesgue type integral of f(p) on E.

Table 6.1 Convergence and divergence of
the Lebesgue type integral




conv. = convergence, div. = divergence,

ab.conv. = absolute convergenve,

cond.conv. = conditional convergence




∫

E

f(p)dµ

∫

E

|f(p)|dµ
∫

E

f+(p)dµ

∫

E

f−(p)dµ

ab. conv. 　 conv. conv. conv.

div. div. conv. div.

div. div. div. conv.

cond.conv. or div. div. div. div.
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Remark 6.2 In the case where the Lebesgue type integral converges ab-
solutely in Table 6.1, the value of this Lebesgue type integral is determined as
a fixed value independently on the choice of an approximating direct family
{Eα; α ∈ A} of E. It is only in this case of absolute convergence that the
Lebesgue type integral has the fixed meaning. The cases where the Lebesgue

type integral

∫

E

f(p)dµ diverges to ±∞ in Table 6.1 are the cases (1) and (2)

in the following:

(1)

∫

E

f+(p)dµ < ∞,

∫

E

f−(p)dµ = ∞.

(2)

∫

E

f+(p)dµ = ∞,

∫

E

f−(p)dµ < ∞.

In these cases, the Lebesgue type integrals do not exist.
Nevertheless, in these cases, for a measurable set A in E, we can define the

set function ν(A) on ME by the equality

ν(A) =

∫

A

f(p)dµ.

Here we assume that ME is the family of all measurable sets in E.
Thereby we can define a Lebesgue-Stieltjes type measure space (E, ME , ν)

on E. In the case (1), the total measure is equal to ν(E) = −∞, and, in the
case (2), the total measure is equal to ν(E) = ∞.

This measure space has the fixed meaning as a σ-finite measure space.
Then, even if the Lebesgue type integral of f(p) on E does not exist itself,

an indefinite integral of f(p) on a measurable set A in E is defined by the
formula

ν(A) =

∫

A

f(p)dµ

and its value is determined as a finite real value or −∞ or ∞.
Against this, in the case where the Lebesgue type integral converges condi-

tionally or diverges in Table 6.1, this integral converges or diverges according
as the choice of an approximating direct family {Eα; α ∈ A} of E．

Then, in the case where the Lebesgue type integral diverges, we cannot give
any meaning to this.

On the other hand, in the case where the Lebesgue type integral converges
conditionally, we can define its value as the mathematically meaningful value.

But, it is difficult to make a general theory in this case and it is necessary
to devise a way to give its meaning according to each one of functions with
singular points

Theorem 6.1 Assume that E is a measurable set in M and a function
f(p) is an extended real-valued nonnegative measurable function on E. Then, if,
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in (II) by using the approximation of E by an approximating direct family
composed of compact sets in E\E(∞).

Thus, as for the calculation of the Lebesgue type integral, there is either one
of the calculation by using an approximation by functions and the calculation
by using an approximation by integration domains.

In the case of (I), we remark that we may use the approximation by a
sequence of simple functions {fm(p)} instead of the approximation by a direct
family {f∆(p)} of simple functions.

Here, for a function f(p), we put

f+(p) = sup(f(p), 0), f−(p) = − inf(f(p), 0).

Then we have the formulas in the following:

|f(p)| ≥ f+(p) ≥ 0, |f(p)| ≥ f−(p) ≥ 0,

f(p) = f+(p)− f−(p), |f(p)| = f+(p) + f−(p).

Then we have the relations in the Table 6.1 in the following as for the
convergence and divergence of the Lebesgue type integral of f(p) on E.

Table 6.1 Convergence and divergence of
the Lebesgue type integral




conv. = convergence, div. = divergence,

ab.conv. = absolute convergenve,

cond.conv. = conditional convergence




∫

E

f(p)dµ

∫

E

|f(p)|dµ
∫

E

f+(p)dµ

∫

E

f−(p)dµ

ab. conv. 　 conv. conv. conv.

div. div. conv. div.

div. div. div. conv.

cond.conv. or div. div. div. div.
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Remark 6.2 In the case where the Lebesgue type integral converges ab-
solutely in Table 6.1, the value of this Lebesgue type integral is determined as
a fixed value independently on the choice of an approximating direct family
{Eα; α ∈ A} of E. It is only in this case of absolute convergence that the
Lebesgue type integral has the fixed meaning. The cases where the Lebesgue

type integral

∫

E

f(p)dµ diverges to ±∞ in Table 6.1 are the cases (1) and (2)

in the following:

(1)

∫

E

f+(p)dµ < ∞,

∫

E

f−(p)dµ = ∞.

(2)

∫

E

f+(p)dµ = ∞,

∫

E

f−(p)dµ < ∞.

In these cases, the Lebesgue type integrals do not exist.
Nevertheless, in these cases, for a measurable set A in E, we can define the

set function ν(A) on ME by the equality

ν(A) =

∫

A

f(p)dµ.

Here we assume that ME is the family of all measurable sets in E.
Thereby we can define a Lebesgue-Stieltjes type measure space (E, ME , ν)

on E. In the case (1), the total measure is equal to ν(E) = −∞, and, in the
case (2), the total measure is equal to ν(E) = ∞.

This measure space has the fixed meaning as a σ-finite measure space.
Then, even if the Lebesgue type integral of f(p) on E does not exist itself,

an indefinite integral of f(p) on a measurable set A in E is defined by the
formula

ν(A) =

∫

A

f(p)dµ

and its value is determined as a finite real value or −∞ or ∞.
Against this, in the case where the Lebesgue type integral converges condi-

tionally or diverges in Table 6.1, this integral converges or diverges according
as the choice of an approximating direct family {Eα; α ∈ A} of E．

Then, in the case where the Lebesgue type integral diverges, we cannot give
any meaning to this.

On the other hand, in the case where the Lebesgue type integral converges
conditionally, we can define its value as the mathematically meaningful value.

But, it is difficult to make a general theory in this case and it is necessary
to devise a way to give its meaning according to each one of functions with
singular points

Theorem 6.1 Assume that E is a measurable set in M and a function
f(p) is an extended real-valued nonnegative measurable function on E. Then, if,
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for an approximating direct family {Eα} composed of compact sets in E\E(∞),
we have the Moor-Smith limit

lim
α

I(Eα) = lim
α

∫

Eα

f(p)dµ,

the Lebesgue type integral of f(p) on E converges absolutely.

Theorem 6.2 Assume that E and f(p) are as in Theorem 6.1. Then the

Lebesgue type integral

∫

E

f(p)dµ converges if and only if, for any compact set

H included in E\E(∞),

I(H) =

∫

H

f(p)dµ

is bounded.

Theorem 6.3 Assume that E is a measurable set in M and a function
f(p) is integrable in the sense of Lebesgue type integral on E.

Further, we assume f(p) ≥ 0 and a sequence {Em} of measurable subsets
of E satisfies the conditions (i) and (ii) in the following:

(i) f(p) is integrable on Em, (m ≥ 1).

(ii) We have µ(E\Em) → 0, (m → ∞).

Then we have the equality

lim
m→∞

∫

Em

f(p)dµ =

∫

E

f(p)dµ.

Remark 6.3 If we have not the Lebesgue type integral of a function f(p)
on E in Theorem 6.3, we have

∫

E

f(p)dµ = ∞.

Then, if the conditions are the same as Theorem 6.3, we have the equality

lim
m→∞

∫

Em

f(p)dµ = ∞ =

∫

E

f(p)dµ.
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for an approximating direct family {Eα} composed of compact sets in E\E(∞),
we have the Moor-Smith limit

lim
α

I(Eα) = lim
α

∫

Eα

f(p)dµ,
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∫

E

f(p)dµ converges if and only if, for any compact set

H included in E\E(∞),
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