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Abstract

We study a game (called Delete Nim) that requires the OR operation to calculate
the G-values of its positions. Also, the concept called 2-adic valuation, which is
described in number theory, is used. This is very rare in the analysis of impartial
games, while the XOR operation is commonly used for calculations of the G-values.
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Introduction

0.1. Combinatorial Games

Combinatorial games are 2-player games with neither chance elements nor hidden

information (for the details, see [1, 2, 4, 7]). Nim is the most famous combinatorial
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game and was studied by Bouton in 1902 [3]. The rules of Nim are as follows:

• The game is played with several heaps of stones.

• Two players move alternately.

• On their turn, the players choose a heap and remove an arbitrary number of

stones.

• The player who removes the last stone wins.

It is natural to define the winner of a combinatorial game as the player who

makes the last move, and we call this normal convention. Furthermore, a game

where both players always have the same set of possible moves is called impartial.

In this study, we investigate impartial games that played under the normal conven-

tion and end in a finite number of moves.

When we say “a player has a winning strategy,” it means that they can win the

game no matter how the opponent moves.

Definition 0.1. When the next (resp. previous) player has a winning strategy, the

position is called an N -position (resp. a P-position).

The set of positions can be partitioned into two sets corresponding to the N -

positions and P-positions.

Definition 0.2. The addition of numbers in their binary form without carrying

is called the XOR operation (or Nim-sum). We denote the XOR operation by ⊕.

Thus, the result of the XOR operation of nonnegative integersm1, . . . ,mn is written

as

m1 ⊕ · · · ⊕mn.

The XOR operation is commonly used to determine whether a Nim position is

an N -position or a P-position.

Theorem 0.3 (Bouton [3]). The Nim position (n1, n2, . . . , nk) is a P-position if

and only if n1 ⊕ n2 ⊕ · · · ⊕ nk = 0.

Example 0.4. 3 ⊕ 5 ⊕ 6 = 112 ⊕ 1012 ⊕ 1102 = 0; therefore, the Nim position

(3, 5, 6) is a P-position.

Example 0.5. 2⊕ 4⊕ 7 = 102 ⊕ 1002 ⊕ 1112 = 12 = 1; therefore, the Nim position

(2, 4, 7) is an N -position.

3

0.2. G-values for Impartial Games

Sprague [8] and Grundy [5] extended Bouton’s theorem for general impartial games

played under the normal convention. Let us denote the set of all non-negative

integers by N.

Definition 0.6. For any proper subset S of N, we define the minimal excluded

function mex(S) as follows:

mex(S) = min(N \ S).

Definition 0.7. For any game position G, we define the G-value function G(G) as

follows:

G(G) = mex({G(G′) | G → G′}),

where G → G′ means that G′ can be reached from G by a single move.

Theorem 0.8 (Sprague [8] and Grundy [5]). For any game position G, G is a

P-position if and only if G(G) = 0.

Therefore, by calculating the G-value, it is possible to determine which player

has a winning strategy.

The G-value is also useful for analysis of the disjunctive sum of games. For any

two positions of impartial games G and H, we define the disjunctive sum of G and

H (written as G+H) as follows. Each player must make a move to either G or H

(but not both) on their turn.

Theorem 0.9 (Sprague [8] and Grundy [5]). Let G and H be two game positions.

Then

G(G+H) = G(G)⊕ G(H).

Therefore, researchers have been interested in G-values of games and a few of the

early results have shown various structures of G-values in a few specific games.

When we tried to analyze the game called “Hey, That’s My Fish!”[6], we sim-

plified it (changed it to an impartial, each position has one piece, and the board

changed to 1× n, etc.). Then, we invented the following Delete Nim.

0.3. Rules of Delete Nim

The rules of Delete Nim are as follows:

• There are two heaps of tokens.

• Two players move alternately.
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• The player selects a non-empty heap and deletes the other heap and removes

1 token from the selected heap and splits the heap into two (possibly empty

heaps).

• The player who can not take stones loses.

Example 0.10. In the case of (11, 9).

(11, 9) → (5, 3) → (4, 0) → (2, 1) → (1, 0) → (0, 0).

Here (a, b) denotes the player selects the first heap a, and (a, b) denotes the player

selects the second heap b, respectively.

0.4. OR operation

The OR operation is required to compute the G-value of the position of Delete Nim.

Definition 0.11. We denote by ∨ the usual OR operation of two numbers in binary

notation.

Example 0.12. 3 ∨ 5 = 112 ∨ 1012 = 1112 = 7.

Example 0.13. 9 ∨ 10 = 10012 ∨ 10102 = 10112 = 11.

1. Main Results

Theorem 1.1. We denote the position of Delete Nim with two heaps of x tokens

and y tokens by (x, y). Then,

G((x, y)) = v2((x ∨ y) + 1),

where vp(n) is the p-adic valuation of n; that is,

vp(n) =

{
max{l ∈ N : pl | n} (n �= 0)

∞ (n = 0).

Proof. Let x =
∑

i 2
ixi, y =

∑
i 2

iyi (xi, yi ∈ {0, 1}) and h = v2((x ∨ y) + 1).

First, we show that (x, y) has no next position (x′, y′) such that h = v2((x
′ ∨

y′) + 1). Note that x′ + y′ = x− 1 or x′ + y′ = y − 1.

If h = 0, then x and y are even. Therefore, x′ + y′ is an odd number and

v2((x
′ ∨ y′) + 1) �= 0, which is a contradiction.

Let x′ =
∑

i 2
ix′

i, y
′ =

∑
i 2

iy′i (x
′
i, y

′
i ∈ {0, 1}). If h > 0, then x′

h = y′h = 0 and

for any k < h, x′
k = 1 or y′k = 1. Therefore, 2h−1 ≤ ((x′+y′) mod 2h+1) ≤ 2h+1−2,

and thus, 2h ≤ ((x′ + y′ +1) mod 2h+1) ≤ 2h+1 − 1. Then, x′
h = 1 or y′h = 1, which

is a contradiction.

5

Next, we show that for any h′ < h, (x, y) has a next position such that h′ =

v2((x
′ ∨ y′) + 1). Since h = v2((x ∨ y) + 1), without loss of generality, assume that

xh′ = 1. Let x′ = x − 2h
′
and y′ = 2h

′ − 1. Evidently, x′
h′ = 0, y′h′ = 0, y′k = 1

(k < h′), and x′ + y′ = x − 1. Therefore, (x′, y′) is a next position of (x, y) and

h′ = v2((x
′ ∨ y′) + 1).

Example 1.2. In the case of (9, 10).

G((9, 10)) = v2((9 ∨ 10) + 1)

= v2(12)

= 2.

Example 1.3. In the case of (8, 12).

G((8, 12)) = v2((8 ∨ 12) + 1)

= v2(13)

= 0.

A game similar to Delete Nim was introduced in [9]. We call this game Variant

of Delete Nim (VDN). The rules of VDN are as follows:

• There are two (non-empty) heaps of tokens.

• Two players move alternately.

• The player selects one of the heaps and deletes it, and splits the other heap

into two (non-empty) heaps.

• The player who can not take stones loses.

Example 1.4. In the case of (8, 5).

(8, 5) → (7, 1) → (4, 3) → (2, 1) → (1, 1).

The N -positions and P-positions of VDN have been already shown [9]. However,

the G-values of the positions of the game have not been discussed.

Theorem 1.5 ([9]). Let G be a position of VDN.

At least one of the heaps has an even numbers of tokens ⇐⇒ G is an N -position.

Both heaps have an odd number of tokens ⇐⇒ G is a P-position.

VDN can be shown to be isomorphic to Delete Nim, in the following sense.

Definition 1.6. Let G and H be game positions. We say that G is isomorphic to

H, if G and H have the same game tree.
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Lemma 1.7. Let F be the function denoted by

F (x, y) = (x− 1, y − 1).

Then, F is an isomorphism from the set of all positions of VDN to that of Delete

Nim. Namely,

(x, y) → (x′, y′) ⇐⇒ F (x, y) → F (x′, y′).

Proof. This is easily proven, so we omit the proof.

By Theorem 1.1 and Lemma 1.7, we can compute the G-value of position (x, y)

of VDN.

Theorem 1.8. Let (x, y) be a position of VDN, then we have

G((x, y)) = v2(((x− 1) ∨ (y − 1)) + 1).

2. Conclusion

In this study, we introduced a game for which one needs to use the OR operation

and 2-adic valuation v2(n) to compute the G-value of a position. This is very rare

in the analysis of impartial games. Therefore, we hope that our results will expand

potential analysis strategies. There may be games that require other operations

such as the AND operation to compute the G-values; however, so far, only trivial

ones have been discovered. In the future, we would like to consider non-trivial games

that require other operations. We are also interested in some extensions of Delete

Nim, such as a similar game with more than two heaps. However, this problem is

difficult and so far we know nothing about it.
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