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ABSTRACT Generally, automatic diagnosis of the presence of metastases in lymph nodes has therapeutic
implications for breast cancer patients. Detection and classification of breast cancer metastases have high
clinical relevance, especially in whole-slide images of histological lymph node sections. Fast early detection
leads to huge improvement of patient’s survival rate. However, currently pathologists mainly detect the
metastases with microscopic assessments. This diagnosis procedure is extremely laborious and prone to
inevitable missed diagnoses. Therefore, automated, accurate patient-level classification would hold great
promise to reduce the pathologist’s workload while also reduce the subjectivity of diagnosis. In this
paper, we provide a novel deep regional metastases segmentation (DRMS) framework for the patient-level
lymph node status classification. First, a deep segmentation network (DSNet) is proposed to detect the
regional metastases in patch-level. Then, we adopt the density-based spatial clustering of applications with
noise (DBSCAN) to predict the whole metastases from individual slides. Finally, we determine patient-level
pN-stages by aggregating each individual slide-level prediction. In combination with the above techniques,
the framework can make better use of the multi-grained information in histological lymph node section of
whole-slice images. Experiments on large-scale clinical datasets (e.g., CAMELYON17) demonstrate that our
method delivers advanced performance and provides consistent and accurate metastasis detection in clinical
trials.

INDEX TERMS Breast cancer metastases, histological lymph node sections, patient level analysis.

I. INTRODUCTION
Breast cancer is the most frequent cancer among women
worldwide. According to the statistics from International
Cancer Research Center (ICRC) of the World Health Orga-
nization (WHO), breast cancer impacts 2.1 million each
year, and causes the greatest number of cancer-related deaths
among women. In 2018, it is estimated that 627,000 women
died from breast cancer - that is approximately 15% of
all cancer deaths among women. Globally, the incidence
rates vary widely, and the age-standardized incidence rate
is as high as 99.4 per 100,000 in North America. The inci-
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dence rates in Eastern Europe, Southern America, Southern
Africa, andWestern Asia are slightly lower, however they are
increasing at the same time. The improvement of survival
rates can be mainly achieved through early detection and
diagnosis, which require a large proportion of women to
seekmedical treatments, appropriate diagnosis, and treatment
facilities.

Early detection and classification of breast cancer metas-
tases in lymph nodes play an important role in appropriate
diagnosis and treatment facilities. Lymph nodes are small
glands that filter lymph, the fluid that circulates through the
lymphatic system, as shown in Fig. 1.

The lymph nodes in the axilla are the first place for breast
cancer to spread. Lymph node metastasis is one of the most
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FIGURE 1. Example of a typical metastatic region. Whole-slide
images (WSI) are generally stored in a multi-resolution pyramid structure.
Each image in the pyramid is stored as a series of tiles to facilitate rapid
retrieval of subregions of the image (https://camelyon17.grand-challenge.
org/Background/). The regions of metastases have very similar
appearances to the normal regions of scanned sections.

important prognostic factors in breast cancer [1], [2]. The
prognosis is poor when cancer spreads to the lymph nodes.
Therefore, lymph nodes are surgically removed and exam-
ined under endoscope. However, the diagnostic procedures
are tedious and time-consuming. Most importantly, small
metastases are very difficult to detect and are sometimes
missed.

Currently, the UICC TNM classification system is an inter-
nationally recognized means of classifying the extent of can-
cer spread in patients with solid tumors. It is one of the most
important tools to help clinicians select suitable treatment
options and obtain prognostic indications. In breast cancer,
UICC TNM staging takes into account the size of the tumor
(T-stage), whether the cancer has spread to the regional lymph
nodes (N-stage), and whether the tumor has metastasised
to other parts of the body (M-stage). Since the histological
assessment of lymph node metastases is an essential part of
UICC TNM classification, in this paper we will focus on the
pathologic N-stage (pN-stage).

Automatically detecting the regional metastases, espe-
cially from the whole-slide images, is a very challenging
task due to the low contrast and similar structures between
metastasised regions and various adjacent tissues or organs,
as shown in Fig. 1. Moreover, the interference from other
tumors makes the metastasised regions even more diffi-
cult to be separated from the background. In some cases,
the metastasised regions are extremely small, which further
complicates the task.

In this paper, we propose a deep regional metastases seg-
mentation (DRMS) framework to predict pN-stage scores
from patient’s whole slide histopathology images. The pro-
posed framework consists of four key modules: a region
of interest (ROI) extraction module, a patch-level regional
metastases localization module, a slide-level metastasis
detection module and a patient-level lymph node classi-
fication module. First, the ROI extraction module gen-
erates candidate tissue regions from whole slide images
(WSIs). Second, the patch-level regional metastases localiza-
tion module adopts a deep segmentation network (DSNet) to
predict cancer metastases within extracted ROIs. Third, the
slide-level metastasis detection module adopts the DBSCAN

to fuse the predicted scores extracted from ROIs to build
a slide-level lymph node prediction [3]. Finally, patient-
level pN-stage is determined by aggregating slide-level
predictions.

In summary, our contributions are four folds:
1. We propose a DRMS framework to predict pathologic

N-stage (pN-stage) from patient’s whole slide histopathology
images.

2. We propose a multi-grained procedure for detecting can-
cer metastases on giga-pixel pathology images. With multi-
grained analysis, the proposed method can capture rich infor-
mation from pathology images.

3. We propose a deep segmentation network (DSNet) for
patch-level metastases localization. The proposed network
can aggregate the global-to-local context information of each
patch.

4. Experiments on public benchmarks demonstrate that our
approach achieves superior performance and obtains accurate
results on metastases detection.

The rest of this paper is organized as follows. In Sect. 2,
we give an overview of classical and deep learning methods
for lymph node metastases detection, status classification
and tumor segmentation. Then we introduce the proposed
approach in Sect. 3. In Sect. 4, we evaluate and analyze the
proposed method by extensive experiments and comparisons
with other methods. Finally, we provide the conclusion and
future work in Sect. 5.

II. RELATED WORKS
Our work aims to introduce deep learning-based segmenta-
tion techniques to detect and locate the metastases regions,
and further predict the lymph node status. Some concerning
works related to breast cancer metastases detection, lymph
node status classification and deep learning-based tumor
segmentation methods will be reviewed. For more details,
we refer readers to comprehensive surveys [4], [5].

A. BREAST CANCER METASTASES DETECTION
Breast cancer has been studied in few decades due to its
constructive effect for human health. Staging the breast can-
cer is a central component of treatment and management,
which involves the microscopic examination of lymph nodes
adjacent to the breast for evidence that the cancer has spread
or metastasized [6], [7]. This process requires highly skilled
pathologists and is quite time-consuming and error-prone,
especially for lymph nodes with no or small tumors. Com-
puter aided detection (CAD) of lymph node metastasis could
improve the sensitivity, speed, and consistency of metastasis
detection. However, only recently metastases detection has
been introduced to the breast cancer diagnosis with power
models. For example, Bejnordi first proposed a fully auto-
mated detection of DCIS in breast histopathology images [8].
Then, Bejnordi et al. proposed a context-aware convolu-
tional neural network (CNN) for classification of breast
carcinomas [9]. Bulten and Litjens [10] proposed an unsu-
pervised prostate cancer detection on H&E images with deep
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auto-encoders. Pinckaers and Litjens [11] trained CNNs with
megapixel images for cancer localization. Though effec-
tiveness, previous methods mainly consider low-resolution
histopathology images. In modern hospitals, the scanning and
digitization of whole histology slides are adopted to improve
the tissue analysis for efficient cancer diagnosis and progno-
sis. How to handle the WSI for cancer metastases detection
is still a challenging task.

B. LYMPH NODE STATUS CLASSIFICATION
For the lymph node status classification, well trained
histopathologists can provide accurate classification results.
However, due to the huge size of WSIs and the great
number of potential cancer cases, fully automatic solutions
for lymph node status classification is highly desirable.
In the recent past, many related techniques have been pro-
posed. The most impactful thing is organizing the challenges
of CAMELYON16 and CAMELYON17. Several promising
works have applied deep learning to lymph node status
classification. For the CAMELYON16 challenge, the win-
ner has shown an expressive performance for per slide and
overall slide-level classification [12]. In their work, a mod-
ified GoogleNet is trained with a pre-sampled set of image
patches to predict the coarse location of cancer metastases,
then a random forest classifier is used to predict the slide
label [13]. The CAMELYON organizers also trained CNNs
on smaller datasets to detect breast cancer in lymph nodes
and prostate cancer [14]. With new modules, several methods
show state of the art results in lymph node status classifica-
tion. However, they generally introduce a variety of image
analysis tasks, resulting to high computation and memory
requirements. Different from previous works, we observe that
the granularity and variability of WSIs can help to improve
the performances of lymph node status classification. Thus,
we develop an integrated framework for WSI analysis. The
proposed framework can make better use of the multi-grained
information in histological lymph node section of whole-slice
images.

C. HISTOPATHOLOGICAL TUMOR SEGMENTATION
Tumor segmentation in histopathology image can be
coarsely categorized into hand-crafted feature-based meth-
ods and deep-learned feature-based methods. In the past
decades, many hand-crafted features-based methods have
been proposed to solve the tumor segmentation problems of
histopathology image. For example, threshold-based meth-
ods, such as Otsu method classify foreground and back-
ground based on whether the intensity value is above a
threshold [15]. Its segmentation performance has obvious
bottlenecks for complex histopathology images. Due to
the limited representation ability of the hand-crafted fea-
ture, the segmentation performance has not been effectively
improved.

With the rapid development of deep learning technologies
and large-scale datasets, several outstanding methods have
been proposed in tumor segmentation to improve segmenta-

tion performance. Ronneberger et al. presented the U-shape
network architecture consisting of a contracting path and a
symmetric expanding path for biomedical image segmenta-
tion [16]. In general, U-Net has proven to be one of the most
popular architectures for medical image segmentation tasks.
Zhou et al. presented a novel U-Net++ architecture which
combined a series of nested dense skip pathways [17]. Its
segmentation performance is superior to other methods in
medical image segmentation tasks. Qaiser et al. utilized the
concept of persistent homology profiles (PHPs) for adaptive
tumor segmentation [18]. Because the various appearances of
tumors, hard samples are also one of the common challenges
in tumor segmentation. Theworks in Lin et al. andWang et al.
adopted hard negative mining to obtain better performance in
different tumor segmentation [12], [19], [20]. In this work,
we propose a novel network for improving the ability of
localizing the cancer regions. Besides, we also introduce a
new multi-grained procedure for detecting cancer metastases
on giga-pixel pathology images.

III. THE PROPOSED FRAMEWORK
Fig. 2 illustrates the overall procedure of our proposed frame-
work. The whole framework consists of four key modules:
a region of interest (ROI) extraction module, a patch-level
regional metastases location module, a slide-level metasta-
sis detection module and a patient-level lymph node clas-
sification module. We start with identifying the ROIs and
removing non-information regions on the WSIs. Subse-
quently, we feed image patches extracted from the ROIs
into our deep segmentation network (DSNet) for coarse
metastases prediction. After that, we adopt DBSCAN to
fuse the patch-level prediction and achieve the slide-level
lymph node metastasis prediction [3]. Meanwhile, we extract
corresponding features from the predicted metastases area.
We finally train a XGBoost [21] classifier with these fea-
tures to predict the pN-stage of each patient. In the fol-
lowing section, we will describe the key components in
detail.

A. ROI EXTRACTION
For histopathology images, a typical whole slide image is
approximately 200, 000 × 100.000 pixels on the highest
resolution level. If we deal with such large images directly,
enormous computation is required because of the huge size
of the slide. Besides, most of the regions have no useful
information for metastases detection. Thus, directly dividing
WSIs into patches is not appropriate for model training,
as shown in Fig. 3. The Otsu threshold [15] method is widely
used in recent studies for ROI extractions from the WSI
because of its simple calculation and the segmentation is
not affected by image brightness and contrast. In this work,
to speed up the processing, we also adopt Otsu’s adaptive
thresholding technique on the low-resolution version of the
WSIs to remove most of the non-tissue background quickly.
Following [22], we convert RGB to gray from 32-times
down-sampled WSI and then extract tissue regions by Otsu
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FIGURE 2. The overall procedure of our proposed framework. 1) Split the
whole slide image into smaller patches; 2) Classify the extract patch-level
images with our proposed DSNet and hard negative mining; 3) Generate
likelihood maps based on DBSCAN cluster for slide level feature
extraction and prediction; 4) Determine Patient-level pN-stages by each
individual slide-level prediction.

FIGURE 3. From whole slide images to patches.

threshold method. We observed that metastasis regions are
usually located at the edge of the tissue regions. Therefore,
careful tissue region extraction method is needed. After the
operation is done, holes and small points, which will influ-
ence feature extraction operation, still exist. Following pre-
vious works, morphological algorithms are operated to fill
holes and clear isolated points. Then, we generate the patches
through random grid sampling. Examples of the resulting
patches are shown in Fig. 4. We can see that although most
examples have texture patterns, it is difficult to distinguish
between normal or metastatic patches.

B. PATCH-LEVEL METASTASES LOCALIZATION
The patch-level localization aims to predict the metastases
regions at coarse granularities. To achieve this goal, we opt
to a deep segmentation network, inspired by [23], as shown
in Fig. 5. The DSNet takes in the patch images, extract
multi-level features with dilated ResNet-101 [24]. (Dilation
size = 2 at the last residual module), resulting in 1/16 res-
olution of input images and extracts locally weighted, mul-
tiscale contextual information with the proposed pyramidal
attentional ASPP (PA-ASPP).

FIGURE 4. Left: metastatic patches. Right: challenging normal patches.

FIGURE 5. The proposed deep segmentation network (DSNet) for
patch-level metastases localization. The encoder part is the dilated
ResNet-101 with an ASPP-like contextual structure. Besides, we introduce
a pyramid attention module (PAM) to generate attention maps for feature
enhancement. We also provide the scale-aware selection (SAS) module to
select the contextual information. Finally, we use a skip-connection of
low-layers for metastases region localization.

The network’s ability to understand and utilize contextual
information is critical to achieving accurate image segmen-
tation. Increasing the network receptive field by consecutive
down sampling is a straightforward way to capture con-
textual clues for dense prediction. However, the receptive
field is restricted by the number of down-sampling oper-
ations performed, as performing down-sampling can cause
spatial information loss. Inspired by the methods of SPP [25]
and ASPP [23], [26] and the approach used by radiolo-
gists to locate regional metastases by observing neighboring
contexts, we propose the PA-ASPP for extracting locally
weighted, multiscale contextual information. The PA-ASPP
feeds the input into two branches, one is to the pyramid
feature aggregation (top branch) for providing pixel-level
attention and the other one is to the ASPP (bottom branch) for
providing rich multi-scale features and large receptive fields.
The pyramid feature aggregation encodes the multi-level
features from three different scales like U-Net [16]. This
feature fusion incorporates neighboring scales of con-
text features more precisely to produce better pixel-level
attention.

The obtained attention is up-sampled to the same size of
output of ASPP and used to weight the multi-scale features
in pixel-level for selecting contextual information. The ASPP
enriches contextual information by concatenating features
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obtained from one 1 × 1 convolution, three 3 × 3 convolu-
tions with dilation rates equal to (6, 12, 18), and one global
average pooling layer and then passing through another 1×1
convolution to modify channel dimensions of multi-scale fea-
tures before multiplying the attention maps. Finally, we use a
scale-aware selection (SAS) module to locally weight multi-
scale contextual features. More specifically, we first use a
squeeze-and-excitation module to select the key channels
from multi-scale features [27]. Then, the selected features
are highlighted pixel-wisely by attention maps from Pyra-
mid Attention Module (PAM). The SAS can capture impor-
tant contexts of ASPP for the accurate and consistent dense
prediction.

To train the proposed network, we adopt the input
resolution of 512 × 512 to capture more detailed informa-
tion. To increase the variation in the training set, we per-
form extensive data augmentation including random flipping,
scaling, rotation over angles between 0 and 360, and crop-
ping. Besides, our model is trained with hard negative
mining to improve the discrimination. It means that for
each epoch, model inferences whole patches of the slide
and chooses patches whose intersection over union (IOU)
with the annotated mask are less than 0.95 as the training
set.

C. SLIDE-LEVEL METASTASES DETECTION
To capture the slide-level information, we should integrate the
patch information to improve the spatial consistency. Follow-
ing the work in [28], we introduce the DBSCAN algorithm to
group together small metastases areas which were in close
proximity.

D. SPATIENT-LEVEL CLASSIFICATION
After slide-level metastases detection, we can realize the
patient-level classification based on the correspondingmetas-
tases regions. More specifically, each whole slide probability
map is first converted into a feature vector after being reg-
ulated with 5 threshold values, i.e., 0.5, 0.6, 0.7, 0.8, 0.9,
which is then used to train a pN-stage classifier. According
to the morphological and geometrical information, we extract
13 types of features from each probability map (65 fea-
tures in total). The task is to determine a pN-stage for
each patient in the test dataset. To compose a pN-stage,
the number of positive lymph nodes (i.e., nodes with a
metastasis) need to be counted. According to the size of
the tumor, there are three types of positive lymph nodes in
clinic:

Macro-metastases: Metastases greater than 2.0 mm.
Micro-metastases: Metastases greater than 0.2 mm ormore

than 200 cells, but smaller than 2.0 mm.
Isolated Tumor Cell (ITC): Single tumor cells or a cluster

of tumor cells smaller than 0.2 mm or less than 200 cells.
Although lymph nodes containing only ITCs are not

counted as positive lymph nodes, if no macro-metastases or
micro-metastases are found in the patient’s lymph nodes,
the pathologist must report ITC.

In this work, we follow previous works and adopt a sim-
plified version of the pN-staging system in breast cancer.
The task is to automatically determine the following applied
pN-stages for each patient:

-pN0: No micro-metastases or macro-metastases or ITCs
found.

-pN0(i+): Only ITCs found.
-pN1mi: Micro-metastases found, but no macro-metas

tases found.
-pN1: Metastases found in 1–3 lymph nodes, of which at

least one is a macro-metastasis.
-pN2: Metastases found in 4–9 lymph nodes, of which at

least one is a macro-metastasis.
After feature vectors are extracted, we use XGBoost to

classify lymph nodes into four classes (Normal, ITC, Micro,
Macro). Since the total number of WSIs is rather small, it is
important to prevent overfitting. Thus, K-fold cross validation
and other hyper-parameters, such as subsample or max depth,
are adopted for preventing overfitting. Firstly, grid-search
algorithm is used to search for the best hyper-parameters.
Then, the XGBoost model is trained with ten-fold cross vali-
dation. Finally, the best model is selected and the 100 patients
in the CAMELYON17 test set are predicted. The patient’s
pN-stage is graded according to the given rules.

E. LOSS FUNCTION
Tumor regions cover a very small proportion of pixels in
WSIs, thereby leading to class imbalance. This issue was cir-
cumvented by training the network to minimize a hybrid loss
function. In this work, the hybrid cost function comprised of
a class-weighted cross-entropy loss and a loss function based
on the Dice overlap coefficient. The Dice coefficient is an
overlap metric used for assessing the quality of segmentation
maps. The Dice loss is a differentiable function that approx-
imates to Dice coefficient, it uses the predicted posterior
probability map and ground truth binary image, as defined
in Eq. 1. The weighted cross-entropy loss is defined in Eq.
2. In the equations, pln is the predicted posterior probability
map, and gln is the ground truth image.

Ldice = 1− 2

∑L
l wl

∑N
n glnpln∑L

l wl
∑N

n gln + pln
(1)

Lwce = −
1
N

N∑
n=1

(wrn log (pn)+ (1− rn) log
(
1− pn

)
) (2)

The total loss is defined as a linear combination of the two
loss components as defined in Eq. 3.

L = αLdice + βLwce (3)

The proposed networks are trained by minimizing the total
loss. α and β are empirically assigned to the individual loss
components. In this work we set α = β = 0.5.

IV. EXPERIMENTS
In this section, we first introduce our experimental settings
such as public benchmarks, training details, and evaluation
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FIGURE 6. Representative samples of the different sizes of breast cancer
metastases in sentinel lymph nodes.

metrics. Then we report the experimental results on public
benchmarks. Finally, we analyze the key components with
extensive ablation experiments.

A. EXPERIMENTAL SETTINGS
1) DATASETS
In this work, we evaluate our framework on CAMELYON17
dataset [29]. However, following previous works, we also
used the WSIs from CAMELYON16 as the training dataset.
The CAMELYON16 dataset contains 400 WSIs with region
annotations for all its metastasis slides [30]. The WSIs
are collected from two different medical centers. The
CAMELYON17 dataset contains 1000 WSIs with 5 slides
per patient: 500 slides for the train set, 500 slides for the
test set. The WSIs are collected from five different medical
centers. Typically, different sizes of breast cancer metastases
are in sentinel lymph nodes, as shown in Fig. 6. Since the
CAMELYON17 dataset provides only 50 slides with region
annotations, we split 100 patients (500 slides) into 43 patients
for the train set, 57 patients for the validation set for hyper-
parameter tuning. In detail, if a patient’s any slide includes
region annotation, we allocate that patient as a train set.
For training of the patch-level localization, 400 WSIs from
CAMELYON16 dataset and 160 WSIs (50 WSIs with region
annotation and 110 negative WSIs) from CAMELYON17
train set are used. For training of the slide-level lymph
node classifier, we use 285 WSIs (57 patients) from
CAMELYON17 validation set.

2) EVALUATION METRICS
To evaluate the performance of different methods, we adopt
the quadratic weighted Cohen’s kappa as the evaluation met-
ric [31]. Given n test patients and m categories (pN-stages),
let nij denote the number of patients with the pNi-stage that
were categorized to pNj-stage. Let ri denote the total number
of patients with the pNi-stage and sj the total number of
patients categorized to the pNj-stage. Finally, let wij denote
the disagreement weight associated with the pNi and pNj. The
weight matrix is

The weight matrix is

wij = (i− j)2 , i, j ∈ [1, 2, . . .m] (4)

The mean observed degree of disagreement is

D0 =
1
n

∑m

i

n∑
j

nijwij (5)

The mean degree of disagreement expected by chance is

De =
1
n2
∑m

i

n∑
j

risjwij (6)

The weighted kappa is then defined by

kw =
De − D0

De
(7)

The kw metric ranges from −1 to +1: a negative value
indicates lower than chance agreement, zero indicates exact
chance agreement, and a positive value indicates better than
chance agreement. As pN-stages are ordinal, choosing a
quadratic weighted kappa could penalize misclassification
more severely when errors are more than one stage apart.

3) TRAINING DETAILS
During training and inference, we first perform the thresh-
olding for localizing the ROIs, then extracted 512 × 512
patches from WSIs at the highest magnification level resolu-
tion.We adopt the ImageNet pre-trained ResNet101 (He et al.
2016) as the backbone with dilation convolutions. New layers
are initialized with the MSRA method. The deep learning
toolbox TensorFlow was used to train the model with a
NVIDIA GTX TITAN X GPU [32]. We used the Adam
optimization method with a learning rate 1e-4. The network
was trained for 4 epochs with a batch size 32 [33]. For the
post-processing, we regulated tumor probability heat map
with 5 threshold values, i.e., 0.5, 0.6, 0.7, 0.8, 0.9. Given a
heat map, we extracted 13 features including the major axis
length of the tumor region (Feature1), maximum probability
score (Feature2), average probability score (Feature3), a total
area of the tumor region (Feature4), max, mean, variance
of eccentricity (Feature5-7), orientation (Feature8-10) and
solidity (Feature11-13) from the tumor regions. We built a
XGBoost classifier to discriminate lymph node classes using
extracted features. Finally, each patient’s pN-stage was deter-
mined by the given rule together with the lymph node slide
prediction result.

B. COMPARISONS WITH OTHER STATE-OF-THE-ART
METHODS
Using a single segmentation model, our slide-level lymph
node classification model and patient-level pN-stage pre-
diction achieved 0.9351 accuracy and 0.9017 quadratic
weighted kappa score, respectively. We trained additional
models with different data augmentation. Finally, four mod-
els were ensembled by averaging probability heat map and
reached 0.9410 slide-level accuracy and 0.9632 patient-level
quadratic weighted kappa score. Tab. 1 shows the published
results on CAMELYON17 testing dataset. Our best perform-
ing model gave a Cohen’s kappa score of 0.9473, which is
better than the second in Open Leaderboard (out of 120 valid
submission entries). According to the brief description of
the top-ranked model, it also used DeepLabv3+ as the
basic framework for patch level segmentation. However, the
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TABLE 1. Performance comparison with other approaches for automated
pN-Staging in CAMELYON17 challenge. The score of Cohen Kapa is from
the open public leader board.

FIGURE 7. Slide-level predictions of our proposed framework in different
cases. Our methods can show good results in continuous regions (a),
isolated regions (b) and low-contrast regions (c).

top-ranked model used the DenseNet with high general-
ization ability as the backbone of the Encoder. Our pro-
posed DSNet+ adopted Resnet as the backbone and improve
the DeepLabv3+ framework by introducing the PA and
SAS attentions to enhance the model generalization ability.
In the future, we will explore more advanced segmenta-
tion frameworks and backbone networks for the dedicated
task.

Fig. 7 shows an example for slide-level predictions. From
the results, we can see that our method can achieve out-
standing performance in different cases, including continuous
regions (a), isolated regions (b) and low-contrast regions (c).
In (a) the predicted whole tumor segmentation was similar to
pathologist provided ground truth of whole tumor region and
most of the samples in the dataset fell into this category.

C. ABLATIONS STUDIES
Comprehensive experiments are conducted to demonstrate
the effectiveness of the proposed method. The 5-fold cross-
validation is applied to validate the stability and generaliza-
tion of networks. It is worth mentioning that all models are
trained following the same experimental settings.

1) EFFECTS OF THE PA-ASPP AND SAS
The proposed PA-ASPP is used to aggregate the global-to-
local context information. The PPM [25] and ASPP [23]
also aggregate multi-scale contextual features for semantic
labeling. To verify the effects of our PA-ASPP, we adopt

FIGURE 8. Visual comparisons with different contextual modules. From
left to right: Ground truth, PPM \cite{zhao} ASPP \cite{chen2} and our
PA-ASPP. Our approach shows better results in coherence.

the PSPNet [25] with the ResNet-101 backbone for a fair
comparison. We replace the PPM of PSPNet with our
PA-ASPP and ASPP modules. The 2-4 rows of Tab. 1 show
the quantitative results. With our PA-ASSP module, the
Cohen Kappa score improves about 3.3% and 1.6% over
the PPM and ASPP, respectively. Visual comparisons of
PPM, ASPP and our PA-ASPP are shown in Fig. 8. It can
be observed that our segmentation results constantly con-
tain more accurate and coherent structures. These results
demonstrate that our proposed PA-ASPP is more effective
than previous methods and can generate more coherent
results. Besides, with the SAS, the model can adaptively
capture the regions with different scales, which shows the
effectiveness.

2) EFFECTS OF HARD EXAMPLE MINING
Previous patch extraction scheme from the whole-slide
images is based on random uniform sampling. However, this
leads to some hard examples being excluded from the training
set which resulted in the model’s poor performance on such
regions of WSI. Therefore, we attempt to solve this issue
by hard example mining the poorly performing regions in
WSI and fine-tuning the trained model with this hard-mined
set. To cancel the effects of the PA-ASPP module, we apply
them to the DeepLabv3+ for direct performance compari-
son. Tab. 2 shows the quantitative performances. Compared
with the original DeepLabv3+, the HEM can consistently
improve the classification results. Note that the HEM is a
general proposal. It can be used in varied settings for training
segmentation networks.

3) EFFECTS OF THRESHOLDING REGIONS
For predicting patient-level results, we convert each
whole-slide probability map into a feature vector with
5 threshold values, i.e., 0.5, 0.6, 0.7, 0.8, 0.9. Based on the
regions, we train a lymph node classifier. To verify the effect,
we show the visual results in Tab. 3. As we can see, at a
low threshold, the final prediction can include noise for the
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TABLE 2. Ablation results on the camelyon17 validation dataset.

TABLE 3. Effects of hard example mining (HEM).

FIGURE 9. Slide-level predictions of our proposed framework with
different thresholding values.

cancer localization. While at a high threshold, it will miss
some key regions. Our multiple thresholds can effectively
highlight the most of regions. Fig. 9 shows the effects with
different thresholding values.

4) LIMITATIONS
We address the patient-level lymph node status classification
problem by regional metastases segmentation of gigapixel
whole-slide images using the divide and conquer strategy.
The proposed approach shows superior performance when
compared to its competitors. However, our method still shows
low accuracy for ITC, and the model size is still very large for
real applications. Besides, the patch extraction is based on
the Otsu thresholding. In some cases of CAMELYON2017,
the complex background is still be included.

V. CONCLUSION
In this work, we present a fully automatic metastases detec-
tion framework to predict pN-stage of patient-level lymph
node statuses from the whole-slide histopathology images.

Several useful strategies are proposed to improve the regional
segmentation accuracy and integrate multi-granularity repre-
sentations for the final classification. Our method adopts a
divide and conquer strategy and allows the model to process
the whole-slide images. More specifically, our method first
divides the whole-slide images into tumor-related patches,
then performs tumor segmentation on regional patches, and
integrates segmented patches to generate the segmentation
of the entire WSI. More importantly, we propose a new
deep segmentation network (DSNet) with pyramid attentions
and scale-aware selection so that the expressive multi-level
features can be emphasized to facilitate the feature refine-
ment. Extensive comparative experiments with 5-fold cross-
validation on CAMELYON17 demonstrate that our proposed
method can significantly outperform several state-of-the-
art methods in typical metrics. Due to the characteristics
of digital pathological images, it’s impossible to manually
annotated large quantity qualified datasets for model train-
ing, [34] has proposed a weakly supervised deep learning
framework to solve the issue. To enable clinical application,
we will improve the patch sampling method to generate
more valuable training examples; and we will improve the
system framework to enable weakly supervised learning and
semi-supervised learning. On the other side, according to the
review article [35], the applications for DL based pathol-
ogy analytics for Breast Cancer are still focused on tumor
detection, the basic image analysis and at internal validation
stage. To enable the advanced clinical applications, we will
explore more advanced segmentation frameworks and back-
bone networks for the dedicated task, and we will build an
end-to-end learning framework to predict the pN phase of the
WSI and enable the accurate grading and subtyping clinical
applications.
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