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Abstract. The splitting number is effective to distinguish the
embedded topology of plane curves, and it is not determined by
the fundamental group of the complement of the plane curve. In
this paper, we give a generalization of the splitting number, called
the splitting graph. By using the splitting graph, we classify the
embedded topology of plane curves consisting of one smooth curve
and non-concurrent three lines, called Artal arrangements.

1. Introduction

In this paper, we study the embedded topology of plane curves in
the complex projective plane P2 := CP2, such as in knot and link
theory. Here the embedded topology of a plane curve C ⊂ P2 is the
homeomorphism class of the pair (P2, C) of P2 and the reduced divisor
C on P2. We introduce a new invariant, called the splitting graph, using
a Galois cover of graphs, which describe the “splitting” of a plane curve
by a Galois cover of P2.

The first result about the embedded topology of plane curves is given
by O. Zariski [26]. He studied the existence of a certain algebraic
function for a given plane curve, and pointed out that the existence
can be reduced to finding the fundamental group of the complement of
the given curve (the word complement is often omitted for short). He
also proved that the fundamental group of a plane sextic curve with six
cusps is isomorphic to the free product Z2 ∗Z3 if the six cusps lies on a
conic, and the fundamental group is not isomorphic to Z2∗Z3 otherwise
(in fact, it is isomorphic to Z6 proved by M. Oka [14]), where Zi is the
cyclic group of order i. This result shows that the configuration of
singularities of a plane curve can affect the fundamental group (hence
the embedded topology) of the plane curves.

It is known that, if two plane curves have the same embedded topol-
ogy, then they have the same combinatorics, i.e., they are equisingular

2010 Mathematics Subject Classification. 14E20, 14F45, 14H50, 57M15, 57Q45.
Key words and phrases. embedded topology, Zariski piar, Galois cover of graphs,

splitting graph, Artal arrangement.
1

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The published version is available via https://doi.org/10.1016/j.topol.2019.03.002.



2 TAKETO SHIRANE

(see [3] for details). However Zariski’s result shows that the converse
is false. A pair of plane curves with the same combinatorics is called
Zariski pair if they have different embedded topology. From the 90’s,
E. Artal [1], M. Oka [15], H. Tokunaga [23, 24], and others have dis-
covered Zariski pairs by studying fundamental groups of plane curves.
In 21st century, π1-equivalent Zariski pairs have been discovered (cf.
[8, 18]), and the following problem has arisen naturally. (Here two
plane curves are said to be π1-equivalent if their fundamental groups
are isomorphic.)

Problem 1.1. Give a method for distinguishing the embedded topol-
ogy of π1-equivalent plane curves.

Several methods succeed in distinguishing the embedded topology
of certain π1-equivalent plane curves. For example, there are methods
using the theory of K3 surfaces [8], the braid monodromy [2], the split-
ting number [18] and the linking set [10]. The methods using the theory
of K3 surfaces and the splitting numbers are based on techniques of
algebraic geometry. On the other hand, the ones using the braid mon-
odromy and the linking set are derived from invariants of geometrical
topology. In [11], B. Guerville and the author gave a relation between
the splitting number and the linking set for certain plane curves.
In this paper, we give a generalization of the splitting number, called

splitting graph. The splitting number is based on the studies of split-
ting curves for double covers by Artal–Tokunaga [4], Tokunaga [25]
and S. Bannai [5]. Here a plane curve C ⊂ P2 is said to be splitting for
a double cover ϕ : X → P2 if ϕ∗(C) = C+ + C− for some two curves
C+, C− ⊂ X with no common components and ϕ(C±) = C. In [4], Ar-
tal and Tokunaga implicitly used splitting curves for double covers to
establish the difference of the fundamental groups of plane curves. In
[25], Tokunaga defined the splitting curves with respect to double cov-
ers, and study the splitting curves as an analog of elementary number
theory (see [25, Remark 0.1]). In [5], Bannai introduced the splitting
type of certain plane curves for double covers. The splitting type gives
a method for distinguishing the embedded topology of plane curves
without going through the fundamental groups. In [18], the author de-
fined the splitting number of irreducible curves for Galois covers, and
proved that the splitting number is invariant under certain homeomor-
phisms from P2 to itself based on Bannai’s idea. Moreover, by using
the splitting number, he distinguished the embedded topology of the
π1-equivalent equisingular curves defined by Shimada [17]. In [19], the
connected number of plane curves (possibly reducible) for Galois cov-
ers of P2 was defined, which is a modification of the splitting number.
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It is known that the splitting number and the connected number are
not determined by the fundamental group (see [18, 19]). These results
show that studying the “splitting” of plane curves for Galois covers
is effective to distinguish the embedded topology. In this paper, we
define the splitting graph of plane curves for Galois covers to describe
more precisely how a plane curve splits by a Galois cover, which is not
determined by the fundamental group (see Remark 3.5 (ii)).

As an application of the splitting graph, we classify the embedded
topology of Artal arrangements, where an Artal arrangement is a plane
curve consisting of one smooth curve and non-concurrent three lines.
The name “Artal” comes from E. Artal who gave the first Zariski pair
of Artal arrangements in [1]. Note that Artal arrangements have been
defined in [6] and [19], and our definition is a generalization of the ones
in [6] and [19]. An Artal arrangement in [6] or [19] is a plane curve
consisting of one smooth curve and its non-concurrent three tangents
such that each of the three tangents intersects at just one point with
the smooth curve. In this paper, we define Artal arrangements of type
P for a triple P of partitions of an integer d ≥ 3. In our definition, the
three tangents may intersect at two or more points with the smooth
curve (see Section 4 for details). Moreover, we define the splitting
graph associated to an Artal arrangement. By Theorem 4.3, we obtain
the following theorem.

Theorem 1.2. Let A1 and A2 be two Artal arrangements of type P
for a triple P of partitions of an integer d ≥ 3. Then A1 and A2 have
the same embedded topology if and only if the splitting graph associated
to A1 is equivalent to the splitting graph associated to A2.

This paper is organized as follows. In Section 2, we investigate
branched Galois covers of graphs in order to define and distinguish
the splitting graph. In particular, we define the net voltage class of
a closed walk on a graph for a Galois cover over the graph (Defini-
tion 2.6), and give a method of distinguishing two Galois covers of a
graph (Corollary 2.9). In Section 3, we define the splitting graph of a
plane curve for a Galois cover over P2 as a Galois cover of certain graphs
(Definition 3.1). Moreover, we introduce a method of computing net
voltage classes for a cyclic cover (Theorem 3.13). In the final section,
we define Artal arrangements of type (p1, p2, p3) for three partitions pi
of an integer d ≥ 3 (Definition 4.1), and classify the embedded topology
of Artal arrangements by using the splitting graphs (Theorem 4.3).
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2. Galois covers of graphs

In this section, we consider ‘branched covers’ of graphs and their
equivalence. Unramified covers of graphs has been investigated by
Gross–Tucker [9], Stark–Terras [20, 21, 22] and so on. In this sec-
tion, we investigate how to distinguish branched Galois covers over a
graph.

In this paper, we assume that any graph is finite, i.e., the sets of
vertices and edges are finite. Note that we allow a graph to be dis-
connected. The sets of vertices and edges of a graph G are denoted by
VG and EG, respectively. We consider each edge e ∈ EG to have two
directions, arbitrarily distinguished as the plus direction e+ and the
minus derection e−, i.e., e± are two onto functions {0, 1} → VG(e) such
that e−(0) = e+(1) and e−(1) = e+(0), where VG(e) is the endpoint
set of the edge e. We call e±(0) and e±(1) the initial vertex and the
terminal vertex of e±, respectively. For two graphs Gi (i = 1, 2), a
map θ from G1 to G2 is a pair θ = (θV , θE) of maps θV : VG1 → VG2

and θE : EG1 → EG2 satisfying VG2(θE(e)) = θV (VG1(e)) ⊂ VG2 for any
e ∈ EG1 . A map θ : G1 → G2 of graphs is called an isomorphism if θV
and θE are bijective.

Definition 2.1. Let G be a graph, and let G be a finite group. A
Galois cover of G with the Galois group G (called G-cover for short)

is a map ϕ : G̃ → G of graphs satisfying the following conditions;

(i) G acts on G̃;
(ii) the quotient map q : G̃ → G̃/G corresponds to ϕ : G̃ → G, i.e.,

there exists an isomorphism i : G̃/G → G such that ϕ = i ◦ q;
(iii) either EG = ∅ or G acts on EG̃ freely, i.e., for any ẽ ∈ EG̃,

g·ẽ = ẽ if and only if g = idG.

A G-cover ϕ : G̃ → G is said to be unbranched or unramified if the
cardinality of ϕ−1

V (v) is equal to the order |G| of G for each v ∈ VG,
and branched or ramified otherwise.

Remark 2.2. Let ϕ : G̃ → G be a G-cover.

(i) If ϕ is unramified, then it is called a regular covering in [9].
(ii) By Definition 2.1 (i), we have VG̃(g·ẽ) = g·VG̃(ẽ) ⊂ VG̃.
(iii) For each v ∈ VG and e ∈ EG, G acts transitively on the fibers

ϕ−1
V (v) and ϕ−1

E (e), respectively, by Definition 2.1 (ii).
(iv) We assume that ϕ preserves the directions of edges, i.e., ϕV (ẽ

+(0)) =
e+(0) and ϕV (ẽ

+(1)) = e+(1) for each e ∈ EG and ẽ ∈ ϕ−1
E (e).

Hence the action ofG on G̃ also preserves the direction of edges.

(v) The action of G on G̃ is faithful if EG ̸= ∅.
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We define the equivalence of Galois covers of graphs with a fixed
Galois group G.

Definition 2.3. Let Gi (i = 1, 2) be two graphs, and let G be a finite
group with an automorphism τ : G → G. Assume that there is an

isomorphism θ : G1 → G2. Let ϕi = (ϕV,i, ϕE,i) : G̃i → Gi (i = 1, 2)

be two G-covers. We say that G̃1 and G̃2 are (θ, τ)-equivalent, written

by G̃1 ∼(θ,τ) G̃2, if there is an isomorphism θ̃ = (θ̃V , θ̃E) : G̃1 → G̃2

satisfying the following conditions;

(i) ϕ2◦ θ̃ = θ◦ϕ1, i.e., ϕV,2◦ θ̃V = θV ◦ϕV,1 and ϕE,2◦ θ̃E = θE ◦ϕE,1;

(ii) for any ṽ ∈ VG̃1
and g ∈ G, θ̃V (g·ṽ) = τ(g)·θ̃V (ṽ); and

(iii) for any ẽ ∈ EG1 and g ∈ G, θ̃E(g·ẽ) = τ(g)·θ̃E(ẽ).

Remark 2.4. Let ϕi : G̃i → Gi, τ : G → G and θ : G1 → G2 be as in
Definition 2.3. For ṽi ∈ VG̃i

, we put StabG(ṽi) := {g ∈ G | g·ṽi = ṽi}.
Assume that EGi

= ∅ for each i = 1, 2. Then G̃1 ∼(θ,τ) G̃2 if and
only if, for each v1 ∈ VG1 and v2 := θV (v1), τ(StabG(ṽ1)) is conjugate
to StabG(ṽ2) for any ṽ1 ∈ ϕ−1

V,1(v1) and ṽ2 ∈ ϕ−1
V,2(v2). Indeed, since

EG̃i
= ∅, G̃1 ∼(θ,τ) G̃2 if and only if ϕ−1

V,1(v1) ∼(θ,τ) ϕ
−1
V,2(v2) for each v1 ∈

VG1 , which is equivalent to the latter condition by regarding ϕ−1
V,i(vi) as

G-sets.

In order to give a criterion for equivalence of Galois covers of graphs
with edges, we introduce an invariant of Galois covers by using closed
walks. A walk γ on a graph G is an alternating sequence of vertices
and directed edges

γ = (v0, e
σ1
1 , v1, e

σ2
2 , . . . , vn−1, e

σn
n , vn) (σi = + or −)

such that eσi
i (0) = vi−1 and eσi

i (1) = vi, i.e., the initial and terminal
vertices of eσi

i are vi−1 and vi, respectively, for each i = 1, . . . , n. For a
walk γ = (v0, e

σ1
1 , . . . , vn), we call v0 and vn the initial vertex and the

terminal vertex of γ, respectively, and we call the number n of edges
in γ the length of γ. A walk γ is said to be closed if the initial and

terminal vertices coincide. For a Galois cover ϕ : G̃ → G and a walk γ =
(v0, e

σ1
1 . . . , vn) on G, a lift of γ under ϕ is a walk γ̃ = (ṽ0, ẽ

σ1
1 , . . . , ṽn)

on G̃ satisfying ϕV (ṽi) = vi and ϕE(ẽi) = ei for any i = 0, . . . , n.

Let ϕ : G̃ → G be a G-cover of a graph G, and let γ = (v0, e
σ1
1 , . . . , vn)

be a closed walk on G. We fix a vertex ṽ0 such that ϕV (ṽ0) = v0. We
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define a subset Ṽ γ
ϕ,i(ṽ0) of ϕ

−1
V (vi) for each i = 0, . . . , n as follows:

Ṽ γ
ϕ,0(ṽ0) := {ṽ0},

Ṽ γ
ϕ,i(ṽ0) :=

{
ṽi ∈ ϕ−1

V (vi)

∣∣∣∣ ẽσi
i (0) ∈ Ṽ γ

ϕ,i−1(ṽ0) and ẽσi
i (1) = ṽi

for some ẽi ∈ ϕ−1
E (ei)

}
.

In other words, Ṽ γ
ϕ,i(ṽ0) is the set of vertices ṽi ∈ ϕ−1

V (vi) such that there
is a lift of the walk (v0, e

σ1
1 , . . . , vi) under ϕ whose initial and terminal

vertices are ṽ0 and ṽi, respectively. Let NVϕ(γ, ṽ0) be the following
subset of G:

NVϕ(γ, ṽ0) := {g ∈ G | g·ṽ0 ∈ Ṽ γ
ϕ,n(ṽ0)}.

Note that Ṽ γ
ϕ,n(ṽ0) = {g·ṽ0 | g ∈ NVϕ(γ, ṽ0)} since the action of G on

ϕ−1
V (v0) is transitive by Condition (ii) in Definition 2.1.

Lemma 2.5. Let ϕ : G̃ → G, G and γ be as above. For any ṽ0 ∈
ϕ−1
V (v0) and g ∈ G,

NVϕ(γ, g·ṽ0) = gNVϕ(γ, ṽ0)g
−1.

Proof. For any g0 ∈ G, g0 is an element of NVϕ(γ, ṽ0) if and only if
there exists a lift γ̃ = (ṽ0, ẽ

σ1
1 , . . . , ṽn) of γ such that ṽn = g0·ṽ0. By

Remark 2.2 (iii), the latter condition is equivalent to the existence
of a lift γ̃′ = (ṽ′0, (ẽ

′
1)

σ1 , . . . , ṽ′n) of γ such that ṽ′0 = g·ṽ0 and ṽ′n =
g·ṽn = gg0g

−1·ṽ′0. Thus, g0 ∈ NVϕ(γ, ṽ0) is equivalent to gg0g
−1 ∈

NVϕ(γ, g·ṽ0). Therefore, we obtain NVϕ(γ, g·ṽ0) = gNVϕ(γ, ṽ0)g
−1.
□

For a subset S of a group G, we call the family of sets

{gSg−1 ⊂ G | g ∈ G} ⊂ 2G

the conjugacy class of S in G. By Lemma 2.5 and Remark 2.2 (ii),
the conjugacy class of the set NVϕ(γ, ṽ0) in G does not depend on the
choice of ṽ0 ∈ ϕ−1

V (v0).

Definition 2.6. Let ϕ : G̃ → G, G and γ be as above. Let NVϕ(γ)
denote the conjugacy class of NVϕ(γ, ṽ0), i.e.,

NVϕ(γ) := {gNVϕ(γ, ṽ0)g
−1 | g ∈ G},

and we call NVϕ(γ) the net voltage class of γ for ϕ.

Remark 2.7. The name “net voltage class” is derived from the net
voltage on a walk in the base space of a voltage graph. Voltage graphs
correspond to unramified covers of a graph, and the net voltage repre-
sents the terminal vertex of a lift of the walk (see [9]). In the case of
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unramified covers, a lift of a walk is uniquely determined by its initial
vertex. However a lift of a walk is not uniquely determined by its ini-
tial vertex in the case of branched covers. Hence a net voltage is not
uniquely determined.

For a walk γ = (v0, e
σ1
1 , . . . , vn) on a graph G1 and a map θ : G1 → G2,

let θ(γ) denote the following walk on G2:

θ(γ) := (θV (v0), θE(e1)
σ′
1 , . . . , θV (vn)),

where σ′
i is the sign± such that θE(ei)

σ′
i(0) = θV (vi−1) and θE(ei)

σ′
i(1) =

θV (vi). The net voltage class is invariant under equivalence of Galois
covers of graphs by the following proposition.

Proposition 2.8. Let G be a finite group, let ϕi : G̃i → Gi be a G-cover
of graphs for each i = 1, 2, and let γi be a closed walk on Gi. Assume

that G̃1 ∼(θ,τ) G̃2, where θ : G1 → G2 and τ : G → G are an isomorphism
of graphs and an automorphism of G, respectively. If θ(γ1) = γ2, then
τ(NVϕ1(γ1)) = NVϕ2(γ2).

Proof. Let θ̃ : G̃1 → G̃2 be an isomorphism satisfying Conditions (i), (ii)

and (iii) in Definition 2.3. By Condition (i) in Definition 2.3, θ̃V gives a
bijection from ϕ−1

V,1(v) to ϕ−1
V,2(θV (v)) for each v ∈ VG1 . Let v0 and w0 be

the initial vertices of γ1 and γ2, respectively, and let n be the length of
γ1 and γ2. Let ṽ0 be a vertex in ϕ−1

1 (v0), and put w̃0 := θ̃V (ṽ0). Since

θ̃ is an isomorphism, an sequence (ṽ0, ẽ
σ1
1 , . . . , ṽn) with ṽi ∈ VG̃1

and

ẽi ∈ EG̃1
is a walk on G̃1 if and only if (w̃0, (ẽ

′
1)

σ′
1 , . . . , w̃n) is a walk on

G̃2 for certain signs σ′
i, where w̃i = θ̃V (ṽi) and ẽ′i := θ̃E(ẽi). Hence we

have θ̃V (Ṽ
γ1
ϕ1,n

(ṽ0)) = Ṽ γ2
ϕ2,n

(w̃0). Moreover, we obtain τ(NVϕ1(γ1, ṽ0)) =
NVϕ2(γ2, w̃0) by Definition 2.3 (ii). Therefore, τ(NVϕ1(γ1)) = NVϕ2(γ2)
since τ is an automorphism of G. □

A closed walk γ = (v0, e
σ1
1 , . . . , vn) is said to be simple if vi ̸= vj for

any 0 ≤ i < j < n. By the same idea of [6], we obtain the following
corollary.

Corollary 2.9. Let G be a finite group, let ϕi : G̃i → Gi (i = 1, 2)
be two G-covers of graphs, and let τ : G → G be an automorphism.
Let WGi

be the set of simple closed walks. If there exists no bijection
ΘW : WG1 → WG2 such that τ(NVϕ1(γ1)) = NVϕ2(ΘW(γ1)) for any
γ1 ∈ WG1, then there exist no isomorphisms θ : G1 → G2 such that

G̃1 ∼(θ,τ) G̃2.
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Proof. If θ : G1 → G2 is an isomorphism such that G̃1 ∼(θ,τ) G̃2, then
θ induces a bijection ΘW : WG1 → WG2 such that τ(NVϕ1(γ1)) =
NVϕ2(ΘW(γ2)) by Proposition 2.8. □

We investigate properties of the net voltage classes. For a walk
γ = (v0, e

σ1
1 , . . . , vn) with vn = v0, we call the closed walk

γ−1 := (vn, e
−σn
n , . . . , e−σ1

1 , v0)

the inverse walk of γ, where −σi := ∓ if σi = ±, respectively.

Lemma 2.10. Let ϕ : G̃ → G be a G-cover of a graph G. Let γ be
a closed walk (v0, e

σ1
1 , . . . , vn) on G, and let ṽ0 be a vertex in ϕ−1

V (v0).
Then

NVϕ(γ
−1, ṽ0) = {g−1 | g ∈ NVϕ(γ, ṽ0)}.

Proof. Suppose that g ∈ NVϕ(γ, ṽ0). There is a lift γ̃ := (ṽ0, ẽ
σ1
1 , . . . , ṽn)

of γ such that ṽn = g·ṽ0. Since
(g−1·γ̃)−1 = (g−1·ṽn, (g−1·ẽn)−σn , . . . , (g−1·ẽ1)−σ1 , g−1·ṽ0)

is a walk on G̃, we have g−1 ∈ NVϕ(γ
−1, ṽ0). By the same argument,

if g ∈ NVϕ(γ
−1, ṽ0), then we obtain g−1 ∈ NVϕ(γ, ṽ0). Therefore, the

assertion holds. □
For two walks γ1 = (v0, . . . , vn) and γ2 = (w0, . . . , wm) on a graph G

with vn = w0, let γ1γ2 denote the following walk of length n+m:

γ1γ2 := (v0, . . . , vn, w1, . . . , wm).

Lemma 2.11. Let G be a finite group, and let ϕ : G̃ → G be a G-cover
of a graph G. Let γ1 and γ2 be two closed walks on G with the same
initial and terminal vertex v0, and let ṽ0 be a vertex in ϕ−1

V (v0). Then

NVϕ(γ1γ2, ṽ0) = NVϕ(γ1, ṽ0)NVϕ(γ2, ṽ0),

where S1S2 = {g1g2 | g1 ∈ S1, g2 ∈ S2} for two subsets S1, S2 ⊂ G.

Proof. Let g be an element of NVϕ(γ1γ2, ṽ0). Then we have g·ṽ0 ∈
Ṽ γ1γ2
ϕ,m+n(ṽ0). Hence there exists a lift γ̃ = (ṽ0, . . . , ṽm+n) of γ1γ2 with

ṽm+n = g·ṽ0. Since (ṽ0, . . . , ṽn) is a lift of γ1, there is an element g1 ∈
NVϕ(γ1, ṽ0) such that ṽn = g1·ṽ0. Since NVϕ(γ2, g1·ṽ0) = g1NVϕ(γ2, ṽ0)g

−1
1

by Lemma 2.5 and (ṽn, . . . , ṽm+n) is a lift of γ2, there exists an element
g2 ∈ NVϕ(γ2, ṽ0) such that

g·ṽ0 = ṽm+n = (g1g2g
−1
1 )·ṽn = g1g2·ṽ0.

Since G acts on ϕ−1
V (v0) transitively, ϕ−1

V (v0) is isomorphic to the set
of cosets G/H1 as G-sets, where H1 = {g′ ∈ G | g′·ṽ0 = ṽ0}. Hence
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there is an element g′ ∈ H1 such that g = g1g2g
′. Therefore, g ∈

NVϕ(γ1, ṽ0)·NVϕ(γ2, ṽ0) since g2g
′ ∈ NVϕ(γ2, ṽ0).

Conversely, suppose that gi ∈ NVϕ(γi, ṽ0) for i = 1, 2. Then there
are two lifts γ̃1 = (ṽ0, . . . , ṽn) and γ̃2 = (w̃0, . . . , w̃m) of γ1 and γ2 such
that w̃0 = ṽ0, ṽn = g1·ṽ0 and w̃m = g2·w̃0. Then the ordered set

γ̃1(g1·γ̃2) = (ṽ0, . . . , ṽn, g1·w̃1, . . . , g1·w̃m)

is a lift of γ1γ2. Since g1·w̃m = g1g2·ṽ0, we obtain g1g2 ∈ NVϕ(γ1γ2, ṽ0).
□

For a closed walk γ = (v0, e
σ1
1 , . . . , vn) on a graph G (hence v0 = vn)

and j ∈ Z≥0, let γ
(j) be the following closed walk

γ(j) :=
(
vj̄, e

σj+1

j+1
, . . . , e

σj+n

j+n
, vj+n

)
,

where j + i is the integer 0 < j + i ≤ n with j + i ≡ j + i (mod n).
In the case where the Galois group is abelian, the net voltage class of
a closed walk does not depend on its initial vertex by the following
lemma.

Lemma 2.12. Let G be a finite abelian group, let ϕ : G̃ → G be a
G-cover of graphs, and let γ be a closed walk on G. Then, for any
j ∈ Z≥0,

NVϕ(γ) = NVϕ(γ
(j)).

Proof. Let v0 be the initial vertex of γ. Since G is abelian, NVϕ(γ, ṽ0)
does not depend on the choice of ṽ0 ∈ ϕ−1

V (v0), and we can regard
NVϕ(γ) as a subset of G. Fix ṽ0 ∈ ϕ−1

V (v0), and take an element
g ∈ NVϕ(γ). Let γ̃ = (ṽ0, ẽ

σ1
1 , . . . , ṽn) be a lift of γ under ϕ such that

ṽn = g·ṽ0. By Remark 2.2 (ii), the ordered set

γ̃′ := (ṽj̄, ẽ
σj̄+1

j̄+1
, . . . , ṽn, (g·ẽ1)σ1 , g·ṽ1, . . . , g·ṽj̄)

is a walk on G̃, hence it is a lift of γ(j). Thus g ∈ NVϕ(γ
(j)), and

we obtain NVϕ(γ) ⊂ NVϕ(γ
(j)). Since γ = (γ(j))(n−j̄), we also have

NVϕ(γ
(j)) ⊂ NVϕ(γ). □

In the case of abelian covers, we may regard a closed walk γ as a
class [γ] := {γ(j) | j ∈ Z≥0} in order to compute the net voltage class
by Lemma 2.12. The next example shows that Lemma 2.12 fails in the
case where G is not abelian.

Example 2.13. Let S3 be the symmetric group of three letters, and
let G be the complete graph of order three. We construct a branched
S3-cover of G. Put VG := {a, b, c} and EG := {eab, ebc, eca}, where
e+xy(0) = x and e+xy(1) = y. Note that, since S3 acts transitively on
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c

a

b

GG̃

ϕ

a1

c1c3

b1

c2

a2

c4c6
b3

a3

c5

b2

Figure 1. An S3-cover ϕ : G̃ → G

ϕ−1
V (v) for any S3-cover ϕ : G̃ → G and each v ∈ VG, we can regard

ϕ−1
V (v) as the set of cosets of a certain subgroup of S3. We define a

branched S3-cover ϕ : G̃ → G of G as follows:
Let H1 and H2 be the cyclic subgroups of S3 generated by (1 2) and

(1 3), respectively. Let ai and bi (i = 1, 2, 3) be the cosets of S3/H1

and S3/H2, respectively, as follows:

a1 = H1, a2 = (1 3)H1, a3 = (2 3)H1,

b1 = H2, b2 = (1 2)H2, b3 = (2 3)H2.

We put ci (i = 1, . . . , 6) as the elements of S3 as follows:

c1 = id, c2 = (1 3), c3 = (1 2), c4 = (1 2 3), c5 = (1 3 2) c6 = (2 3).

Put VG̃ := {a1, a2, a3, b1, b2, b3, c1, . . . , c6}, and define ϕV : VG̃ → VG by

ϕV (xi) = x for x = a, b, c. Note that S3 acts on ϕ−1
V (v) from left for

each v ∈ VG. Assume that ea1b1 , eb1c1 , ec1a1 ∈ EG̃. Then the set EG̃ of

an S3-cover G̃ is determined by Definition 2.1 as Figure 1. Here, each
arrowhead in Figure 1 represents the plus direction of each edges.

Let γ be the closed walk (a, eab, b, ebc, c, eca, a) on G. We see that

Ṽ γ
ϕ,3(a1) = {a1, a2, a3} = ϕ−1

V (a), hence we have NVϕ(γ, a1) = S3.

For the walk γ(2) = (c, eca, a, eab, b, ebc, c), we can see that Ṽ γ(2)

ϕ,3 (c1) =
{c1, c2, c3, c5}. Hence we obtain

NVϕ(γ
(2), c1) = {id, (1 3), (1 2), (1 3 2)}.

Therefore, NVϕ(γ) ̸= NVϕ(γ
(2)).

Remark 2.14. Let G be a finite abelian group, let ϕ : G̃ → G be a
G-cover of a graph G, and let γ = (v0, e

σ1
1 , . . . , vn) be a closed walk on

G. If vi = vj for some 0 ≤ i < j < n, then γ(i) splits into two closed
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walks:

γ(i) = (vi, e
σi+1

i+1 , . . . , vj, e
σj+1

j+1 , . . . , vn, e
σ1
1 , v1, . . . , vi) = γ1γ2,

where γ1 = (vi, e
σi+1

i+1 , . . . , vj) and γ2 = (vj, e
σj+1

j+1 , . . . , vn, e
σ1
1 , v1, . . . , vi).

By Lemma 2.11 and 2.12, we have

NVϕ(γ) = NVϕ(γ1)NVϕ(γ2).

Thus, in the case where G is abelian, it is enough to compute NVϕ(γ)
for simple closed walks γ in order to compute net voltage classes for all
closed walks on G.

3. Splitting graphs and embedded topology

In this section, we define the splitting graph of plane curves for a
Galois cover of P2, and study a relation between the splitting graph
and the embedded topology of plane curves. Here a Galois cover of
P2 is a finite morphism ϕ : X → P2 such that X is normal and the
extension of rational function fields C(X)/C(P2) is Galois. In the first
subsection, we consider the splitting graph for general Galois covers.
In the second subsection, we give a method of computing net voltage
classes for the splitting graph in the case of cyclic covers with a certain
assumption.

3.1. Splitting graphs for Galois covers. We prepare some notation
in order to define the splitting graph. Let Y be a normal surface, let C
be a reduced Weil divisor on Y , and let P ∈ C be a singular point of C
such that Y is smooth at P . We define Irr(C) and LBP (C) as the sets of
irreducible components of C and local branches of C at P , respectively.
Here a local branch of C at P is an irreducible component of the germ
(C, P ). For C ∈ Irr(C) and b ∈ LBP (C), we say that C contains b,
denote by b ⊂ C, if b is an irreducible component of the germ (C,P ).
By abuse of notation, for b ∈ LBP (C) and a morphism φ : Y → Y ′ with
Y ′ smooth at φ(P ), let φ(b) denote the image of b under the morphism
φP |(C,P ) : (C, P ) → (Y ′, φ(P )) of germs. For a reduced Weil divisor B
on Y with Sing(Y ) ⊂ B, put Sing(C \ B) := {P ∈ Sing(C) | P ̸∈ B}.

Definition 3.1. Let G be a finite group, and let ϕ : X → P2 be a
G-cover of P2. Let Bϕ be the branch locus of ϕ, and let C ⊂ P2 be a
plane curve such that C ∩ Bϕ is finite (equivalently, C and Bϕ have no
common components).

(i) The incidence graph of C with respect to ϕ is the bipartite graph
G = Gϕ,C such that the set VG of vertices has the partition
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(VG,0, VG,1), where

VG,0 := {vP | P ∈ Sing(C \ Bϕ)} and

VG,1 := {vC | C ∈ Irr(C)};

and the set EG of edges is

EG :=
∪

P∈Sing(C\Bϕ)

{eP,b | b ∈ LBP (C)},

where we define the initial and terminal vertices of the plus
direction e+P,b of eP,b ∈ EG by

e+P,b(0) := vP ∈ VG,0, e+P,b(1) := vC ∈ VG,1

for the irreducible component C ∈ Irr(C) with b ⊂ C.
(ii) The splitting graph of C for ϕ is the graph S := Sϕ,C with the

action of G satisfying the following conditions;

(ii-a) the set VS has the partition (ṼS,0, ṼS,1), where

ṼS,0 :=
∪

P∈Sing(C\Bϕ)

{
vP̃

∣∣∣ P̃ ∈ ϕ−1(P )
}
,

ṼS,1 :=
{
vC̃

∣∣∣ C̃ ∈ Irr(ϕ∗C)
}
;

(ii-b) the set ES of edges is

ES :=
∪

P̃∈ϕ−1(Sing(C\Bϕ))

{
eP̃ ,b̃

∣∣∣ b̃ ∈ LBP̃ (ϕ
∗C)

}
,

where e+
P̃ ,b̃

(0) := vP̃ ∈ ṼS,0 and e+
P̃ ,b̃

(1) := vC̃ ∈ ṼS,1

for C̃ ∈ Irr(ϕ∗C) with b̃ ⊂ C̃;
(ii-c) G acts on S via the image under the covering trans-

formation g : X → X for each g ∈ G, i.e., for vx̃ ∈ VS ,
eP̃ ,b̃ ∈ ES and g ∈ G, we define g·vx̃ := vg(x̃) and

g·eP̃ ,b̃ := eg(P̃ ),g(b̃) (see Remark 3.2).

Remark 3.2. We define the action of G on ṼS,1 by using the im-

age C̃ 7→ g(C̃) for g ∈ G and C̃ ∈ Irr(ϕ∗C), NOT the pull-back

C̃ 7→ g∗C̃. Since b̃ ⊂ C̃ if and only if g(b̃) ⊂ g(C̃) for b̃ ∈ LBP̃ (ϕ
∗C)

(P̃ ∈ ϕ−1(Sing(C \ Bϕ))) and C̃ ∈ Irr(ϕ∗C), the endpoint sets satisfy
g·(VS(eP̃ ,b̃)) = VS(g·eP̃ ,b̃), hence G acts on S by Definition 3.1 (ii-c).

Lemma 3.3. Let ϕ : X → P2 be a G-cover, and let C ⊂ P2 be a plane
curve such that C ∩Bϕ is finite. Put the incidence graph G := Gϕ,C and
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the splitting graph S := Sϕ,C. Let ϕC = (ϕC,V , ϕC,E) : S → G be the map
defined by

ϕC,V (vx̃) := vϕ(x̃), ϕC,E(eP̃ ,b̃) := eϕ(P̃ ),ϕ(b̃)

for x̃ ∈ ϕ−1(Sing(C \ Bϕ)) ∪ Irr(ϕ∗C), P̃ ∈ ϕ−1(Sing(C \ Bϕ)) and b̃ ∈
LBP̃ (ϕ

∗C). Then ϕC is a G-cover of graphs.

Proof. Let eP̃ ,b̃ be an edge of S. Its endpointset is VS(eP̃ ,b̃) = {vP̃ , vC̃}
for C̃ ∈ Irr(ϕ∗C) with b̃ ⊂ C̃. Put P := ϕ(P̃ ), C := ϕ(C̃) and b := ϕ(b̃)
the local branch of C at P . Since b ⊂ C, we have VG(eP,b) = {vP , vC}.
Thus ϕC,V (VS(eP̃ ,b̃)) = VG(ϕC,E(eP̃ ,b̃)), and ϕC is a map of graphs.

The group G acts transitively on both of Irr(ϕ∗C) and ϕ−1(P ) for
C ∈ Irr(C) and P ∈ Sing(C \Bϕ). Hence G acts transitively on both of
ϕ−1
V (vC) and ϕ−1

V (vP ), and we have VG = VS/G. Since P ∈ Sing(C \Bϕ)
is not a branch point of ϕ, G acts transitively and freely on the set

{b̃ ∈ LBP̃ (ϕ
∗C) | P̃ ∈ ϕ−1(P ), ϕ(b̃) = b}

for b ∈ LBP (C). ThusG acts transitively and freely on ϕ−1
E (eP,b) for P ∈

Sing(C \ Bϕ) and b ∈ LBP (C), and we obtain EG = ES/G. Therefore,
ϕ is a G-cover of graphs. □

Let G be a finite group, and let B ⊂ P2 be a plane curve. It is known
that a surjective homomorphism ρ : π1(P2 \ B) ↠ G induces a G-cover
ϕ : X → P2, uniquely up to isomorphism over P2, whose branch locus
is contained in B. Here π1(P2 \ B) is the fundamental group of P2 \ B.
Conversely, a G-cover ϕ : X → P2 branched at B induces a surjective
homomorphism ρ : π1(P2 \ B) ↠ G. We roughly recall the surjection
ρ : π1(P2 \ B) ↠ G induced by a G-cover ϕ : X → P2 (cf. [13] for
details).

Let ϕ : X → P2 be a G-cover branched at B, and we fix a base point

P0 ∈ P2 \B. Put U := P2 \B and Ũ := X \ϕ−1(B). Any element [γ] of
π1(U) = π1(U, P0) can be represented by a closed path γ : [0, 1] → U

with γ(0) = γ(1) = P0. For a point P̃ ∈ Ũ , put P := ϕ(P̃ ). Let
p : [0, 1] → U be a path from P to P0. Then the closed path p−1γp is

uniquely lifted in a path λ : [0, 1] → Ũ with λ(0) = P̃ . It is known that

the point λ(1) depends only on the choice of [γ] and P̃ , and that [γ]

gives an isomorphism gγ : Ũ → Ũ defined by gγ(P̃ ) = λ(1). Then this

correspondence gives a surjective homomorphism π1(U) → Autϕ(Ũ)

defined by [γ] 7→ gγ, where Autϕ(Ũ) is the group {g ∈ Aut(Ũ) | ϕ ◦
g = ϕ}. Since Autϕ(Ũ) is isomorphic to G, we obtain a surjective
homomorphism ρ : π1(U) → G.



14 TAKETO SHIRANE

Theorem 3.4. Let G be a finite group, and let Bi (i = 1, 2) be two
plane curves such that there are surjections ρi : π1(P2 \ Bi) ↠ G. For
each i = 1, 2, let ϕi : Xi → P2 be a G-cover branched at Bi induced
by ρi, and let Ci be a plane curve such that Ci ∩ Bi is finite. Assume
that there exists a homeomorphism h : P2 → P2 such that h(B1) = B2,
h(C1) = C2 and ρ2 ◦ h∗ = τ ◦ ρ1 for some automorphism τ : G → G,
where h∗ : π1(P2 \ B1) → π1(P2 \ B2) is the isomorphism induced by h.
Put Gi := Gϕi,Ci and Si := Sϕi,Ci. Then the following statements hold:

(i) h induces an isomorphism θh : G1 → G2 of the incidence graphs
preserving the partitions, i.e., θh,V (VG1,j) = VG2,j for j = 0, 1,
where (VGi,0, VGi,1) is the partition of VGi

in Definition 3.1 (i);
(ii) the splitting graphs S1 and S2 are (θh, τ)-equivalent,

S1 ∼(θh,τ) S2.

Proof. We define θh,V : VG1 → VG2 and θh,E : EG1 → EG2 by

θh,V (vx1) := vh(x1), θh,E(eP1,b1) := eh(P1),h(b1),

respectively, for x1 ∈ Sing(C1 \ B1) ∪ Irr(C1), P1 ∈ Sing(C1 \ B1) and
b1 ∈ LBP1(C1). Since h(B1) = B2 and h(C1) = C2, θh,V is well-defined,
bijective and preserving the partitions. The map θh,E is well-defined
and bijective since b1 ∈ LBP1(C1) if and only if h(b1) ∈ LBh(P1)(C2).
Moreover, we have VG2(θh,E(eP1,b1)) = θh,V (VG1(eP1,b1)) since b1 ⊂ C1 if
and only if h(b1) ⊂ h(C1) for C1 ∈ Irr(C1). Therefore, θh = (θh,V , θh,E)
is an isomorphism of the incidence graphs Gi, and assertion (i) holds.

We denote P2\Bi and Xi\ϕ−1
i (Bi) by Ui and Ũi, respectively, for each

i = 1, 2. By the uniqueness of unramified G-covers induced by ρi, there

is a homeomorphism h̃ : Ũ1 → Ũ2 satisfying h|U1 ◦ ϕ1|Ũ1
= ϕ2|Ũ2

◦ h̃.
Hence we have the following commutative diagram:

Ũ1 Ũ2

U1 U2

//
h̃

��
� �
� �
� �
�

ϕ1|Ũ1

��
� �
� �
� �
�

ϕ2|Ũ2

//
h|U1

By the same argument of proof of (i), we have an isomorphism θ̃h :
S1 → S2 of graphs. From the above diagram, it is easy to see that
θh,• ◦ ϕC1,• = ϕC2,• ◦ θ̃h,• for each • = V,E. Thus Condition (i) in
Definition 2.3 holds.

Take a point P̃1 ∈ Ũ1. Let γ : [0, 1] → U1 be a closed path with

γ(0) = ϕ1(P̃1), and let γ̃ : [0, 1] → Ũ1 be the lift of γ satisfying γ̃(0) =

P̃1. Then gγ·P̃1 = Q̃1 := γ̃(1), where gγ = ρ1([γ]). Note that h∗([γ])
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is the element of π1(U2) represented by the path h ◦ γ : [0, 1] → U2,

and that h̃ ◦ γ̃ : [0, 1] → Ũ2 is the lift of h ◦ γ whose initial point is

P̃2 := h̃(P̃1), i.e., h̃ ◦ γ̃(0) = P̃2. Hence we have gh◦γ·P̃2 = h̃(Q̃1), where
gh◦γ = ρ2([h ◦ γ]). Since ρ2 ◦ h∗ = τ ◦ ρ1 by the assumption, we have

gh◦γ = ρ2 ◦ h∗([γ]) = τ ◦ ρ1([γ]) = τ(gγ).

Hence we obtain

h̃(gγ·P̃1) = h̃(Q̃1) = gh◦γ · P̃2 = τ(gγ)·h̃(P̃1)

for any P̃1 ∈ Ũ1 and any closed path γ with γ(0) = ϕ1(P̃1). By Con-

dition (ii-c) in Definition 3.1, we have θ̃h,V (g·ṽ) = τ(g)·θ̃h,V (ṽ) and

θ̃h,E(g·ẽ) = τ(g)·θ̃h,E(ẽ) for any ṽ ∈ VS1 , ẽ ∈ ES1 and g ∈ G. Therefore
we conclude that S1 ∼(θh,τ) S2. □

Remark 3.5. Let Ci+Bi (i = 1, 2) be two plane curves, let ϕi : Xi → P2

be G-covers, and put Gi := Gϕi,Ci and Si := Sϕi,Ci as in Theorem 3.4.

(i) If there exist tubular neighborhoods T (Ci+Bi) ⊂ P2 of Ci+Bi

(i = 1, 2) such that there is a homeomorphism h′ : T (C1 +
B1) → T (C2 + B2) with h′(C1) = C2 and h′(B1) = B2, then h′

induces an isomorphism θh′ : G1 → G2 preserving the partitions
as the proof of Theorem 3.4 (i).

(ii) In the case where Ci are irreducible, the cardinality of ṼSi,1 ⊂
VSi

is equal to the splitting number sϕi
(Ci), which is the number

of irreducible components of ϕ∗Ci. Hence, if sϕ1(C1) ̸= sϕ2(C2),
then there is no isomorphism θ : G1 → G2 preserving the parti-
tions such that S1 ∼(θ,τ) S2 for any automorphism τ : G → G.
Since the splitting number is not determined by the fundamen-
tal group by [18], the splitting graph is not determined by the
one.

(iii) It is easy to see that the number of connected components of
Si is equal to the connected number cϕi

(Ci) (cf. [19]).

In order to restrict the possibility of τ : G → G in Theorem 3.4,
we discuss the image of a meridian of an irreducible component of a
plane curve B under a homeomorphism h : P2 → P2. Let P ∈ B be
a smooth point of B. Take an open neighborhood U ⊂ P2 of P and
a system of local coordinates (x′, y′) of U with P = (0, 0) so that B
is defined by x′ = 0. Let δϵ be the closed path [0, 1] → U defined by
t 7→ (ϵ exp(2π

√
−1 t), 0) for a small number ϵ > 0. We call m := pδϵp

−1

a meridian of B at P , where p : [0, 1] → P2 is a path from the base
point ∗ ∈ P2 \B to the point (ϵ, 0) ∈ U . By abuse of notation, the class
[m] ∈ π1(P2 \ B) be also called the meridian of B at P . Note that, for
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a meridian [m] of B at P , any conjugate of [m] is also a meridian at P ,
and that a meridian [m′] at P ′ is a conjugate of [m] in π1(P2\B) if P and
P ′ are contained in an irreducible component of B. The next lemma
is effective to restrict the possibility of a automorphism τ : G → G in
Theorem 3.4.

Lemma 3.6. Let B1,B2 be two plane curves, and let P1 ∈ B1 be a
smooth point of B1. Assume that there is a homeomorphism h : P2 →
P2 such that h(B1) = B2. Put P2 := h(P1). Let mi : [0, 1] → P2 be
a meridian of Bi at Pi for each i = 1, 2. Then the closed path h ◦m1

is homotpically equivalent to either a certain meridian of B2 at P2 or
its inverse in P2 \ B2. Equivalently, the class [h ◦m1] is a conjugate of
either [m2] or [m2]

−1 in π1(P2 \ B2) for any meridian m2 of B2 at P2.

Proof. Fix base points ∗1 ∈ P2\B1 and ∗2 := h(∗1) of P2\B1 and P2\B2,
respectively. For each i = 1, 2, let Ui ⊂ P2 be an open neighborhood of
Pi, and let (x′

i, y
′
i) be a system of local coordinates of Ui with Pi = (0, 0)

so that Bi is defined by x′
i = 0. Let ϵ2 > 0 be a small number such

that m2 = p2δϵ2p
−1
2 , where δϵ2 is the closed path in U2, and p2 is a path

from ∗2 to (ϵ2, 0) ∈ U2 in P2 \ B2. For a positive number ϵ > 0, put

Di,ϵ := {(x′
i, y

′
i) | |x′

i|2 + |y′i|2 ≤ ϵ2} ⊂ Ui.

Since the preimage h−1(Int(D2,ϵ2)) of the interior Int(D2,ϵ2) of D2,ϵ2 is
open in U1, there exists a positive number ϵ1 > 0 such that D1,ϵ1 ⊂
h−1(Int(D2,ϵ2)). We may assume that δϵ1 with respect to (x′

1, y
′
1) sat-

isfies that m1 = p1δϵ1p
−1
1 , where p1 is a path from the base point ∗1

to (ϵ1, 0) ∈ U1 in P2 \ B1. Since h(Int(D1,ϵ1)) is open in U2, there
exists a positive number ϵ′2 < ϵ2 such that D2,ϵ′2

⊂ h(Int(D1,ϵ1)).
Since h(B1) = B2, the inclusions D2,ϵ′2

→ D2,ϵ2 , D2,ϵ′2
→ h(D1,ϵ1) and

h(D1,ϵ1) → D2,ϵ2 induce the morphisms

i1∗ : π1(D2,ϵ′2
\ B2) → π1(D2,ϵ2 \ B2),

i2∗ : π1(D2,ϵ′2
\ B2) → π1(h(D1,ϵ1 \ B1)) and

i3∗ : π1(h(D1,ϵ1 \ B1)) → π1(D2,ϵ2 \ B2),

respectively. Note that we have

π1(D2,ϵ′2
\ B2) ∼= π1(D2,ϵ2 \ B2) ∼= π1(D1,ϵ1 \ B1) ∼= Z.

Since i1∗ = i3∗ ◦ i2∗ and i1∗ is isomorphic, the composition of h∗ and
i3∗ maps a generator of π1(D1,ϵ1 \ B1) to a generator of π1(D2,ϵ2 \ B2).
Thus h ◦ δϵ1 is homotopically equivalent to either δϵ2 or δ−1

ϵ2
in P2 \ B2.

This implies that h∗([m1]) is a conjugate of either [m2] or [m2]
−1. □
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Remark 3.7. If B1 and B2 are smooth plane curves of degree d, then
π1(P2 \ Bi) ∼= Zd. For a meridian mBi

of Bi, we assume that the
class [mBi

] ∈ π1(P2 \ Bi) corresponds to the generator [1] ∈ Zd. By
Lemma 3.6, a homeomorphism h : P2 → P2 with h(B1) = B2 induces
either τ+d : Zd → Zd or τ−d : Zd → Zd, where the automorphisms τ±d
are defined by τ±d ([1]) = [±1], respectively.

We define an equivalence between splitting graphs as follows.

Definition 3.8. Let G be a finite group, and let Bi (i = 1, 2) be two
plane curves such that there are surjections ρi : π1(P2 \ Bi) → G.
Let ϕi : Xi → P2 be a G-cover induced by ρi, and let Ci be a plane
curve such that Ci ∩ Bi is finite for each i = 1, 2. The splitting graphs
Sϕ1,C1 and Sϕ2,C2 are said to be equivalent, denoted by Sϕ1,C1 ∼ Sϕ2,C2 ,
if there exist a homeomorphism h′ : T (C1 + B1) → T (C2 + B2) of
tubular neighborhoods T (Ci+Bi) ⊂ P2 of Ci+Bi and an automorphism
τ : G → G satisfying

(i) h′(C1) = C2 and h′(B1) = B2;
(ii) for any meridian mB of any irreducible component B ⊂ B1, ei-

ther τ(ρ1([mB])) = ρ2([mh′(B)]) or τ(ρ1([mB])) = ρ2([mh′(B)]
−1)

for some meridian mh′(B) of h
′(B); and

(iii) Sϕ1,C1 ∼(θh′ ,τ)
Sϕ2,C2 as G-covers of graphs, where θh′ : Gϕ1,C1 →

Gϕ2,C2 is the isomorphism in Remark 3.5 (i).

Remark 3.9. A homeomorphism h′ : T (C1 + B1) → T (C2 + B2) in
Definition 3.8 gives a correspondence between the combinatorial data of
C1+B1 and C2+B2, which consist of the sets of irreducible components,
singularities, degrees of components, and configuration of components
of Ci + Bi. Conversely, it is known that a correspondence between
the combinatorial data induces a homeomorphism h′ between tubular
neighborhoods (cf. [2, Remark 3]).

By Theorem 3.4 and Lemma 3.6, we obtain the following lemma.

Corollary 3.10. Under the assumption of Theorem 3.4, the splitting
graphs Sϕ1,C1 and Sϕ2,C2 are equivalent.

Example 3.11. Let B be the conic defined by z2 − 4xy = 0, and
let C1 and C2 be two 6-nodal irreducible sextics in [7, Example 6.2]
and [7, Example 6.3], respectively. Note that B is a simple contact
conic of both of C1 and C2. Let ϕ : X → P2 be the double cover
branched at the conic B. Then C1 is a splitting curve with respect to

ϕ, write ϕ∗C1 = C̃+
1 + C̃−

1 , and ϕ−1(Sing(C1 \ B)) = (C̃+
1 ∩ C̃−

1 ) \ ϕ−1(B).
On the other hand, C̃2 := ϕ∗C2 is irreducible. Thus the preimage of

the 6 nodes of C2 are the 12 nodes of C̃2. Hence the splitting graphs
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ϕC1vC̃+
1

vC̃−
1

v+11
v+12 v+13 v

+
14 v

+
15 v+16

v−11 v−12 v−13 v
−
14v−13 v−15

v−16

vC1

v11

v12

v13 v14
v15

v16

Figure 2. The splitting graph of C1 for ϕ

ϕC2

vC2

v21

v22

v23 v24
v25

v26
vC̃2

v+21

v+22

v+23 v+24
v+25

v+26

v−26
v−25

v−24v−23

v−22

v−21

Figure 3. The splitting graph of C2 for ϕ

ϕCi : Sϕ,Ci → Gϕ,Ci are as Figure 2 and 3, respectively, since a node
consists of two local branches, where vij are vertices corresponding to
the 6 nodes of Ci, and ϕ−1

Ci (vij) = {v+ij , v−ij}. Hence Sϕ1,C1 and Sϕ2,C2 are
not equivalent.

3.2. Net voltage classes of Splitting graphs for cyclic covers.
Proposition 2.8 and Theorem 3.4 imply that computing net voltage
classes of closed walks is effective to distinguish the embedded topology
of plane curves. We investigate a computation of net voltage classes
for cyclic covers. Let B and B be divisors

B =
m−1∑
i=1

i·Bi and B =
m−1∑
i=1

Bi

on P2, respectively, where Bi (i = 1, . . . ,m − 1) are reduced divisors
with no common components each other. Note that the degree of B is
divisible by m if and only if there exists a surjection ρ : π1(P2 \ B) ↠
Zm := Z/mZ which sends any meridian of B at any Pi ∈ Bi \ Sing(B)
to the image [i] ∈ Zm of i in Zm (cf. [16]). Assume that the degree of
B is divisible by m. We call the cyclic cover induced by the surjection
ρ : π1(P2 \ B) ↠ Zm as above the Zm-cover of type B.
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Let ϕ : X → P2 be the Zm-cover of type B, and let C ⊂ P2 be a plane
curve such that C ∩ B is finite. We assume the following condition to
compute the net voltage class of a closed walk for ϕ:

All irreducible components of C are smooth.(1)

Remark 3.12. Under Assumption (1), the incidence graph Gϕ,C has
no parallel edge. Hence an edge of Gϕ,C is identified with a pair (vP , vC)
of vertices vP ∈ VGϕ,C ,0 and vC ∈ VGϕ,C ,1. In this case, we omit edges
from sequences representing walks on Gϕ,C. Namely, we represent walks
by sequences of vertices only.

Let L ⊂ P2 be a line which intersects transversally with C, and is not
a component of B. Since L does not pass through singularities of C, it
is enough to consider the singular points and irreducible components
of C and ϕ∗C over the affine open set U ′ := P2 \ L for computing the

net voltage class. Hence we consider the restriction ϕ′ : Ũ ′ → U ′ of

ϕ to Ũ ′ := X \ ϕ−1(L). We regard the coordinate ring of U ′ as the
polynomial ring C[x′, y′]. Let F = 0 be a defining equation of B on U ′.
By L ̸⊂ B and the proof of [18, Theorem 2.7] (cf. [11, Theorem 2.1]),
if C ∈ Irr(C) is defined by f = 0 on U ′, and if the splitting number of
C for ϕ is s, then there are two polynomials g, h ∈ C[x′, y′] satisfying
the following equation:

F = fg + hs.

Let γ be the following closed walk on the incidence graph GC:

γ = (vP1 , vC1 , vP2 , vC2 , . . . , vPn , vCn , vPn+1),

where Pi ∈ Sing(C \ B) with Pn+1 = P1 and Ci ∈ Irr(C). We fix
a defining equation fi = 0 of Ci and polynomials gi, hi ∈ C[x′, y′]
satisfying

F = figi + hsi
i(2)

for each i = 1, . . . , n, where si is the splitting number of Ci for ϕ.
Since Pi+1 is an intersection of Ci and Ci+1 for i = 1, . . . , n, we have
F (Pi+1) = (hi(Pi+1))

si = (hi+1(Pi+1))
si+1 , where Cn+1 := C1. For each

i = 1, . . . , n, we fix a complex number di ∈ C such that

hi(Pi) = dµi

i ,

where µi := m/si. Since (hi(Pi+1))
si = (hi+1(Pi+1))

si+1 , there is an
integer αi with 0 ≤ αi < si such that

hi(Pi+1) = (ζµi
m )αidµi

i+1(3)

for each i = 1, . . . , n, where ζm := exp(2π
√
−1/m) and dn+1 = d1. We

put α :=
∑n

i=1 αi.
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Theorem 3.13. Under the above circumstance, the following equation
holds:

NVϕ(γ) = [α] + sZm := {[α + sk] ∈ Zm | k ∈ Z},

where s is the greatest common divisor of s1, . . . , sn.

Proof. Let Ũ ′′ be the subvariety of U ′ × C defined by

tm = F,

where t is a coordinate of C, and let ϕ′′ : Ũ ′′ → U ′ be the projection.

Note that Ũ ′ is the normalization of Ũ ′′. Moreover, the action of Zm

on Ũ ′′ is given by

(4) [1]·(P, ζjmdP ) = (P, ζj+1
m dP ),

where [1] denotes the image of 1 ∈ Z in Zm (cf. Remark 3.14), and dP
is a complex number with dmP = F (P ). Since Ũ ′′ is smooth over U ′ \B,
we have Ũ ′ \ (ϕ′)−1(B) ∼= Ũ ′′ \ (ϕ′′)−1(B). Thus it is enough to consider
(ϕ′′)∗C to compute the net voltage class.

Since F (Pi) = dmi and Ũ ′′ is defined by tm = F in U ′ × C, the

preimage of Pi under ϕ
′′ : Ũ ′′ → U ′ consists of the following m points

P̃i,j := (Pi, ζ
j
mdi) ∈ Ũ ′′ ⊂ U ′ × C (j = 0, . . . ,m− 1)

for i = 1, . . . , n + 1. Note that P̃n+1,j = P̃1,j since Pn+1 = P1 and

dn+1 = d1. Let C̃i,k be the irreducible component of (ϕ′′)∗Ci defined by
the following equation in U ′ × C;

C̃i,k : t
µi − (ζµi

m )khi = fi = 0

for each i = 1, . . . , n and k = 0, . . . , si − 1.

Claim 1. (i) P̃i,j ∈ C̃i,k if and only if j ≡ k (mod si).

(ii) P̃i+1,j ∈ C̃i,k if and only if j ≡ αi + k (mod si).

Proof. The condition P̃i,j ∈ C̃i,k is equivalent to (ζµi
m )jdµi

i = (ζµi
m )kdµi

i .

Hence P̃i,j ∈ C̃i,k if and only if j ≡ k (mod si).

The condition P̃i+1,j ∈ C̃i,k is equivalent to (ζ
µi
m )jdµi

i+1 = (ζµi
m )αi+kdµi

i+1.

Thus P̃i+1,j ∈ C̃i,k if and only if j ≡ αi + k (mod si) □

By Claim 1 (i), we have

{vC̃i,k
| P̃i,j ∈ C̃i,k} = {vC̃i,k

| k = j+cisi for some ci ∈ Z} ⊂ V γ
2i−1(vP̃1,0

)
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for each vP̃i,j
∈ V γ

2i−2(vP̃1,0
). By Claim 1 (ii), hence, we obtain the

following equation;

V γ
2i(vP̃1,0

) =
∪

v
P̃i,j

∈V γ
2i−2(vP̃1,0

)

{
vP̃i+1,j′

∣∣∣ j′ = j + αi + bisi for some bi ∈ Z
}

=

{
vP̃i+1,j

∣∣∣∣∣ j =
i∑

i′=1

αi′ +
i∑

i′=1

bi′si′ for some b1, . . . , bi ∈ Z

}
Since s is the greatest common divisor of s1, . . . , sn, we obtain the
assertion. □

Remark 3.14. Action (4) in the proof of Theorem 3.13 coincides with

the monodromy action on Ũ ′′\(ϕ′′)−1(B) ∼= Ũ ′\(ϕ′)−1(B) of a meridian
[m1] ∈ π1(P2 \ B) at a point Q1 ∈ B1 \ Sing(B). Indeed, the path

[0, 1] ∋ t 7→
(
ϵ exp(2π

√
−1 t), 0, ϵ1/m exp(2π

√
−1 t/m)

)
∈ Ũ ′′\(ϕ′′)−1(B)

from (ϵ, 0, ϵ1/m) to (ϵ, 0, ζmϵ
1/m) is a lift of the path

δϵ : [0, 1] ∋ t 7→ (ϵ exp(2π
√
−1 t), 0) ∈ U ′ \ B,

where (x′, y′) is a system of local coordinates of P2 at Q1 so that F = x′

at Q1, and ζm := exp(2π
√
−1/m).

4. Artal arrangements of degree b

In [1], Artal studied plane curves C = E + L1 + L2 + L3, where E
is a smooth cubic, and Li (i = 1, 2, 3) are non-concurrent inflectional
tangents of E. He proved that a pair (C1, C2) of such curves C1, C2 is
a Zariski pair if the three tangent points of C1 are collinear, and those
of C2 are not collinear. Tokunaga proved the same result by a different
way in [23]. In [6], such plane curves are called Artal arrangements. In
[19], the author defined an Artal arrangement of degree b ≥ 3 as a plane
curve consisting of one smooth curve of degree b and non-concurrent
three of its total inflectional tangents. In [19], he partially distinguished
the embedded topology of Artal arrangements. In this section, we
define Artal arrangements of type (p1, p2, p3) for three partitions pi
of an integer d ≥ 3, which is a generalization of Artal arrangements
defined in [6] and [19].

Definition 4.1. Let B ⊂ P2 be a smooth curve of degree d ≥ 3.

(i) For a partition p = (e1, . . . , en) of d, we call a line L ⊂ P2 a
tangent of type p of B if L intersects with B at just n points
P1, . . . , Pn with multiplicity e1, . . . , en, respectively.
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(ii) Let p1, p2 and p3 be three partitions of d, and assume that
there is a tangent Li of type pi of B for each i = 1, 2, 3. We
call the plane curve B+L1 +L2 +L3 an Artal arrangement of
type (p1, p2, p3) if L1∩L2∩L3 = ∅ and B ∩Li∩Lj = ∅ for any
i ̸= j.

(iii) For an Artal arrangement A := B + L1 + L2 + L3, let ϕA :
XA → P2 be the Zd-cover of type B. We call ϕA the cyclic
cover of the Artal arrangement A. We fix the surjection ρA :
π1(P2\B) ↠ Zd defined by [mB] 7→ [1], wheremB is a meridian
of B at a point of B. Furthermore, we call the splitting graph
SϕA,L1+L2+L3 the splitting graph of A, and denote it by SA.

Remark 4.2. For an element σ of the symmetric group S3 of three
letters, two Artal arrangements A1 and A2 of type (p1, p2, p3) and
(pσ(1), pσ(2), pσ(3)), respectively, have the same combinatorics. To avoid
confusion, we introduce an order on the set of partitions as follows:

Let pi = (ei,1, . . . , ei,ni
) (i = 1, 2) be two partitions of d with 1 ≤

ei,j ≤ ei,j′ for j < j′. Assume that p1 ̸= p2, and put j0 := min{j |
e1,j ̸= e2,j}. We write p1 ≺ p2 if e1,j0 < e2,j0 . We assume that any
triple (p1, p2, p3) satisfies p1 ⪯ p2 ⪯ p3.

Let pi := (ei,1, . . . , ei,ni
) be a partition of d ≥ 3 for each i = 1, 2, 3,

and put P := (p1, p2, p3). Let FP ⊂ P∗H
0(P2,OP2(d + 3)) be the

family of Artal arrangements of type P. Here P∗H
0(P2,OP2(d+ 3)) is

the projective space of one-dimensional subspaces of the vector space
H0(P2,OP2(d+3)), which parameterizes all plane curves of degree d+3.
Let si be the greatest common divisor GCD(ei,1, . . . , ei,ni

) for each i =
1, 2, 3, and put s := GCD(s1, s2, s3). Let A := B + L be an Artal
arrangement of type P, where L := L1 + L2 + L3. Let GA denote the
incidence graph GϕA,L of L with respect to ϕA : XA → P2. Let γ+

A be
the following cycle on GA:

γ+
A := (vP1 , vL1 , vP2 , vL2 , vP3 , vL3 , vP1),

where P1, P2 and P3 are the intersections L3∩L1, L1∩L2 and L2∩L3,
respectively.

To compute net voltage classes of closed walks on GA for ϕA, it is
enough to compute the net voltage classes of γ+

A and its inverse walk
γ−
A := (γ+

A)
−1 by Lemma 2.11 and 2.12. Note that the splitting number

of Li for ϕA is equal to si by [18, Theorem 2.7]. By Theorem 3.13, the
net voltage class of γ+

A for ϕA forms into

NVϕA(γ
+
A) = [β] + sZd
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for some integer β with 0 ≤ β < s. By Lemma 2.10, we obtain
NVϕA(γ

−
A) = [−β] + sZd. For 0 ≤ α ≤ ⌊s/2⌋, let Fα

P ⊂ FP be the
set of Artal arrangements A of type P satisfying

{NVϕA(γ
+
A),NVϕA(γ

−
A)} = {[α] + sZd, [−α] + sZd},

where ⌊s/2⌋ is the integer part of s/2. The family FP is decomposed
into the following disjoint union:

FP =

⌊s/2⌋⨿
α=0

Fα
P.

Theorem 4.3. Let pi = (ei,1, . . . , ei,ni
) be three partition of d ≥ 3

for i = 1, 2, 3, and put P := (p1, p2, p3), si := GCD(ei,1, . . . , ei,ni
) for

i = 1, 2, 3 and s := GCD(s1, s2, s3). Then, two Artal arrangements
A1,A2 ∈ FP have the same embedded topology if and only if the split-
ting graphs SA1 and SA2 are equivalent, SA1 ∼ SA2. Moreover, the
followings hold:

(i) In the case where pi ̸= pj for any i ̸= j, Fα
P consists of two

connected components Fα+
P and Fα−

P if 0 < α < s/2, and Fα
P

is connected otherwise, i.e., either α = 0 or α = s/2 if s is
even.

(ii) In the case where pi = pj for some i ̸= j, Fα
P is connected for

each 0 ≤ α ≤ ⌊s/2⌋.
(iii) Let A be an Artal arrangement of Fα

P (0 ≤ α ≤ ⌊s/2⌋), and let

h̄ : P2 → P2 be the base change given by the complex conjugate
homomorphism C → C (z 7→ z̄), which is a homeomorphism.
Then h̄(A) ∈ Fα

P. Moreover, in the case where pi ̸= pj for

i ̸= j and 0 < α < s/2, h̄(A) ∈ Fα−
P if A ∈ Fα+

P .
(iv) For two Artal arrangements A1,A2 ∈ FP, there is a home-

omorphism h : P2 → P2 with h(A1) = A2 if and only if
A1,A2 ∈ Fα

P for some 0 ≤ α ≤ ⌊s/2⌋.

In order to prove Theorem 4.3, we prove four lemmas. We first seek
a simple defining equation of an Artal arrangement, up to projective
transforms of P2. Let Lx, Ly and Lz be the lines defined by x = 0,
y = 0 and z = 0, respectively, and put Lxyz := Lx + Ly + Lz.

Lemma 4.4. Let A := B + L be an Artal arrangement of type P =
(p1, p2, p3), where L := L1 + L2 + L3. Put µi,j := ei,j/si. Then, after
a certain projective transform of P2, L satisfies L1 = Lx, L2 = Ly and
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L3 = Lz, and B is defined by FP(β, {ci,j}, g0) = 0 with

FP(β, {ci,j}, g0)

:=

n1∏
j=1

(y + c1,jz)
e1,j +

n2∏
j=1

(z + c2,jx)
e2,j +

n3∏
j=1

(x+ c3,jy)
e3,j − xd − yd − zd + xyzg0,

where β is an integer with 0 ≤ β < s, g0 is a homogeneous polynomial
of degree d − 3 in x, y, z, and ci,j are complex numbers satisfying the
following conditions;

ni∏
j=1

c
µi,j

i,j = 1 (i = 1, 2),

n3∏
j=1

c
µ3,j

3,j = ζβµ3

d , ci,j ̸= ci,j′ if j ̸= j′,(5)

where µi := d/si =
∑ni

j=1 µi,j for i = 1, 2, 3.

Proof. It is clear that L satisfies L1 = Lx, L2 = Ly and L3 = Lz after
a projective transform. Let Qi,j be the intersection point of B and Li

with IQi,j
(B,Li) = ei,j for each i = 1, 2, 3 and j = 1, . . . , ni, and let ai,j

be the complex number such that

Q1,j = (0:− a1,j:1), Q2,j = (1:0:− a2,j), Q3,j = (−a3,j:1:0).

Let F = 0 be a defining equation of B. Since B ∩ Li ∩ Lj = ∅ (i ̸= j),
we may assume that the coefficients of xd, yd and zd in F are equal to
1. Since IQi,j

(B,Li) = ei,j, a homogenous polynomial F forms into

F =

n1∏
j=1

(y + a1,jz)
e1,j + g1 + xyzg0

=

n2∏
j=1

(z + a2,jx)
e2,j + g2 + xyzg0

=

n3∏
j=1

(x+ a3,jy)
e3,j + g3 + xyzg0,

where g1, g2 and g3 are the sum of terms of F which are not divisible
by xyz, but by x, y and z, respectively. Note that

∏ni

j=1 a
ei,j
i,j = 1.

Then the coefficient of ykzd−k (0 < k < d) in F is equal to the one in∏n1

j=1(y + ai,jz)
ei,j . Similarly, the coefficients of xkyd−k and xkzd−k are

determined by the above equation. Hence we have

F :=

n1∏
j=1

(y+a1,jz)
e1,j+

n2∏
j=1

(z+a2,jx)
e2,j+

n3∏
j=1

(x+a3,jy)
e3,j−xd−yd−zd+xyzg0.
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Since
∏ni

j=1 a
ei,j
i,j = (

∏ni

j a
µi,j

i,j )si = 1, we have

ni∏
j=1

a
µi,j

i,j = (ζµi

d )βi

for some integer 0 ≤ βi < si (i = 1, 2, 3). After the projective transform

defined by x 7→ ζ−β1−β2

d x, y 7→ y and z 7→ ζ−β1

d z, we obtain

F =

n1∏
j=1

(y+b1,jz)
e1,j+

n2∏
j=1

(z+b2,jx)
e2,j+

n3∏
j=1

(x+b3,jy)
e3,j−xd−yd−zd+xyzg0,

where b1,j := ζ−β1

d a1,j, b2,j := ζ−β2

d a2,j and b3,j := ζβ1+β2

d a3,j. We have∏ni

j=1 b
µi,j

i,j = 1 for i = 1, 2, and
∏n3

j=1 b
µ3,j

3,j = (ζµ3

d )β
′
for some integer

0 ≤ β′ < s3. Suppose that ks ≤ β′ < (k+1)s. Let b1, b2 and b3 be three
integers so that b1s1 + b2s2 + b3s3 = ks. By the projective transform
given by x 7→ ζb1s1+b2s2

d x, y 7→ y and z 7→ ζb1s1d z, we obtain F =

FP(β, {ci,j}, g0), where ci,j := ζbisibi,j for i = 1, 2, c3,j := ζ−b1s1−b2s2
d b3,j,

and β = β′ − ks. □
Since Aut(P2) ∼= PGL(3,C) is connected, Lemma 4.4 implies that

each connected component of FP contains a member A defined by
xyzFP(β, {ci,j}, g0) = 0 for some integer 0 ≤ β < s.

Next, we prove that the curve defined by FP(β, {ci,j}, g0) = 0 is
smooth for a general polynomial g0.

Lemma 4.5. Fix an integer β with 0 ≤ β < s, and let ci,j be complex
numbers satisfying (5). Then the equation FP(β, {ci,j}, g0) = 0 defines
a smooth curve B on P2 for a general homogeneous polynomial g0.

Proof. We consider the linear system Λ consisting of curves defined by
aFP(β, {ci,j}, g0)+bxyzg = 0 for (a:b) ∈ P1 and g ∈ H0(P2,OP2(d−3))\
{0}. Since the base points of Λ are Q1,j = (0: − c1,j:1), Q2,j = (1:0: −
c2,j), Q3,j = (−c3,j:1:0), a general member of Λ is smooth except for the
base points Qi,j by Bertini’s theorem (see [12]). Since xyzg = 0 defines
a curve smooth at all base pointsQi,j if g(Qi,j) ̸= 0 for any i, j, a general
member of Λ is smooth at Qi,j. Therefore FP(β, {ci,j}, g0) = 0 defines
a smooth curve B on P2 for a general homogeneous polynomial g0. □
Remark 4.6. If FP(β, {ci,j}, g0) = 0 defines a smooth curve B, then
A = B +Lxyz is an Artal arrangement of type P = (p1, p2, p3). In this
case, we put γ+

A := (vP1 , vLx , vP2 , vLy , vP3 , vLz , vP1).

Lemma 4.7. Fix an integer β with 0 ≤ β < s and ci,j satisfying (5).
Put α := β if β ≤ ⌊s/2⌋, and α := s − β if β > ⌊s/2⌋. Assume that
FP(β, {ci,j}, g0) = 0 defines a smooth curve B ⊂ P2. Then the equation
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NVϕA(γ
+
A) = [β] + sZd holds. In particular, the Artal arrangement

A := B + Lxyz is a member of Fα
P.

Proof. Let L be the line defined by x + y + z = 0, which intersects
transversally with Lxyz, and is not a component of B. We compute
the net voltage class NVϕA(γ

+
A) by using Theorem 3.13. Let P1, P2 and

P3 be the singular points (0:1:0), (0:0:1) and (1:0:0) of Lxyz, and put
x′ := x/(x + y + z), y′ := y/(x + y + z) and z′ := z/(x + y + z). The
system (x′, y′) is a local coordinate of U := P2 \L since z′ = 1−x′−y′.
The equation FP(β, {ci,j}, g0)/(x+y+ z)d = 0 is a defining equation of
B on U . We seek hi in (2) for Li (i = x, y, z), and compute hi(Pj) for
Pj ∈ Li. Since Lx is defined by x′ = 0 and s1 = GCD(e1,1, . . . , e1,n1),
we obtain

hx =

n1∏
j=1

(y′ + c1,jz
′)µ1,j .

Thus we have hx(P1) = hx(P2) = 1. Similarly, we have hy(P2) =
hy(P3) = 1, hz(P3) = 1 and hz(P1) = (ζµ3

d )β. Hence, by Theorem 3.13,
we obtain NVϕA(γ

+
A) = [β] + sZd. Moreover, we obtain NVϕA(γ

−
A) =

[−β] + sZd by Lemma 2.10. Therefore we have

{NVϕA(γ
+
A),NVϕA(γ

−
A)} = {[β]+sZ, [−β]+sZd} = {[α]+sZd, [−α]+sZd}.

□
Next we prove that B + Lxyz and B′ + Lxyz are two members of a

connected component of FP if B and B′ are smooth curves defined by
FP(β, {ci,j}, g0) = 0 and FP(β, {c′i,j}, g′0) = 0, respectively.

Lemma 4.8. Fix an integer 0 ≤ β < s. If B and B′ are smooth curves
defined by FP(β, {ci,j}, g0) = 0 and FP(β, {c′i,j}, g′0) = 0, respectively,
then the Artal arrangements A := B + Lxyz and A′ := B′ + Lxyz are
members of a connected component of FP. In particular, there is a
homeomorphism h : (P2,A) → (P2,A′) such that h∗([mB]) = [mB′ ] for
meridians mB and mB′ of B and B′, respectively.

Proof. Let Usm ⊂ (C×)n1+n2+n3 × H0(P2,OP2(d − 3)) be the following
subset:

Usm :=

{
((ci,j), g0)

∣∣∣∣ (ci,j) ∈ Cn1+n2+n3 satisfies equation (5), and
FP(β, {ci,j}, g0) = 0 defines a smooth curve

}
.

It is enough to prove that Usm is connected. Let V ′
i be the following

subset of (C×)ni for i = 1, 2, 3:

V ′
i :=

{
(ci,1, . . . , ci,ni

) ∈ (C×)ni

∣∣∣∣∣
ni∏
j=1

c
µi,j

i,j = (ζµi

d )βi

}
,
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where β1 = β2 = 0 and β3 = β. Consider the projection pri : V
′
i →

(C×)ni−1 defined by (ci,1, . . . , ci,ni−1, ci,ni
) 7→ (ci,1, . . . , ci,ni−1). Since

c
µi,ni
i,ni

= (ζµi

d )βi
∏ni−1

j=1 c
−µi,j

i,j , the preimage of pri at a point of (C×)ni−1

consists of just µi,ni
points. Let ρ : π1((C×)ni−1) → Zµi,ni

be the
homomorphism which maps a meridian of {ci,j = 0} to [−µi,j] ∈ Zµi,ni

.
Since GCD(µi,1, . . . , µi,ni

) = 1, ρ is surjective. Moreover, pri : V
′
i →

(C×)ni−1 is the unramified Zµi,ni
-cover induced by the surjection ρ. For

any P ∈ (C×)ni−1, transitivity of the action of π1((C×)ni−1) on the fiber
pr−1

i (P ) implies that there exists a path connecting any two points in
pr−1

i (P ). Hence V ′
i is smooth and irreducible. Let U ′

i be the following
subset of (C×)ni :

U ′
i := {(ci,1, . . . , ci,ni

) ∈ (C×)ni | ci,j ̸= ci,j′ (j ̸= j′)}.
Since U ′

i is a Zariski open subset of (C×)ni , Vi := U ′
i ∩ V ′

i is a Zariski
open subset of V ′

i , hence Vi is connected. For any (ci,j) ∈ V1 × V2 ×
V3, FP(β, {ci,j}, g0) = 0 defines a smooth curve for a general g0 by
Lemma 4.5. Therefore, Usm is a non-empty open subset of V1 × V2 ×
V3 × H0(P2,OP2(d− 3)), and Usm is connected. □
We prove Theorem 4.3 by using Lemmas 4.4, 4.5, 4.7 and 4.8.

Proof of Theorem 4.3. Let Ai = Bi + Li (i = 1, 2) be two Artal ar-
rangements of type P. Suppose that the splitting graphs SA1 and SA2

are equivalent, i.e., there exist a homeomorphism h′ : T (A1) → T (A2)
and an automorphism τ : Zd → Zd satisfying Conditions (i), (ii), (iii) in
Definition 3.8. By the proof of Lemma 3.6, we have τ([1]) = [±1] since
ρAi

([mBi
]) = [1]. By Corollary 2.9, we obtain the following equation:

(6) {NVϕA1
(γ+

A1
),NVϕA1

(γ−
A1
)} = {NVϕA2

(γ+
A2
),NVϕA2

(γ−
A2
)}.

Hence we obtain A1,A2 ∈ Fα
P for some 0 ≤ α ≤ ⌊s/2⌋. Moreover, the

family Fα
P is non-empty by Lemmas 4.5 and 4.7.

Note that, if there exists a homeomorphism h : (P2,A1) → (P2,A2)
for Artal arrangements Ai ∈ FP (i = 1, 2), then SA1 ∼ SA2 by
Theorem 3.4 since h must satisfy h(B1) = B2 and the isomorphism
h∗ : π1(P2 \B1) → π1(P2 \B2) is given by h∗([mB1 ]) = [mB2 ]

±1 (cf. Re-
mark 3.7). Furthermore, if two Artal arrangements Ai := Bi+Li ∈ FP

is members of the same connected component of FP, then there exists a
homeomorphism h : (P2,A1) → (P2,A2) with h∗([mB1 ]) = [mB2 ]. Thus
it is enough to prove assertions (i), (ii), (iii) and (iv) in Theorem 4.3.

(i) Suppose that pi ̸= pj for any i ̸= j. Let Ai := Bi +
∑3

j=1 Li,j be
an Artal arrangement of type P for each i = 1, 2. Assume that there is
a homeomorphism h : (P2,A1) → (P2,A2) such that h∗([mB1 ]) = [mB2 ]
for meridians mBi

of Bi. In this case, h must satisfy h(L1,j) = L2,j
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for j = 1, 2, 3 (see Remark 4.2), and if an automorphism τ : Zd → Zd

satisfies τ ◦ ρA1 = ρA2 ◦ h∗, then τ([1]) = [1]. Hence we have θh(γ
+
A1
) =

γ+
A2

and NVϕA1
(γ+

A1
) = NVϕA2

(γ+
A2
).

For 0 < α < s/2, let Fα±
P be the subsets consisting of A ∈ FP with

NVϕA(γ
+
A) = [±α] + sZd, respectively. By Lemmas 4.4, 4.5, 4.7 and

4.8, Fα±
P are non-empty and connected. Since [α] + sZd ̸= [−α] + sZd

for 0 < α < s/2, Fα+
P ∩ Fα−

P = ∅ by Lemma 4.8.
For α = 0 or α = s/2 if s is even, we have [α] + sZd = [−α] +

sZd. Hence, by Lemmas 4.4 and 4.7, an Artal arrangement A ∈ Fα
P

is projective equivalent to a curve defined by FP(α, {ci,j}, g0) = 0.
Therefore, Fα

P is connected by Lemma 4.8.
(ii) As in Remark 4.2, we fix the order of partitions p1 ⪯ p2 ⪯ p3.

It is enough to check the cases of p1 = p2 and p2 = p3. Suppose that
p2 = p3. We have n2 = n3 and e2,j = e3,j for j = 1, . . . , n2. Let A be an
Artal arrangement defined by xyzFP(α, {ci,j}, g0) = 0. Let h : P2 → P2

be the projective transformation defined by x 7→ ζαd x, y 7→ z and z 7→ y.
The imageA′ := h(A) is defined by xyzFP(−α, {c′i,j}, g′0) = 0 satisfying

(5), where c′1,j := c−1
1,j , c

′
2,j := ζαd c

−1
3,j , c

′
3,j := ζ−α

d c−1
2,j and g′0 is the image

of g0. Then the Artal arrangemnts A and A′ are members of the same
connected component of Fα

P since PGL(3,C) is connected. Therefore,
by Lemmas 4.4, 4.7 and 4.8, Fα

P is connected. In the case of p1 = p2,
we can prove the connectivity of Fα

P by the same argument.
(iii) Let A := B+L1+L2+L3 be an Artal arrangement in Fα

P with

NVϕA(γ
+
A) = [α] + sZd, and put B̄ := h̄(B). Let mB be a meridian

of B at a point P ∈ B. By the definition of meridians, (h̄ ◦mB)
−1 is

a meridian of B̄ at h̄(P ) ∈ B̄. Hence we have τ([1]) = [−1] for the
automorphism τ : Zd → Zd such that ρh̄(A) ◦ h̄∗ = τ ◦ ρA, Thus we

obtain NVϕh̄(A)
(γ+

h̄(A)
) = [−α] + sZd, and h̄(A) ∈ Fα

P. In particular, in

the case where pi ̸= pj for any i ̸= j and 0 < α < s/2, if A ∈ Fα+
P ,

then h̄(A) ∈ Fα−
P .

(iv) The assertion follows from (i), (ii) and (iii). □

As a corollary of Theorem 4.3, we obtain Zariski k-plets of Artal
arrangements.

Corollary 4.9. Let pi be a partition (ei,1, . . . , ei,ni
) of d ≥ 3 for each

i = 1, 2, 3. Let s be the greatest common divisor of ei,j, i = 1, 2, 3 and
j = 1, . . . , ni. Then there is a Zariski (⌊s/2⌋+ 1)-plet (A0, . . . ,A⌊s/2⌋)
of Artal arrangements Ai of type P, i.e., (Ai,Aj) is a Zariski pair for
any 0 ≤ i < j ≤ ⌊s/2⌋.
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Proof. Let Aα be a member of Fα
P for each α = 0, . . . , ⌊s/2⌋. Then

(A0, . . . ,A⌊s/2⌋) is a Zariski (⌊s/2⌋+ 1)-plet by Theorem 4.3. □
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