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Abstract 

There are about 7,000 languages spoken today in the world. However, most natural language 

processing and speech processing studies have been conducted for high resource languages 

such as English, Japanese and Mandarin. Preparing large amounts of training data is expensive 

and time-consuming, which creates a significant hurdle when developing some systems for the 

world’s many, less widely spoken languages. Mongolian is one of these low-resource 

languages. We proposed to build a text-to-speech system (TTS, also called speech synthesis) 

for the low resource Mongolian language. We present two studies within this TTS system, “text 

normalization” and “speech synthesis,” on the Mongolian language with limited training data. 

TTS system converts written text into machine-generated synthetic speech. One of the biggest 

challenges to developing a TTS system for a new language is converting transcripts into a real 

“spoken” form, the exact words that the speaker said. This is an important preprocessing for 

TTS systems known as text normalization. In other words, text normalization is transforming 

text into a standard form and is an essential part of the speech synthesis system. Later it also 

became important for processing social media text because of the rapid expansion in user-

generated content on social media sites. As the use of social media grows rapidly, there is no 

doubt that the TTS system will need to generate speech from social media text. Therefore, we 

were more interested in social media text normalization. Thus, this thesis consists of two main 

parts, text normalization and speech synthesis. We experimentally demonstrated how to 

improve the output of the model used for each using a small amount of training data. The 

followings are brief descriptions of each part. 

Text normalization: The huge increase in social media use in recent years has resulted in new 

forms of social interaction, changing our daily lives. Social media websites are a rich source of 

text data, but the processing and analysis of social media text is a challenging task because 

written social media messages are usually informal and ‘noisy’. Due to increasing contact 

between people from different cultures as a result of globalization, there has also been an 
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increase in the use of the Latin alphabet, and as a result a large amount of transliterated text is 

being used on social media. Although there is a standard for the use of Latin letters in the 

language, the public does not generally observe it when writing on social media. Therefore, 

social media text also contains many noisy, transliterated words. For example, many people 

who speak Mongolian are using the Latin alphabet to write Mongolian words on social media, 

instead of using the Cyrillic alphabet. These messages are informal and ‘noisy’ however, 

because everyone uses their own judgement as to which Latin letters should be substituted for 

particular Cyrillic letters, since there are 35 letters in the Mongolian Cyrillic alphabet, versus 

26 letters in the modern Latin alphabet (not counting letters with diacritical marks such as 

accents, umlauts, etc.). In most research on noisy text normalization, both the source text and 

target text are in the same language. In other words, the alphabets used in the source and target 

texts are the same. Text normalization is difficult to perform with noisy text even when it is not 

transliterated. In this thesis, our first goal is to convert noisy, transliterated text into formal 

writing in a different alphabet. Therefore, it poses more challenges in the text normalization 

task. We propose a variety of character level sequence-to-sequence (seq2seq) models for 

normalizing noisy, transliterated text written in Latin script into Mongolian Cyrillic script, for 

scenarios in which there is a limited amount of training data available. When there is a limited 

amount of training data, and the rules for writing noisy, transliterated text are not limited, we 

encounter a difficult challenge when attempting to normalize out-of-vocabulary (OOV) words. 

Therefore, we applied performance enhancement methods, which included various beam 

search strategies, N-gram-based context adoption, edit distance-based correction and 

dictionary-based checking, in novel ways to two basic seq2seq models. We experimentally 

evaluated these two basic models as well as fourteen enhanced seq2seq models, and compared 

their noisy text normalization performance with that of a transliteration model and a 

conventional statistical machine translation (SMT) model. The proposed seq2seq models 

improved the robustness of the basic seq2seq models for normalizing OOV words, and most 

of our models achieved higher normalization performance than the conventional method.  

Speech synthesis: Deep learning techniques are currently being applied in automated TTS 

systems, resulting in significant improvements in performance. These methods require large 

amounts of text-speech pair data for model training however, and collecting this data is costly. 
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Tacotron 2 we used, a state-of-the-art end-to-end speech synthesis system, requires more than 

10 hours of training data to produce good synthesized speech. Therefore, our second goal is to 

build a single-speaker TTS system containing both a spectrogram prediction network and a 

neural vocoder for the target Mongolian language, using only 30 minutes of target Mongolian 

language text-speech paired data for training. We evaluate three methods for training the 

spectrogram prediction models of our TTS system, which produce mel-spectrograms from the 

input phoneme sequence; (1) cross-lingual transfer learning, (2) data augmentation, and (3) a 

combination of the previous two methods. In the cross-lingual transfer learning method, we 

used two high-resource language datasets, English (24 hours) and Japanese (10 hours). We also 

used 30 minutes of target language data for training in all three methods, and for generating the 

augmented data used for training in methods (2) and (3) mentioned above. We found that using 

both cross-lingual transfer learning and augmented data during training resulted in the most 

natural synthesized target speech output. We also compare single-speaker and multi-speaker 

training methods, using sequential and simultaneous training, respectively. The multi-speaker 

models were found to be more effective for constructing a single-speaker, low-resource TTS 

model. In addition, we trained two Parallel WaveGAN (PWG) neural vocoders, one using 13 

hours of our augmented data with 30 minutes of target language data and one using the entire 

12 hours of the original target language dataset. Our subjective AB preference test indicated 

that the neural vocoder trained with augmented data achieved almost the same perceived speech 

quality as the vocoder trained with the entire target language dataset. We found that our 

proposed TTS system consisting of a spectrogram prediction network and a PWG neural 

vocoder was able to achieve reasonable performance using only 30 minutes of target language 

training data. We also found that by using 3 hours of target language data, for training the model 

and for generating augmented data, our proposed TTS model was able to achieve performance 

very similar to that of the baseline model, which was trained with 12 hours of target language 

data. 

Keywords 

Text normalization, noisy text, transliterated text, language model, seq2seq model, character 

conversion, speech synthesis, text to speech, transfer learning, data augmentation, low resource 

language
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Chapter 1: Introduction 

1.1 Background and aims 

TTS is an assistive technology that can be used in many ways. For example, there are TTS 

tools available for nearly every digital device, including computers, smartphones, and tablets. 

In addition, this software is also incorporated into the websites. TTS tool reads digital text 

aloud. As a result, it can help people with hearing impairments, disabilities, and aged citizens 

to better understand the content. Besides, it is also helpful for kids who struggle with reading. 

However, popular speech services only support a few languages because these few languages 

have sufficient resources, such as the large amount of speech data used to train the TTS model. 

Xu et al. (2020) mentioned that although there are more than 6,000 languages in the world, 

most languages lack speech training data, while Chen et al. (2019) said that laborious data 

collection remains difficult for at least 95% of the languages over the world. Magueresse et al. 

(2020) also notes that most of the natural language processing (NLP) research focuses on 20 

of the 7,000 languages of the world, and the vast majority of languages remain not well studied. 

These languages are often referred to as low-resource languages. Therefore, data scarcity is a 

significant challenge when building a TTS system for extremely low-resource languages. 

Investigating methods to resolve data sparsity is very helpful for low-resource languages. 

Mongolian is one of the low-resource languages.  

In this thesis, we proposed to build a TTS system for the low resource Mongolian language 

when a limited amount of training data is available. We present two studies, “text 

normalization” and “speech synthesis,” related to our proposed TTS system. Although we have 

not yet conducted an experiment that combines the two parts, we have tested them separately 

and investigated the best method for each case. An overview of the proposed TTS system with 

the whole process is illustrated in Figure 1.1. 
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Figure 1.1. Overview of the TTS system with the whole process. 

TTS system converts written text into machine-generated synthetic speech. The TTS system 

consists of two main components, a spectrogram prediction network and a vocoder. In other 

words, to generate a speech signal, we need two main steps; the first step is generating a mel-

spectrogram from the input phoneme sequence using the spectrogram prediction network, and 

the second step is generating the waveform from the mel-spectrogram using the vocoder. We 

used Tacotron 2 model as the spectrogram prediction network, while Parallel WaveGan (PWG) 

neural vocoder was used to generate waveform from the mel-spectrogram in our TTS system. 

In this study called “speech synthesis,” we investigated various methods to train the TTS 

system consisting of both components, with only 30 minutes of Mongolian speech data. The 

second block (Study-2) in Figure 1.1 shows a flow diagram of the speech synthesis part. 

In more detail, there are two sub-networks, encoder and decoder, in the spectrogram 

prediction network. First of all, there is a preprocessing stage that converts an input text into a 

phoneme sequence. The encoder network extracts out a hidden feature representation from this 

phoneme sequence. The output of the encoder is then fed into the decoder network, which 

generates the mel-spectrogram from it. However, there is one more important preprocessing 

step, which is text normalization. It takes input text and analyzes and organizes the input into 

a manageable list of words because the input text may contain symbols, numbers, 

abbreviations, acronyms, etc. In other words, text normalization is transforming text into a 

standard form. For example, the number “20” should be converted into its standard form 

“twenty.” Therefore, text normalization provides that these non-standard words are pronounced 

easily by a TTS system. Normalization of the input text into its actual pronunciation depends 

on the context of its use. Therefore, it is one of the biggest challenges to developing a TTS 

system for a new language. In this study called “text normalization”, we address the issue of 
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noisy, transliterated text normalization, which has recently attracted the attention of many 

researchers. If text is challenging to attempt to derive meaning from the words by software, it 

means noisy text. Text in chats, blogs, and SMS is very noisy because abbreviations and slang 

are widely used. Transliteration is the process of converting texts from one script to another 

based on phonetic similarity. For example, in the normalization task, transliterated text written 

in the Latin alphabet should be normalized into a canonical form that uses a different set of 

characters. Therefore, the normalization of noisy, transliterated text is more complicated than 

both non-standard text and noisy text in its native alphabet. The first block (Study-1) in Figure 

1.1 shows this text normalization part of our proposed TTS system. 

In general, because of the huge increase in social media use in recent years, our goal is to 

build a TTS system that can generate speech from any text such as canonical and noisy, 

transliterated text. Section 1.2 describes the noisy, transliterated Mongolian words and a brief 

overview of our methods to address them. Section 1.3 explains a brief overview of how we 

addressed the problem of data scarcity to train recent end-to-end neural models, which require 

a large amount of training data. 

1.2 Text normalization 

Social media websites such as Facebook, Twitter, Instagram and Snapchat are a rich source of 

text data, but the processing and analysis of social media text is a challenging task because 

written social media messages (chat, discussion, comments, etc.) are usually informal and 

‘noisy’, i.e., the writers use non-standard grammar and abbreviations, acronyms, phonetic 

substitutions of words with numbers or letters (LOL, CUL8R, etc.), slang, emojis, and many 

misspelled words. Social media text also contains many transliterated words, which are the 

result of converting words from the letters used in the source language into the letters used by 

another language, based on phonetics. For example, the English word ‘Twitter’ becomes ‘ツ

イッター’ (tsuittaa) in Japanese.   

In Mongolia, there are currently two writing systems in use, traditional Mongolian script 

and Mongolian Cyrillic, the latter of which is the country’s official alphabet.  But even though 
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the official writing system is Mongolian Cyrillic script, many Mongolians are using the Latin 

alphabet when posting information in Mongolian on social media sites, such as Facebook and 

Twitter, and when using mobile devices to send text messages. A standard for the transliteration 

of the Mongolian Cyrillic alphabet into the Latin alphabet (MNS 5217:2003) was approved in 

2003, due to the increasing use of the Latin alphabet resulting from the proliferation of modern 

technology and the Internet. In 2012, the transliteration standard was revised (MNS 

5217:2012). Both old and revised standards can be found in Appendix A and B, respectively. 

Although the Mongolian language has this standardized method for transliteration of 

Mongolian Cyrillic into Latin characters, the public does not generally observe it when writing 

on social media. As a result, transliterated Mongolian words are written in several different 

ways when using the Latin alphabet. For example, the given name “Мөнхсүх” can be 

transliterated as Munkhsukh, Munkhsvkh, Monkhsukh, Monhsuh, Munhsuh, Munxsvx, and 

Monhsvh. Before it became possible to use the Mongolian Cyrillic alphabet for mobile phone 

text messaging, people could only send short message service (SMS) messages using the Latin 

alphabet. Although it is now possible to write SMS text in the Mongolian Cyrillic alphabet, use 

of the Latin alphabet is still common because it is easier and faster to use. Guruuchin (2018) 

conducted a small survey to determine why people use the Latin alphabet when they write in 

Mongolian. A total of 74 Facebook users, divided into three age groups (16-26, 27-40 and 41-

55), participated in the survey. The reasons reported for using the Latin alphabet when writing 

in Mongolian were as follows:  

▪ It is faster to write when using the Latin alphabet. (61.7%) 

▪ When using the Latin alphabet, there are no spelling rules. (60.9%) 

▪ Computers and mobile phones have Latin alphabet keyboards. (56.4%) 

When asked the question, “Do you know the standard method of transliterating the 

Mongolian Cyrillic alphabet into the Latin alphabet?”, 85% of the participants said they did 

not know the standard method, while 15% said they knew it. Of those who said they knew the 

standard method, 10% said they use it, while the other 5% said they do not use it. The author 

concluded that people use the Latin alphabet according to their own judgement, and that the 
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main reason for using the Latin alphabet was its use on the keyboards of computers and mobile 

phones.  

Processing social media text is one of the key targets of NLP, thus there has been much 

research in recent years focusing on social media. However, there has been a lack of research 

in this area focusing on the Mongolian language. In fact, this is the first study on text 

normalization for Mongolian.  

Originally, text normalization was used to convert words that appeared in non-standard 

formats, such as numbers, dates, acronyms and abbreviations, into standard forms (Zhang et 

al. 2019; Huang et al. 2020). But later, text normalization was also applied to the conversion 

of informal text on social media into formal text. Table 1.1 shows examples of these two types 

of text normalization. 

Table 1.1. Examples of text normalization 

Category 
Non-standard 

form 
Standard form Informal text Formal text 

Date 2020 
‘two thousand twenty’ or 

‘twenty twenty’ 
c u see you 

Money $10 ‘ten dollars’ coooooooolllll Cool 

Time 17:10 
‘five ten’ or ‘ten after 

five’ or ‘ten past five’ 
BRB 

I’ll be right 

back 

In most research on noisy text normalization, both the source text and target text are in the 

same language. Our goal in this study, however, is to convert noisy, transliterated text into 

formal writing in a different alphabet. In other words, the alphabets used in the source and 

target texts are different (the Latin and Mongolian Cyrillic alphabets, respectively). For 

convenience, in the rest of this thesis we will use the term ‘Cyrillic’ to refer to the Mongolian 

Cyrillic alphabet. The aim of this text normalization study is the exploration of variants of 

character-level seq2seq models which are able to outperform conventional methods when only 

a limited amount of training data is available. We achieve this by combining various methods 
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(seq2seq models which use different beam search strategies, N-gram based context adoption, 

edit distance-based correction, and dictionary-based checking) in novel ways, specifically 

designed to overcome the challenges presented by OOV words. 

1.3 Speech synthesis 

Speech synthesis is the computer-based creation of artificial speech from normal language text. 

As for the speech synthesis, there has also been a lack of research in this area focusing on the 

Mongolian language. However, there are a few related research works for the Mongolian 

language, and most of them used traditional methods (Davaatsagaan and Paliwal 2008; Zhao 

et al. 2014). There are two types of Mongolian script, as we mentioned in Section 1.2. Some 

authors of the related works used text-speech paired data containing transcripts of utterances 

written in the traditional Mongolian script, while others used data containing transcripts written 

in the Mongolian Cyrillic script. Liu et al. (2017) built Mongolian TTS system based on the 

deep neural network (DNN). They transformed the traditional Mongolian script into their 

corresponding Latin transcriptions, then the statistic-based Mongolian grapheme to phoneme 

(G2P) conversion method was used to generate Mongolian phoneme sequence. They compared 

the DNN-based system with the conventional HMM-based system under the same corpus, and 

their results showed that the performance of the DNN-based system was better than the HMM-

based system. Even if their system synthesized clear speech, it could not give a natural-

sounding synthesized speech. In general, these traditional methods produce the audio to sound 

less natural than human speech. Deep learning techniques are now widely used in TTS systems 

due to their ability to generate higher quality synthesized speech than traditional methods. For 

example, recent end-to-end neural models such as Tacotron (Wang et al. 2017), Tacotron 2 

(Shen et al. 2018), Deep Voice 3 (Ping et al. 2018) and Char2Wav (Sotelo et al. 2017) are all 

able to generate natural-sounding speech. There is a related work (Li et al. 2018) for the 

Mongolian language, which used the Tacotron model for the Mongolian speech synthesis 

system. They built a large-scale dataset consisting of about 17 hours of recordings for training. 

Their experimental results showed that the proposed end-to-end Tacotron model performed 
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better than HMM-based and DNN-based models. Therefore, in this study, we use the deep-

learning method to build our proposed TTS model.  

A deep neural network is usually trained using a corpus of several hours of recorded speech 

from a single speaker. Hence, it is called a single speaker TTS model. In addition to a single-

speaker TTS model, it has recently been extended to support multi-speaker voices, speech 

synthesis in more than one language, and target language speech synthesis using speakers of 

different languages (cross-lingual TTS). But this study aims to build a single-speaker 

Mongolian TTS system using Tacotron 2, a state-of-the-art end-to-end speech synthesis system, 

when a very limited amount of target language training data is available. However, the end-to-

end neural models we mentioned above require a large amount of paired text-speech data for 

training, as well as substantial processing power. For example, Chung et al. (2019) found that 

the Tacotron model requires more than 10 hours of training data to produce good, synthesized 

speech. But collecting large amounts of speech data is expensive and time-consuming, which 

creates a significant hurdle when developing TTS systems for the world’s many, less widely 

spoken languages. Therefore, our main issue in this study is building a TTS system when only 

a small amount of target data is available.  

In this study, we used only 30 minutes of the target language training data to build our 

proposed TTS system containing both a spectrogram prediction network (Tacotron 2) and a 

neural vocoder (PWG) for the target language. The spectrogram prediction model produces 

mel-spectrograms from the input phoneme sequence, while the neural vocoder generates the 

waveform conditioned on mel-spectrogram. However, it is impossible to synthesize intelligible 

speech using the model trained with only 30 minutes of target language data from scratch. 

Therefore, we tested following three approaches for training the spectrogram prediction models 

of our TTS system to solve the problem of data scarcity. 

1. Cross-lingual transfer learning method 

2. Data augmentation method 

3. A combination of the previous two methods 

The cross-lingual transfer learning method means that the knowledge learned from a large 

amount of data is transferred and a pre-trained model is adapted with speech data in another 
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language. Therefore, in the cross-lingual transfer learning method, we used two high-resource 

language datasets, English (24 hours) and Japanese (10 hours). The second method we used to 

solve the problem of data scarcity is data augmentation, which is used to artificially create new 

training data from existing training data. We generated synthetic data from the 30 minutes of 

the original target language data to solve the limited target language data issue and increased 

the amount of target language training data 27 times the size of the original dataset. In addition 

to using the cross-lingual transfer learning and data augmentation methods separately, we also 

combined these two methods to improve the performance of TTS model. Besides, we also used 

the augmented data to train the neural vocoder.  

As a result, our proposed TTS system, consisting of a spectrogram prediction network and 

a PWG neural vocoder, was able to achieve reasonable performance using only 30 minutes of 

original target language training data. 

1.4 Thesis structure 

The thesis is organized as follows. As mentioned before, this thesis consists of two main parts, 

text normalization and speech synthesis, which are components of our proposed TTS system. 

Chapter 2 deals with the text normalization part of our TTS system, while Chapter 3 covers the 

speech synthesis part. Chapters corresponding to both parts/studies contain the related work, 

the architecture of all models used to conduct our experiments and the datasets used. Besides, 

we also describe each of the various methods we tested when building our proposed system for 

each study and discuss each study's experimental results in Chapter 2 and Chapter 3, 

respectively. Finally, Chapter 4 includes our general conclusion and future work.  
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Chapter 2: Text normalization of 

Mongolian text transliterated to Arabic 

2.1 Literature review 

Due to the increase in the use of noisy text on social media sites, noisy text normalization has 

become a major research topic in the field of NLP. Aw et al. (2006) used a phrase-based 

statistical model for short messaging service (SMS) text normalization. Vilariño et al. (2012) 

used a statistical bilingual dictionary, constructed using the IBM-4 model, to normalize SMS 

texts. Saloot et al. (2014) developed an unsupervised normalization system with two phases, 

candidate generation and candidate selection, for noisy text normalization. Six methods were 

used to generate candidates; one-edit distance lexical generation, phonemic generation, 

blending the previous two methods, two-edit distance lexical generation, dictionary translation 

and the use of heuristic rules. A language model probability score was then used to select the 

most appropriate candidate. Kaur and Mann (2016) developed a hybrid approach consisting of 

SMT and direct mapping, to transform non-standard text into standard text. 

More recently, several neural methods for machine translation have been proposed which 

can also be used for text normalization, such as Kalchbrenner and Blunsom (2013), Cho et al. 

(2014), Sutskever  et al. (2014), Bahdanau et al. (2014) and Luong et al. (2015). Ikeda et al. 

(2016) used a character-level encoder-decoder model for normalizing noisy Japanese text, and 

also built a synthetic noisy text database with pre-defined rules for data augmentation. They 

compared their neural network model with a rule-based method, as well as with using 

Conditional Random Fields (CRF). Lusetti et al. (2018) normalized Swiss German WhatsApp 

messages using a neural network model by integrating a language model into a character-level 

neural model. They then compared the performance of their model with that of a state-of-the-

art character-level SMT method. Lourentzou et al. (2019) used a hybrid seq2seq model which 

https://www.aclweb.org/anthology/people/n/nal-kalchbrenner/
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consisted of two, nested encoder-decoder architectures, namely, word-level and character-level 

seq2seq models. When an unknown symbol is encountered by the word-level seq2seq model, 

the character-level seq2seq model is used to normalize these OOV words. This hybrid model 

has achieved the best text normalization performance so far among neural models, but its 

performance is still below that of some conventional methods. Mager et al. (2019) proposed 

the use of a novel auxiliary text normalization task for seq2seq neural architectures, which 

improved the performance of the base seq2seq model by up to 5%. This increase in 

performance closed the gap between SMT and neural approaches for low-resource text 

normalization. Tursun and Cakici (2017) normalized noisy Uyghur text containing 

unsystematic use of the Latin alphabet into text written in the Common Turkic Alphabet (CTA), 

and compared the performance of a noisy channel model and a neural encoder-decoder model 

as normalization methods, using both synthetic and authentic data. They selected the character-

based solution in the encoder-decoder model, but chose the word-based solution for the noisy 

channel model. Mandal and Nanmaran (2018) normalized noisy, transliterated Bengali words 

written in the Latin alphabet into words in native Bengali script using a seq2seq model and the 

Levenshtein distance algorithm (Levenshtein 1966). The last study cited is similar to our 

research, because transliterated text written in the Latin alphabet was normalized into a 

canonical form which uses a different set of characters. However, while we seek to directly 

convert noisy, transliterated text into a canonical form, they first converted the noisy, 

transliterated text into standardized, transliterated text as accurately as possible. Then 

Levenshtein distance was performed to find the most appropriate canonical word, using a 

dictionary which consisted of canonical words and the corresponding words in their 

standardized, transliterated form. 

2.2 Text normalization challenge 

In this section, we describe the challenges of normalizing noisy, transliterated Mongolian 

words. Non-standard forms generated by writers on social media include words that are 

misspelled, abbreviated or shortened, as well as the use of phonetic substitution, acronyms and 

slang. We face all these problems in our project and, in addition, we must deal with the 
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widespread use of the Latin alphabet. The challenges encountered when normalizing noisy, 

transliterated text into standard Mongolian can be described as follows: 

▪ The Mongolian Cyrillic alphabet has 35 letters, and 17 of them have more than one 

transliteration alternative in the Latin alphabet. Table 2.1 shows the possible alternative 

Latin characters for Cyrillic letters, based on our training data (Table 2.8 in Section 

2.3.1), but it does not consider Latin alternatives for misspelled text (swapping two 

letters or replacing letters with others located nearby on the keyboard) or abbreviations.  

▪ Writers generally choose from among these alternatives based on phonetics. However, 

the phonetics of some Latin alternatives do not exactly match the phonetics of the 

Cyrillic characters, so they choose the alternative which they feel sounds more similar.  

▪ Some substitutions that were approved under the previous standard (MNS 5217:2003) 

are still in use. For example, the standard transcriptions of ‘ө’ and ‘ү’ are ‘ö’ and ‘ü,’ 

respectively, in the MNS 5217:2012 standard. But depreciated transcriptions are ‘o’ 

and ‘u,’ respectively. The standard transcription of ‘ц’ is ‘ts’ in the MNS 5217:2012 

standard, but ‘c’ in the MNS 5217:2003 standard, etc.  

▪ In addition, the phonetics of some Latin alternatives are very different from the 

phonetics of the original Cyrillic characters, but since the appearance of a Latin 

character is the same or similar to a particular character in the Cyrillic alphabet, users 

may choose it over another alternative. For example, the Cyrillic letters in rows 6, 7, 8, 

9, and 11 of Table 2.1 have the same appearance as some Latin letters. Although ‘ү’ 

and ‘v’ do not look exactly the same, some writers use ‘v’ as a Latin alternative because 

the two characters look somewhat similar. Table 2.2 shows some examples of these 

kinds of alternatives. 
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Table 2.1. Latin alphabet alternatives for Cyrillic letters 

# Cyrillic letter 
Standard transcription   

MNS 5217:2012 

Latin 

alternatives 

1 в v v, w, b 

2 е ye ye, e, y, i 

3 ё yo yo, e, y, i 

4 к k k, c 

5 ө ö o, u 

6 р r r, p 

7 с s s, c 

8 у u u, y 

9 ү ü u, y, v 

10 ф f f, p 

11 х kh kh, h, x 

12 ц ts ts, c 

13 ч ch ch, ts, c, j 

14 ы y i, y, ii 

15 ь i i, e 

16 ю yu yu, y 

17 я ya ya, y 

Table 2.2. Examples of Latin letters used in transliterated words that look similar to 

Cyrillic letters 

Word in Cyrillic 

script 

Incorrect transliteration 

into Latin script 

Standard transliteration 

into Latin script (meaning) 

өргөх opgox örgökh  (to lift) 

залуу zalyy zaluu  (guy) 

хүсье hvsey khüsiye  (good luck) 
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▪ Another problem is that a single Latin letter is used to transliterate multiple different 

Cyrillic letters when using the MNS 5217:2012 standard (see Table 2.3). For example, 

the four Cyrillic letters ‘и,’ ‘й,’ ‘ъ’ and ‘ь’ are transliterated into the Latin letter ‘i,’ 

while the two letters ‘ш’ and ‘щ’ are both transliterated into the Latin letters ‘sh.’ This 

situation also makes it difficult to normalize noisy, transliterated, Mongolian text into 

Cyrillic script. 

Table 2.3. Common Latin alphabet alternatives to the standard transcriptions of 

Cyrillic characters 

# Cyrillic letter 
Standard transcription    

MNS 5217:2012 

Latin 

alternatives 

1 и i i 

2 й i i 

3 ъ i i 

4 ь i i, e 

 

▪ Transcriptions of some Cyrillic letters consist of two Latin letters, according to the 

MNS 5217:2012 standard (see Table 2.4). These kinds of transcriptions also make 

normalizing noisy, transliterated text into Cyrillic script challenging. 
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Table 2.4. Standard transcriptions of particular Cyrillic letters and common Latin 

alphabet alternatives 

# Cyrillic letter 

Standard 

transcription   MNS 

5217:2012 

Latin alternatives 

1 е ye ye, e, y, i 

2 ё yo yo, e, y, i 

3 х kh h, kh, x 

4 ц ts c, ts 

5 ч ch ch, ts, c, j 

6 ш sh sh 

7 щ sh sh 

8 ю yu yu, y 

9 я ya ya, y 

 

▪ Tables 2.5 and 2.6 show examples of Cyrillic words with alternative and ambiguous 

transliterations contained in our training data (Table 2.8 in Section 2.3.1), illustrating 

how words written in Cyrillic script can be transliterated into many non-standard Latin 

alphabet forms. For example, the two Cyrillic words shown in the last row of Table 2.5 

(байдаг юм) can be transliterated into any of the ten, single-word, noisy non-standard 

forms shown in Latin script, in addition to the eleventh, two-word, standard 

transliteration. Therefore, when performing normalization, one-to-many mapping (1 : 

N) is used. Conversely, the standard transliteration ‘utsaar,’ shown in Table 2.6, can be 

the transliteration of two different Cyrillic words. This occurs because in the letter ‘ц’ 

in the Cyrillic alphabet is transliterated as ‘ts’ in Latin characters, while the Cyrillic 

characters ‘т’ and ‘с’ are transliterated separately as ‘t’ and ‘s,’ making it very difficult 

to determine whether the letters ‘t’ and ‘s’ in transcriptions are being used separately or 

together. 
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Table 2.5. Examples of normalizations of noisy, transliterated Mongolian words 

Phonetically transliterated word in 

Latin script 

Standard 

transliteration in 

Latin script 

(meaning) 

Word in 

Cyrillic 

script 

Type of 

alignment 

hucie, husey, husie, husii, hvsey, 

hvsie, hvsyaa, xusie, xvsie, xvsii 
khüsiye (good luck) хүсье 1 : 1 

bayarllaa, bayralaa, bayrallaa, 

bayrlala, bayrlalaa, bayrlalaaa, 

bayrlla, bayrllaa, byrllaa 

bayarlalaa (thank 

you) 
баярлалаа 1 : 1 

zovlogoo, zovolgoo, zowlogoo, 

zuvluguu, zuvulgoo, zuvulguu, 

zuwluguu, zuwulguu 

zövlögöö (advise) зөвлөгөө 1 : 1 

baidgiim, baidiim, baidin, bdagiin, 

bdgiin, bdi, bdiim, bdiin, bdim, bdy 
baidag yum (there is) байдаг юм 1 : N 

 

Table 2.6. Examples of ambiguous transcriptions 

Phonetically 

transliterated 

word in Latin 

script 

Standard 

transliteration into 

Latin script 

Possibility 1 in 

Cyrillic script 

(meaning) 

Possibility 2 in 

Cyrillic script 

(meaning) 

utsar utsaar/utsaar утсаар (by phone) уцаар (huff) 

uul uul/üül уул (mountain) үүл (cloud) 

 

If the amount of training data is small, and the rules for writing noisy, transliterated text are 

not limited, a model normalizing noisy, transliterated text into standard Mongolian faces a 

difficult challenge when attempting to normalize OOV words. Therefore, we enhanced basic 

character-level seq2seq models by combining them with various methods to solve the 

challenges presented by OOV words. 
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2.3 Data and tools 

2.3.1 Training and test data 

▪ Training data for the character-level seq2seq models 

Two datasets were prepared for our experiment. The first contained real data consisting 

of 2,200 sentences written in Mongolian using the Latin alphabet, which were collected 

from social media sites. These sentences were divided into words, which were then 

converted into Cyrillic. Canonical versions of the noisy words were then created 

manually. Our second data set consisted of standardized Latin alphabet transliterations 

of Cyrillic words which are frequently transliterated in different ways, except that the 

Latin characters ‘ü’ and ‘ö’ were not used in the standardized transliterations since they 

are rarely used on social media. Although writers often use incorrectly transliterated 

text on social media, standard transcriptions of all Cyrillic letters except ‘ү’ and ‘ө’ 

were used. The first four columns of Table 2.7 show the standard transcriptions of four 

Cyrillic letters. The two Latin letters ‘u’ and ‘o’ are generally used to represent these 

four Cyrillic letters, as shown in the two columns on the right of Table 2.7.  

Table 2.7. Standard and non-standard transcriptions of four Cyrillic letters 

Cyrillic 

letter 

Standard 

transcription 

Cyrillic 

letter 

Standard 

transcription 

Non-standard 

transcription 

Possible 

Cyrillic 

originals 

у u ү ü u ‘ө’, ‘у’, ‘ү’ 

о o ө ö o ‘о’, ‘ө’ 

 

We collected 7,267 Cyrillic words which begin with these four letters, and then 

transliterated these words correctly into the Latin alphabet using the MNS 5217:2012 

standard. In other words, we created standard transliterations of Cyrillic words using 

the Latin alphabet, thus our second data set did not contain any real or noisy text data. 

After we created standard transliterations, we changed all occurrences of the Latin 

letters ‘ü’ and ‘ö’ contained in the standard transliterations into ‘u’ and ‘o,’ respectively. 
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Our training data consisted of these two datasets, which we collectively called the 

“word pairs” dataset. The details of this training dataset are shown in Table 2.8. Note 

that this same training data was used for both the neural and statistical models evaluated 

in our experiment. 

Table 2.8. Details of ‘word pairs’ training dataset 

Description 

Noisy data Clean data Total data 

Input Output Input Output Input Output 

Noisy Latin 

transliterations 

Cyrillic 

words 

Standard Latin 

transliterations* 

Cyrillic 

words 

Latin 

words 

Cyrillic 

words 

Total words 16,806 17,756 7,267 7,267 24,073 25,023 

Total 

characters 
91,172 93,835 60,612 56,879 151,784 150,714 

Distinct words 7,548 5,474 7,151 7,267 14,197 12,030 

Max. sequence 

length (words) 
17 22 21 19 21 22 

* except the letters ‘ü’ and ‘ö’ were changed to ‘u’ and ‘o,’ respectively. 

 

▪ Training data for the word-level language model 

We then created a target language monolingual corpus of Cyrillic sentences, which was 

used to train the word-level language model used in most of our proposed methods. The 

details of this corpus are shown in Table 2.9. 

Table 2.9. Monolingual corpus of Cyrillic used to train the language model 

Description  

Total sentences 24,000 

Total distinct words 27,960 

Total words (all words contained in sentences) 225,596 
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▪ Training data for the transliteration model (for SMT model) 

We then created one additional data corpus for this study. This is a transliteration corpus 

used to train the transliteration model of our baseline phrase-based SMT method. The 

details of this corpus are shown in Table 2.10. It contains word alignments consisting 

of standard Latin alphabet transliterations of Cyrillic words using the MNS 5217:2012 

standard, except that the Latin letters ‘ü’ and ‘ö’ are omitted. 

Table 2.10. Data corpus used to train the transliteration model (for SMT model) 

Description 
Mongolian words with standard 

Latin transliterations 
Cyrillic words 

Total distinct 

words 
7,680 7,680 

Total characters 62,882 57,959 

Unique tokens 23 34 

 

▪ Test data 

We also prepared test data, which consisted of 200 Mongolian sentences written in 

noisy Latin characters, which were collected from social media sites. The details of the 

test data are shown in Table 2.11. In addition to the number of words, characters, and 

distinct words, the table also contains information on how many in-vocabulary (IV) and 

OOV words are contained in the test data.  

Table 2.11. Details of test data 

Description 
Noisy words written 

in Latin alphabet 

Total words  1,663 

Total characters 9,112 

Distinct words 1,178 

IV* words (included in the training data) 970 (58%) 

OOV words (not included in the training data) 693 (42%) 
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2.3.2 Tools 

Character-level seq2seq models are effective when a small amount of training data is provided, 

since the character set (or ‘vocabulary’) is very small in most languages. And since our target 

data is noisy and transliterated, there is an increased ‘rare word’ or OOV problem. Therefore, 

using a character-level seq2seq model alleviates OOV word issue and overcomes the problem 

better than a word-level seq2seq model. For these reasons, we used character-level seq2seq 

models without and with attention for normalizing noisy, transliterated, Mongolian text into a 

canonical format, and tested several variations of these two basic models. All of the models 

that we built are briefly described in this section. 

2.3.2.1 Basic character-level seq2seq models 

Seq2seq models contain encoder and decoder recurrent neural networks (RNNs). 

The encoder processes an input sequence 𝑥 = {𝑥1, 𝑥2, . . , 𝑥𝑛 } and compresses the information 

into context vectors of a fixed length. The decoder is initialized with context vectors to 

generate the transformed output 𝑦 = {𝑦1, 𝑦2, . . , 𝑦𝑚 }. In this way, our character level seq2seq 

model learns to map user transliterations to their canonical forms. 

Our first character-level seq2seq model, which does not incorporate an attention mechanism, 

is based on the architecture proposed by Sutskever et al. (2014), and is shown in Figure 2.1. 

After reading each symbol, the encoder generates the hidden state at each time step i, as shown 

in Eq. (1): 

 ℎ𝑖 = 𝑓𝑒𝑛𝑐(ℎ𝑖−1, 𝑥𝑖). (1) 

The final hidden state produced by the encoder, ℎ𝑛, is passed on to the decoder and used as 

the initial hidden state of the decoder (𝑠0 = ℎ𝑛). The hidden state of the decoder at time step i 

is computed using Eq. (2): 

 𝑠𝑖 = 𝑓𝑑𝑒𝑐(𝑠𝑖−1, 𝑦𝑖−1). (2) 

Note that both 𝑓𝑒𝑛𝑐 in Eq. (1) and 𝑓𝑑𝑒𝑐 in Eq. (2) are nonlinear functions. The conditional 

distribution of the next symbol is defined as shown in Eq. (3), where 𝑔 is a nonlinear function. 

 𝑃(𝑦𝑖|{𝑦1, 𝑦2, … , 𝑦𝑖−1}, 𝑥) = softmax(𝑔(𝑠𝑖)) (3) 
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Figure 2.1. Architecture of character-level seq2seq model without attention 

Our second character-level seq2seq model, which uses an attention mechanism, is based on 

the architecture proposed by Bahdanau et al. (2014) and is shown in Figure 2.2. The encoder 

generates the hidden state of each element in the input sequence ℎ𝑖 = 𝑓𝑒𝑛𝑐(ℎ𝑖−1, 𝑥𝑖) , 𝑖 =

1,2, . . , 𝑛 . Bahdanau’s alignment score function, shown in Eq. (4), is then used to calculate 

alignment scores between the previous decoder hidden state 𝑠𝑡−1 and each of the encoder’s 

hidden states ℎ𝑖, 𝑖 = 1,2, . . , 𝑛:  

 𝑒𝑡𝑖 =  𝑣𝑎 tanh(𝑊𝑎[𝑠𝑡−1; ℎ𝑖]), (4) 

where 𝑣𝑎 and 𝑊𝑎 are learnable weights in the neural network. Attention weights are calculated 

for each hidden state of the encoder, and a softmax activation function is applied to the 

alignment scores to obtain the attention weights, as shown in Eq. (5):  

 𝛼𝑡𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡𝑖) =
exp (𝑒𝑡𝑖)

∑ exp ( 𝑒𝑡𝑘)𝑛
𝑘=1

 . (5) 

Each of the encoder’s hidden states is multiplied by the corresponding attention weight, and 

the results are then summed to produce a context vector, as shown in Eq. (6):  

 𝑐𝑡 =  ∑ 𝛼𝑡𝑖ℎ𝑖
𝑛
𝑖=1 . (6) 
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This context vector is used to compute the final output of the decoder for each time step t, and 

is concatenated with the previous decoder output and fed into the decoder RNN. Eq. (7) is then 

used to calculate the hidden state of the decoder at time step t. A new output is then generated 

using Eq. (8), where 𝑔 is a nonlinear function that outputs the probability of 𝑦𝑡: 

 𝑠𝑡 = 𝑓𝑑𝑒𝑐(𝑠𝑡−1, 𝑐𝑡, 𝑦𝑡−1) (7) 

 𝑃(𝑦𝑡|{𝑦1, 𝑦2, … , 𝑦𝑡−1}, 𝑥 ) = 𝑔(𝑠𝑡, 𝑦𝑡−1, 𝑐𝑡). (8) 

 

Figure 2.2. Architecture of character-level seq2seq model with attention 

In this study, the training dataset described in Table 2.8 in Section 2.3.1 was used to train the 

basic two character-level seq2seq models and all enhanced character-level seq2seq models. 

2.3.2.2 Word-level language model 

Most of our proposed methods also use a language model. First, we built an N-gram statistical 

language model (SLM) which predicts 𝑃(𝑤|ℎ) , which represents the probability that a 

particular word (w) will occur given a history of previous words (h) that contains N-1 words. 

The general equation for calculating this probability is:  
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 𝑃(𝑤𝑛|𝑤𝑛−𝑁+1
𝑛−1 ) =

𝑐(𝑤𝑛−𝑁+1
𝑛−1 𝑤𝑛)

𝑐(𝑤𝑛−𝑁+1
𝑛−1 )

 .     (9) 

Unigram, bigram, and trigram language models were all evaluated in our experiments, as well 

as the neural language model (NLM) we developed, which is shown in Figure 2.3. This neural 

language model learns the probability of the occurrence of a word based on previous sequences 

of words which have appeared in the text. The model computes the probability of entire 

sequences such as 𝑃(𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛) using the following equation: 

 𝑃(𝑤1
𝑛) = 𝑃(𝑤1)𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤1

2) … 𝑃(𝑤𝑛|𝑤1
𝑛−1) = ∏ 𝑃(𝑤𝑘|𝑤1

𝑘−1)𝑛
𝑘=1 .     (10) 

The monolingual corpus described in Table 2.9 in Section 2.3.1 was used to train these language 

models. Most of our proposed methods predict or generate more than one hypothesis or 

candidate, and the word-level N-gram language model is then used to select the most suitable 

hypothesis or candidate based on context. 

 

Figure 2.3. Architecture of neural language model 

2.3.2.3 Baseline method: SMT 

In this section we provide a short description of our baseline method, which is based on a 

conventional phrase-based SMT model, created using the Moses tool developed by Koehn et 

al. (2007) (http://www.statmt.org/moses/). The SMT model generates translations based on 

statistical models, which include a translation model and a language model, whose parameters 

http://www.statmt.org/moses/
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are derived from the analysis of bilingual text corpora. We used phrase-based SMT for our 

noisy text normalization task. Our “word pairs” training dataset and monolingual corpus of 

Cyrillic, described in Tables 2.8 and 2.9 in Section 2.3.1, respectively, were used to train the 

translation model and language model, respectively. We used the KenLM language model 

included in the Moses tool. The transliteration module described in Durrani et al. (2014) has 

been integrated into Moses, and this module is completely unsupervised and language 

independent. Moses builds the transliteration model (TM) from a transliteration corpus. In this 

study, the transliteration corpus described in Table 2.10 in Section 2.3.1 was used to train the 

TM. First, we used the TM to normalize all of the words in the test data. Second, the TM was 

used to normalize only the OOV words in the test data when using SMT. These two results 

were compared with the outputs of the neural models. Figure 2.4 shows the architecture of the 

SMT model.  

 

Figure 2.4. Architecture of SMT model 

The decoder calculates 𝑃(𝑡|𝑠), where t is the translation result of s. After using Bayes’ theorem, 

the problem can be expressed as follows: 

 𝑃(𝑡|𝑠) ∝ 𝑃(𝑠|𝑡)𝑃(𝑡). (11) 
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Translation model 𝑃(𝑠|𝑡)  is the probability of a particular translation being accurate, and 

language model 𝑃(𝑡) is the expression of the fluency of the sentence. The system outputs the 

best translation �̃� by picking the translation with the highest probability, as shown in Eq. (12), 

where T is the set of all target strings:  

 �̃� = arg max
𝑡∈𝑇

𝑃(𝑡|𝑠) = arg max
𝑡∈𝑇

𝑃(𝑠|𝑡)𝑃(𝑡). (12) 

2.4 Methodology 

2.4.1 Introduction 

This chapter explains a more detailed description of how each method operates. The 

contribution of this study is the exploration of variants of character-level seq2seq models, in 

search of methods that can outperform conventional methods when using a small amount of 

training data to normalize noisy, transliterated text, while accurately handling OOV words. In 

this study, we compare the performance of several of these models with each other and with 

conventional baseline methods. The first two of our neural models are the basic seq2seq models 

described in Section 2.3.2.1. But since both of these models use a greedy search method, they 

are not robust when used on noisy, transliterated text, which is more difficult to normalize than 

noisy text in its native alphabet. For example, there are several different Cyrillic letters which 

can be substituted for particular Latin letters due to the chaotic use of the Latin alphabet in 

noisy, transliterated, Mongolian text, and choosing only one best hypothesis can lead to poor 

results. The use of Latin alphabet alternatives instead of Cyrillic words also increases the 

number of OOV words. Therefore, canonical forms of OOV words can actually be IV words, 

and OOV words can be converted into more than one IV word. Another challenge is working 

with a limited amount of training data. For these reasons, it is difficult to normalize OOV words 

effectively using the basic seq2seq models, making the question of how best to normalize OOV 

words when we have limited data the most important issue. Because of the difficulties 

described above, we tried combining seq2seq conversion with different beam search strategies, 

N-gram based context adoption, edit distance-based correction and dictionary-based checking 

in novel ways, in order to improve performance. 
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2.4.2 Selection methods 

Many NLP applications such as neural machine translation, text summarization and caption 

generation involve generating sequences of words. Beam search algorithm is widely used to 

improve output of these text generation tasks. Most of our proposed methods used the beam 

search algorithm, which selects multiple hypotheses instead of only the one best hypothesis for 

an input sequence at each time step. This is more appropriate for our task, where we are 

normalizing noisy text that is also transliterated. Important issues include determining when 

the beam search will be finished, as well as which hypothesis should be selected. Bahdanau et 

al. (2014) used a “shrinking beam” method. In this method, when a completed hypothesis is 

found, beam size shrinks by one. If beam size shrinks to zero or the number of steps hits a hard 

limit, beam search would finish. The completed hypothesis with the best score in all completed 

hypotheses is returned. Klein et al. (2017) used a different strategy of beam search. In their 

way, beam search terminates whenever the highest-ranking hypothesis in the current step is 

completed, without considering any other completed hypotheses. Thus, the current highest-

ranking hypothesis is returned.  

In our case, the beam search is finished when the loop reaches the maximum length of the 

output when using the inference time checking method. However, when using our other 

methods, the beam search is repeated until the first N completed hypotheses are obtained. After 

finishing the beam search, we select the final output from among the hypotheses or candidates 

using one of the following methods: 

▪ Selection Method 1: Before selecting the final output, the first N completed hypotheses 

are checked for canonical accuracy using the dictionary that was created with a 

monolingual corpus, which is described in Table 2.9 in Section 2.3.1. If all of the 

completed hypotheses are considered incorrect and not canonical, the first completed 

hypothesis is the final output of the seq2seq model. If there are canonical hypotheses, 

the hypothesis with the highest score among all of the canonical, completed hypotheses 

is the final output of the seq2seq model. 

▪ Selection Method 2: Noisy, transliterated words can sometimes be normalized into 

more than one canonical word. For example, the word ‘xur’ can be normalized into 
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three different canonical words: ‘хур,’ ‘хөр,’ and ‘хүр.’ In addition, the edit distance 

method generates candidates which are canonical words from incorrectly normalized 

words. Therefore, in order to select the correct word, we need context information, so 

a word-level N-gram language model is used to select the most suitable hypothesis or 

candidate based on context. The language model calculates the probability of the 

appearance of each given sequence, consisting of a hypothesis or candidate and the two 

previous words. The hypothesis or candidate with the maximum probability is the final 

output. 

▪ Selection Method 3: When finishing the beam search, the hypothesis with the highest 

score is the final output of the seq2seq model. 

2.4.3 Description of each method 

We used a combination of greedy and beam searches to improve the output of the model. If the 

one best hypothesis obtained using a greedy search was considered incorrect, multiple 

hypotheses are then selected using a beam search. This hybrid method can be more effective 

than using only a beam search. In other words, since the seq2seq model can usually normalize 

IV words correctly, multiple hypotheses are only selected when the noisy, transliterated text is 

normalized incorrectly, possibly because it is an OOV word, optimizing the operation of the 

model.  

Also, if the text is not transliterated, text normalization might be similar to the task of spell 

correction, which is even more difficult to perform with noisy text, even when it is not 

transliterated. Although the results of the basic seq2seq models are not useful for normalizing 

noisy, transliterated text, the model might be able to predict output close to the target from the 

input. Therefore, we applied spell correction techniques to the results of the basic seq2seq 

models to detect and correct incorrectly normalized words, improving the normalization of 

OOV words. 

Our best performing method can be considered a dictionary-based method, as it optimizes 

the prediction process by checking each hypothesis for spelling errors at each time step using 

a dictionary, thus reducing the number of incorrect hypotheses and retaining only the correct 
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ones for the next step. While our other methods check, correct, and select hypotheses after they 

have already been predicted, the unique feature of this method is that the model checks and 

selects hypotheses every time a character is generated. In other words, the output of the model 

can be improved every time the next symbol is created, as well as when finishing the beam 

search, the hypothesis with the highest score will be optimal output. As a result, this method is 

more efficient than the others. 

Each of our proposed methods is described below in more detail: 

▪ Simple seq2seq model: First, we built our basic character-level seq2seq models 

without and with attention, and did not use any additional methods with these two basic 

models. We designated these models M1 (w/o attention) and M2 (w/ attention).  

▪ Seq2seq with beam search: The next two methods employ the character-level seq2seq 

models described above with the addition of a beam search. These models were 

designated M1 with BS and M2 with BS. The seq2seq model computes a score for the 

next appearance of each symbol 𝑦𝑡  ( 𝑦𝑡 ∈ 𝑉 ), based on the previous sequence 

{(𝑦1, 𝑦2, … , 𝑦𝑡−1)𝑖}, i =  1, 2, . . , 𝑁. V is a vocabulary that contains all of the characters 

in the training data, and N is equal to the beam size. At time step t, the scores of all 

hypotheses {(𝑦1, 𝑦2, … , 𝑦𝑡−1)𝑖𝑦𝑡}, i =  1, 2, . . , 𝑁, (𝑦𝑡 ∈ 𝑉) are calculated by summing 

up the scores of the previous sequence {(𝑦1, 𝑦2, … , 𝑦𝑡−1)𝑖}, i =  1, 2, . . , 𝑁  and the 

score of the next symbol 𝑦𝑡. Then, all of the hypotheses are sorted according to their 

respective scores from the character-level seq2seq model. The top N hypotheses are 

then selected as inputs for the next step in each model. The beam search process is 

repeated until the first N completed hypotheses are obtained. After finishing the beam 

search, we have N hypotheses {(𝑦1, 𝑦2, … , 𝑦𝑚𝑖
)𝑖}, i =  1, 2, . . , 𝑁; 𝑚𝑖 ≤ 𝐷, where D is 

the maximum length of an output sequence. Selection Method 1 is then used to select 

the optimal hypothesis from among the N completed hypotheses. 

▪ Seq2seq with modified search: Next, we slightly modified the previous two methods 

(M1 with BS and M2 with BS), so that both a greedy search and a beam search are 

used. These two methods were designated M1 with GS and BS and M2 with GS and 

BS. The beam search is only used when the output of the greedy search is considered 
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incorrect and not canonical. The output of the greedy search is checked for canonical 

accuracy using a dictionary, and if the output is canonical, it is the final output of the 

seq2seq model. If the results of the greedy search are rejected, both of these modified 

search methods then operate in the same manner as the previous two methods. 

▪ Use of NLM score: These methods combine the use of a NLM with the previously 

described methods which use either a beam search or a combination of a greedy search 

and beam search. All of the processes for these models are the same as those used in 

method M1/M2 with BS, except that after finishing the beam search, Selection Method 

2 is used to select one of the first N completed hypotheses. In other words, the NLM is 

used to select the best final output of the character-level seq2seq model. Note that the 

seq2seq models and NLMs were trained separately. [17] integrated the scores of the 

word-level NLM and the character-level neural model. In our method however, the 

scores of these models are used separately in each method. In Table 2.12 in Section 

2.5.2.1, these methods are designated by the same names as the previously described 

methods, but we note that NLM was applied, indicating that only the score of the NLM 

was used in the final ranking. On the other hand, the previously described methods are 

categorized under the designation ‘w/o NLM.’ It would be a natural extension to 

integrate the scores of both the character-level seq2seq model and the word-level NLM 

in order to select one of the first N completed hypotheses. Thus, we rescored these N 

hypotheses with the weighted sum of the scores calculated using the character-level 

seq2seq models and the NLM. However, this score integration approach did not work 

well, and we obtained the same results as when using our previously described 

methods (M1/M2 with beam search and M1/M2 with modified search). Therefore, we 

do not show the results of this score integration approach in Table 2.12 in Section 

2.5.2.1.  

▪ Using edit distance and language model: When using SMT for normalizing noisy text, 

the TM learns the mapping between two sets of characters, which is quite useful for 

normalizing OOV words. We used the post-decoding transliteration method of SMT 

(Method 2 in Durrani et al. (2014)), which generates the list of OOV words 

automatically by running the decoder, while SMT only normalizes the IV words. After 
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outputting the OOV word list, SMT normalizes these OOV words using the TM, and 

then selects the best transliteration from a list of N-best transliterations using 

transliteration and language model features in a post-decoding step. When using these 

two methods, i.e., edit distance and a language model, we tried to correct words which 

were incorrectly normalized by the character-level seq2seq model in the same manner 

that SMT normalizes OOV words. Thus, our methods which we designated as M1+ ED 

and LM (SLM or NLM) and M2 + ED and LM (SLM or NLM) have two stages. 

The basic character-level seq2seq model is used to normalize noisy, transliterated text 

in the first stage. We then try to correct incorrectly normalized words in the second 

stage using edit distance and a word-level SLM or NLM as in Norvig (2016), which 

correspond to the transliteration and language models used in SMT, respectively. In 

other words, the second stage attempts to improve the output of the first model. We 

applied one and two edits in order to generate all of the possible candidates from each 

incorrectly normalized word. The dictionary was used for incorrectly normalized word 

detection and candidate generation. We used the same method for detecting incorrectly 

normalized words and generating possible candidates as Saloot et al. (2014) used to 

detect OOV words and generate candidates. However, we did not follow their approach 

regarding candidate selection using a language model. In addition, we used a neural 

model in the first stage, while Saloot et al. (2014) did not use a neural model for noisy 

text normalization. Our Selection Method 2 was then used to select the most 

appropriate candidate from all of the possible candidates.  

▪ Inference time checking: This performance enhancement method involves checking 

each hypothesis found using a beam search at each time step during the inference 

process. These methods are designated as M1 (inference time checking) and M2 

(inference time checking). In these methods, at time step t the scores of all hypotheses 

{(𝑦1, 𝑦2, … , 𝑦𝑡−1)𝑖𝑦𝑡}, i =  1, 2, . . , 𝑁, (𝑦𝑡 ∈ 𝑉) are calculated by a sum of the scores of 

the previous sequence {(𝑦1, 𝑦2, … , 𝑦𝑡−1)𝑖}, i =  1, 2, . . , 𝑁  and the score of the next 

symbol 𝑦𝑡. After every symbol 𝑦𝑡, (𝑦𝑡 ∈ 𝑉) is predicted at time step t from the previous 

sequence {(𝑦1, 𝑦2, … , 𝑦𝑡−1)𝑖}, i =  1, 2, . . , 𝑁, and the incomplete predicted sequence 

{(𝑦1, 𝑦2, … , 𝑦𝑡−1)𝑖𝑦𝑡} (𝑦𝑡 ∈ 𝑉) is then checked using the dictionary to determine if it is 
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correct or not. The sequence is matched with the prefix of each word in the dictionary, 

and if the sequence is determined to be incorrect it is pruned. The objective is to retain 

only correct sequences for the next step. After all of the hypotheses are sorted according 

to their respective scores, the top N hypotheses are selected as the inputs for the next 

step. The beam search process ends when the loop reaches the maximum length of the 

output, which is 22 in this case. Our Selection Method 3 is then used to select the 

hypothesis. This method, character-level seq2seq with attention (M2), achieved the 

best normalization results of the methods evaluated in this study. 

2.5 Implementation 

2.5.1 Parameter settings 

The character-level seq2seq model without attention uses several hyperparameters, which can 

be described as follows. In both the encoder and decoder models, we used three layers of 

stacked GRUs containing 256 hidden units each, with a dropout of 0.5. An RMSprop optimizer 

with a learning rate 0.001 was also used, with the batch size set to 32. We created the character-

level seq2seq model using Keras (Chollet et al. 2015). 

The character-level seq2seq model with attention was built using TensorFlow (Abadi et al. 

2016), and both the encoder and decoder models use a single GRU layer with 512 hidden units, 

while the size of the embedding vector is 250 dimensions. An Adam optimizer with a learning 

rate of 0.0002 and a batch size of 32 was also used. 

In the word-level NLM, an Adam optimizer with a learning rate of 0.001 was used. The 

model had a single LSTM layer with 100 hidden units, and dropout was 0.5. The size of the 

embedding vector was 50 dimensions, and the batch size was 32. We also used the Keras library 

to build this model.  
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2.5.2 Results and analysis 

2.5.2.1 Result-1 

We conducted normalization experiments and compared the performance of our various 

character level neural seq2seq models with the performance of conventional baseline methods. 

Table 2.12 shows the results of these experiments. The first two models, the TM only of the 

SMT, and a conventional SMT, were our baselines. The next two models (M1 and M2) are the 

basic versions of our seq2seq model, without and with attention, respectively. The next two 

models are the two versions of our basic seq2seq model (without and with attention) using a 

beam search. The following two seq2seq models are the same two versions of our basic model 

using both greedy and beam searches. In the four models just described (models 5, 6, 7 and 8), 

the NLM score was not used. But in the following four seq2seq models in Table 2.12 (models 

9, 10, 11 and 12), the scores of the seq2seq model and the NLM were used separately. In the 

next four seq2seq models (models 13, 14, 15 and 16), we used our two basic models with edit 

distance and either an SLM or NLM in the second stage. The last two models (models 17 and 

18) used our two basic models plus inference time checking, to check all of the incomplete 

hypotheses during the inference period in order to determine whether or not they were correct, 

in an attempt to retain only the correct hypotheses. All of the neural models were trained using 

the same training corpus.  

We used word error rate (WER) and character error rate (CER), as defined in Eqs. (14) and 

(15), respectively, which are metrics derived from the Levenshtein distance (Levenshtein 

1966), to evaluate the performance of each model. The total number of insertions, deletions, 

and substitutions that were needed to transform the normalized string into the reference string 

is used to represent the total number of incorrect words or characters, respectively, as defined 

in Eq. (13). WER and CER are calculated by dividing the number of incorrect words or 

characters, respectively, by the total number of words or characters in the reference string, as 

follows:  

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑𝑠 𝑜𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 =  𝐼 +  𝐷 +  𝑆 (13) 

I = Number of Insertions D = Number of Deletion S = Number of Substitution 
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 𝑊𝐸𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
 (14) 

 𝐶𝐸𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
 (15) 

  

Table 2.12. Comparison of WERs and CERs for each method when using test data 

Model WER CER Model # 

Baseline model: TM of SMT 19.49% 8.07% 1 

Baseline model: SMT 17.92% 7.40% 2 

M1 (w/o attention) 22.49% 7.65% 3 

M2 (w/attention) 22.13% 6.97% 4 

w
/o

 N
L

M
 

M1 with BS 17.08% 7.68% 5 

M2 with BS 16.90% 9.05% 6 

M1 with GS and BS 16.72% 6.89% 7 

M2 with GS and BS 15.70% 7.73% 8 

w
/ 

N
L

M
 

M1 with BS 20.87% 7.85% 9 

M2 with BS 21.11% 8.40% 10 

M1 with GS and BS 17.20% 6.96% 11 

M2 with GS and BS 16.06% 7.19% 12 

M1 + ED and SLM 16.66% 7.87% 13 

M2 + ED and SLM 15.28% 6.77% 14 

M1 + ED and NLM 14.92% 7.12% 15 

M2 + ED and NLM 13.96% 6.26% 16 

M1 with inference time checking 14.38% 7.19% 17 

M2 with inference time checking 13.41% 6.56% 18 
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▪ TM – Transliteration model 

▪ SMT – Statistical machine translation 

▪ M1 – Seq2seq model without attention 

▪ M2 – Seq2seq model with attention 

▪ GS – Greedy search 

▪ BS – Beam search 

▪ NLM – Neural language model 

▪ SLM – Statistical language model 

▪ ED – Edit distance 

▪ Underlined scores = achieved lower WERs than the baseline methods 

▪ Bold scores = best performance in that category 

When only the TM of the SMT was used to normalize noisy text, the results were worse 

(i.e., the error rates were higher) than when using the entire SMT model. Our two basic seq2seq 

models (without and with attention) achieved the worst word-level performance, with higher 

WERs than all of the other models. The two versions of our basic seq2seq model using a beam 

search followed by an NLM (methods 9 and 10) achieved word-level results slightly better than 

the two basic seq2seq models, but worse than the two baseline models. All of our other 

proposed seq2seq models achieved higher word-level performance than the baseline models. 

The two-stage methods (models 13, 14, 15 and 16 in Table 2.12) achieved word-level 

performance higher than the baseline methods and higher than some of the other neural 

methods. The inference time checking method (model 17), which checked each hypothesis 

during the inference period, achieved word-level performance higher than the baseline methods 

and all of the neural methods except for models 16 and 18. The other inference time checking 

method, using the seq2seq model with attention (model 18), achieved higher word-level 

performance than the baseline methods and also outperformed all of the other neural models. 

In all of the experiments, the seq2seq models with attention (except for M2 with BS 

followed by the NLM) achieved better word-level performance than the seq2seq models 

without attention. Regarding models 5 through 12 in Table 2.12, the word-level results for 

models followed by the NLM were lower than the models without the NLM. In addition, the 
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seq2seq models which used greedy search and beam search (models 7, 8, 11 and 12), achieved 

better word-level performance than the models which used only a beam search (models 5, 6, 9 

and 10), regardless of whether or not the NLM score was used.  

The two-stage methods (models 13, 14, 15 and 16 in Table 2.12) used one of the basic 

character-level seq2seq models in the first stage. We can see that the word-level performance 

of the basic seq2seq models were lower than the baselines, but that character-level results were 

nearly the same or slightly higher than the baselines. This was because applying the spelling 

corrector to the output of the first stage improved word-level performance, which means that 

the basic seq2seq model predicted outputs close to the targets, and that errors involving 

incorrectly normalized words were then easily corrected using a spelling corrector. The two-

stage methods were competitive with the inference time checking methods (models 17 and 18), 

however the inference time checking methods took longer than the other methods when 

normalizing noisy, transliterated text.  

A total of 12 models, whose results are underlined in Table 2.12, achieved higher word-level 

performance than the baselines. The best WER (13.41%) and CER (6.26%) were obtained 

using different methods (inference time checking and edit distance, respectively). 

2.5.2.2 Result-2 

Next, we analyzed how the different methods normalized IV and OOV words in the test data. 

As shown in Table 2.11 in Section 2.3.1, our test data contained 1,663 words, which included 

970 IV words which appeared in the training data and 693 OOV words which did not, i.e., 58% 

of the test data were IV words and the remaining 42% were OOV words. Table 2.13 shows 

how well each of the evaluated methods normalized IV and OOV words. We can see that the 

differences in the WERs for IV words among the neural models were small, while the 

differences in the WERs for OOV words were large. Results for IV words for most of the neural 

models are close to the results for the basic seq2seq models, but with slight improvement. 

However, the minimum to maximum WERs for normalization of OOV words for all of the 

neural models ranged from 26.12% to 47.05%, with the basic seq2seq models achieving the 

lowest performance. This indicates that if the amount of training data is small, and the rules for 

writing noisy, transliterated text are not limited, the basic seq2seq models face a difficult 
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challenge when attempting to normalize OOV words. The OOV word-level normalization 

performance of all of the other proposed neural models were higher than the basic seq2seq 

models however, and most of the neural models outperformed the baseline models. Therefore, 

our experimental results show that the proposed performance enhancement methods we tested 

improved the robustness of the existing neural models for normalizing OOV words in low 

resource scenarios. SMT achieved the best performance when normalizing IV words, however 

our proposed inference time checking method achieved the best performance when normalizing 

OOV words. 
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Table 2.13. Comparison of WERs and CERs for IV and OOV words for each method 

when using test data 

Model description 

WER CER 
Model 

# IV words 
OOV 

words 

IV 

words 

OOV 

words 

Baseline model: TM in 

SMT 
6.40% 37.81% 2.76% 12.81% 1 

Baseline model: SMT 3.72% 37.81% 1.35% 12.81% 2 

M1 (w/o attention) 4.95% 47.05% 1.81% 12.86% 3 

M2 (w/attention) 5.06% 46.04% 1.90% 11.49% 4 

w
/o

 N
L

M
 

M1 with BS 4.13% 35.21% 1.46% 13.22% 5 

M2 with BS 4.75% 33.92% 1.90% 15.43% 6 

M1 with GS and BS 4.03% 34.49% 1.44% 11.76% 7 

M2 with GS and BS 4.33% 31.61% 1.57% 13.22% 8 

w
/ 

N
L

M
 

M1 with BS 6.71% 40.70% 2.25% 12.84% 9 

M2 with BS 7.74% 39.83% 2.52% 13.65% 10 

M1 with GS and BS 4.13% 35.50% 1.46% 11.86% 11 

M2 with GS and BS 4.13% 32.76% 1.48% 12.27% 12 

M1 + ED and SLM 4.44% 33.77% 1.79% 13.30% 13 

M2 + ED and SLM 4.85% 29.88% 1.90% 11.11% 14 

M1 + ED and NLM 4.44% 29.59% 1.79% 11.88% 15 

M2 + ED and NLM 4.75% 26.84% 1.86% 10.19% 16 

M1 with inference time 

checking 
3.92% 29.01% 1.39% 12.35% 17 

M2 with inference time 

checking 
4.33% 26.12% 1.57% 11.01% 18 
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2.6 Conclusion 

In this study we investigated the performance of variants of neural models when normalizing 

noisy, transliterated Mongolian text in a low resource scenario, and compared the performance 

of our proposed methods with that of two conventional methods, a TM and an SMT method. 

Twelve of our neural models achieved word or character-level normalization performance that 

was better than the baseline models. Specifically, all of the methods, except for the two basic 

seq2seq models (without and with attention) and the two seq2seq models with beam search 

followed by an NLM, achieved better word-level normalization performance than the 

conventional methods. The best normalization performance was achieved by our inference time 

checking method, which included the checking of each hypothesis during the inference period. 

It achieved a WER of 13.41% when using the test data, outperforming the baseline SMT model 

by 4.51%. Most of the methods we proposed improved robustness when normalizing OOV 

words, and all of them achieved higher word-level performance than the basic seq2seq models. 

Although the baseline methods achieved better word-level performance when normalizing IV 

words, most of our proposed neural methods outperformed the baseline methods when 

normalizing OOV words, with our inference time checking method achieving a WER 10% 

lower than the baseline methods when attention was applied. 
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Chapter 3: Speech synthesis for low-

resource language using cross-lingual 

transfer learning and data augmentation 

3.1 Literature review 

Recently proposed TTS models based on deep learning techniques (Wang et al. 2017; Shen et 

al. 2018; Ping et al. 2018; Sotelo et al. 2017) are capable of synthesizing natural, human-like 

speech. These models require a large amount of speech data for training however, as well as 

substantial computational power, thus data sparsity is a challenge when developing advanced 

TTS systems for low-resource languages. Thus, recent studies have proposed a variety of 

techniques which can be used for TTS with low-resource languages. These techniques include: 

▪ Monolingual transfer learning: When there is only a small dataset of a particular type 

of speech available, such as the speech of an additional speaker, emotional speech data, 

alternative speaking style data, etc., a pre-trained model, trained using a large amount 

of a different type of speech data, can be used as a low-resource speech model by using 

transfer learning. Tits et al. (2019) explored transfer learning for TTS with low-resource, 

emotional speech. After training their model with a large dataset, they fine-tuned it 

using a small, neutral speech dataset from a new speaker. They then adapted the 

resulting model by training it with a small, emotional speech dataset also created using 

the new speaker. Bollepalli et al. (2019) used the same method as in Tits et al. (2019), 

except that Lombard speech was used for transfer learning instead of emotional speech. 

They adapted a pre-trained TTS system using 2 hours of normal speech data from a new 

speaker. They then adapted the normal speech model for the new speaker to a different 

speaking style from the same speaker, such as Lombard speech, using a transfer 
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learning method. In studies Tits et al. (2019) and Bollepalli et al. (2019), all of the 

datasets used were in the same language. 

▪ Cross-lingual transfer learning: Since large amounts of data are often unavailable for 

low-resource languages, most of the proposed approaches for TTS for these languages 

have used cross-lingual transfer learning to train their target language TTS systems. 

However, when using cross-lingual transfer learning, input space mismatches can occur. 

Chen et al. (2019) developed TTS systems for low-resource languages and explored 

cross-lingual symbol mapping to improve the transfer of knowledge learned previously 

from a high-resource language dataset. Three methods for cross-lingual symbol 

mapping were evaluated, and two of these methods, which were denoted “Unified” and 

“Learned”, achieved good results. Their proposed method “Learned” automatically 

mapped the relationship between source and target language linguistic symbols to 

transfer knowledge learned previously. To do this, they pre-trained an automatic speech 

recognition (ASR) system using the source language, then fixed the parameters of the 

pre-trained ASR system and concatenated their proposed Phonetic Transformation 

Network (PTN). They used the target language data in this stage, and PTN learned to 

find the possible target symbols given the ASR output, source symbols. Their results 

when using their proposed “Learned” method were no better than when using the 

“Unified” method, but were comparable. In this study, we used two high-resource 

languages, English and Japanese, and these datasets were used both sequentially and 

simultaneously when training the model. Therefore, in our approach, we used the 

“Unified” method. In other words, we converted the transcriptions of all of the 

utterances in each dataset into their phonetic transcriptions based on IPA, and we then 

created a unified symbol set to solve the input space mismatch problem. 

▪ Multi-speaker models: In addition, multi-speaker models have been used to reduce the 

amount of training data needed for TTS. Latorre et al. (2019) has shown that multi-

speaker models, which use a small amount of data from each speaker, are more effective 

than speaker-dependent models trained with more data. In Luong et al. (2019), 

researchers investigated the effect on TTS performance of training a multi-speaker 

model using a speaker-imbalanced corpus. They found that simply combining all the 
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available data from every speaker when training the multi-speaker model produced 

better results than using a speaker-dependent model. Gutkin et al. (2016) constructed a 

multi-speaker, acoustic database using crowdsourcing, and then used it to bootstrap a 

statistical, parametric speech synthesis system. These studies all used multi-speaker 

datasets which were in the same language as the target speech.   

▪ Multilingual models: Since high-quality, multi-speaker data is generally unavailable in 

most low-resource languages, multilingual or multilingual/multi-speaker models can be 

used to address data availability issues. Yu et al. (2016) proposed a multilingual bi-

directional long short-term memory (BLSTM) based speech synthesis method which 

transforms the input linguistic features into acoustic features. The input layer and 

hidden layers of the BLSTM were shared across different languages for speech 

synthesis of low-resource languages, but the output layer was not shared. The input 

feature vectors of different languages were combined to form a single, uniform 

representation of the input features. The shared hidden layers transform the uniform 

input features into an internal representation that can benefit low-resource TTS. Their 

proposed multilingual BLSTM based speech synthesis method was able to more 

accurately predict acoustic features than a monolingual BLSTM. Li and Zen (2016) 

built a long short-term memory (LSTM) recurrent neural network based, multi-

language/multi-speaker (MLMS) statistical parametric speech synthesis system using 

six languages. Their proposed MLMS model achieved similar performance to that of 

conventional language-dependent and speaker-dependent models. They also 

demonstrated that adapting their proposed system to new languages using limited 

training data achieved better performance than building low-resource language models 

from scratch. Korte et al. (2020) conducted experiments to compare the naturalness of 

speech from single-speaker models with speech from multilingual models when 

different amounts of the target speaker’s data were used for training. They also 

compared the naturalness of speech from monolingual, multi-speaker models with 

speech from multilingual, multi-speaker models when larger amounts of non-target 

language training data were used. As a result, they demonstrated the effectiveness of 

using multilingual models to improve the naturalness of speech in low-resource 
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language TTS systems, finding that the use of foreign language training data improved 

the quality of low-resource target language speech output. Their proposed multilingual 

model used a separate encoder for each language to represent language information. 

They found that this method of representing language information was more effective 

than using language embedding. Lee et al. (2020) built bilingual, multi-speaker TTS 

models using two monolingual datasets to investigate how speech synthesis networks 

learn pronunciation from datasets of different languages. They noticed that two, learned 

phoneme embeddings were located close together when they had similar pronunciations. 

Therefore, based on this observation, they proposed a training framework to utilize 

phonetic information from a different language. They showed that pre-training a speech 

synthesis model using datasets from both high- and low-resource languages could 

enhance the performance of the TTS model with low-resource languages. Chen et al. 

(2019) built a cross-lingual, bilingual TTS system with learned speaker embedding, 

using two monolingual, multi-speaker datasets. A speaker encoder model, trained with 

the English and Chinese datasets, was used to represent the latent structure the 

utterances of different speakers and language pronunciations. The learned speaker 

embedding extracted by the speaker encoder was then used to condition the spectrogram 

prediction network. They noted that the learned speaker embedding could represent the 

relationship between pronunciations across the two languages, even though English and 

Chinese have different phoneme sets. They observed that phonemes with similar 

pronunciations were inclined to remain closer to each other across the two languages 

than to the other phonemes. 

▪ Data augmentation: Data augmentation is widely used in ASR to produce additional 

synthetic training data (Ko et al. 2015; Zhou et al. 2017; Geng et al. 2020). Recent 

speech synthesis studies have shown that data augmentation can also improve the 

performance of TTS models. Huybrechts et al. (2021) built high-quality TTS models 

for expressive speech, to be used when only a very small amount of expressive speech 

data is available for a target speaker. First, they generated synthetic speech data from a 

source speaker to the target speaker in the desired speaking style using a voice 

conversion model. Second, they trained the TTS model using the generated synthetic 
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speech data and the target speaker recordings. Then the pre-trained model was fine-

tuned with non-synthetic data in order to focus on the actual target space more closely. 

Using both data augmentation and fine-tuning methods improved the signal quality, 

naturalness, and style adequacy of the synthetic speech without any drop in speaker 

similarity. Hwang et al. (2021) proposed a TTS-driven data augmentation method to 

improve the quality of the output of a non-autoregressive (NAR) TTS system. First, 

they trained the source autoregressive (AR) TTS model using recorded speech data 

from a professional speaker. Then, text scripts were prepared for generating synthetic 

data using the source AR TTS model. After generating a large amount of synthetic data 

(179 hours), this augmented corpus was used to train the target NAR TTS model. The 

proposed data augmentation method was effective and significantly improved the 

quality of the output of the NAR TTS system. Cooper et al. (2020) investigated two 

speaker augmentation scenarios for a multi-speaker TTS model. The first speaker 

augmentation method creates “artificial” speakers by changing the speed of the original 

speech using a sound exchange audio manipulation tool (SoX)1. The second method 

uses low-quality data containing background noise and reverberation, which was 

collected for purposes other than TTS, such as ASR. This low-quality data consisted of 

four new ASR corpora which included speech in different dialects. They modified the 

postnet and encoder of the Tacotron model to support the additional channel and dialect 

factors. The channel represents a factor in the low-quality data jointly caused by the 

frequency characteristics of the recording equipment, noise and reverberation. Their 

modified Tacotron model trained with speaker augmentation data improved the 

naturalness of the synthesized speech of speakers seen during training. They observed 

that artificial speaker augmentation contributed to speech naturalness rather than 

speaker similarity, and that adding low-quality data improved the quality of the 

synthetic speech for seen speakers. Liu et al. (2020) built a bilingual TTS model for use 

when the amount of target language data was limited. They tried to solve the problems 

of accent carry-over and mispronunciation. Accent carry-over can occur during cross-

 
1 http://sox.sourceforge.net 

http://sox.sourceforge.net/
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lingual speech synthesis, so tone preservation mechanisms were used to address this. 

Mispronunciation during low-resource synthesis occurs when the synthesizer does not 

have enough examples to learn proper phonetization. They addressed this problem with 

data augmentation, using noise and speed perturbations to increase the target low-

resource language dataset 10-fold. SoX was used for speed perturbation. Their 

experimental results demonstrated the significant potential of data augmentation for 

improving speech quality when working with extremely low-resource languages. Our 

proposed method uses a data augmentation method similar to that used in Cooper et al. 

(2020) and Liu et al. (2020), but in these studies either two or four additional versions 

of the original utterances, respectively, were generated by changing the speed factor. 

Vehicle noise was then added to all of the utterances in Liu et al. (2020). In this study, 

we generated synthetic speech with a wider range of variation, creating 26 versions of 

each utterance from the original speech by changing the pitch and speed. While Cooper 

et al. (2020) and Liu et al. (2020) increased the amount of training data 3-fold and 10-

fold, respectively, using data augmentation we increased the amount of target language 

training data 27 times the size of the original dataset. 

3.2 A brief overview of our methods compared to related work 

In previous studies of monolingual and cross-lingual transfer learning which appear in the 

literature, knowledge learned from a large amount of data was transferred and a pre-trained 

model was adapted with the specific type of speech data in the same language or speech data 

in another language. In this study, we are proposing a single-speaker TTS system for use in a 

low-resource scenario, therefore we also used the same method proposed in previous studies, 

and trained a monolingual, single-speaker TTS model. But in our approach, two high-resource 

languages, English and Japanese, were used sequentially for pre-training to improve the 

transfer of linguistic knowledge. Both of the high-resource language corpora we used are 

publicly available, and contain speech data from a different, single, female speaker. In contrast, 

our target Mongolian language dataset contains speech data from a single, male speaker. 

Therefore, our single-speaker TTS model was trained using a different single-speaker dataset 
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at each training stage, e.g., during the pre-training and fine-tuning stages. The phonemes of the 

few Mongolian letters which are not contained in English are contained in Japanese, and vice 

versa. For example, the phonemes of the Cyrillic letters ‘ө’ and ‘ц’ are not contained in English, 

while the phonemes of the Cyrillic letters ‘у,’ ‘ө’ and ‘л’ are not contained in Japanese. In 

addition, the Mongolian language belongs to the Altaic family of languages. It has been 

suggested that Japanese is linguistically related to Altaic, as there are structural similarities and 

the pronunciations of the phonemes are very similar. English, on the other hand, is an Indo-

European language. Therefore, we first used English, then Japanese, to train the pre-trained 

model, because it is generally more effective to train models using the less similar data first. 

In previous studies involving multi-speaker models and multilingual models which appear 

in the literature, investigators built multi-speaker models using monolingual data in order to 

reduce the amount of training data needed, while multilingual models were trained using 

multilingual or multilingual, multi-speaker datasets. In contrast, our aim is to build a 

monolingual, single-speaker TTS model which can synthesize the Mongolian speech of the 

male speaker recorded in the target language dataset. But we believe that a multi-speaker model 

can be used as a component in its development. In this study, since we do not have multi-

speaker data for the targeted low-resource language, we instead trained the multi-speaker 

model with multilingual data, using the same input representation (one speaker per language, 

with different speakers for each language), and then fine-tuned it to realize the proposed 

monolingual, single-speaker TTS model. In other words, we used a multi-speaker model and 

multilingual data to obtain a monolingual, single-speaker model. 

Although we used transfer learning in two different situations (with both single- and multi-

speaker models) to address the issue of the limited data, we found that 30 minutes of target 

language training data was insufficient for cross-lingual training. Therefore, we generated a 

training dataset which was 27-fold larger using data augmentation in order to solve the limited 

target language data issue, and this dataset was used to train both the single- and multi-speaker 

models. Since the augmented data can be considered to be from different speakers, it may 

therefore be more suitable for training a multi-speaker model.  
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In this study, we propose a single-speaker TTS system for the low-resource language of 

Mongolian. The contributions of this study are as follows: 

1. We explore the TTS model’s performance after cross-lingual transfer learning using high 

and low-resource language datasets. These datasets were used both sequentially and 

simultaneously during the training of the spectrogram prediction network. 

2. We create a large amount of augmented data by changing some of the characteristics of a 

very small amount of original target language speech data, such as pitch and speed, and 

evaluate the TTS model’s performance when this augmented data is used for training.  

3. We show how the performance of our low-resource language TTS model is enhanced by 

combining the previous two methods.  

4. We investigate how much original target language data is needed when training the 

proposed TTS model in order to achieve the same results as the baseline model trained with 

a much larger amount of target language data. 

5. We demonstrate how augmented data can also be used to train the neural vocoder, in 

addition to the spectrogram prediction network.  

In the experiments related to contributions 1-3 described above, we tested two types of TTS 

models; single-speaker (MS) and multi-speaker (MM). 

3.3 Data and tools 

3.3.1 Input representation 

We chose English and Japanese as our high-resource source languages, and used Mongolian as 

the low-resource target language in our experiments. The pronunciation of some phonemes in 

the three languages are similar, therefore learned phoneme embedding can be shared, 

improving the performance of our low-resource language TTS model. We created a unified 

symbol set to solve the input space mismatch between the source and target languages before 

training. The transcriptions of all of the utterances in the English and Mongolian datasets were 

converted into their phonetic transcriptions based on IPA. For Japanese, the transcripts of all 
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of the utterances were first converted into Romaji using an online converter 2 , and then 

converted from their Romaji representations into phonetic transcriptions based on IPA. Table 

3.1 shows all of the phonemes used in each dataset. Since some phonemes in these three 

languages have the same pronunciations, there are overlapping phonemes in the source and 

target languages. On the other hand, some phonemes exist only in a particular source or target 

language. The number of phonemes which occurred only in the English language was greater 

than the number of phonemes that existed only in the target language. In contrast, all of the 

phonemes of the Japanese language are contained in Mongolian. Only one phoneme in the 

target language dataset, ‘ö,’ is not contained in either of the high-resource language datasets, 

while three phonemes, ‘l,’ ‘ʊ’ and ‘c,’ are contained in the data of one of the high-resource 

languages. Therefore, to create the unified symbol set, the phonemes ‘ö’ and ‘c’ were inserted 

into the English language dataset by replacing the phonemes that sound the most similar in the 

English source language dataset. We did not replace many phonemes, and each new phoneme 

replaced only one occurrence of the English language phonemes. This replacement is necessary 

when the source and target datasets are used sequentially during cross-lingual transfer learning. 

  

 
2 https://nihongodera.com/ 

https://nihongodera.com/
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Table 3.1. Phonemes used in each dataset. 

# English Japanese Mongolian # English Japanese Mongolian 

1 a (aɪ, aʊ) a a 21 v v v 

2 b b b 22 w - - 

3 d d d 23 z z z 

4 e e e 24 æ - - 

5 f f f 25 ð - - 

6 g g g 26 ŋ ŋ ŋ 

7 h h h 27 ɑ - - 

8 i i i 28 ɔ - - 

9 j j (ja, jo, ju) j (ja, jo, jʊ) 29 ə - - 

10 k k k 30 ɛ - - 

11 l - l 31 ɜ - - 

12 m m m 32 ɪ - - 

13 n n n 33 ʃ ʃ ʃ 

14 o o o 34 ʊ - ʊ 

15 p p p 35 ʌ - - 

16 r r r 36 ʒ - - 

17 s s s 37 ʤ ʤ ʤ 

18 t t t 38 ʧ ʧ ʧ 

19 u u u 39 θ - - 

20 - - ö 40 - c c 

3.3.2 Dataset 

English and Japanese were selected as our high-resource source languages. As our English 

speech corpus, we used LJSpeech (Ito 2017), a public domain dataset consisting of 13,100 

utterances, with a total length of 24 hours. Each audio file is a single-channel, 16-bit PCM 

WAV with a sampling rate of 22,050 Hz. For our Japanese speech corpus, JUST (Sonobe et al. 

2017) was used. It is also a public dataset consisting of 7,696 utterances, with a total length of 

10 hours of paired text-speech data. We down-sampled each audio file in the corpus to 22,050 

Hz. These source corpora feature the voices of different, single, female speakers.  
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We prepared a target speech corpus using part of a Mongolian language translation of the 

Bible, which was manually divided into individual sentences. The entire corpus consisted of 

8,183 short audio clips of a single, male speaker, with a total length of 12 hours. Each audio 

file is a single-channel, 16-bit PCM WAV with a sampling rate of 22,050 Hz. We randomly 

selected 30 minutes of paired text-speech data, consisting of 307 utterances, to use as the target 

language dataset in our experiments. There are 35 letters in the Mongolian Cyrillic alphabet. 

We counted the number of occurrences of each letter in the 30 minutes of target language data 

before the transcriptions were converted into their phonetic representations, in order to explore 

how the number of occurrences of a letter affects the learning of its pronunciation. Table 3.2 

lists the Mongolian letters contained in the 30-minute and 12-hour target language datasets 

with corresponding phonetic symbols, as well as the number of occurrences and the distribution 

of each letter. We sorted the list in descending order by the number of occurrences of the letters 

in the entire dataset. The letter ‘щ’ is not contained in the target language dataset because it is 

never used in the Mongolian language - only Russian loanwords contain this letter. Its 

pronunciation is identical to ‘ш’; Russian loanwords which include the letter ‘щ’ will 

sometimes be spelled with ‘ш.’ In addition, the letters ‘к’ and ‘ф’ are also only used in foreign 

words, and thus appear infrequently. Also, the letter ‘п’ does not appear in the middle or at the 

end of a Mongolian word, but sometimes appears at the beginning of a word. Therefore, the 

four consonants ‘к,’ ‘ф,’ ‘щ’ and ‘п’ are called “special consonants” in Mongolian, and the 

number of occurrences of these letters is usually small. Although we randomly selected 30 

minutes of target language data for training, the distribution of letters within this target 

language training data is almost the same as the distribution of letters in the entire 12 hours of 

the target language dataset. The chart in Figure 3.1 shows the distribution of each letter in both 

the 30 minutes and 12 hours of target language data. 
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Table 3.2. Occurrences and distributions of Mongolian letters in the 30-minute and 12-

hour target language datasets and IPA phonetic symbols 

# 

L
et

te
r
 

P
h

o
n

em
e 

# Occurrences and distribution 

# 

L
et

te
r
 

P
h

o
n

em
e 

# Occurrences and distribution 

30 minutes 12 hours 30 minutes 12 hours 

1 а a 1870 11.00% 54403 11.33% 18 м m 372 2.19% 10349 2.15% 

2 н n, ŋ 1378 8.11% 41565 8.65% 19 в v 234 1.38% 8175 1.70% 

3 э e 1625 9.56% 38739 8.07% 20 ч ʧ 190 1.12% 6744 1.40% 

4 г g 1030 6.06% 28254 5.88% 21 з z 218 1.28% 6691 1.39% 

5 р r 1060 6.24% 26879 5.60% 22 ы i 148 0.87% 5109 1.06% 

6 и i 686 4.04% 25673 5.34% 23 ж ʤ 259 1.52% 4890 1.02% 

7 д d 827 4.86% 23810 4.96% 24 ь i 176 1.04% 4641 0.97% 

8 х h 856 5.04% 22237 4.63% 25 е j 132 0.78% 4390 0.91% 

9 л l 742 4.36% 21224 4.42% 26 ш ʃ 114 0.67% 3516 0.73% 

10 ү u 684 4.02% 19969 4.16% 27 ц c 72 0.42% 2351 0.49% 

11 т t 647 3.81% 19362 4.03% 28 я ja 27 0.16% 1765 0.37% 

12 о o 805 4.74% 19019 3.96% 29 ю jʊ 17 0.10% 843 0.18% 

13 й i 613 3.61% 18724 3.90% 30 ё jo 36 0.21% 727 0.15% 

14 у ʊ 604 3.55% 17868 3.72% 31 к k 24 0.14% 591 0.12% 

15 ө ö 532 3.13% 14145 2.94% 32 ф f 5 0.03% 471 0.10% 

16 с s 495 2.91% 13438 2.80% 33 п p 1 0.006% 401 0.08% 

17 б b 519 3.05% 13330 2.78% 34 ъ i 1 0.006% 26 0.005% 
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Figure 3.1. Distribution of each letter in 30-minute and 12-hour target language 

datasets. 

We used the entire 12 hours of target language data to train the baseline TTS model (M-

MN), which was used for a performance comparison with the proposed models. In addition, 

the baseline PWG neural vocoder (NV-MN) was also trained using the entire 12 hours of target 

language data, for a performance comparison with the vocoder trained using augmented speech 

data (NV-DA). 

3.3.3 TTS system 

We tested single-speaker and multi-speaker TTS models, trained with high-resource and low-

resource language datasets, sequentially or simultaneously, with or without augmented data, to 

obtain a single-speaker TTS system that is effective when only a limited amount of target 

language training data is available. Our base TTS system consists of three components: an x-

vector speaker encoder, a Tacotron 2-based spectrogram prediction network, and PWG neural 

vocoder (Yamamoto et al. 2020). We adopted the original Tacotron 2 architecture, which 

consists of a bi-directional LSTM based encoder and a unidirectional LSTM based decoder 
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with location sensitive attention, using the same hyperparameters as in Shen et al. (2018), 

except for the addition of a loss function for guided attention loss (Tachibana et al. 2018), 

which supports faster convergence. Although a reduction factor (r), representing the number of 

frames to generate at each decoding step, was not used in Shen et al. (2018), we used the 

reduction factor r = 1 for the single-speaker model, while the reduction factor r = 2 was used 

for the multi-speaker model to speed up the training process. Table 3.3 shows the hyper-

parameters used in all models. We used a batch size of 32 for all of the models, except the pre-

trained, multi-speaker models trained with both high-resource language datasets. The 

spectrogram prediction network was constructed using the open-source speech processing 

toolkit ESPnet (Hayashi et al. 2020). We used a pre-trained x-vector (Snyder et al. 2018) for 

speaker embedding, as provided by Kaldi. The pre-trained speaker encoder was trained on the 

LibriTTS corpus (Zen et al. 2019). The speaker embeddings were concatenated with each 

encoder state. PWG is a non-autoregressive neural vocoder trained to minimize multi-

resolution, short-time Fourier transform (STFT) loss and waveform domain adversarial loss. 

We used the public implementation3 to train the PWG neural vocoder with augmented data 

created using a very small target language dataset and it was used to generate the waveform in 

all of our experiments. Figure 3.2 shows an overview of our base TTS system. The speaker 

embedding network in Figure 3.2 is used to train a multi-speaker model. For the single-speaker 

model, we used the same network without speaker embedding. Although we used three 

monolingual, single-speaker datasets simultaneously for the multi-speaker model, we did not 

use the language identity.  

 

  

 
3 https://github.com/kan-bayashi/ParallelWaveGAN 
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Table 3.3. Hyper-parameters and network architectures. 

Feature extraction 

Sampling rate 22,050 Hz 

Window size 46.4 ms (1,024 pt) 

Shift size 11.6 ms (256 pt) 

Acoustic feature log-mel spectrogram 80 dim 

 Encoder 

# phoneme embedding dimension 512 

# CNN layers 3 

# CNN filters 512 

CNN filter size  5 

# BLSTM layers 1 

# BLSTM units 512 

Decoder 

# LSTM layers 2 

# LSTM units 1024 

# prenet layers 2 

# prenet units 256 

# postnet layers 5 

# postnet filters 512 

Postnet filter size 5 

# Speaker embedding dimension 512 

Attention 

# Dimensions in attention 128 

# Filters in attention 32 

Filter size in attention 31 

Sigma in guided attention loss 0.4 

Reduction factor (r) 1 (MS) / 2 (MM) 

Optimization and minibatch 

Dropout rate 0.5 

Zoneout rate 0.1 

Learning rate 0.001 

Optimization method Adam with 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−6 

Batch size 32 / 64 

# Epochs 300 / 500 / 1000 
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Figure 3.2. Overview of the base TTS system. Speaker embedding is used to train the multi-

speaker model, but is not used for training the single-speaker model. 

3.4 Methodology 

3.4.1 Introduction 

In this study, we used only 30 minutes of the target language data to train our proposed TTS 

model. However, this amount of data is not enough for training. In other words, when training 

the TTS model only 30 minutes of target language data from scratch, it is impossible to 

synthesize intelligible speech using the model.  Therefore, the contribution of this study is the 

exploration of variants of methods used in our proposed low resource language TTS system. 

Furthermore, we compared the performance of models using each method described below 

with each other and with the baseline model. As a result, we explore the best-performing 

method, which reduces the gap between our low-resource model and the baseline M-MN model 

trained with a much larger amount (12 hours) of original target speech data. The following 

section describes each of these various methods we tested when building our proposed TTS 

system. 

3.4.2 Description of each method 

3.4.2.1 Method 1: Cross-lingual transfer learning 

We trained the TTS model for our target language by transferring knowledge from our source 

languages in two ways. First, we used the source and target language datasets sequentially to 
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train the TTS model without speaker embedding. To obtain pre-trained models, we first trained 

the TTS models using only the English (E) or Japanese (J) source language datasets, each of 

which contains speech data from a different, single, female speaker. The English speech dataset 

is more than twice as long as the Japanese dataset. Therefore, in addition to model pre-trained 

with the entire English dataset (E24), we also pre-trained a model using randomly selected 

English speech data equal in size to the Japanese dataset (E10) to determine the effect of using 

different proportions of the high-resource languages. The model which was pre-trained with 

the entire English source language dataset (E24) was also adapted by training it again with the 

Japanese source language dataset, creating a fourth pre-trained model (EJ). These four TTS 

models (E10, E24, J and EJ), pre-trained with the high-resource language datasets, were trained 

again using the target language dataset, as in Tits et al. (2019), Bollepalli et al. (2019) and Chen 

et al. (2019), which in this study consisted of Mongolian language data. All of the datasets were 

recorded using the voice of a single male or female speaker. Therefore, we denote our single-

speaker, sequentially-trained, cross-lingual transfer learning models as MSE10-TL, MSE24-TL, 

MSJ-TL and MSEJ-TL. The training flow diagrams for these models are shown in Figure 3.3. 

 

 

Figure 3.3. Training flow diagrams for our single-speaker TTS models. Transfer 

learning from the source languages to the target language is used, where (a) are models 

using only different amounts of the English dataset, (b) is a model using only the 

Japanese dataset, and (c) is a model using the entire datasets of both high-resource 

languages. 
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In order to evaluate the effectiveness of multi-speaker training, the source and target 

language datasets were also used to simultaneously train a second set of pre-trained TTS 

models with speaker embedding as the conditioned feature. In other words, we pre-trained three 

multi-speaker TTS models using bilingual datasets as follows: one using the Japanese source 

language dataset with the target language dataset; one using 10 hours of the English source 

language dataset with the target language dataset, and one using 24 hours of the English source 

language dataset with the target language dataset. One multi-speaker TTS model was also pre-

trained using trilingual datasets (the entire, high-resource language datasets of both English 

and Japanese, along with 30 minutes of the target language dataset), with each dataset 

containing speech data from a different, single speaker. These four, pre-trained, multi-speaker 

TTS models were then fine-tuned using the same target language Mongolian dataset used to 

train the pre-trained multi-speaker models, as in Lee et al. (2020). The four multi-speaker, 

simultaneously-trained, cross-lingual transfer learning models were denoted as MME10-TL, 

MME24-TL, MMJ-TL and MMEJ-TL. The training flow diagrams for these models are shown in 

Figure 3.4. 

 

 

Figure 3.4. Training flow diagrams for our multi-speaker TTS models. Transfer 

learning from the source languages to the target language is used, where (a) are models 

using the different amounts of the English dataset and the Mongolian dataset, (b) is a 

model using the Japanese and Mongolian datasets, and (c) is a model using the entire 

datasets of both high-resource languages and the Mongolian dataset. 

All pre-trained TTS models shown in Figures 3.3 and 3.4 were trained for 300 epochs, and 

the final models, fine-tuned with the target language dataset, were trained for 1,000 epochs. We 
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compared the performance of the four single-speaker and four multi-speaker models to 

understand how each training approach, i.e., using each high-resource language dataset 

separately, or both high-resource language datasets, either sequentially or simultaneously, 

affects the quality of the TTS system’s output. We found that using both high-resource 

languages datasets simultaneously improved the performance of both the single-speaker and 

multi-speaker models. The results of our comparison are shown in Figures 3.11 and 3.12 in 

Section 3.5.2.2. Based on these results, we used both high-resource language datasets for model 

training when using the transfer learning method with data augmentation, as described in the 

following section.  

3.4.2.2 Method 2: Data augmentation 

Data augmentation is a method commonly used to address the problem of insufficient data. We 

used a basic audio data augmentation method which involves altering the pitch and speed of 

the original speech data, generating synthetic data from the original samples. We changed the 

pitch and speed of only 30 minutes of the original target language data using the SoX tool to 

synthetically generate a large amount of data with a wide range of variation, while using the 

same transcriptions as the original samples. The number of semitones of shift when changing 

the pitch was between -2.5 and 2.5, at steps of 0.5. The ratio of the speed of the augmented 

speech to the speed of the original speech was within the range of 0.7 to 1.55 times the speed 

of the original speech, at steps of 0.05, but no augmented data was generated at 1.05 times the 

original speed. The SoX tool shifts the full spectrum, not just the pitch, therefore all formants 

are also modified. We generated 26 different versions of 30 minutes of the original target 

language data, as shown in Table 3.4 of Section 3.4.2.4, creating a total of 13 hours of 

augmented target language data. We then trained a multi-speaker TTS model with both the 

augmented data and 30 minutes of the original target language data, treating it as a multi-

speaker dataset. We also used the x-vectors for each virtual speaker generated during data 

augmentation. A single-speaker TTS model was also trained with the same data. We denoted 

these single-speaker and multi-speaker data augmentation models as MS-DA and MM-DA, 

respectively, and their training flow diagrams are shown in Figure 3.5. Both models were 
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trained with the augmented data for 500 epochs. The augmented data was also used to train the 

PWG neural vocoder, which was designated NV-DA.   

 

Figure 3.5. Method used to train TTS models with augmented target language data, 

where (a) is a single-speaker model, and (b) is a multi-speaker model. 

3.4.2.3 Method 3: Combination of cross-lingual transfer learning and data augmentation 

We then created two additional TTS models by training the single-speaker and multi-speaker 

models MSEJ-TL-DA and MMEJ-TL-DA with the two high-resource language datasets, the 

original target language dataset and the augmented data. These two models are almost the same 

as MSEJ-TL and MMEJ-TL, described in Section 3.4.2.1, except that augmented data was also 

used for training. The single-speaker model pre-trained using both high-resource languages 

datasets simultaneously was fine-tuned using augmented data and then fine-tuned again using 

the original target language data. The pre-trained multi-speaker model was trained using the 

trilingual datasets. During pre-training of the multi-speaker model, the two source language 

datasets are single-speaker datasets, while the target language dataset contains both original 

and augmented target data, thus it can be considered a multi-speaker dataset with 27 “speakers”. 

The pre-trained multi-speaker TTS model was then fine-tuned using the original target 

language dataset.  

Both the pre-trained single-speaker and pre-trained multi-speaker models were trained for 

300 epochs using the high-resource language datasets, and the pre-trained single-speaker model 

was also fine-tuned by training it with augmented data for 500 epochs. The final models were 

both fine-tuned by training each model for 1,000 epochs using the original target language 

dataset. Training flow diagrams for the single-speaker and multi-speaker models are shown in 

Figure 3.6. 
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Figure 3.6. Methods used to train TTS models using cross-lingual transfer learning and 

augmented data, where (a) is a single-speaker model, and (b) is a multi-speaker model. 

3.4.2.4 Method 4: Combination of cross-lingual transfer learning and data augmentation 

with additional finetuning 

For these TTS models, we added additional fine-tuning steps, using some of the augmented 

target language data to further improve the models’ gradual adaptation to the target language. 

We used t-SNE (Maaten and Hinton 2008) to visualize the x-vectors extracted from the real 

and virtual speakers’ speech, as shown in Figure 3.7. Then we divided the augmented data into 

three sets based on this visualization, as shown in Figure 3.8. Table 3.4 shows the identity of 

each virtual speaker generated by changing the pitch and speed factors of the original speech 

data, where the identity of the real speaker is 27. The x-vectors extracted from virtual speakers 

1, 2, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25 and 26 were judged to be farther away from the x-

vectors of the real speaker. Therefore, the first set of augmented data contained these 13 copies 

of the 30 minutes of the original target language data, which sounded very different from the 

original target language speech. The second set of augmented data contained 7 copies (from 

virtual speakers 3, 9, 10, 17, 18, 19 and 20) of the original data which sounded more similar to 

the original target speaker’s voice than the augmented speech in the first set. The x-vectors 

extracted from virtual speakers 4, 5, 6, 7, 8 and 16 were closest to the x-vectors of the real 

speaker. Therefore, the third set of augmented data contained these 6 copies of the original 

data, which sounded the most similar to the target speaker’s actual voice. We used these three 

sets of the augmented data to fine-tune the pre-trained model sequentially. The single speaker 



59 

 

model, which was pre-trained with the two high-resource language datasets, was then 

sequentially fine-tuned using the same three sets of augmented data. Finally, the pre-trained, 

single-speaker model was fine-tuned with the original target language dataset. For the multi-

speaker model, the pre-trained multi-speaker model was trained with the trilingual datasets 

(two high-resource language datasets plus the original and augmented target language datasets) 

and then sequentially fine-tuned using the three sets of augmented data. The model was then 

fine-tuned again using the original target language dataset. We denoted these single-speaker 

and multi-speaker models as MSEJ-TL-DAD and MMEJ-TL-DAD, respectively. Training flow 

diagrams for these models are shown in Figure 3.9. Both the pre-trained single-speaker and 

pre-trained multi-speaker models were trained for 300 epochs using the high-resource language 

datasets. We then further trained both of these fine-tuned models for 500 epochs at each fine-

tuning step, using the sets of augmented data sequentially, before a final 500 epochs of training 

using the original target language data. 

Table 3.4. Number of semitones of pitch shift (PF), or ratio of speed of the new speech to 

speed of the original speech (SF), used when generating augmented data from the 

original data, for each virtual speaker.  

Speaker # 
Pitch or speed 

factor (PF / SF) 
Speaker # 

Pitch or speed 

factor (PF /SF) 

1 -2.5 

P
F

 

14 0.85 

S
F

 

2 -2.0 15 0.9 

3 -1.5 16 0.95 

4 -1.0 17 1.1 

5 -0.5 18 1.15 

6 0.5 19 1.2 

7 1.0 20 1.25 

8 1.5 21 1.3 

9 2.0 22 1.35 

10 2.5 23 1.4 

11 0.7 

S
F

 

24 1.45 

12 0.75 25 1.5 

13 0.8 26 1.55 
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Figure 3.7. t-SNE visualization of x-vectors extracted from the speech of the real and 

virtual speakers, where Speaker 31 is the real speaker. 

 

Figure 3.8. t-SNE visualization of x-vectors extracted from the speech data when 

divided into three sets, where (a), (b) and (c) represent the first, second and third sets, 

respectively. 
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 Figure 3.9. Methods used to train TTS models using cross-lingual transfer learning and 

augmented data with additional fine-tuning steps, where (a) is a single speaker model, 

and (b) is a multi-speaker model. 

All proposed systems described in Section 3.4.2 are summarized in Table 3.7 at the end of 

Section 3.5. 

3.5 Implementation 

3.5.1 Evaluation 

We conducted an AB preference test to assess the quality of the output from the neural vocoders 

trained using the original target data (NV-MN) and augmented target data (NV-DA). Our 

subjects were asked to select the higher quality speech when comparing 15 speech samples 

generated by each vocoder. The results of this evaluation are shown in Table 3.6. 

For the spectrogram prediction models, we conducted subjective naturalness and speaker 

similarity tests (Test-1 to Test-5). To evaluate the naturalness of the synthesized speech 

produced when using each TTS model, we conducted subjective tests using eight speech 

samples produced by each model which were not contained in the training dataset. We used the 
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web-based MUltiple Stimuli with Hidden Reference and Anchor (webMUSHRA) test 

(Schoeffler et al. 2018) to evaluate naturalness. Figure 3.10 shows a screenshot of MUSHRA 

listening test designed with webMUSHRA. All of the speech samples being evaluated are 

presented in one panel, and the samples within the panel are randomized. We created four 

separate naturalness test sets (Test-1, Test-2, Test-3 and Test-4, shown in Table 3.5), each 

containing eight stimulus panels. Each panel included a hidden reference and hidden anchors. 

In addition to the hidden reference and hidden anchors, Table 3.5 also shows all the systems 

that generated the speech samples included in each stimulus panel. Test-1 and Test-2 are 

naturalness evaluation tests of the single-speaker and multi-speaker models used in the cross-

lingual transfer learning method explained in Section 3.4.2.1, in order to investigate the effect 

of the high resource language dataset. Test-3 is a comparison of all of the proposed single-

speaker and multi-speaker models described in Section 3.4.2, conducted to determine the best 

performing method. Test-4, the final naturalness evaluation test, was conducted to compare the 

output of the models when using the best performing method (a combination of cross-lingual 

transfer learning and data augmentation, as described in Section 3.4.2.3), when different 

amounts of the target language data were used during training. All of the TTS systems shown 

in Table 3.5 are summarized in Table 3.7 at the end of Section 3.5. The results of these 

naturalness evaluations are shown in Figures 3.11, 3.12, 3.13 and 3.14 of Section 3.5.2.2. 

 

Figure 3.10. MUSHRA listening test GUI 
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Table 3.5. Systems used to generate the speech samples included in each stimulus panel 

of the MUSHRA subjective naturalness tests 

Tests 

Systems 

MUSHRA subjective naturalness tests 

Test-1 Test-2 Test-3 Test-4 

Systems 

- MSJ-TL 

- MSE10-TL 

- MSE24-TL 

- MSEJ-TL 

- MMJ-TL 

- MME10-TL 

- MME24-TL 

- MMEJ-TL 

- MM-DA 

- MSEJ-TL 

- MSEJ-TL-DA 

- MSEJ-TL-DAD 

- MMEJ-TL 

- MMEJ-TL-DA 

- MMEJ-TL-DAD 

- M-MN 

- MMEJ-TL-DA 

- MMEJ-TL-

DA1hour 

- MMEJ-TL-

DA2hours 

- MMEJ-TL-

DA3hours 

- M-MN 

Hidden 

reference 

- Ground 

truth 
- Ground truth - Ground truth - Ground truth 

Hidden 

anchors 

- MSEJ-TL-

DA 

- M-MN 

- MMEJ-TL-DA 

- M-MN 

- MMEJ-TL-

DA3hours 

- MSEJ-TL 

- MMEJ-TL 

 

A MUSHRA speaker similarity evaluation (Test-5) was also performed to compare the 

output of proposed multi-speaker model MMEJ-TL-DA, which uses a combination of transfer 

learning and data augmentation, with the ground truth Mongolian target speech data. Study 

participants also compared the output of the baseline M-MN model with the ground truth. They 

evaluated the similarity of eight speech samples generated from each of these two models, in 

comparison to the ground truth speech data, to assess their similarity to the original target 

language speech. The results of these comparisons are shown in Figure 3.15 of Section 3.5.2.2. 

These comparisons were performed because, in addition to the small, target language dataset, 

two high-resource language datasets and augmented data were also used to build the basic 

single-speaker TTS system used in the proposed model.  

Twenty-two subjects were asked to rate the naturalness and speaker similarity of the 

synthesized audio, and twenty-nine subjects were asked to rate the quality of the output from 

the neural vocoders. All of the subjects who participated in the subjective naturalness, similarity 
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and quality tests were native Mongolian speakers. Speech samples generated by each of these 

models and vocoders are publicly available.4 

3.5.2 Results 

In the first test, we evaluated the PWG neural vocoder trained with augmented data, which was 

used to generate the waveform in all of our experiments. In the second test, we investigated the 

effects of using the cross-lingual transfer learning method with the high-resource languages on 

low-resource language TTS performance. We found using both high-resource language 

datasets improved the performance of both the single-speaker and multi-speaker models. 

Therefore, we used this training strategy in the following experiments. We compared all of our 

proposed models with the baseline model and ground truth in the third test, to determine which 

of the proposed models was able to achieve the best performance, which was the multi-speaker 

model utilizing a combination of cross-lingual transfer learning and data augmentation with 

additional fine-tuning. Although the proposed multi-speaker model with additional fine-tuning 

achieved the best performance, we chose the proposed multi-speaker model utilizing a 

combination of cross-lingual transfer learning and data augmentation for the next two tests 

because it is less time-consuming to train and has almost similar performance to the best-

performing model. In the fourth test, we trained it with larger amounts of target language data 

to investigate the amount of the target language training data needed to obtain a model with the 

same or similar performance as the baseline model. In the final test, we evaluated the speaker 

similarity of speech samples generated by the model selected in previous test. In Table 3.7, at 

the end of Section 3.5, we summarize all of the systems evaluated in this study. 

3.5.2.1 PWG neural vocoder 

In this study we proposed a TTS system containing both a spectrogram prediction network and 

a neural vocoder, for use when only a small amount of target data is available. To evaluate the 

effectiveness of training the vocoder with augmented data, we trained a PWG neural vocoder 

with 13 hours of our augmented data and thirty minutes of original target language data (NV-

DA), while the baseline vocoder was trained with 12 hours of original target language data 

 
4 https://zolzaya-byambadorj.github.io/tts/ 

https://zolzaya-byambadorj.github.io/tts/


65 

 

(NV-MN). We then performed an AB preference test to compare the output of the two PWG 

vocoders, as evaluated by twenty-nine, native Mongolian speaking subjects. We used the same 

M-MN baseline model used by the spectrogram prediction model for both of the vocoders. 

Listeners had the option of selecting “no preference” if the difference between the synthesized 

speech pairs was too difficult to distinguish. The test results in Table 3.6 show that the quality 

of the synthesized speech generated by the two vocoders was almost the same, as it was difficult 

for the listeners to distinguish the difference. Therefore, the PWG neural vocoder trained with 

augmented data was used to generate the waveform in all of the following experiments 

investigating the best method of training the spectrogram prediction network, as described in 

Section 3.4.2. 

Table 3.6. Results of AB preference test on vocoders trained with original (NV-MN) and 

augmented (NV-DA) data. 

NV-MN (baseline) NV-DA No preference 

21.61% 16.09% 62.30% 

 

3.5.2.2 Spectrogram prediction models 

▪ Test-1 and Test-2: Cross-lingual transfer learning 

In these experiments, we investigated the effects of training the models with high-

resource languages on low-resource language TTS performance. Figures 3.11 and 3.12 

shows the boxplots of the MUSHRA subjective naturalness scores for the single-

speaker and multi-speaker TTS models, respectively, described in Section 3.4.2.1. 

Native Mongolian speaking subjects performed these naturalness evaluations. As we 

expected, when using the same amount of data from each of the high-resource 

languages, the effect of Japanese language training on low-resource target language 

TTS performance was more beneficial than English language training for both the 

single-speaker and multi-speaker models. We think this is because, as explained in 

Section 3.2, Japanese and Mongolian are more similar than English and Mongolian. 

However, we can see that when the entire English language dataset was used for 

training, the performance of both the single-speaker and multi-speaker models was 
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better than when using the Japanese high-resource language dataset. A reason for this 

could be the size of the datasets. The English speech dataset is more than twice as long 

as the Japanese dataset. Using both high-resource language datasets improved the 

performance of both the single-speaker and multi-speaker models more than using only 

one high-resource language dataset. Therefore, we used both high-resource language 

datasets to train the single-speaker and multi-speaker models using the transfer learning 

method in the rest of the experiments. In addition, as shown in Figures 3.11 and 3.12, 

the performance of the multi-speaker models (MMJ-TL, MME10-TL, MME24-TL and 

MMEJ-TL) was better than the performance of the corresponding single-speaker models 

(MSJ-TL, MSE10-TL, MSE24-TL and MSEJ-TL), even though MUSHRA naturalness 

evaluations were conducted separately. Among the multi-speaker models trained with 

only one high-resource language dataset during the pre-training stage (MMJ-TL, MME10-

TL and MME24-TL), when the target language dataset was not used in the pre-training 

stage, the operation of the models was almost the same as that of the corresponding 

single-speaker models, except for the use of speaker embedding. This suggests that 

using target language data when training the pre-trained model improves the 

performance of the TTS model. Note that we used only 30 minutes of the target 

language data to train the models shown in Figures 3.11 and 3.12. The results for these 

models are low because the use of only 30 minutes of target language data for pre-

training and fine-tuning the models is insufficient for generating good quality speech 

when using cross-lingual transfer learning. Studies Tits et al. (2019) and Lee et al. 

(2020) also showed that the amount of target data used affects the performance of the 

final fine-tuned model. But we can see from these experiments that the use of high-

resource languages helps the models learn to synthesize speech in the low-resource 

target language. 
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Figure 3.11. MUSHRA naturalness scores for single-speaker models trained using cross-

lingual transfer learning (one high-resource language or both, MSJ (Japanese), MSE10 (English, 

10 hours), MSE24 (English, 24 hours), MSEJ (English and Japanese): sequentially trained single-speaker 

models) 

 

Figure 3.12. MUSHRA naturalness scores for multi-speaker models trained using cross-

lingual transfer learning (one high-resource language or both, MMJ (Japanese), MME10 

(English, 10 hours), MME24 (English, 24 hours), MMEJ (English and Japanese): simultaneously trained multi-

speaker models) 
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▪ Test-3: All proposed methods 

Figure 3.13 shows the boxplots of the MUSHRA subjective naturalness scores, as rated 

by native Mongolian speakers, for all of the proposed single-speaker and multi-speaker 

models described in Section 3.4.2. As discussed in Test-1 and Test-2, we found that 

using both high-resource language datasets simultaneously improved the performance 

of both the single-speaker and multi-speaker models. Therefore, we used both high-

resource language datasets for model training when using the transfer learning method 

with data augmentation, described in Sections 3.4.2.3 and 3.4.2.4. All of the proposed 

models evaluated in Figure 3.13 were trained using only 30 minutes of original target 

language data.  

The amount of augmented data (DA) used for training these models is almost same as 

the amount of original target language training data used for the baseline single-speaker 

model M-MN, which achieved the best results in our experiment. The augmented data 

was used to train both single-speaker and multi-speaker TTS models, but the single-

speaker model (MS-DA) was a failure because it could not synthesize intelligible speech. 

Therefore, we did not ask the study participants to rate this model. Although the 

naturalness score of the multi-speaker model trained with augmented data (MM-DA) 

was lower than the scores of most of the other models, it was able to learn how to 

synthesize intelligible speech using only augmented data and 30 minutes of the original 

target language data. This suggests that adding speakers could improve training of 

multi-speaker models, since the augmented data can be considered to be multi-speaker 

data.  Also note that although the MSEJ-TL model was trained using both high-resource 

language datasets and the original target speech data, the MM-DA model received a 

higher score, even though the MM-DA model was unable to learn the pronunciations of 

some of the letters which appeared very few times in the 30 minutes of original target 

language data, which was used to generate the augmented data. For example, the letters 

‘ц,’ ‘к,’ ‘ф’ and ‘п’, which could not be synthesized by the MM-DA model, occurred 

less than 100 times in the 30 minutes of the target language data. But some letters, such 

as ‘ъ’ and ‘я,’ which also occurred less than 100 times in the data, could be learned by 

this model. This is because the phonetic notations of the letters ‘ю,’ ‘я,’ ‘ё’ are a 
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combination of phonemes. Although these letters appear infrequently in the 30 minutes 

of original target language data before the transcriptions were converted into their 

phonetic representations, each phoneme contained in the phoneme notations of these 

letters occurred more than 100 times in the 30 minutes of original target language data. 

Furthermore, the phonetic notation of some letters, such as ‘ъ,’ is the same as the 

phonetic notation of some other letters, such as ‘ь,’ ‘ы,’ ‘й’ and ‘и’, because these letters 

have the same pronunciation. Therefore, although these letters only occurred a few 

times in the data, since we used phonetic representations the pronunciations of these 

letters could still be learned. We also observed that some letters which occurred less 

than 200 times in the data could not be synthesized clearly. However, if the transcript 

to be converted into speech does not include these particular, low-frequency letters, the 

synthesized speech created using the MM-DA model sounds very reasonable. Thus, in 

general, the performance of the multi-speaker model using augmented data (MM-DA) 

shows that the use of augmented data can improve the performance of TTS models. 

Regarding the models trained using the cross-lingual transfer learning method, the 

pronunciations of the letters that only occurred a few times in the target language data 

could be learned from the high-resource language datasets, since there are overlapping 

phonemes in the source and target languages. Therefore, learned phoneme embeddings 

are shared by the different languages. The model trained with only 30 minutes of target 

language data from scratch (M-MN30) could not synthesize intelligible speech. 

However, the performance of the single-speaker and multi-speaker transfer learning 

models (MSEJ-TL and MMEJ-TL) shows that the cross-lingual transfer learning approach 

improves TTS model performance when only a small amount of target data is available. 

On the other hand, single-speaker model MSEJ-TL was trained using data from three 

languages sequentially, while multi-speaker model MMEJ-TL was trained using data 

from three languages simultaneously. As a result, the naturalness score of multi-speaker 

model MMEJ-TL is higher than that of single-speaker model MSEJ-TL. This suggests that 

adding languages could also improve the training of multi-speaker models.  

Each of the proposed methods, i.e., using only transfer learning or only data 

augmentation, were capable of improving the performance of the TTS model. Therefore, 



70 

 

unsurprisingly, we can also see in Figure 3.13 that a combination of both the transfer 

learning and data augmentation methods improved both single-speaker (MSEJ-TL-DA) 

and multi-speaker (MMEJ-TL-DA) model performance. As mentioned previously, 

adding speakers or adding languages each improved the performance of the multi-

speaker models. In the case of the model MMEJ-TL-DA, we added both languages and 

speakers simultaneously. As a result, the performance of the multi-speaker model with 

data augmentation (MMEJ-TL-DA) was superior to that of the single-speaker model with 

data augmentation (MSEJ-TL-DA), the multi-speaker model without data augmentation 

(MMEJ-TL) and the multi-speaker, single-language model with data augmentation (MM-

DA). We can also see that the performance of TTS models MSEJ-TL-DAD and MMEJ-

TL-DAD improved slightly when fine-tuning steps that included the use of augmented 

data were added. Related works (Ko et al. 2015; Cooper et al. 2020; Liu et al. 2020) 

have used data augmentation-generated synthetic speech created by changing the speed 

and tempo of the original speech within a relatively narrower range of variation, 

compared to the augmentation method used in our study. In other words, the differences 

between the synthetic and real data used in previous studies were not as great as in our 

approach. In contrast, we generated our synthetic speech using a wider range of 

variation, and 26 versions of the data were generated from the original speech. As a 

result of this wider variation, the speech of some of the virtual speakers is very different 

from the speech of the real speaker, while some is very similar to the real speaker’s 

speech. Therefore, gradual fine-tuning as part of a multi-stage process may yield further 

gains in performance. On the other hand, although the naturalness score of single-

speaker model MSEJ-TL-DAD is lower than that of multi-speaker model MMEJ-TL-DAD, 

we observed that the effect of the additional fine-tuning steps using augmented data 

was greater on the single-speaker model than on the multi-speaker model, when their 

naturalness scores are compared with those of the corresponding single- and multi-

speaker models MSEJ-TL-DA and MMEJ-TL-DA. We suspect this may occur because 

the single-speaker model ‘discovers’ each new speaker at each training stage, while the 

multi-speaker model encounters all of the speakers during the first training stage, thus 
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gradual fine-tuning may have been more effective for the single-speaker model and less 

effective for the multi-speaker model.  

Finally, the results shown in Figure 3.13 indicate that the performance of the multi-

speaker (MM/MMEJ) TTS models was superior to that of the single speaker (MS/MSEJ) 

TTS models. In other words, multi-speaker models were effective as intermediate 

models when constructing a single-speaker, low-resource TTS model. The score of the 

proposed MMEJ-TL-DAD model was higher than the scores of the other models trained 

with a limited amount of target language data, but lower than the score of the baseline 

M-MN model. 

 

Figure 3.13. MUSHRA naturalness scores for all single-speaker and multi-speaker 

models. 

M-MN = TTS model trained with 12 hours of target language data 

M-MN30 = TTS model trained from scratch with only 30 minutes of target language data 

MSEJ = sequentially trained single-speaker model 

MMEJ = simultaneously trained multi-speaker model 

TL = cross-lingual transfer learning 

DA = data augmentation 

DAD = data augmentation method with additional fine-tuning 
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▪ Test-4: Size of target language training data 

We also wanted to know the minimum amount of original target language training data 

that was needed to obtain a model with the same performance as the baseline model. 

Therefore, we increased the 30 minutes of original target language data to 1, 2 or 3 

hours of training data. We selected this data randomly, and then created 26 different 

versions of augmented data using the same amounts of original target language data (1, 

2 or 3 hours) as described above. Although the proposed multi-speaker model with 

additional fine-tuning (MMEJ-TL-DAD in Figure 3.13) achieved the best performance, 

we chose the proposed multi-speaker model utilizing a combination of cross-lingual 

transfer learning and data augmentation (the MMEJ-TL-DA model described in Section 

3.4.2.3) because it is less time-consuming to train and has almost similar performance 

to the best-performing model. We trained it with these various amounts of target 

language data, and with the additional augmented training data created using this extra 

target language data. The performance of these variously trained models, and the 

baseline model, were then compared based on the naturalness of the output speech, 

which was measured using a MUSHRA test. Figure 3.14 shows the boxplots of the 

naturalness scores for these models. The performance of the models improved as the 

amount of original target language data increased. Three hours of target language data 

were sufficient to cover variations in pronunciation, and fluctuations in the speakers’ 

voices were enhanced using data augmentation. Furthermore, the multi-speaker model 

was able to capture the features of the original voices more accurately than the single-

speaker model. Therefore, the naturalness score of the proposed model trained with 

three hours of the original target language data was similar to the score of the baseline 

model trained with 12 hours of target language data. We also observed that the proposed 

models trained with two and three hours of the original target language data synthesized 

very clear, good quality speech, while the baseline model synthesized slightly more 

nuanced speech. Therefore, the native Mongolian speaking subjects may have preferred 

the output of the baseline model. 



73 

 

 

Figure 3.14. MUSHRA naturalness scores for baseline and proposed multi-speaker 

model trained with various amounts of target language data. 

▪ Test-5: Speaker similarity 

A MUSHRA speaker similarity evaluation was performed on the output of the MMEJ-

TL-DA and baseline models. Note that we again chose the proposed multi-speaker 

model MMEJ-TL-DA, which utilizes a combination of cross-lingual transfer learning 

and data augmentation (as described in Section 3.4.2.3), instead of the best performing 

model MMEJ-TL-DAD, for our speaker similarity evaluation test. We asked our native 

Mongolian speaking subjects to evaluate speech samples generated by our proposed 

and the baseline models in comparison to the ground truth of the original Mongolian 

speaker. The subjects were asked to, “Please rate the speaker similarity of each speech 

sample in comparison to the reference sample, on a scale of between 0 (definitely 

different) to 100 (definitely the same).” The results are shown in Figure 3.15. Our goal 

in this study was to obtain a model whose performance is the same or similar to that of 

the baseline model in a low resource scenario. The baseline model was trained with 

more than 10 hours of target language data, while our best performing proposed models 

fine-tuned pre-trained models trained with two high-resource languages and augmented 

data. Therefore, we wanted to know how training TTS model with the high-resource 

language data and augmented data affect speaker similarity between the speech samples 
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generated by our proposed model and the ground truth. The results of our evaluation 

show that speaker similarity of the speech samples generated by our proposed model to 

the ground truth was slightly lower when using cross-lingual training and augmented 

data. But the similarity score of our proposed model was only slightly lower than the 

similarity score of the baseline model, despite the proposed model using far less original 

target language data for training. 

 

Figure 3.15. Speaker similarity comparison of speech samples generated using our 

proposed model and using the baseline model, in relation to the ground truth. 

Finally, we have summarized all of systems evaluated in this study in Table 3.7.  
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Table 3.7. Summarization of all systems tested. 

# System Training stage 1 
Training 

stage 2 

Training 

stage 3 

Training 

stage 4 

Training 

stage 5 

Training 

stage 6 

Spectrogram prediction models 

1 M-MN (baseline) MN12h - - - - - 

2 MSJ-TL JP MN30 - - - - 

3 MSE10-TL EN10 MN30 - - - - 

4 MSE24-TL EN24 MN30 - - - - 

5 MSEJ-TL EN24 JP MN30 - - - 

6 MS-DA AD30 + MN30 - - - - - 

7 MSEJ-TL-DA EN24 JP AD30 MN30 - - 

8 MSEJ-TL-DAD EN24 JP AD30-set1 AD30-set2 AD30-set3 MN30 

10 MMJ-TL JP + MN30 MN30 - - - - 

12 MME10-TL EN10 + MN30 MN30 - - - - 

14 MME24-TL EN24 + MN30 MN30 - - - - 

15 MMEJ-TL EN24+JP + MN30 MN30 - - - - 

16 MM-DA AD30 + MN30 - - - - - 

17 MMEJ-TL-DA EN24+JP + AD30 + MN30 MN30 - - - - 

18 MMEJ-TL-DAD EN24+JP + AD30 + MN30 AD30-set1 AD30-set2 AD30-set3 MN30 - 

19 MMEJ-TL-DA1 hour EN24+JP + AD1h + MN1h MN1h - - - - 

20 MMEJ-TL-DA2hous EN24+JP + AD2h + MN2h MN2h - - - - 

21 MMEJ-TL-DA3hous EN24+JP + AD3h + MN3h MN3h - - - - 

Neural vocoders 

22 
NV-MN 

(baseline) 
MN12h - - - - - 

23 NV-DA AD30 + MN30 - - - - - 

 

Model type 

MSXXX - Single-speaker TTS model 

MMXXX - Multi-speaker TTS model 

NV – neural vocoder 

Method used for model training 

TL - Cross-lingual transfer learning 

DA - Data augmentation 
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TL-DA - Cross-lingual transfer learning and data augmentation 

TL-DAD - Cross-lingual transfer learning and data augmentation with additional fine tuning 

Databases used for training stages 

EN10 - 10 hours of the English dataset 

EN24 - 24 hours of the English dataset 

JP - 10 hours of the Japanese dataset 

MN12h – 12 hours of the target language dataset 

MN30 - 30 minutes of the target language dataset 

MN1h - 1 hour of the target language dataset 

MN2h - 2 hours of the target language dataset 

MN3h - 3 hours of the target language dataset 

AD30 - augmented data generated from 30 minutes of the target language dataset 

AD30-set1 - first set of augmented data generated from 30 minutes of the target language dataset 

AD30-set2 - second set of augmented data generated from 30 minutes of the target language 

dataset 

AD30-set3 - third set of augmented data generated from 30 minutes of the target language 

dataset 

AD1h - augmented data generated from 1 hour of the target language dataset 

AD2h - augmented data generated from 2 hours of the target language dataset 

AD3h - augmented data generated from 3 hours of the target language dataset 

3.6 Conclusion 

In this study we proposed a TTS system containing both a spectrogram prediction network and 

a neural vocoder, for use when only a small amount of target data is available. We compare the 

performance of various TTS models and found that multi-speaker models were effective as 

intermediate models when constructing a single-speaker, low-resource TTS model. We trained 

some models using only transfer learning and some using only data augmentation, to evaluate 

how each method affected the naturalness of the speech output by the TTS model. We found 

that training the TTS model using both cross-lingual transfer learning and data augmentation 

improved performance, reducing the gap between our low-resource model and the baseline M-

MN model, which was trained with a much larger amount (12 hours) of original target speech 

data. We then tried adding additional fine-tuning steps using augmented data and the original 

target language data, which slightly improved the performance of our proposed model. 
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Although the naturalness and speaker similarity scores for our proposed model using both 

cross-lingual transfer learning and data augmentation was very reasonable, we also investigated 

increasing the amount of original target language data used for training. By increasing the 

amount of original target language data used for model training from 30 minutes to 3 hours, 

our proposed model using both cross-lingual transfer learning and data augmentation achieved 

performance very close to that of the baseline model.  

We also trained the PWG vocoder using augmented data generated from 30 minutes of the 

original target language data. As a result, our proposed method achieved almost the same 

speech quality as the vocoder trained with the entire 12 hours of target language data. As a 

result, our proposed TTS system, consisting of a spectrogram prediction network and a PWG 

neural vocoder, was able to achieve almost equivalent performance to the baseline model using 

only 3 hours of original target language training data, and reasonable performance using only 

30 minutes of original target language training data.
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Chapter 4: Conclusion and Future work 

4.1 Conclusion 

In this study, we aimed to build a Mongolian TTS system, which generates speech from 

canonical and noisy, transliterated text.  To make our proposed TTS system, we performed two 

main parts, text normalization, and speech synthesis. Therefore, as for the Mongolian language, 

the first issue we discussed is social media text normalization, which is an important 

preprocessing for our proposed TTS system. The main problem to be solved in this study is 

normalizing OOV words that are not contained in the training data. We first identified the 

challenges of normalizing the noisy, transliterated Mongolian words. We then investigated the 

best-performing method for normalizing OOV words in situations where the training data is 

small and the rules for writing noisy, transliterated words using Latin letters are not limited. 

We enhanced the two basic seq2seq models using different beam search strategies, N-gram-

based context adoption, edit distance-based correction, and dictionary-based checking in novel 

ways and compared their performance between each other and with the performance of two 

conventional methods (TM and SMT). Most of the methods we proposed improved robustness 

when normalizing OOV words, and all of them achieved higher word-level performance than 

the basic seq2seq models. Besides, most of our proposed neural methods outperformed the 

baseline methods such as TM and SMT when normalizing OOV words. 

The next issue we discussed for the Mongolian language is to build speech synthesis system 

when we do not have a large amount of training data. Although recent end-to-end neural models 

are all able to generate natural-sounding speech, they require a large amount of training data to 

generate natural-sounding speech. Therefore, we proposed investigating various methods such 

as cross-lingual transfer learning, data augmentation, and combining the previous two methods 

for the low-resource Mongolian language TTS system. In other words, we showed how to train 

both a spectrogram prediction network and a PWG neural vocoder, which are components of 
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the TTS system, using only 30 minutes of Mongolian data. To determine the best performing 

method, we compared the performance of the TTS models using each of these methods with 

each other, as well as with the performance of the baseline model trained with a much larger 

amount (12 hours) of original target speech data. As a result, our proposed TTS system using 

the best performing method, a combination of cross-lingual transfer learning and data 

augmentation, achieved reasonable performance using only 30 minutes of original target 

language training data.  

In addition, the methods we investigated for text normalization and speech synthesis can 

also be used in other low-resource languages. Although we have achieved reasonable results, 

the performance of our TTS system consisting of both parts needs to be further improved to 

apply them in a real application. 

4.2 Future work 

The huge increase in social media use in recent years has resulted in new forms of social 

interaction, changing our daily lives. Visual content on social media provides a fun and 

expressive way for people to communicate online. However, people with vision impairment in 

Mongolia are still cut off from the social media environment due to a lack of necessary tools. 

Therefore, people with vision impairment feel isolated and frustrated when they cannot fully 

participate in the interaction around visual content. In general, participation in social media is 

one of the major challenges for people with vision impairment. One way to address this issue 

at some level is to develop a TTS system, which allows people with vision impairment to 

connect online. It does not only help people with vision impairment, but it can also help people 

with hearing impairments, disabilities, aged citizens, and kids who struggle with reading. 

Therefore, our big goal is to build this TTS system. To this end, we will continue to study and 

improve the performance of the models used in the above text normalization and speech 

synthesis studies. Hence, we would like to increase the size of the noisy data corpora used for 

training and testing and try to improve the performance of our text normalization model. 

Furthermore, to enhance noisy text normalization, we will develop a method of identifying the 

languages of code-mixed sentences (e.g., sentences containing both English and transliterated 
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Mongolian Cyrillic text). As for speech synthesis, we will also continue investigating other 

TTS approaches for use with low-resource scenarios to see if we can outperform our baseline 

TTS model trained with a large amount of Mongolian dataset. We will then build a TTS system 

that can generate speech from any text, such as canonical or noisy, transliterated text, by 

integrating the text normalization part as a pre-processing step in the TTS system. 

Besides, the preparation of public domain high-quality Mongolian speech corpus for 

training TTS system is very important for researchers in this field. Therefore, we will prepare 

high-quality, large amounts of single-speaker and multi-speaker text-speech paired data. 

Furthermore, we are also interested in synthesizing speech from new speakers unseen during 

training employing only a few seconds of speech samples. Because a deep neural network is 

usually trained using a corpus of several hours of recorded speech from a single speaker. The 

main challenge arises when it is necessary to give a new voice to a model created in this way. 

At this point, we need a new data corpus of this voice and to retrain the model. It will be 

expensive and requires great effort. Therefore, in addition to improving our previous research 

work, voice cloning or voice adaptation is the next task we are interested in. 
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Appendix A 

A standard for the transliteration of the Mongolian Cyrillic alphabet into the Latin 

alphabet (MNS 5217:2003) 

# 

Cyrillic letter Latin letter 

Word in Cyrillic script 

Standard 

transliteration in Latin 

script 

Capital 

letter 

Small 

letter 

Capital 

letter 

Small 

letter 

1 А а A a Ваар, аварга, аав Vaar, avarga, aav 

2 Б  б B b Бага, самбар Baga, sambar 

3 В  в V v Вагон, аварга, сав Vagon, avarga, sav 

4 Г  г G g Газар, гэрээ, хэрэг Gazar, geree, xereg 

5 Д  д D d Дадлага, ахмад Dadlaga, axmad 

6 Е  е Ye ye Еэвэн Yeeven 

7 Ё  ё Yo yo Ёроол Yorool 

8 Ж ж J j Жуулчин, ажил Juulchin, ajil 

9 З  з Z z Зам, азагрга, бааз Zam, azarga, baaz 

10 И  и I i Ишиг, бичиг Ishig, bichig 

11 - й - i Ийм, ээжийн Iim, eejiin 

12 К  к K k Кино, километр Kino, kilometer 

13 Л  л L l Лам, алаг, мал Lam, alag, mal 

14 М  м M m Мал, хамар, нам Mal, xamar, nam 

15 Н  н N n Нар, хана, үнэн Nar, xana, u’nen 

16 О  о O o Орон, боловсрол, тооно Oron, bolovsrol, toono 

17 Ө ө O’ o’ (o) Өдөр, өнөөдөр, шөнө O’dor, o’noodor, sho’no 

18 П  п P p Пуужин  Puujin 

19 Р  р R r Рашаан, радио, сар Rashaan, radio, sar 

20 С  с S s Сар, асар, эцэс Sar, asar, eces 

21 Т  т T t Тамга, татлага Tamga, tatlaga 

22 У  у U u Уран, нуруу Uran, nuruu 

23 Ү ү U’ u’ (u) Үнэн, түргэн, тэргүүн U’nen, tu’rgen, tergu’un 

24 Ф  ф F f Фото, фонд Foto, fond 

25 Х  х X x Хавар, нөхөр, эх Xavar, no’xor, ex 

26 Ц  ц C c Цацаг, цэцэг Cacag, ceceg 

27 Ч  ч Ch ch Чимэг, чадал Chimeg, chadal 

28 Ш  ш Sh sh Шашин, ааш Shashin, aash 

29 Щ  щ Sch sch Щедрин Schyedrin 

30  - ъ -  Томъёо  Tomyoo 

31  - ы - y Хааны, хааныг, ахын Xaany, xaanyg, axyn 

32  - ь - i Харь, барь Xari, bari 

33 Э  э E e Эзэн, энэ, эмээл Ezen, ene, emeel 

34 Ю  ю Yu yu Юм, юүдэн Yum, yuu’den 

35 Я  я Ya ya Ямар, ядуу Yamar, yaduu 
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Appendix B 

A standard for the transliteration of the Mongolian Cyrillic alphabet into the Latin 

alphabet (MNS 5217:2012) 

# 

Cyrillic letter Latin letter 

Word in Cyrillic script 
Standard transliteration 

in Latin script 
Capital 

letter 

Small 

letter 

Capital 

letter 

Small 

letter 

1 А а A a Аварга, халбага, аав Avarga, khalbaga, aav 

2 Б  б B b Бага, самбар Baga, sambar 

3 В  в V v Вагон, аварга, сав Vagon, avarga, sav 

4 Г  г G g Газар, гэрээ, хэрэг Gazar, geree, khereg 

5 Д  д D d Дадлага, ахмад Dadlaga, akhmad 

6 Е  е Ye ye Еэвэн, ерөөл Yeeven, yerööl 

7 Ё  ё Yo yo Ёроол, оёдол Yorool, oyodol 

8 Ж ж J j Жуулчин, ажил Juulchin, ajil 

9 З  з Z z Зам, заавар Zam, zaavar 

10 И  и I i Ишиг, бичиг, хань Ishig, bichig, khani 

11 - й - i Ийм, ээжийн Iim, eejiin 

12 К  к K k Кино, километр Kino, kilometer 

13 Л  л L l Лам, алаг, мал Lam, alag, mal 

14 М  м M m Мал, хамар, нам Mal, xamar, nam 

15 Н  н N n Нар, хана, үнэн Nar, khana, ünen 

16 О  о O o Орон, боловсрол, тооно Oron, bolovsrol, toono 

17 Ө ө Ö ö Өдөр, өнөөдөр, өөрөөсөө Ödör, önöödör, ööröösöö 

18 П  п P p Пуужин  Puujin 

19 Р  р R r Рашаан, радио, сар Rashaan, radio, sar 

20 С  с S s Сар, асар, эцэс Sar, asar, etses 

21 Т  т T t Тамга, татлага Tamga, tatlaga 

22 У  у U u Уран, нуруу Uran, nuruu 

23 Ү ү Ü  ü Үнэн, түргэн, тэргүүн Ünen, türgen, tergüün 

24 Ф  ф F f Фото, фонд Foto, fond 

25 Х  х Kh kh Хавар, нөхөр, эх Khavar, nökhör, ekh 

26 Ц  ц Ts ts Цацаг, цэцэг Tsatsag, tsetseg 

27 Ч  ч Ch ch Чимэг, чадал, ач Chimeg, chadal, ach 

28 Ш  ш Sh sh Шашин, ааш Shashin, aash 

29 Щ  щ Sh sh Щедрин Shyedrin 

30 - ъ - i Оръё, суръя, гаръя  Oriyo, suriya, gariya 

31 - ы - y Хааны, ахын Khaany, akhyn 

32 - ь - i Харь, барь Khari, bari 

33 Э  э E e Эзэн, энэ, эмээл Ezen, ene, emeel 

34 Ю  ю Yu yu Юм, юүдэн Yum, yuüden 

35 Я  я Ya ya Ямар, ядуу, ая Yamar, yaduu, aya 

 


