Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.

The Rationale for Stereoinduction in Conjugate Addition to Alkylidenemalonates Bearing a Menthol-derived Chiral Auxiliary.

Ken-ichi Yamada ${ }^{\text {a,b }} *$, Shinichi Fujiwara ${ }^{\text {a,c }}$, Tsubasa Inokuma ${ }^{\text {a,b }}$, Masayuki Sugano ${ }^{\text {a }}$, Yousuke Yamaoka ${ }^{\text {c }}$ and Kiyosei Takasu ${ }^{\text {c }}$
${ }^{a}$ Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
${ }^{b}$ Research Cluster on "Innovative Chemical Sensing", Tokushima University, Shomachi, Tokushima 770-8505, Japan.
${ }^{c}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan

ARTICLE INFO

Article history.

Received
Received in revised form
Accepted
Available online

Keywords

8-phenylmenthyl chiral auxiliary
dimethylzinc
asymmetric radical addition
benzylidenemalonate
tetramethyldioxolane

Abstract

Density-functional theory (DFT) calculations provided a new model to rationalize the stereoselectivity in the asymmetric addition to alkylidenemalonate bearing 8 -phenylmentyl groups as a chiral auxiliary. The diastereoselectivity in the addition reactions of a tetramethyldioxolanyl radical with various alkyl 8-phenylmentyl benzylidenemalonates strongly supports the proposed model.

1. Introduction

Understanding the origin of the stereoselectivity of chiral auxiliaries is important to gain insights into the design of a new auxiliary. We have been engaged in the development of radical reactions using dimethylzinc. ${ }^{1,2,3}$ In the course of the study, we developed benzylidenemalonate bearing 8 -phenylmentyl ($\phi \mathrm{Men}$) chiral auxiliaries ${ }^{4}(\mathbf{1 a})$ as useful radical acceptors, to realize high stereoselectivity in radical conjugate addition (Scheme 1). ${ }^{5,6}$ A Ccentered radical was formed from acetal 2 through $\mathrm{C}-\mathrm{H}$ bond cleavage by the action of dimethylzinc-air and underwent addition to the benzylidenemalonate with a high diastereomer ratio (dr) of 93:7. Recently, Maruoka and coworkers also utilized this radical acceptor and achieved excellent results. ${ }^{7}$ Although the origin of its stereoinduction was unclear, the phenyl groups of the auxiliaries must play an important role for the high selectivity because the corresponding reaction with di-l-mentyl (Men) benzylidenemalonate (1b) provided a significantly lower dr of $60: 40$. . $^{\text {b/7a }}$

Scheme 1. The Asymmetric Radical Addition of 1 and 2 Producing 3. ${ }^{\text {5b }}$

The stereoselectivity in reactions of ϕ Men alkenoates was explained as shown in Figure 1 (left). ${ }^{8}$ The attraction of the $\pi-\pi$ interaction locates the phenyl group of the chiral auxiliary to shield a face of the conjugated $\mathrm{C}=\mathrm{C}$ bond with s-trans conformation so that a reaction occurs on the other face of the double bond. This leads to the expectation that one of the two chiral auxiliaries of the benzylidenemalonate $\left(\mathrm{CO}_{2} \mathrm{R}\right.$ in Figure 1, middle) could be unimportant and omittable. Moreover, the second auxiliary might decrease the selectivity by shielding the face opposite to that the other auxiliary shields (Figure 1, middle vs right). Recently, we developed the E / Z-selective synthesis of alkylidenemalonates and related compounds. ${ }^{9}$ We planned to use this methodology to clarify the roles of the each chiral auxiliary. Here, we report the experimental and computational approaches to propose a new model to explain the stereochemical outcomes of the reaction.

[^0]

Figure 1. The $\pi-\pi$ Interaction Model to Rationalize the Stereoselectivity in 8Phenylmentyl Alkenoates (left) and the Analogy to Benzylidenemalonate (middle and right).

2. Results and Discussion

2.1. The Conjugate Addition Reaction of the Acetal Radical to Benzylidenemalonates Bearing One Chiral Auxiliary

The two isomeric methyl ϕ Men benzylidenemalonates E - and $Z-1 \mathbf{c}$ were selectively prepared by our method ${ }^{9}$ and tested in a radical conjugate addition (Scheme 2). To a mixture of E-1c and acetal 2 (250 equiv), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2 equiv) and a hexane solution of $\mathrm{Me}_{2} \mathrm{Zn}$ (6 equiv) were added. After $8 \mathrm{~h}, \mathbf{3 c}$ was obtained as a diastereomixture. The diastereoselectivity was determined at the stage of 4 after removal of the $\mathrm{CO}_{2} \mathrm{Me}$ groups by Krapcho decarboxylation with LiCl in refluxing aqueous DMSO. Against our expectation, the selectivity drastically decreased, and the E isomer produced $\mathbf{4}$ with low diastereoselectivity (dr 74:26). The configuration of the newly created stereogenic center was determined to be S, the same as 3a that obtained from the reaction involving 1a, by converting $\mathbf{3 c}$ to β-phenyl- γ butyrolactone and comparing the specific rotation to the reported value (see Experimental Section for detail). Although the other diastereomer of $\mathbf{4}$ was expected to be produced from the analogy shown in Figure 1 (middle and right), Z-1c produced the same diastereomer with slight preference (dr $56: 44$). The rigidity of the olefinic geometry during the reaction was confirmed by leaving $Z-1 \mathrm{c}$ and 2 at room temperature (rt) for 8 h in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to only recover $Z-1 \mathbf{c}$. After obtaining these puzzling results, we conducted density-functional theory (DFT) calculations to obtain insight into the stereo-determining factors.

Scheme 2. The Asymetric Radical Addition of E and $Z 1 \mathrm{c}$ and 2 Followed by Demethoxycarbonylation to Produce 4.

2.2. DFT Calculations of the Transition State Structures

Initially, the transition state geometry search was conducted for the addition reaction of the 4,4,5,5-tetramethyl-1,3-dioxan-2yl radical to dimethyl benzylidenemalonate coordinated to BF_{3}. Popular functionals, such as B3LYP, B3LYP-D3, M06-2X, and $\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D}$, with the $6-31 \mathrm{G}^{*}$ basis set failed to locate the transition state geometry, which was finally found by using BHandHLYP, previously reported as a suitable functional for radical reactions. ${ }^{10}$ The obtained geometry was utilized as a basis for the transition state geometry search for the reaction with methyl ϕ Men ester E-1c. A conformational search followed by the geometry optimization of the conformers at the BHandHLYP/6-31G* theoretical level provided two transition state structures, $\mathrm{TS}_{\text {minor }}$ and $\mathrm{TS}_{\text {major }}$, leading to the minor and major diastereomers, respectively, with the lowest energies (Figure 2). The ΔG of the transition states was $1.73 \mathrm{kcal} / \mathrm{mol}$ at the BHandHLYP/6-31+G*//BHandHLYP/6-31G* theoretical level, corresponding to $95: 5$ selectivity at $27^{\circ} \mathrm{C}$, and thus the
energy difference was overestimated by ca. $1 \mathrm{kcal} / \mathrm{mol}$ according to the experimental result (dr 76:24, Scheme 2).

Figure 2. Calculated Transition States for the Radical Addition to 1c.

In both transition states, the esters in a cis-relationship to the vinylic hydrogen take the s-cis conformation, and the other ester groups are out of the conjugation. ${ }^{11}$ The phenyl groups of the chiral auxiliary are directed toward the outside of the molecules and thus have no $\pi-\pi$ interaction probably to avoid unfavorable steric and/or electronic interaction with the ester groups out of the conjugation. The methoxy and carbonyl oxygen atoms in $\mathrm{TS}_{\text {minor }}$ and $\mathrm{TS}_{\text {major }}$, respectively, are directed toward the hydrogen atom at the C-radical center of the approaching acetal radical, likely enjoying favorable electrostatic interaction. The methyl groups of the esters are located on the opposite side of the bulky 5 -substituents of the chiral auxiliaries to most likely avoid steric repulsion, causing axial chirality in the $\mathrm{C}-\mathrm{C}$ bonds between the (E)-cinnamate moieties and the ester groups out of conjugation. As a result, the carbonyl oxygen pointed toward the approaching radical in the major transition state $\mathrm{TS}_{\text {major }}$, where the axial chirality is R_{a}, as also observable in the methoxy group in the minor transition state $\mathrm{TS}_{\text {minor }}$, where the axial chirality is S_{a}. This leads to the following speculation: the chiral auxiliary of the s-cis ester should differentiate the π-faces of the $\mathrm{C}=\mathrm{C}$ bond to locate the methyl group of the other ester on the opposite side of the bulky substituent of the auxiliary. Thus, the minor transition state would be destabilized by the steric repulsion between the approaching radical and the methyl group.

The observed low diastereoselectivity with 1b could also be rationalized according to the above model. When the phenyl group of the auxiliary is replaced with a hydrogen atom (Figure 3), the other ester mentyl group could more easily locate to the same side of the 5 -substituent of the chiral auxiliary because the steric repulsion can be relieved in the conformation where the hydrogen atom is pointed toward the ester moiety ($\mathrm{TS}^{\mathrm{Men}}{ }_{\text {minor }} 2$). In this conformation, where the axial chirality is R_{a}, approach of the radical from the same direction must be much easier without the steric repulsion of the ester alkyl group that exists in $\mathrm{TS}_{\text {minor }}$ (Figure 2) and $\mathrm{TS}^{\mathrm{Men}}{ }_{\text {minor }} 1$ (Figure 3). Thus, it would be the role of the phenyl group to prohibit the conformation where the ester alkyl group locates on the same side as the 5 -substituent of the auxiliary.

Figure 3. Possible Transition States $\mathrm{TS}^{\mathrm{Men}}{ }_{\text {minor }} 1$ and $\mathrm{TS}^{\text {Men }}{ }_{\text {minor }} 2$ to Give epi$\mathbf{3 b}$ in the Asymmetric Radical Addition of $\mathbf{2}$ to $\mathbf{1 b}$.

2.3. The Steric Effect of the Leaning Ester Group

To verify the above hypothesis, mono ϕ Men benzylidenemalonates, bearing alkyl groups of a different size, were prepared and compared in a reaction (Table 1). To simplify the analysis, the stereoselectivity in the radical addition was determined after removing the stereogenic centers-other than
the newly created one via hydrolysis-with KOH in refluxing aqueous DMSO, followed by decarboxylation and methyl esterification with TMSCHN_{2} to give 5. The enantiomer ratio (er) of 5, as derived from 3c, was 74:26, which was compatible with the result observed in Scheme 2. In the same manner, the radical addition with isopropyl ester $\mathbf{1 d}$ gave a diastereomeric mixture of 3d, which was then converted to 5. As expected, 1d (A-value of i-Pr: 2.21^{12}) yielded 5 with a better er of $80: 20$ (entry 2) than methyl ester $E-1 \mathbf{c}$ (A-value of Me: $1.74 ;{ }^{12}$ entry 1). A mixture of $\mathbf{3 e}$, obtained from the reaction with tert-butyl ester 1e, could also be converted into 5 analogously to the aforementioned steps. Although not as high as 8-phenylmentyl ester 1a (A-value of ϕ Men: 6.1; ${ }^{13}$ entry 4), $\mathbf{1 e}$ (A-value of t-Bu: 4.9^{14}) realized a good selectivity of $86: 14$ (entry 3). The observed relationship between the selectivity and the A values of the alkyl groups strongly supports our hypothesis.

Table 1. Asymmetric Radical Addition ${ }^{a}$ of $\mathbf{2}$ with Alkyl 8-Phenylmentyl Benzylidenemalonates 1a-d Followed by Dealkoxycarbonylation.

Ph	$\begin{aligned} & \mathrm{O}_{2} \phi \mathrm{M} \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{Me}_{2} \\ +2 \mathrm{BF}_{3} \\ \hline \end{array}$			
entry ${ }^{a}$	1	R	A-value of R^{b}	product	\% yield (er/dr) ${ }^{\text {c }}$
1	E-1c	Me	1.74	5	24 (er 74:26)
2	1d	$i-\mathrm{Pr}$	2.21	5	33 (er 80:20)
3	1e	t-Bu	4.9	5	33 (er 86:14)
4^{d}	1a	ϕ Men	6.1	3a	86 (dr 93: 7)

${ }^{a}$ The radical reactions were conducted for $9,3,3$, and 6 h , respectively. ${ }^{b}$ Refs $12-14 .{ }^{c} \mathrm{Er}$ and dr were determined by chiral HPLC analysis after conversion to β-phenyl- γ-butyrolactone and ${ }^{1} \mathrm{H}$ NMR, respectively. ${ }^{d}$ Data from ref 5 b for comparison.

3. Conclusion

A model to rationalize the stereoselectivity in the asymmetric radical addition to alkylidenemalonate bearing 8-phenylmentyl groups as chiral auxiliaries was proposed. The experimental and computational results indicate that only one of the chiral esters, bearing a cis-relationship to the vinylic hydrogen, differentiates the π-faces of the $\mathrm{C}=\mathrm{C}$ bond to locate the alkyl group of the other ester in the opposite side to the bulky moiety of the chiral auxiliary, and the role of the ester, trans to the hydrogen, is just of steric hindrance. This is an example of chirality transfer, where the chirality of the former ester far from the reacting site is transferred to the much closer axial chirality in the $\mathrm{C}=\mathrm{C}-\mathrm{CO}_{2} \mathrm{R}$ moiety of the latter ester. ${ }^{15}$ The proposed model is probably applicable to other type of reactions with alkylidenemalonates, and the provided insight must be beneficial toward the design of new chiral auxiliaries.

4. Experimental section

4.1. General

All melting points are uncorrected. Silica gel was used for column chromatography. NMR (400 and 100 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) was measured in CDCl_{3}. Chemical shifts (δ) and coupling constants (J) are presented in parts per million relative to tetramethylsilane (0 ppm for ${ }^{1} \mathrm{H}$) or $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$), and hertz, respectively. Abbreviations are as follows: s , singlet; d, doublet; t , triplet; sept, septet; m, multiplet; br, broad.

The wave numbers of maximum absorption peaks of IR spectroscopy are presented in cm^{-1}. TOF mass spectrometers were used for ESIMS. Commercially available solvents and reagents were purchased and used without purification.

4.2. Starting Materials

Benzylidenemalonates E - and $Z-\mathbf{1} \mathbf{c}^{9}$, and dioxolane $\mathbf{2}^{16}$ were prepared as reported, and $\mathbf{1 d}$ and $\mathbf{1 e}$ were prepared according to the reported procedure ${ }^{9}$ from isopropyl and tert-butyl phenylpropiolate, ${ }^{17}$ respectively, as follows.

4.2.1. (E)-Isopropyl (1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl
 Benzylidenemalonate (1d)

A solution of isopropyl phenylpropiolate $(1.18 \mathrm{~g}, 6.27 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(28.2 \mathrm{mg}, 12.6 \mu \mathrm{~mol})$, $\mathrm{PPh}_{3}(82.2 \mathrm{mg}, 31.3 \mu \mathrm{~mol})$ and $\mathrm{Bu}_{3} \mathrm{SnH}(2.02 \mathrm{~mL}, 7.51 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 6 h . Then, the reaction mixture was evaporated in vacuo and passed through silica gel column (hexane to hexane $/ \mathrm{Et}_{2} \mathrm{O} 40: 1$) to provide a crude mixture $(1.51 \mathrm{~g})$ which contains isopropyl (E)-3-phenyl-2(tributylstannyl)acrylate and isopropyl (E)-3-phenyl-3(tributylstannyl)acrylate in the ratio of $73: 27$. The mixture (500 $\mathrm{mg}),\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{CHCl}_{3}(26.9 \mathrm{mg}, 26.0 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(34.1 \mathrm{mg}$, $130 \mu \mathrm{~mol})$, and $\mathrm{ClCO}_{2} \phi \mathrm{Men}^{18}(409 \mathrm{mg}, 1.39 \mathrm{mmol})$ were dissolved in DME (10 mL) in a dry $100-\mathrm{mL}$ round-bottomed flask under argon atmosphere, and the resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After the addition of $\mathrm{H}_{2} \mathrm{O}$, the mixture was cooled to room temperature and extracted with EtOAc twice. The combined organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography $\left(10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}\right.$ in silica gel, ${ }^{19}$ hexane/ $\mathrm{Et}_{2} \mathrm{O}$, $25: 1$ to $15: 1)$ to give $\mathbf{1 d}(206 \mathrm{mg}, 22 \%$ over 2 steps $)$ as a colorless oil with $[\alpha]^{21}{ }_{\mathrm{D}}+8.0\left(c \quad 1.21, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR: 7.39$7.33(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, J=7.0,2 \mathrm{H}), 7.23(\mathrm{t}, J=7.0,2 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 7.00(\mathrm{t}, J=7.0,1 \mathrm{H}), 5.21(\mathrm{sept}, J=6.5,1 \mathrm{H}), 5.00(\mathrm{td}, J=$ $11.0,4.5,1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}$, $1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.5,3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=$ $6.5,3 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.84(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR: 165.9 (C), 163.3 (C), 150.9 (C), 141.1 (CH), 133.1 (C), $130.1(\mathrm{CH}), 129.4(\mathrm{CH}), 128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 127.0(\mathrm{C})$, $125.5(\mathrm{CH}), 125.2(\mathrm{CH}), 75.8(\mathrm{CH}), 69.2(\mathrm{CH}), 50.7(\mathrm{CH}), 41.7$ $\left(\mathrm{CH}_{2}\right), 39.9(\mathrm{C}), 34.5\left(\mathrm{CH}_{2}\right), 31.3(\mathrm{CH}), 27.1\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{2}\right)$, $26.3\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$. IR (neat): 2968, 2870, 1730, 1627, 1450, 1360, 1250, 1100, 950, 750. ESIMS $m / z: 471(\mathrm{M}+\mathrm{Na}, 100)$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NaO}_{4}, 471.2511$; found, 471.2496 .
4.2.2. (Z)-tert-Butyl (1R,2S,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexyl
Benzylidenemalonate (1e)
A similar procedure to that for $\mathbf{1 d}$ using tert-butyl phenylpropiolate $(2.00 \mathrm{~g}, 9.89 \mathrm{mmol})$ instead of isopropyl phenylpropiolate, THF $(20 \mathrm{~mL}), \mathrm{Pd}(\mathrm{OAc})_{2}(45.4 \mathrm{mg}, 20.2 \mu \mathrm{~mol})$, $\mathrm{PPh}_{3}(141 \mathrm{mg}, 53.7 \mu \mathrm{~mol})$, and $\mathrm{Bu}_{3} \mathrm{SnH}(2.93 \mathrm{~mL}, 10.9 \mathrm{mmol}) ;$ and $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] \cdot \mathrm{CHCl}_{3}(26.4 \mathrm{mg}, 25.5 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(33.4 \mathrm{mg}$, $12.7 \mu \mathrm{~mol}), \mathrm{ClCO}_{2} \phi \mathrm{Men}(401 \mathrm{mg}, 1.36 \mathrm{mmol})$, and DME (10 $\mathrm{mL})$ gave $\mathbf{1 e}(248 \mathrm{mg}, 42 \%$ over 2 steps $)$ as a colorless oil with $[\alpha]_{\mathrm{D}}^{21}+3.1\left(c\right.$ 1.46, $\left.\mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR: 7.45-7.41 (m, 2H), 7.37$7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.0,2 \mathrm{H}), 7.23(\mathrm{t}, J=7.0,2 \mathrm{H}), 7.01(\mathrm{~s}$, $1 \mathrm{H}), 7.00(\mathrm{t}, J=7.0,1 \mathrm{H}), 5.02(\mathrm{td}, J=11.0,4.5,1 \mathrm{H}), 2.07-1.97$ $(\mathrm{m}, 2 \mathrm{H}), 1.65-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}$, $3 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.83(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: 165.6 (C), 163.5 (C), 150.9 (C), 140.0 (CH), 133.2 (C), $130.0(\mathrm{CH}), 129.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH})$, $125.5(\mathrm{CH}), 125.2(\mathrm{CH}), 82.4(\mathrm{C}), 75.6(\mathrm{CH}), 50.7(\mathrm{CH}), 41.8$
$\left(\mathrm{CH}_{2}\right), 39.9(\mathrm{C}), 34.5\left(\mathrm{CH}_{3}\right), 31.3(\mathrm{CH}), 27.9\left(\mathrm{CH}_{3}\right)$, $27.2\left(\mathrm{CH}_{2}\right)$, $26.9\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$. IR (neat): 2960, 2920, 1710 , 1620, 1460, 1370, 1250, 1150, 1080, 740. ESIMS m/z: 485 (M + $\mathrm{Na}, 100)$. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NaO}_{4}$, 485.2668; found, 485.2663.
4.3. Asymmetric Radical Addition of E- and Z-1c (Scheme 2):
(1R,2S,5R)-5-Methyl-2-(2-methyl-phenylethyl)cyclohexyl (S)- and (R)-3-Phenyl-3-(4,4,5,5-tetramethyl-1,3-dioxolan-2-
yl)propanoate (4 and epi-4)

4.3.1. The Reaction with E-1c

To a solution of $E-1 \mathbf{c}(89.4 \mathrm{mg}, 0.213 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($53 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$) in $2(7.4 \mathrm{~mL}, 50 \mathrm{mmol})$, was added a 0.96 M hexane solution of $\mathrm{Me}_{2} \mathrm{Zn}(1.33 \mathrm{~mL}, 1.3 \mathrm{mmol})$. The mixture was stirred for 8 h at rt under ordinary atmosphere, and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The whole was extracted with EtOAc twice, and the organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and passed through a short silica pad (hexane/EtOAc 3:1). The residue was dissolved in DMSO (2 mL), and $\mathrm{LiCl}(45.2 \mathrm{mg}, 1.07 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(29 \mu \mathrm{~L}, 1.6 \mathrm{mmol})$ were added to the solution. The mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 h and diluted with water, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (hexane/EtOAc 50:1 to 10:1) to give a 74:26 mixture of $\mathbf{4}$ and epi- $\mathbf{4}(54.2 \mathrm{mg}, 52 \%)$ as a colorless oil with $[\alpha]^{21}{ }_{\mathrm{D}}+1.1\left(c 1.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: 7.33-7.08 $(\mathrm{m}, 10 \mathrm{H})$, $5.04(\mathrm{~d}, J=4.0,0.74 \mathrm{H}), 5.00(\mathrm{~d}, J=4.0,0.26 \mathrm{H}), 4.68(\mathrm{td}, J=8.5$, $3.5,0.74 \mathrm{H}$), $4.64(\mathrm{td}, J=8.5,3.5,0.26 \mathrm{H}), 3.17(\mathrm{td}, J=4.5,4.0$, $0.74 \mathrm{H}), 3.08(\mathrm{td}, J=4.5,4.0,0.26 \mathrm{H}), 2.42(\mathrm{dd}, J=12.0,4.5$, $0.74 \mathrm{H}), 2.42(\mathrm{dd}, J=12.0,4.5,0.26 \mathrm{H}), 2.28(\mathrm{dd}, J=12.0,4.5$, $0.26 \mathrm{H}), 2.16(\mathrm{dd}, J=12.0,4.5,0.74 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.63-$ $1.52(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 2.22 \mathrm{H}), 1.25(\mathrm{~s}, 0.78 \mathrm{H})$, $1.19(\mathrm{~s}, 0.78 \mathrm{H}), 1.18(\mathrm{~s}, 2.22 \mathrm{H}), 1.15(\mathrm{~s}, 2.22 \mathrm{H}), 1.14-1.08(\mathrm{~m}$, $1 \mathrm{H}), 1.13(\mathrm{~s}, 2.22 \mathrm{H}), 1.12(\mathrm{~s}, 0.78 \mathrm{H}), 1.11(\mathrm{~s}, 0.78 \mathrm{H}), 1.10(\mathrm{~s}$, $2.22 \mathrm{H}), 1.09(\mathrm{~s}, 0.78 \mathrm{H}), 1.06(\mathrm{~s}, 0.78 \mathrm{H}), 1.05(\mathrm{~s}, 2.22 \mathrm{H}), 1.02-$ $0.95(\mathrm{~m}, 1 \mathrm{H}), 0.77(\mathrm{~d}, J=5.5,0.78 \mathrm{H}), 0.74(\mathrm{~d}, J=5.5,2.22 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR 4: 171.6 (C), 151.5 (C), 139.4 (C), 129.1 (CH), 127.9 $(\mathrm{CH}), 127.8(\mathrm{CH}), 126.7(\mathrm{CH}), 125.4(\mathrm{CH}), 125.1(\mathrm{CH}), 102.1$ (CH), 82.0 (C), $81.9(\mathrm{C}), 74.2(\mathrm{CH}), 50.3(\mathrm{CH}), 47.0(\mathrm{CH}), 41.2$ $\left(\mathrm{CH}_{2}\right), 39.7(\mathrm{C}), 35.7\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 31.1(\mathrm{CH}), 27.2\left(\mathrm{CH}_{3}\right)$, $26.6\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 21.6$ $\left(\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR epi-4: 171.4 (C), 151.3 (C), 139.6 (C), 129.1 $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 125.5(\mathrm{CH}), 125.1$ $(\mathrm{CH}), 102.3(\mathrm{CH}), 82.0(\mathrm{C}), 81.9(\mathrm{C}), 74.3(\mathrm{CH}), 50.2(\mathrm{CH}), 46.8$ $(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 39.7(\mathrm{C}), 36.0\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{CH}_{2}\right), 31.1(\mathrm{CH})$, $26.9\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 22.1$ $\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right)$. IR (neat): 2970, 2920, 1740, 1440, 1360, 1260, $1150,1125,760,700$. ESIMS $m / z: 515$ ($\mathrm{M}+\mathrm{Na}, 100$). HRMSESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NaO}_{4}, 515.3137$; found, 515.3115.

4.3.2. The Reaction with Z-1c

The same procedure as $E-1 \mathbf{c}$ using $Z-1 \mathbf{c}(86.2 \mathrm{mg}, 0.205$ mmol) gave a $56: 44$ mixture of $\mathbf{4}$ and epi-4 ($60.7 \mathrm{mg}, 62 \%$) as a yellow oil.
4.4. Asymmetric Radical Addition of $1 \boldsymbol{c}-\boldsymbol{e}$ (Table 1): (S)-3-

Phenyl-3-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)propanoate (5) and (S)- β-Phenyl- γ-butyrolactone

4.4.1. The Reaction with E-1c

To a solution of $E-1 \mathbf{c}(108 \mathrm{mg}, 0.257 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($65 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$) in $2(9.2 \mathrm{~mL}, 62 \mathrm{mmol})$, was added a 0.96 M hexane solution of $\mathrm{Me}_{2} \mathrm{Zn}(1.61 \mathrm{~mL}, 1.5 \mathrm{mmol})$. The mixture was stirred for 9 h at rt under ordinary atmosphere, and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The whole was extracted with EtOAc twice, and the
combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and passed through short silica pad (hexane/EtOAc 3:1). The residue was dissolved in DMSO (4 $\mathrm{mL})$, and $4 \mathrm{M} \mathrm{KOH}(0.7 \mathrm{~mL}, 2 \mathrm{mmol})$ was added. After stirred at $140{ }^{\circ} \mathrm{C}$ for 4 h , the mixture was partitioned between ice-water and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL}$ each $)$. The separated aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}$ and acidified by the addition of $10 \% \mathrm{HCl}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice, and the combined organic layer were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was dissolved in benzene (3.5 mL) and $\mathrm{MeOH}(0.5 \mathrm{~mL})$, and a 1 M hexane solution of $\mathrm{TMSCHN}_{2}(1.0 \mathrm{~mL}, 1 \mathrm{mmol})$ was added to the solution at rt . The mixture was stirred until gas evolution ceased, and then concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc 9:1) to give 5 $(18.3 \mathrm{mg}, 24 \%)$ as a colorless oil with $[\alpha]^{20} \mathrm{D}+1.5(c 0.59$, EtOH): ${ }^{1} \mathrm{H}$ NMR: $7.32-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~d}, J=5.5,1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$, 3.35 (ddd, $J=9.0,6.0,5.5,1 \mathrm{H}), 2.93(\mathrm{dd}, J=15.5,6.0,1 \mathrm{H}), 2.66$ (dd, $J=15.5,9.0,1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, $1.09(\mathrm{~s}, 3 \mathrm{H})$. The NMR data was identical to that reported. ${ }^{\text {sb }}$

A mixture of the above obtained $5(10.0 \mathrm{mg}, 34.2 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{SiH}(55 \mu \mathrm{~L}, 0.34 \mathrm{mmol})$ in TFA $(1 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled to rt, concentrated in vacuo, and purified by silica gel column chromatography (hexane/EtOAc $5: 1$) to give (S)- β-phenyl- γ-butyrolactone (6.3 mg , quant) with a 74:26 er as a colorless oil with $[\alpha]^{21}{ }_{\mathrm{D}}+12\left(c 0.62, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit: ${ }^{5 \mathrm{~b}}$ $[\alpha]^{25}{ }_{\mathrm{D}}+39\left(c 1.1, \mathrm{CHCl}_{3}\right)$ for 85% ee $\}:{ }^{1} \mathrm{H}$ NMR: $7.37(\mathrm{t}, J=7.0$, $2 \mathrm{H}), 7.31(\mathrm{t}, J=7.0,1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.0,2 \mathrm{H}), 4.68(\mathrm{dd}, J=9.0$, $8.0,1 \mathrm{H}), 4.38(\mathrm{dd}, J=9.0,8.0,1 \mathrm{H}), 3.80(\mathrm{ddt}, J=9.5,8.5,8.0$, $1 \mathrm{H}), 2.93(\mathrm{dd}, J=17.58 .5,1 \mathrm{H}), 2.68(\mathrm{dd}, J=17.5,9.5,1 \mathrm{H})$. The NMR data was identical to that reported. ${ }^{5 b}$ The er was determined by chiral HPLC (Daicel Chiralcel AD-H; hexane $/ i-\operatorname{PrOH} 98: 2$; $1.0 \mathrm{~mL} / \mathrm{min} ; 220 \mathrm{~nm} ; S 20.9 \mathrm{~min}, R 22.6 \mathrm{~min}$).

4.4.2. The Reaction with $1 d$

The same procedure as $E-\mathbf{1 c}$ using $\mathbf{1 d}(90.8 \mathrm{mg}, 0.202 \mathrm{mmol})$ gave $5(19.5 \mathrm{mg}, 33 \%)$ with $[\alpha]^{20}{ }_{\mathrm{D}}+7.8(c 0.76$, EtOH), 10.0 mg of which was then converted to (S)- β-phenyl- γ-butyrolactone (7.0 mg , quant) with an $80: 20 \mathrm{er}:[\alpha]^{18}{ }_{\mathrm{D}}+21\left(c 0.43, \mathrm{CHCl}_{3}\right)$.

4.4.3. The Reaction with $1 \boldsymbol{e}$

The same procedure as $E-1 \mathbf{c}$ using $\mathbf{1 e}(90.9 \mathrm{mg}, 0.196 \mathrm{mmol})$ gave $5(19.1 \mathrm{mg}, 33 \%)$ with $[\alpha]_{\mathrm{D}}^{20}+13(c 0.33, \mathrm{EtOH}), 10.0 \mathrm{mg}$ of which was then converted to (S)- β-phenyl- γ-butyrolactone (7.1 mg , quant) with an 86:14 er: $[\alpha]^{18}{ }_{\mathrm{D}}+30\left(c 0.59, \mathrm{CHCl}_{3}\right)$.

4.5. DFT Calculations

The bond length of the forming $\mathrm{C}-\mathrm{C}$ bond at the transition state was calculated for the addition reaction of the 4,4,5,5-tetramethyl-1,3-dioxolan-2-yl radical to dimethyl benzylidenemalonate in the presence of BF_{3} at the BHandHLYP/6-31G(d) theoretical level using the Gaussian 09W program. ${ }^{20}$ The forming $\mathrm{C}-\mathrm{C}$ distance was restricted to that calculated ($2.479 \AA$) during conformational search for the transition state geometry with methyl ϕ Men ester $E-1 \mathbf{c}$, which was conducted with a Merck Molecular Force Field using the Spartan 16 program, ${ }^{21}$ followed by the geometry optimization at the BHandHLYP/6-31G(d) theoretical level using the Gaussian 09 W . The transition state search was performed at the BHandHLYP/6-31G(d) theoretical level using the obtained geometries as initial geometries provided $\mathrm{TS}_{\text {minor }}$ and $\mathrm{TS}_{\text {major }}$ leading to the minor and major diastereomers, respectively, as those with the lowest energies. The geometries were verified by the frequency analysis.

Acknowledgments

This research was supported in part by JSPS KAKENHI Grant No. JP18K06579, a research program for the development of an intelligent Tokushima artificial exosome (iTEX) and the Research Clusters program (No. 1802001) from Tokushima University.

Supplementary Material

Supplementary data (copies of NMR spectra, chiral HPLC charts, and detail of the DFT calculations) to this article can be found online.

References and notes

1. (a) Yamada, K.; Matsumoto, Y.; Fujii, S.; Konishi, T.; Yamaoka, Y.; Takasu, K. J. Org. Chem. 2016, 81, 3809. (b) Fujii, S.; Nakano, M.; Yamaoka, Y.; Takasu, K.; Yamada, K.; Tomioka, K. Tetrahedron Lett. 2015, 56, 3086. (c) Fujii, S.; Konishi, T.; Matsumoto, Y.; Yamaoka, Y.; Takasu, K.; Yamada, K. J. Org. Chem. 2014, 79, 8128. (d) Yamada, K.; Konishi, T.; Nakano, M.; Fujii, S.; Cadou, R.; Yamamoto, Y.; Tomioka, K. J. Org. Chem. 2012, 77, 5775. (e) Yamada, K.; Konishi, T.; Nakano, M.; Fujii, S.; Cadou, R.; Yamamoto, Y.; Tomioka, K. J. Org. Chem. 2012, 77, 1547. (f) Yamada, K.; Tomioka, K. Chem. Rec. 2015, 15, 854 and references therein.
2. Reviews of radical reactions using dimethylzinc: (a) Chemla, F.; Dulong, F.; Ferreira, F.; Nüllen, M. P.; Pérez-Luna, A. Synthesis 2011, 1347. (b) Akindele, T.; Yamada, K.; Tomioka, K. Acc. Chem. Res. 2009, 42, 345. (c) Bazin, S.; Feray, L.; Bertrand, M. P. Chimia 2006, 60, 260. (d) Yamada, K.; Yamamoto, Y.; Tomioka, K. J. Synth. Org. Chem. Jpn. 2004, 62, 1158.
3. Recent examples of radical reactions using dimethylzinc: (a) Lingua, H.; Dwadnia, N.; Siri, D.; Bertrand, M. P.; Feray, L. Tetrahedron 2018, 74, 7507. (b) Doi, N.; Takeda, N.; Miyata, O.; Ueda, M. Eur. J. Org. Chem. 2017, 3652. (c) Vibert, F.; Maury, J.; Lingua, H.; Besson, E.; Siri, D.; Bertrand, M. P.; Feray, L. Tetrahedron 2015, 71, 8991. (d) Sølvhøj, A.; Ahlburg, A.; Madsen, R. Chem. Eur. J. 2015, 21, 16272. (e) Kubisiak, M.; Zelga, K.; Bury, W.; Justyniak, I.; Budny-Godlewski, K.; Ochal, Z.; Lewiński, J. Chem. Sci. 2015, 6, 3102. (f) Ueda, M.; Doi, N.; Miyagawa, H.; Sugita, S.; Takeda, N.; Shinada, T.; Miyata, O. Chem. Commun. 2015, 51, 4204. (g) Huang, W.; Ye, J.-L.; Zheng, W.; Dong, H.-Q.; Wei, B.-G. J. Org. Chem. 2013, 78, 11229. (h) Chemla, F.; Dulong, F.; Ferreira, F.; Pérez-Luna, A. Beilstein J. Org. Chem. 2013, 9, 236 . (i) Jammi, S.; Maury, J.; Suppo, J.-S.; Bertrand, M. P.; Feray, L. J. Org. Chem. 2013, 78, 12566.
4. (a) Feltkamp, H.; Franklin, N.C. Tetrahedron 1965, 21, 1541. (b) Stolow, R. D.; Marini, J. L. Tetrahedron Lett. 1971, 12, 1449. (c) Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908. (d) Sundararaman, P.; Barth, G.; Djerassi, C. J. Org. Chem. 1980, 45, 5231. (e) Whitesell, J. K.; Lawrence, R. M.; Chen, H.-H. J. Org. Chem. 1986, 51, 4779. (f) Buschmann, H.; Hoffmann, N.; Scharf, H.-D. Tetrahedron: Asymmetry 1991, 2, 1429.
5. (a) Yamada, K.; Maekawa, M.; Akindele, T.; Yamamoto, Y.; Nakano, M.; Tomioka, K. Tetrahedron 2009, 65, 903. (b) Yamada, K.; Maekawa, M.; Akindele, T.; Nakano, M.; Yamamoto, Y.; Tomioka, K.J.Org. Chem. 2008, 73, 9535.
6. Our other approach for asymmetric radical addition: (a) Akindele, T.; Yamada, K.; Sejima, T.; Maekawa, M.; Yamamoto, Y.; Nakano, M.; Tomioka, K. Chem. Pharm. Bull. 2010, 58, 265. (b) Akindele, T.; Yamamoto, Y.; Maekawa, M.; Umeki, H.; Yamada, K.; Tomioka, K. Org. Lett. 2006, 8, 5729.
7. (a) Selvakumar, S.; Kang, Q-K.; Arumugam, N.; Almansour, A. I.; Kumar, R. S.; Maruoka, K. Tetrahedron 2017, 73, 5841. (b) Selvakumar, S.; Sakamoto, R.; Maruoka, K. Chem. Eur. J. 2016, $22,652$.
8. (a) Oppolzer, W.; Robbiani, C.; Bättig, K. Helvetica Chim. Acta 1980, 63, 2015. (b) Oppolzer, W.; Löher, H. J. Helvetica Chim. Acta 1981, 64, 2802. (c) Oppolzer, W.; Kurth, M.; Chapuis, C.; Mohnhaupt, M.; Moffatt, F. Helvetica Chim. Acta 1981, 64, 2808.
9. Fujiwara, S.; Cadou, R.; Yamaoka, Y.; Takasu, K.; Yamada, K. Eur.J. Org.Chem. 2015, 1264.
10. (a) Ryu, I.; Fukuyama, T.; Tojino, M.; Uenoyama, Y.; Yonamine, Y.; Terasoma, N.; Matsubara, H. Org. Biomol. Chem. 2011, 9, 3780. (b) Matsubara, H.; Ryu, I.; Schiesser, C. H. Org. Biomol. Chem. 2007, 5, 3320. (c) Matsubara, H.; Ryu, I.; Schiesser, C. H. J. Org. Chem., 2005, 70, 3610. (d) Matsubara, H. Schiesser, C. H. Org. Biomol. Chem. 2003, 1, 4335. (e) Schiesser, C. H.; Wild, L. M. Tetrahedron 1996, 52, 13265. (f) Smart, B. A.; Schiesser, C. H. J. Comput. Chem. 1995, 16, 1055.
11. The $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ dihedral angles in the major and minor transition states are 34° and 129°, respectively.
12. Booth, H.; Everett, J. R. Can. J. Chem. 1980, 58, 2709.
13. Calculated at the $\omega \mathrm{B} 97 \mathrm{x}-\mathrm{V} / 6-331+\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p}) / / \omega \mathrm{B} 97 \mathrm{x}-\mathrm{D} / 6-31 \mathrm{G}^{*}$ theoretical level.
14. (a) van Der Graaf, B.; Baas, J. M. A.; Wepster, B. M. Recueil des Travaux Chimiques des Pays-Bas, 1978, 97, 268. (b) Manoharan, M.; Eliel, E. L. Tetrahedron Lett. 1984, 25, 3267.
15. (a) Nishimura, K.; Fukuyama, N.; Yamashita, M.; Sumiyoshi, T.; Yamamoto, Y.; Yamada, K.; Tomioka, K. Synthesis 2015, 47, 2256. (b) Yamada, K.; Matsumoto, Y.; Selim, K. B.; Yamamoto, Y.; Tomioka, K. Tetrahedron 2012, 68, 4159. (c) Selim, K. B.; Nakanishi, H.; Matsumoto, Y.; Yamamoto, Y.; Yamada, K.; Tomioka, K. J. Org. Chem. 2011, 76, 1398. (d) Matsumoto, Y.; Selim, K. B.; Nakanishi, H.; Yamada, K.; Yamamoto, Y.; Tomioka, K. Tetrahedron Lett. 2010, 51, 404. (e) Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K. Angew. Chem. Int. Ed. 2009, 48, 8733. (f) Matsumoto, Y.; Yamada, K.; Tomioka, K. J. Org. Chem. 2008, 73, 4578. (g) Doi, H.; Sakai, T.; Yamada, K.; Tomioka, K. Chem. Commun. 2004, 1850.
16. Yamada, K.; Yamamoto, Y.; Maekawa, M.; Tomioka, K. J. Org. Chem. 2004, 69, 1531.
17. Johnston, C. P.; Kothari, A.; Sergeieva, T.; Okovytyy, S. I.; Jackson, K. E.; Paton, R. S.; Smith, M. D. Nat. Chem. 2015, 7, 171.
18. Gibson, H. W.; Berg, M. A. G.; Dickson, J. C.; Lecavalier, P. R.; Wang, H.; Merola, J. S. J. Org. Chem. 2007, 72, 5759.
19. Harrowven, D. C.; Curran, D. P.; Kostiuk, S. L.; Wallis-Guy, I. L.; Whiting, S.; Stenning, K. J.; Tang, B.; Packard, E.; Nanson, L. Chem. Commun. 2010, 46, 6335.
20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09W, Revision E. O1, Gaussian, Wallingford, CT, 2010.
21. Spartan'16, Wavefunction Inc. Irvine, CA.

[^0]: * Corresponding author. Tel.: +81-88-633-7280; fax: +81-88-633-9504; e-mail: yamak@tokushima-u.ac.jp

