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Abstract: Iterative reconstruction of density pixel images from measured projections in computed
tomography has attracted considerable attention. The ordered-subsets algorithm is an acceleration
scheme that uses subsets of projections in a previously decided order. Several methods have been
proposed to improve the convergence rate by permuting the order of the projections. However, they
do not incorporate object information, such as shape, into the selection process. We propose a block-
iterative reconstruction from sparse projection views with the dynamic selection of subsets based on
an estimating function constructed by an extended power-divergence measure for decreasing the
objective function as much as possible. We give a unified proposition for the inequality related to the
difference between objective functions caused by one iteration as the theoretical basis of the proposed
optimization strategy. Through the theory and numerical experiments, we show that nonuniform
and sparse use of projection views leads to a reconstruction of higher-quality images and that an
ordered subset is not the most effective for block-iterative reconstruction. The two-parameter class of
extended power-divergence measures is the key to estimating an effective decrease in the objective
function and plays a significant role in constructing a robust algorithm against noise.

Keywords: power-divergence measure; computed tomography; iterative reconstruction; ordered-
subsets algorithm; block-iterative reconstruction

1. Introduction

The iterative reconstruction [1,2] of density pixel images from measured projections
in computed tomography [3–7] has attracted considerable attention, in spite of its high
computational cost because of its ability to produce a higher-quality image compared with
transform methods [8,9]. For compensating the drawback of the slow convergence of the
simultaneous iterative image reconstruction algorithm [10–13], projections can be divided
up into multiple blocks or subsets. The ordered-subsets (OS) algorithm [10,12,14,15] is an
acceleration scheme that uses subsets in a previously decided order. There exist degrees of
freedom in not only the number of divisions but also the order of subsets with which to
obtain an accelerated OS algorithm that can perform a high-image-quality reconstruction
quickly. Several methods have been proposed to improve convergence rate by permuting
the order of projections; for example, fixed angle (FAS), prime number decomposition
(PND) [16], random access (RAS) [17,18], multilevel access (MLS) [19], and weighted
distance (WDS) [20] are constructed such that the projection access space sampling is as
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uniform as possible. However, they do not incorporate object information, such as shape,
into the selection process.

The purpose of this study is to construct an object-dependent rule for selecting more
effective subsets to accelerate convergence. It shows that an algorithm with dynamically
selected projection views at every iteration, rather than ordered projections, is a more
effective scheme from the viewpoint of total optimization. The proposed procedure, which
is an unordered-subsets (unOS) algorithm, selects the subset index that gives the largest
decrease in the objective function between at the initial value and at one-step later by
using a subset selected according to a function value estimated from the initial value.
Block-iterative (BI) algorithms of the simultaneous algebraic reconstruction technique
(SART) [1], maximum-likelihood expectation-maximization (MLEM) [21], and the simulta-
neous multiplicative algebraic reconstruction technique (MART) [2,22,23] are applicable
to the proposed selection or estimating scheme. The term BI in this paper has the same
meaning as OS, except for whether the projections are ordered or not. As a theoretical
basis of the proposed strategy, we prove a unified proposition on inequalities related to
the difference between the objective functions caused by a one-step iteration by using an
extended power-divergence measure [24–27], which includes a wide set of known distance
and relative entropy measures with two variable parameters. When the number of subsets
is the same as the number of projections, the decrease in the difference between the objective
functions is identical to the value of the estimating function, and, therefore, the selection of
the subset for which the estimating function has the largest value gives a more effective
optimization.

We conducted experiments on tomographic image reconstruction from sparse projec-
tion views with a relatively large number of subsets compared with the projection number
and obtained results showing a high satisfaction rate of the desired subset relation through
use of the estimating function supported by a theoretical analysis. Practically speaking,
although the computation time of the estimating function is an issue, a fast matrix-vector
multiplication can mitigate this problem, and its effect is worth the delay, as illustrated in
the experiment.

2. Problem Description
2.1. Block Iterative Reconstruction

Image reconstruction is the problem of obtaining unknown pixel values x ∈ RJ
+

satisfying
y = Ax + δ (1)

where y ∈ RI
+, A ∈ RI×J

+ , and δ ∈ RI denote the measured projection, projection operator,
and noise, respectively, with R+ representing the set of nonnegative real numbers. When
the system in Equation (1) without noise, i.e., δ = 0, has a solution e ∈ E with

E :=
{

e ∈ RJ
+

∣∣ y = Ae
}

, (2)

it is consistent; otherwise, it is inconsistent. The inverse problem of tomography can be
reduced to one of finding x, which can be accomplished by using an optimization approach
such as an iterative method minimizing an objective function.

For formulating BI algorithms, let ym ∈ RIm
+ and Am ∈ RIm×J

+ be, respectively, a
subvector consisting of Im partial elements of y and a submatrix of A with the same
corresponding rows of ym for m = 1, 2, . . . , M, where M indicates the total number of
divisions or the subset number. Figure 1 shows an example of the projection access scheme
in the order of sequential access (SAS), which is the natural access order of the acquired
projections, and MLS for M = 4.
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Figure 1. Access scheme for projections yi, i = 1, 2, . . . , I1 + I2 + I3 + I4 with M = 4 in (a) SAS and
(b) MLS.

2.2. Preliminaries

Here, we introduce the notation that will be used below. The superscript > stands for
the transpose of a matrix or vector, θk indicates the kth element of the vector θ, Θi and Θij
indicate the ith row vector and the element in the ith row and jth column of the matrix Θ.

The generalized Kullback–Leibler (KL) divergence or relative entropy is defined as

KL(p, q) := ∑
k

pk log
pk
qk

+ qk − pk = ∑
k

∫ qk

pk

s− pk
s

ds (3)

for given nonnegative vectors p and q. The divergence KL(p, q), known as the Csiszár’s
I-divergence measure [28], is nonnegative with KL(p, q) = 0 if and only if p = q. Moreover,
we let EPγ,α(p, q) be a parameterized estimating function of nonnegative vectors p and q,

EPγ,α(p, q) := ∑
k

∫ qk

pk

sγ − pγ
k

sγα
ds (4)

where γ and α, respectively, indicate positive and nonnegative parameters, which is a
two-parameter extension [29] of the power-divergence measure and coincides with the
KL-divergence if (γ, α) = (1, 1), the squared L2 norm if (γ, α) = (1, 0), and so on.

Lastly, we define

λm
j :=

(
Im

∑
i=1

Am
ij

)−1

(5)

for j = 1, 2, . . . , J and let ρm be the largest eigenvalue of the matrix Am>Am for
m = 1, 2, . . . , M.

3. Results

This section describes the proposed method, theory, and optimization strategy. In the
following, the term weeding will be used to refer to discarding subsets appearing in the
proposed unOS scheme by likening them to weeds, as shown in the frequency bar chart of
subset indices in the experiment below.

3.1. Proposed Method

We present unOS iterative algorithms, called the weeding BI reconstruction (WBIR)
algorithms, for obtaining the pixel value z(n) as a function of the iteration number n,
described by

zj(n + 1) = zj(n) +
Wm(z(n))

ρm

Im

∑
i=1

Am
ij (y

m
i − Am

i z(n)), (6)
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zj(n + 1) = zj(n) exp

(
Wm(z(n)) log

(
λm

j

Im

∑
i=1

Am
ij

ym
i

Am
i z(n)

))
, (7)

and

zj(n + 1) = zj(n) exp

(
Wm(z(n))λm

j

Im

∑
i=1

Am
ij log

ym
i

Am
i z(n)

)
(8)

for j = 1, 2, . . . , J, n = 0, 1, 2, . . ., and m = (n mod M) + 1 with z(0) = z0, where the
function Wm(z(n)), say the weeding function, takes either 0 or 1 and is defined for some γ
and α by

Wm(x) := U

 EPγ,α(ym, Amx)

max
k

EPγ,α(yk, Akx)
− µ

, x /∈ E (9)

with µ being a nonnegative parameter and U denoting the unit step function where
U(θ) = 0 for θ < 0 and 1 for θ ≥ 0.

Here, Equations (6), (7), and (8) are, respectively, equivalent to the OS-type BI-SART,
BI-MLEM, and BI-MART algorithms, when the values of the function Wm are identical to
one by taking µ = 0. The relaxation parameter 1/ρm in the BI-SART algorithm is chosen in
order to make the iterations converge as rapidly as possible [15].

3.2. Theory

This section provides theoretical results on the systems defined in Equations (6)–(8)
with µ = 0 for a consistent tomographic inverse problem.

The first system considered here is the BI-SART algorithm.

Proposition 1. For e ∈ E and a solution z to the system in Equation (6) with µ = 0, the inequality,

‖e− z(0)‖2
2 − ‖e− z(1)‖2

2 ≥
1

ρm ‖y
m − Amz(0)‖2

2, (10)

is satisfied for any m = 1, 2, . . . , M.

In this Proposition and later, to simplify the description, the iteration numbers 0 and 1
are treated as n and n+ 1, respectively, for any given m and series of n = m− 1, m, m+ 1, . . .,
since the autonomous difference system is invariant to a discrete time shift, which means
that the shift has no effect on the dynamics.

Proof. As a special case described in Byrne [15], we have

‖e− z(0)‖2
2 − ‖e− z(1)‖2

2

=
2

ρm (e− z(0))>Am>(ym − Amz(0))− ‖ 1
ρm Am>(ym − Amz(0))‖2

2

≥ 2
ρm ‖y

m − Amz(0)‖2
2 −

1
ρm ‖y

m − Amz(0)‖2
2

=
1

ρm ‖y
m − Amz(0)‖2

2

(11)

Corollary 1. Under the assumption of Proposition 1 and when M = I, equality

‖e− z(0)‖2
2 − ‖e− z(1)‖2

2 =
1

ρm (ym − Amz(0))2 (12)

is satisfied for m = 1, 2, . . . , I.

Proof. For a scalar ym and a vector Am, equality holds under ρm = Am Am> for any m.



Entropy 2022, 24, 740 5 of 21

Now, let us consider the iterative algorithms of BI-MLEM and BI-MART.

Proposition 2. For e ∈ E and a solution z to each system in Equations (7) and (8) with µ = 0,
the inequality,

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(0))−

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(1)) ≥ KL(ym, Amz(0)), (13)

is satisfied for any m = 1, 2, . . . , M.

Proof. Inequality (13) for the BI-MLEM algorithm in Equation (7) with µ = 0 is derived as
follows.

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(0))−

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(1))−KL(ym, Amz(0))

=
J

∑
j=1

(
λm

j

)−1
(

ej log
zj(1)
zj(0)

+ zj(0)− zj(1)

)

−
Im

∑
i=1

(
ym

i log
ym

i
(Amz(0))i

+ (Amz(0))i − ym
i

)
=

J

∑
j=1

Im

∑
i=1

Am
ij ej log

(
λm

j

Im

∑
k=1

Am
kjy

m
k

(Amz(0))k

)

−
Im

∑
i=1

ym
i log

ym
i

(Amz(0))i

≥
J

∑
j=1

Im

∑
i=1

Am
ij ejλ

m
j

Im

∑
k=1

Am
kj log

ym
k

(Amz(0))k

−
Im

∑
i=1

ym
i log

ym
i

(Amz(0))i

= 0.

(14)

While Inequality (13) for the BI-MART algorithm in Equation (8) with µ = 0 is a special
case obtained by Byrne [15], it can be proved in an alternative way using the procedure of
direct reduction:

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(0))−

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(1))−KL(ym, Amz(0))

=
J

∑
j=1

(
λm

j

)−1
(

ej log
zj(1)
zj(0)

+ zj(0)− zj(1)

)

−
Im

∑
i=1

(
ym

i log
ym

i
(Amz(0))i

+ (Amz(0))i − ym
i

)
=

Im

∑
i=1

ym
i log

ym
i

(Amz(0))i

−
J

∑
j=1

Im

∑
i=1

Am
ij zj(0) exp

(
λm

j

Im

∑
k=1

Am
kj log

ym
k

(Amz(0))k

)

−
Im

∑
i=1

ym
i log

ym
i

(Amz(0))i
+

Im

∑
i=1

ym
i

≥
Im

∑
i=1

ym
i −

J

∑
j=1

Im

∑
i=1

Am
ij zj(0)λm

j

Im

∑
k=1

Am
kjy

m
k

(Amz(0))k

= 0.

(15)
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Corollary 2. Under the assumption of Proposition 2 and when M = I, equality

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(0))−

J

∑
j=1

(
λm

j

)−1
KL(ej, zj(1)) = KL(ym, Amz(0)) (16)

is satisfied for m = 1, 2, . . . , I.

Proof. When M = I or equivalently Im = 1, for a scalar ym and a vector Am, we have
λm

j Am
1j = 1 for any j and m; therefore, each of the nonstrict Inequalities (14) and (15) reduces

to an equality.

The inequalities appearing in Propositions 1 and 2 can be described in a unified
formula using nonnegative functions as follows:

Dm(e, z(0))− Dm(e, z(1)) ≥ Ψm(ym, Amz(0)) (17)

for m = 1, 2, . . . , M using

Wm(x) := U

 Ψm(ym, Amx)
max

k
Ψk(yk, Akx)

− µ

, x /∈ E (18)

where
Dm(a, b) := ||a− b||22 (19)

and
Ψm(p, q) :=

1
ρm EP1,0(p, q) (20)

for BI-SART in Equation (6) with µ = 0 and

Dm(a, b) :=
J

∑
j=1

(
λm

j

)−1
KL(aj, bj) (21)

and
Ψm(p, q) := EP1,1(p, q) (22)

for BI-MLEM and BI-MART in Equations (7) and (8) with µ = 0. Similarly, when M = I,
the equalities in Corollaries 1 and 2 can be written as

Dm(e, z(0))− Dm(e, z(1)) = Ψm(ym, Amz(0)) (23)

for any m = 1, 2, . . . , M in accordance with the definitions of Equations (18)–(22).

3.3. Optimization Strategy

For a given set of initial values Z0 ⊆ RJ
+, consider

Z :=
{

z(0) ∈ Z0
∣∣∣ argmax

m
(Dm(e, z(0))− Dm(e, z(1)))

⊇ argmax
m

(Ψm(ym, Amz(0)))
}

.
(24)

The predicate in the set definition means that an element m in the subset indices giving the
largest value of the estimating function Ψm results in the largest decrease in the objective
function Dm by a one-step update. Thus, the aim of the optimization is to find an unOS
iterative algorithm such that Z is almost equal to Z0. For this purpose, we choose µ = 1
in Equation (18), which means that the state variable z(n) in Equations (6)–(8) at m =
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(n mod M) + 1 is updated if the value of Ψm(ym, Amz(n)) at the mth subset is the largest
among Ψk(yk, Akz(n)) for all k = 1, 2, . . . , M under which Z = Z0 can be expected to hold.

On the basis of Corollaries 1 and 2 and the unified description of the equality in
Equation (23) with Equation (18) and Equations (19)–(22), we see that Z is equal to Z0 for
Z0 = RJ

+ when M = I. While, unfortunately, Z = Z0 is not satisfied in general when
M < I, the numerical experiments described in the proceeding section indicate that the
satisfaction rate is probabilistically high. Namely, the lower bound of Inequality (17) is
sharp enough to satisfy the predicate in Equation (24) most of the time. Therefore, we
assert that the function Ψm can be used for estimating an effective decrease in the objective
function Dm.

4. Experiments and Discussion

Let us illustrate the above theory and the effectiveness of the proposed algorithms
in Equations (6)–(8) with the weeding function in Equation (9) by using examples from
numerical experiments.

We examined an experiment in which the iteration number

N :=
T−1

∑
n=0

Wm(z(n)) (25)

with m = (n mod M) + 1 is constant for a given T, which is the maximum number of
iterations, depending on µ. The weeding rate defined as

R :=
(

1− N
T

)
× 100 [%] (26)

indicates the rate of discarding subsets. The value µ = 0 results in R = 0 for representing
an ordinary OS algorithm.

Note that, in Equations (6)–(8), when Wm(z(n)) = 0 for some n with m = (n mod M)+
1, we have zj(n + 1) = zj(n). Then, the calculation for updating zj for any j is not necessary
at this iteration number, which can be neglected when counting the iterations. Hence,
in the graph presentation for WBIR, the iteration numbers n will be replaced with dis-
tinct numbers n′ = 0, 1, 2, . . . , max{0, ν(n)− 1}, . . . , N − 1, where ν(n) is defined by the
nonnegative integers

ν(n) =
n

∑
k=0

Wm(z(k)) (27)

with m = (k mod M) + 1 for n = 0, 1, 2, . . . , T − 1.
All algorithms were executed using a 3.5 GHz 8-core Intel Xeon processor and com-

puting tools provided by MATLAB (MathWorks, Natick, MA, USA) and highly optimized
libraries for matrix-vector multiplication.

4.1. Verification of Theory

Here, we give some results verifying Inequality (17). We defined the BI reconstruction
algorithms as Equations (6)–(8) with Wm ≡ 1 and M = 30 and constructed a noise-free
projection y = Ae ∈ RI

+ with I = 930, where e ∈ RJ
+ with J = 400 was made using the

disc phantom shown in Figure 2. Examples verifying Inequality (17) are illustrated in
Figures 3–5, each of which plots

RHS(m) := Ψm(ym, Amz(0)) (28)

versus
LHS(m) := Dm(e, z(0))− Dm(e, z(1)) (29)
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using a one-step iteration z(1) calculated from a given initial state z(0) with random
elements for m = 1, 2, . . . , M. We can see that all M points are above the identity line, as
stated in Propositions 1 and 2, and are located in their neighborhood.

Figure 2. Phantom image e in 20× 20 pixels.
D

m
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,z
(0
))
−

D
m
(e

,z
(1
))

-

10 15 20 25 30 35 40
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15

20
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35

40

45

Ψm(ym, Amz(0)) -

Figure 3. Scatter plot with identity line (red) for BI-SART in Equation (6).
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Figure 4. Scatter plot with identity line (red) for BI-MLEM in Equation (7).
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D
m
(e

,z
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−

D
m
(e

,z
(1
))

-

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1
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2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

Ψm(ym, Amz(0)) -

Figure 5. Scatter plot with identity line (red) for BI-MART in Equation (8).

We experimentally examined the set relation between Z0 and Z in Equation (24). The
elements of the sets {LHS(m)}M

m=1 and {RHS(m)}M
m=1 for the same initial value z(0) as

above were sorted in descending order. The subset indices corresponding to the ten largest
values are shown in the upper and lower rows in Table 1. We can see that both of the sets
argmaxm(LHS(m)) and argmaxm(RHS(m)) are {17} for every BI reconstruction algorithm;
thus, the relation of the predicate in Equation (24) or Z = Z0 is satisfied in this example
with Z0 = {z(0)}. For a large number of elements in Z0, the rate at which the relation is
satisfied is defined as the ratio of the number of elements in Z to that in Z0. Experiments
in which 100,000 independent trials with different seeds were used for generating the
random elements of the initial values yielded 91.2%, 99.1%, and 86.7% satisfaction rates (in
percentage) for the BI reconstruction algorithms in Equations (6), (7), and (8), respectively.
These numerical simulation results show that the BI-MLEM almost always satisfies the set
relation and therefore the MLEM-based WBIR has the best performance.

Table 1. Subset indices corresponding to the ten largest elements of {LHS(m)}M
m=1 (upper row) and

{RHS(m)}M
m=1 (lower row) obtained by SART, MLEM, and MART-based BI reconstruction algorithms.

Method Subset Indices

BI-SART
17 15 30 2 18 14 29 3 16 19
17 15 30 2 18 14 29 3 19 13

BI-MLEM
17 15 2 30 16 18 14 1 29 3
17 15 2 16 30 18 14 1 29 3

BI-MART
17 15 2 30 18 14 16 29 3 1
17 15 2 16 30 18 14 1 29 3



Entropy 2022, 24, 740 10 of 21

4.2. Evaluation of Reconstructed Images

We verified the proposed strategy for the WBIR algorithm by comparing it with
ordered-subsets expectation-maximization (OSEM) [10] with various projection access
schemes in reconstruction experiments with practical sparse projection views. The base
system of the WBIR was MLEM in Equation (7), which gave the highest satisfaction rate
described above. We used either a Shepp–Logan or a chessboard pattern phantom image
consisting of e ∈ [0, 1]J with 512× 512 pixels (J = 262,144) (Figure 6). The projection
y ∈ RI

+ derived from the phantom image was simulated using Equation (1) without noise
(δ = 0), unless otherwise specified. The number of view angles, which were measured
counterclockwise from a vertical line passing through the center of the phantom image,
was set to 30 and the number of detector bins was set to 727, (I = 21,810), with 180-degree
sampling. We also set M = 30, i.e., the same as the number of projection angles, for the BI
algorithms and uniform initial values z0

j > 0 for j = 1, 2, . . . , J.

(a) (b)

Figure 6. Phantom images of (a) Shepp–Logan and (b) chessboard pattern.

4.2.1. Comparison with SAS-OSEM

We reconstructed the phantom image in Figure 6a by applying SAS-OSEM (short for
OSEM with the projection access by SAS) and (MLEM-based) WBIR, i.e., Equation (7) with
µ values of 0 and 1, respectively. Figure 7 is a graph of the objective function Dm(e, z(n))
versus the real computation time s(n) (in seconds) for iteration numbers n = 0, 1, 2, . . . , N
where N = 60. For every algorithm, the objective function monotonically decreases as the
number of iterations increases. We can see that the WBIR algorithm reduces the objective
function more than SAS-OSEM does. The reconstruction time of the SAS-OSEM algorithm
is 4.1 s, whereas WBIR takes 5.0 s, both running 60 iterations. Although WBIR takes 20%
longer than SAS-OSEM, it gives a smaller objective function when it reaches approximately
the same computation time (s(48) for WBIR) as SAS-OSEM at the 60th iteration.

Figure 8 illustrates images reconstructed with SAS-OSEM and WBIR at the 60th and
48th iterations, respectively, and the corresponding subtraction images at every jth pixel,
defined as

(d(z))j := |ej − zj| (30)

for j = 1, 2, . . . , J. The density of d is on a common scale. By comparing the artifacts in
the images, we can see that WBIR produces high-quality reconstructions, as is quantita-
tively indicated by the small measured objective function Dm between the phantom and
reconstructed images.
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Figure 7. Objective functions Dm(e, z(n)) for WBIR and conventional SAS-OSEM algorithms at each
iteration n = 0, 1, 2, . . . , 60 in experiment using Shepp–Logan phantom.

SAS-OSEM WBIR

Figure 8. Reconstructed images (upper panel) and images of the subtraction (lower panel) for
SAS-OSEM and WBIR in experiment using Shepp–Logan phantom.
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The weeding rate R defined in Equation (26) for WBIR is 97%, by setting M = 30 and
µ = 1. As shown in Figure 9, the frequency bar chart of the subset indices for WBIR is
nonuniform, whereas that for OSEM is uniform. As far as we know, it is a novel property
that a nonuniform and unordered (as opposed to uniform and ordered) use of projection
views leads to higher-quality reconstructed images.
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Figure 9. Frequency bar chart of subset indices m = 1, 2, . . . , 30 for WBIR after 60 iterations in
experiment using Shepp–Logan phantom.

Besides an objective function, popular quantitative methods of evaluation include the
signal-to-noise ratio (SNR(e, z(n))) and the structural similarity index measure
(SSIM(e, z(n))), which is a perception-based quality metric, between the true image e
and reconstructed image z(n). These were calculated for n = 0, 1, 2, . . . , 60 and are plotted
in Figure 10a,b. Higher SNR and SSIM mean higher image quality. We can see that WBIR
can reconstruct high-quality images with the same number of iterations while reducing
artifacts caused by the sparse projections.
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Figure 10. Cont.
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Figure 10. (a) SNR and (b) SSIM for WBIR and conventional SAS-OSEM algorithms at each iteration
n = 0, 1, 2, . . . , 60 in experiment using Shepp–Logan phantom.

4.2.2. Comparison with OSEM with Non-SAS

We experimentally compared the MLEM-based WBIR with OSEM algorithms using
(deterministic) projection access schemes with PND, FAS, WDS, and MLS. The subset
number M was fixed to 30 and the parameter µ controlling the weeding rate for WBIR was
set to one.

First, we examined the validity of the proposed strategy presented in the previous
section. The projections composed by the Shepp–Logan phantom image e in Figure 6a were
reconstructed. The objective functions Dm(e, z(n)) of e and z(n) from the WBIR and OSEM
algorithms for n = 0, 1, 2, . . . , 60 are shown in Figure 11. Here, it can be seen that WBIR
reduces the objective function much more than any OSEM does. The experimental result
verified the strategy that the largest difference in the objective functions caused by a one-
step iteration results in a more effective scheme from the viewpoint of total optimization.
The time courses of SNR and SSIM plotted in Figure 12 show the same property.

Next, we examined the effectiveness of the proposed WBIR algorithm in which the
shape information in a phantom image is incorporated into the subset selection scheme. For
this purpose, the phantom of a chessboard pattern image in Figure 6b was used. Because
projections of 0◦ and 90◦ views for the chessboard are flat and identical to the corresponding
forward projections of the constant initial states, as Guan and Gordon [19] indicated, an OS
algorithm using MLS that starts ordering from the same two views reconstructs nothing.
The resulting time courses of the objective functions are shown in Figure 13. We can see
that WBIR has a rather better performance in, especially, the first and second iterations
relative to the OSEM algorithms with PND, FAS, WDS, and MLS. Although this phantom
shape and initial angle amount to a worst case for OS schemes, as shown in Table 2, WBIR
dynamically selects the initial 132◦ and 48◦ views, which are approximations of 135◦ and
45◦, respectively, and are better choices with which to start the reconstruction for this shape
of phantom. The effectiveness of the dynamic selection using the weeding function is
visually confirmed by the reconstructed images shown in Figure 14. By comparing the
images obtained from OSEM and WBIR, the iterative algorithm that reduces the objective
function at every step as much as possible improves the quality of images not only in the
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initial steps but also in the last iterations more than uniform use of subsets as in Figure 15.
It is interesting that some subsets are unnecessary for a high-quality reconstruction.
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Figure 11. Objective functions Dm(e, z(n)) for WBIR and OSEM algorithms by PND, FAS, WDS, and
MLS at each iteration n = 0, 1, 2, . . . , 60 in experiment using Shepp–Logan phantom.
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Figure 12. (a) SNR(e, z(n)) and (b) SSIM(e, z(n)) for WBIR and OSEM algorithms by PND, FAS,
WDS, and MLS at each iteration n = 0, 1, 2, . . . , 60 in experiment using Shepp–Logan phantom.
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Figure 13. Objective functions Dm(e, z(n)) for WBIR and OSEM algorithms by PND, FAS, WDS,
and MLS at each iteration n = 0, 1, 2, . . . , 60 in experiment using chessboard phantom with noise-
free projections.
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MLS-OSEM WBIR

1 1

2 2

30 25

Figure 14. Reconstructed images at iterations denoted by the number beside each image for MLS-
OSEM and WBIR in experiment using chessboard phantom. Thirty iterations by OSEM have almost
the same computation time as 25 by WBIR.

Finally, we examined the validity of the weeding function in Equation (18) by replacing
the estimating function EP1,1 defined as usual in Equation (22) with EPγ,α and varied
the parameters γ and α. Figure 16 shows contour plots of the objective functions on a
logarithmic scale, log10(Dm(e, z(N))) for N = 10, 20, and 30, in the parameter plane (γ, α)
for MLEM-based WBIR with noise-free projections. The parameters γ and α were sampled
from 0.1 to 1.5 and 0 to 1.4 with a sampling interval of 0.1, respectively. Though the
parameter regions in which the values of the objective function are lowest vary depending
on the iteration number, the parameter (γ, α) = (1, 1) is a good common setting.
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Figure 15. Frequency bar chart of subset indices m = 1, 2, . . . , 30 for WBIR after 30 iterations in
experiment using chessboard phantom.
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Figure 16. Contour plots of objective functions log10(Dm(e, z(N))) with N equal to (a) 10, (b) 20, and
(c) 30 in experiment using noise-free projection. The white dot indicates the position of (γ, α) = (1, 1).
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Table 2. Subset indices (upper row) and angles (lower row) of ten initial views for reconstructing
chessboard phantom using MLS-OSEM and WBIR.

Method Subset Indices and Angles

MLS-OSEM
1 16 9 24 5 20 12 27 3 18
0◦ 90◦ 48◦ 138◦ 24◦ 114◦ 66◦ 156◦ 12◦ 102◦

WBIR
23 9 19 2 13 30 16 24 8 1

132◦ 48◦ 108◦ 6◦ 72◦ 174◦ 90◦ 138◦ 42◦ 0◦

However, because the estimating function EP1,1 or equivalently the KL-divergence is
not robust against outliers, it should be modified to deal with cases where the projection
data are noisy. To search for an effective estimating function in EPγ,α, which is a family of
extended power-divergence measures, we performed an experiment using projections in
Equation (1) with δ as white Gaussian noise such that the signal-to-noise ratio was 20 dB.
We made contour plots of the objective function in the (γ, α) plane. As shown in Figure 17,
the pairs roughly around (0.5, 0.5) give mostly lower values of the objective function for
any iteration number. Using the divergence measure EP0.5,0.5 as an estimating function
makes the reconstruction more robust to noise. Indeed, the resulting time courses of the
objective functions plotted in Figure 18 indicate that the WBIR algorithm using the weeding
function with EP0.5,0.5 outperforms the one with EP1,1.
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Figure 17. Cont.
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Figure 17. Contour plots of objective functions log10(Dm(e, z(N))) with N equal to (a) 10, (b) 20, and
(c) 30 in experiment with noisy projection. The white dot indicates the position of (γ, α) = (0.5, 0.5).
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Figure 18. Objective functions Dm(e, z(n)) for WBIR and OSEM algorithms by PND, FAS, WDS, and
MLS at each iteration n = 0, 1, 2, . . . , 60 in experiment using chessboard phantom with noisy projections.

5. Conclusions

Our block-iterative reconstruction, named WBIR, selects subsets of projections dynam-
ically for solving the inverse problem of tomographic image reconstruction from sparse
projection views on the basis of an estimating function constructed by using an extended
power-divergence measure for decreasing the objective function as much as possible. We
gave a unified proposition of an inequality related to the difference between the objective
functions caused by a one-step iteration as a theoretical basis of the proposed optimization
strategy. Theoretical analyses and numerical experiments showed that nonuniform and
sparse use of projection views leads to a high-quality image reconstruction and that an or-
dered subset is not the most effective for block-iterative reconstruction. The two-parameter
class of extended power-divergence measures is the key to estimating an effective decrease
in the objective function and plays a significant role in constructing a robust algorithm
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against noise. An effective method of choosing parameters should be investigated as a way
of improving the proposed algorithm.

The WBIR algorithm can be used for solving linear tomographic inverse problems in
various areas besides biomedical and industrial imaging and is effective when the number
of available measured projections is limited. However, its performance depends on, in
terms of the meaning of decreasing the objective function and computing the estimating
function, the sparseness relative to the dimension of the system variables. This is another
issue to be explored in future studies.
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