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Abstract 

A chemometric approach for the quantitative structural analysis of binary blends of 

copolymers was conducted. Three types of copolymers were synthesized by radical 

emulsion copolymerization of two out of three monomers—acrylonitrile, styrene, and α-

methylstyrene—to prepare three series of binary blends of these copolymers. Partial least-

squares (PLS) regression and least absolute shrinkage and selection operator (LASSO) 

regression were conducted with datasets in which the 1H nuclear magnetic resonance 

(NMR) spectral matrix of the binary blends (explanatory variables) is combined with the 

blending parameter matrix (objective variables) of the binary blends. The blending 

parameters, such as chemical compositions and mole fractions of the component 

copolymers, were successfully predicted without any assignments of the 1H NMR signals 
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through stepwise optimization of the objective and explanatory variables. LASSO 

regression exhibited higher accuracy than PLS regression, suggesting that the variable 

selection in LASSO regression was responsible for the improvement in the quantitative 

prediction. 
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1. Introduction 

A large number of industrial polymers are copolymers of several different monomers. The 

blend of copolymers is usually adjusted to achieve the properties that best suit the desired 

purposes. The properties of the copolymer blends depend greatly not only on the 

molecular structures, such as the chemical composition, of the component copolymers 

but also on the blending fraction. For example, acrylonitrile (AN) – butadiene – styrene 

(ST) (ABS) resin is a typical rubber-modified polymer and exhibits the so-called “sea-

island” morphology, in which the rubbery polybutadiene phase is dispersed over a rigid 

continuous phase comprising the copolymer of AN and ST [1]. To enhance the property 

of heat resistance, a copolymer of AN and α-methylstyrene (αMS) with a higher glass 

transition temperature is often blended with the sea phase composed of the copolymer of 

AN and ST. Therefore, quantitative analysis of the blending parameters, such as the 

chemical composition and the blending fraction of the component copolymers in the sea 

phase, is very important to improving the properties of ABS resin. 

Separation analysis, such as size-exclusion chromatography (SEC) and gradient 

polymer elution chromatography, is the first method of choice to analyze the features of 

copolymer blends [2-5]. Chromatographic separation requires some differences in 
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chemical properties, such as molecular weight or solubility, between the component 

copolymers. However, the only difference between the component copolymers, poly(AN-

co-ST) and poly(AN-co-αMS), of the sea phase in ABS resin is the presence of a methyl 

group in the αMS units. Therefore, the chromatographic separation of these copolymers 

is difficult because of the similarity of their chemical properties; the development of 

another characterization method is required. 

We have reported that multivariate analysis of nuclear magnetic resonance 

(NMR) spectra is useful for the structural analysis of synthetic (co)polymers [6-11]. For 

example, in the principal component analysis of the 13C NMR spectra of copolymers of 

methyl methacrylate and tert-butyl methacrylate with various chemical compositions, the 

corresponding homopolymers and blends of the homopolymers with various blending 

fractions allowed successful extraction of information on not only the chemical 

composition but also the monomer sequence, without assigning the individual signals [6, 

7]. The chemical compositions of the copolymers were predicted rationally by partial 

least-squares (PLS) regression of 13C NMR spectra, in which the spectral data of the 

corresponding homopolymers and their blends were used as a training set. Recently, we 

also found that a similar analysis could be conducted by using the 1H NMR spectra instead 

of the 13C NMR spectra [11].  

In this study, we investigated the extent to which multivariate analysis of the 1H 

NMR spectra of synthetic copolymers is applicable to extracting blending parameters in 

binary blends. Three kinds of copolymers were synthesized by radical emulsion 

copolymerization of combinations of two of the three monomers AN, ST and αMS to 

prepare three series of binary blends of the copolymers. PLS and least absolute shrinkage 

and selection operator (LASSO) regression, which are highly interpretable linear 
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regression models, were used for multivariate analysis. The averaged chemical 

compositions in the binary blends were successfully predicted, whereas direct prediction 

of the blending parameters, such as the chemical compositions and the mole fractions of 

the component copolymers, failed. However, the blending parameters were successfully 

predicted by stepwise optimization of the objective and explanatory variables. 

 

2. Experimental 

2.1. Sample preparation 

Eight copolymer samples were prepared by emulsion copolymerization by changing the 

combination and composition of the feed monomers (Table 1). A mixture of monomers 

(X g), water (2300 g or 2500 g), sodium dodecyl sulfate (30 g), ferrous sulfate (0.025 g) 

as a redox agent, ethylenediaminetetraacetic acid disodium salt (0.1 g), and sodium 

formaldehyde sulfoxylate (4.0 g) was added to a four-necked 5-L cylindrical reactor 

equipped with an inlet of nitrogen gas and a reflux condenser; the mixture was stirred 

with a turbine 80 mm in diameter with four blades pitched at 45°. Polymerization was 

carried out at 60 °C or 75 °C under a nitrogen atmosphere by continuous dripping of a 

residual monomer mixture (1000 – X g) containing tert-dodecylmercaptan (4.0 g) and an 

aqueous solution (200 g) of the initiator—tert-butyl hydroperoxide (TBHP) or potassium 

persulfate (KPS)—into the reactor over a period of 4.5 or 6 hours. Cumene hydroperoxide 

(CHP) was fed as a monomer solution. After 2 hours of aging, the polymerization 

mixtures were poured into a large volume of isopropanol. The polymer precipitate was 

collected by centrifugation and dried in vacuo. The copolymer yield was determined 

gravimetrically. All materials were used as received. 
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Table 1. Emulsion copolymerization to prepare the copolymer samples  
 Composition in feed / 

mol% 
Composition in 

copolymera / mol% 
Initial 

monomerb 
/ g 

Temp. 
/ °C 

Initiator 
/ g 

Yield 
/ % 

Mnc 

× 10–4 
Mw/Mnc 

Run AN αMS ST AN αMS ST 
1 60.0  40.0 57.2  42.8 30 60 TBHP 7.5 86 4.6 2.8 
2 40.0  60.0 39.8  60.2 150 60 TBHP 7.5 93 4.0 7.0 
3 61.0 39.0  53.9 46.1  30 60 TBHP 7.5 89 5.6 2.7 
4 50.0 50.0  49.3 50.7  150 60 TBHP 7.5 84 5.6 2.4 
5 45.9 54.1  44.4 55.6  720d 75 KPS 7.5 97 4.0 2.6 
6 35.8 64.2  37.4 62.6  800d 60 CHP 5.0 95 3.9 2.4 
7  27.4 72.6  27.7 72.3 300d 60 CHP 5.0 88 3.4 2.2 
8  55.0 45.0  50.0 50.0 250 60 TBHP 7.5 79 2.1 2.5 

a Determined by GC. 
b Total monomer (1000 g) = initial monomer (X g) + residual monomer (1000 – X g).  
c Determined by SEC (THF, standard polystyrenes).  
d Only αMS was added as an initial monomer. 

 

The monomer conversions were determined by gas chromatography (GC); the 

copolymer emulsions with n-hexylbenzene as an internal standard were dissolved in DMF, 

and the solution was injected into a GC-2014 gas chromatograph (Shimadzu, Corp., 

Tokyo, Japan) equipped with a DB-5 capillary column (Agilent Technologies Corp., 

Tokyo, Japan). The GC was calibrated by injecting the mixtures of known amounts of 

each monomer and an internal standard, and the monomer conversion was calculated from 

the residual monomer content. The chemical composition was calculated based on the 

conversions of the comonomers. The molecular weights of the copolymers were 

determined by SEC; the chromatograph was calibrated with standard polystyrene samples. 

SEC was performed on an LC-1260 Infinity HPLC system (Agilent Technologies Corp., 

Tokyo, Japan) equipped with three PLgel columns (Mixed-B, 7.5-mm inner diameter × 

300 mm, Agilent Technologies Corp.). THF was used as an eluent at 50 °C and a flow 

rate of 1 mL min−1. The initial polymer concentration was set at 2.0 mg mL−1.  
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2.2. Multivariate analysis of 1H NMR spectra 

Binary blends of the copolymers were prepared by mixing the copolymers (Table 1). 

Forty-five blend samples were prepared by changing the species and fractions of the 

copolymers. Figure 1 shows a ternary diagram of the compositions in the copolymers and 

the binary blends. The detailed values are summarized in Table S1. The blend codes 

AN_S/M, ST_A/M, and MS_A/S were assigned to the combinations of poly(AN-co-

ST)/poly(AN-co-αMS), poly(AN-co-ST)/poly(αMS-co-ST), and poly(AN-co-

αMS)/poly(αMS-co-ST), respectively, according to the common monomeric unit in the 

binary blends. Furthermore, identification numbers were added in the format 

AN_S/M_13 / 75, based on the numbers of the runs in Table 1 of the component 

copolymers (blending the copolymers of Run 1 and Run 3 in this example) and the weight 

fraction of the first component copolymer (75% of the copolymer of Run 1 in this 

example). The mole fractions of the copolymer components were calculated by dividing 

the weight fractions by the average molecular weights of the monomer units in the 

copolymer components. 

 

 



 7 

Figure 1. Ternary diagram of compositions in the copolymers and the binary blends. The 

symbols ■, ■, and ■ denote the plots of poly(AN-co-ST), poly(AN-co-αMS), and 

poly(αMS-co-ST), respectively. The symbols ○, +, and ❋ denote the plots of the blend 
series AN_S/M, ST_A/M, and MS_A/S, respectively. 

 

The copolymers and the binary blends were dissolved in pyridine-d5 (2 wt/vol%). 

The 1H NMR spectra were measured at 100 °C on an ECZ400 spectrometer (JEOL Ltd., 

Tokyo, Japan) equipped with a 5-mm ROYAL probe (45° pulse (3.925 μs), pulse 

repetition 9.4145 s, 128 scans). Each 1H NMR spectrum was stored in 32,768 complex 

data points covering a spectral width of 7,423 Hz and zero-filled to 65,536 points prior to 

Fourier transformation. An exponential apodization function was applied to the free 

induction decays corresponding to a line-broadening factor of 0.2 Hz. The 1H NMR 

chemical shifts were referenced to the residual solvent signal (δ = 7.52 ppm for the proton 

at the para-position). Pyridine-d5 was chosen as the solvent because the signal of H2O 

overlapped with the signals of the main-chain methylene and methine groups in CDCl3. 

Bucket integration at an interval of 0.01 ppm was performed with JEOL Delta 

NMR ver. 5.2 software for the resonance regions of the main-chain methylene and 

methine groups and the α-methyl group in the αMS units (0.25–3.4 ppm). The sum of the 

integral intensities was normalized to 100. PLS regression and LASSO regression of the 

datasets composed of the spectral matrix and the structural data matrix were conducted 

using R software ver. 3.4.4 with Visual R Platform ver. 2.0 (NTT DATA Mathematical 

Systems Inc., Tokyo, Japan).  

PLS regression is a dimension-reduction methods in which new variables—

latent variables—are constructed from the covariance of all variables for the prediction. 

In PLS regression, the number of latent variables was determined to be six by the five-
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fold cross-validated coefficient-of-determination (R2
cv) value calculated in a similar way 

as in the previous report [11], in which leave-one-out cross-validation was employed.  

LASSO regression is a popular tool, especially in the field of machine learning, 

in which the prediction accuracy is improved by selecting only the important variables 

[12]. LASSO regression exhibits excellent performance in a wide range of fields such as 

metabolomics, surface analysis, and NMR-relaxometry by combining the spectral data of 

near-infrared spectroscopy [13-15], time-of-flight secondary ion mass spectrometry [16, 

17], and NMR spectroscopy [18-22] as explanatory variables. LASSO regression imposes 

a penalty on increasing coefficients by minimizing the loss function (E), expressed as the 

following equation, 

  (1)  

where y denotes a matrix of structural data, such as chemical compositions and mole 

fractions of the component copolymers; x denotes a matrix of spectral data, b denotes a 

matrix of regression coefficients; bi denotes the regression coefficient of the ith entry; and 

λ denotes a tuning parameter for regularization. LASSO regression gives the same results 

as an ordinary least-squares regression when λ is zero, whereas the number of variables 

used in the regression decreases as λ increases. The optimization of λ allows the selection 

of meaningful variables from many explanatory variables. In this study, λ was optimized 

to minimize the mean absolute error by five-fold cross-validation. 

 

3. Results and Discussion 

3.1 Prediction of the averaged chemical composition of copolymer blends by PLS and 

LASSO regressions of 1H NMR spectra 

Figure 2(a)–(c) shows the 1H NMR spectra of the copolymers (Runs 2, 6, and 7 in Table 
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1) and of the equal-weight binary blends of the copolymers. In the spectra of the 

copolymers, the signals of the main-chain methylene and methine groups and α-methyl 

groups were observed at 0.25–3.4 ppm. The spectral patterns varied significantly, 

depending on the combination of the monomers. However, the spectra were complicated 

by significant overlap of signals, not only from coupling with neighboring protons but 

also from splitting by both the stereochemical sequence and the comonomer sequence. 

Furthermore, the 1H spectra of the binary blends are broadened compared with those of 

the copolymers [Figure 2(d)–(f)], probably because the signals of the two copolymers 

overlapped. Therefore, the determination of the averaged chemical composition from the 

1H NMR spectra is virtually impossible.  
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Figure 2. 1H NMR spectra of (a) poly(AN-co-ST), (b) poly(AN-co-αMS), and (c) 
poly(αMS-co-ST), and the equal-weight binary blends of (d) poly(AN-co-ST)/poly(AN-
co-αMS), (e) poly(AN-co-ST)/poly(αMS-co-ST), and (f) poly(AN-co-αMS)/poly(αMS-
co-ST), as measured in pyridine-d5 at 100 °C. The region of the signals of the main-chain 
methylene and methine groups and α-methyl groups in the αMS units (0.25–3.4 ppm), 
emphasized with a pale pink color, was used to conduct multivariate analysis. 
 

The averaged chemical compositions of the binary blends were predicted by PLS 

and LASSO regressions with the dataset constructed from bucket-integral data and the 

averaged chemical compositions of the eight copolymers and the forty-five binary blends. 

Figure 3 shows the relationship between the theoretical averaged chemical compositions 

of the binary blends and those predicted by PLS and LASSO regressions. The theoretical 

values were calculated based on the weight fractions of the component copolymers. An 

excellent relationship was obtained with coefficient-of-determination (R2) values over 

0.98, regardless of the regression model employed. 

 

 

 

Figure 3. Relationships of the averaged chemical compositions of AN (●), αMS (▲), 

and ST (■) in the binary blends predicted by (a) PLS and (b) LASSO regressions with 
the theoretical values. 
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3.2 Prediction of the blending parameters by PLS and LASSO regression of 1H NMR 

spectra 

To determine the blending parameters, the component copolymers in the binary blends 

were categorized as polymer-A and polymer-B. Priority was given in the order poly(AN-

co-ST), poly(AN-co-αMS), and poly(αMS-co-ST). Accordingly, poly(AN-co-ST) and 

(αMS-co-ST) were always defined as polymer-A and polymer-B, respectively, whereas 

poly(AN-co-αMS) was defined as polymer-A or polymer-B depending on the counter-

polymer. The chemical compositions derived from the component copolymers in the 

binary blend can be calculated by multiplying the chemical composition and the mole 

fraction of the component copolymers. As a result, the averaged chemical composition 

can be calculated with the following equations (2) and (3): 

 Comp = (CompA × fA) + (CompB × fB) (2) 

 fA + fB = 1 (3) 

where Comp denotes the averaged chemical composition of the AN, αMS, or ST unit in 

the binary copolymer blends; CompA and CompB denote the chemical compositions in the 

component copolymers named polymer-A and polymer-B, respectively; and fA and fB 

denote the mole fractions of polymer-A and polymer-B in the blends, respectively. 

 The dataset was made by combining the bucket-integral intensities and the 

blending parameters, such as the chemical composition and the mole fraction of the 

component copolymers, in the eight copolymers and forty-five binary blends. Of the four 

blends that included poly(AN-co-αMS), the copolymers (Runs 3 and 4 in Table 1) were 

categorized as polymer-B based on the above-mentioned priority. The copolymers in 

Runs 5 and 6 in Table 1 were categorized as polymer-A and polymer-B, respectively, 

because the categorization of these copolymers depends on the counter-polymer (cf. Table 
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S1).  

The five-fold cross-validations for the PLS and LASSO regressions were 

performed to predict the blending parameters, such as the chemical compositions of 

polymer-A (ANA, STA, and αMSA) and of polymer-B (ANB, STB, and αMSB) and the 

mole fraction of polymer-A, fA. For example, the composition of AN derived from 

polymer-A in the binary blends can be expressed as ANA × fA. Therefore, the chemical 

compositions derived from the component copolymers and the mole fractions were used 

as indicators of the predictions. Figure 4 shows the relationships of the predicted chemical 

compositions derived from the individual component copolymers and the mole fractions 

with the theoretical values. The ST compositions were successfully predicted, regardless 

of the regression method used. However, for the other blending parameters, the predicted 

values deviated significantly from the theoretical ones. This deviation likely arises from 

a contradiction, as depicted in Scheme 1. As the fraction of poly(AN-co-αMS) increases, 

the fA value becomes close to zero for the blend series of AN_S/M, whereas the fA value 

becomes close to unity for the blend series of MS_A/S. Therefore, the categorization of 

the component copolymers as polymer-A and polymer-B is not suitable for the prediction 

of the blending parameters. 
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Figure 4. Relationships of (a) the AN unit, (b) the αMS unit, and (c) the ST unit derived 

from polymer-A (●) and polymer-B (●), and (d) the mole fraction predicted by PLS and 

LASSO regressions with theoretical values. 
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Scheme 1. A contradiction arose in the definition of polymer-A and polymer-B in the 
order poly(AN-co-ST), poly(AN-co-αMS), and poly(αMS-co-ST). 

 

To resolve the contradiction, Comp* was newly defined as a parameter that has 

an unchanged value, depending on the definitions of polymer-A and polymer-B.  

 Comp* = (CompA × fA) × (CompB × fB) (4) 

Solving equation (2) and equation (4) simultaneously with “CompA × fA” as a variable 

yields two solutions, as shown in equation (5).  

 CompA × fA = [Comp ± (Comp2 – 4 Comp*)0.5] / 2 (5) 

If the simultaneous equations are solved with “CompB × fB” as a variable, similar solutions 

are given, as shown in equation (6). 

 CompB × fB = [Comp ± (Comp2 – 4 Comp*)0.5] / 2 (6) 

Therefore, the component copolymers in the binary blends were recategorized as 

polymer-L and polymer-S, instead of polymer-A and polymer-B, and the following 

equations were defined,  

 CompL × fL = [Comp + (Comp2 – 4 Comp*)0.5] / 2 (7) 

 CompS × fS = [Comp – (Comp2 – 4 Comp*)0.5] / 2 (8) 
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where CompL and CompS denote the chemical compositions in the component 

copolymers of the larger and smaller fractions, respectively, and fL and fS denote the mole 

fractions of the component copolymers of the larger and smaller fractions, respectively 

(Figure S1). In a similar way, f* was newly defined as a parameter as follows: 

 f* = fA × fB  (9) 

Solving equation (3) and equation (9) simultaneously with fA as a variable yields two 

solutions, as shown in equation (10).  

 fA = [1 ± (1 – 4 f*)0.5] / 2 (10) 

Therefore, the mole fractions of the component copolymer in the binary blends were 

defined as follows: 

 fL = [1 + (1 – 4 f*)0.5] / 2 (11) 

 fS = [1 – (1 – 4 f*)0.5] / 2 (12) 

 

The fL of equations (7) and (11) and the fS of equations (8) and (12) are basically the same 

values, but they may be interchanged depending on the chemical compositions of the 

component copolymers. 

The five-fold cross-validations for the PLS and LASSO regressions were 

conducted again using the newly defined blending parameters, such as the chemical 

compositions of polymer-L (ANL, STL, and αMSL) and of polymer-S (ANS, STS, and 

αMSS) and the mole fraction of polymer-L, fL. Figure S2 shows the relationships between 

the theoretical and predicted values, and Table 2 summarizes the R2 values. The 

accuracies of the predictions were improved overall, but the R2 values for the AN 

component and the mole fraction still remained low. 
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Table 2. R2 values for the predictions of the blending parameters by PLS and LASSO 
regressions. 

 

In the above-mentioned processes, the blending parameters were individually 

predicted. A linear relationship between the target values and the spectral data is desirable 

for quantitative prediction using linear regression models. Figure 5 shows the 

relationships of the theoretical AN chemical composition derived from Polymer-L and 

the mole fraction of Polymer-L with an averaged AN chemical composition in the binary 

blends. For the blend series MS_A/S and ST_A/M, linear relationships were observed 

between the theoretical AN chemical composition derived from Polymer-L and the 

averaged AN chemical composition (Figure 5(a)). For the blend series of AN_S/M, 

however, a V-shaped relationship was observed. In addition, V-shaped relationships were 

observed between the mole fraction of Polymer-L and the averaged AN chemical 

composition, regardless of the blend series (Figure 5(b)). Such non-linear relationships 

would be responsible for the low accuracies of the predictions of the AN components and 

the mole fractions, as summarized in Table 2.  

 

 

Regression 

model 

ANL × fL, ANS × fS αMSL × fL, αMSS × fS STL × fL, STS × fS fL, fS 

PLS 0.68 0.89 0.89 0.61 

LASSO 0.84 0.91 0.92 0.89 
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Figure 5. Relationships of (a) the theoretical AN chemical composition derived from 
Polymer-L and (b) the mole fractions of polymer-L with the theoretical averaged AN 

chemical composition in the binary blends. The symbols ●, ▲, and ■ denote the 

plots of the AN_S/M_14 series, the ST_A/M_27 series, and the MS_A/S_67 series, 
respectively. 

 

In the fields of chemometrics and machine learning, the addition of a squared 

term to an explanatory variable is known to enable the fit of a quadratic function, even by 

linear regression methods such as PLS and LASSO [23-25]. Therefore, the five-fold 

cross-validations for PLS and LASSO regressions were conducted using both the bucket-

integral intensities and their squared values as explanatory variables. As a result, the 

blending parameters were successfully predicted with high R2 values, regardless of the 

regression model (Figure 6). In particular, LASSO regression predicted the blending 

parameters with R2 values over 0.97. These results indicate that even the complicated 

parameters in binary blends of copolymers can be directly predicted by multivariate 

analysis of 1H NMR spectra without any assignments of the individual peaks. 
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Figure 6. Relationships of (a) the AN unit, (b) the αMS unit, and (c) the ST unit derived 

from polymer-L (●) and polymer-S (●), and (d) the mole fraction predicted by PLS and 

LASSO regressions with theoretical values. Both the bucket-integral intensities and their 
squared values were used as explanatory variables.  

 

4. Conclusions 
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Multivariate analysis of the 1H NMR spectra of the binary blends of copolymers was 

conducted to predict the blending parameters, such as chemical compositions and mole 

fractions of the component copolymers. The averaged chemical compositions of AN, ST, 

and αMS in the binary blends were successfully predicted by PLS and LASSO regressions. 

However, a stepwise optimization of the objective and explanatory variables was required 

for predicting the blending parameters. For example, simple categorization of the 

component copolymers as Polymer-A and Polymer-B failed to enable the prediction of 

the blending parameters, because a contradiction arose for the expression of the mole 

fraction. The contradiction was overcome by introducing new parameters, Comp* and f*, 

which were multiplied by the chemical compositions derived from the two component 

copolymers and by the mole fractions of the two component copolymers. However, 

elucidation of the non-linear relationships between the spectral data and the blending 

parameters, such as the theoretical chemical composition derived from the component 

copolymer and the mole fraction, remains a problem to be solved. Therefore, not only the 

bucket-integral values but also their squared values were used as the explanatory variables 

to overcome the non-linearity with linear regression methods such as PLS and LASSO. 

Consequently, the blending parameters were successfully predicted without any 

assignments of 1H NMR signals. LASSO regression exhibited slightly higher accuracy 

than PLS regression, suggesting that the quantitative accuracy can be improved by 

selecting meaningful variables. Further work is now in progress to examine the extent to 

which multivariate analysis of the 1H NMR spectra of synthetic polymers is useful to 

extract the structural features of polymers that affect the physical properties of polymeric 

materials. 
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