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ABSTRACT
Verapamil is the first-line preventive medication for cluster headache, an excruciating disorder with 
strong circadian features. Whereas second- and third-line preventives include known circadian 
modulators, such as melatonin, corticosteroids, and lithium, the circadian effects of verapamil are 
poorly understood. Here, we characterize the circadian features of verapamil using both in vitro and 
in vivo models. In Per2::LucSV reporter fibroblasts, treatment with verapamil (0.03–10 µM) showed 
a dose-dependent period shortening of the reporter rhythm which reached a nadir at 1 µM, and 
altered core clock gene expression at 10 µM. Mouse wheel-running activity with verapamil (1 mg/mL 
added to the drinking water) also resulted in significant period shortening and activity reduction in 
both male and female free-running wild-type C57BL6/J mice. The temporal patterns of activity 
reduction, however, differ between the two sexes. Importantly, piezo sleep recording revealed sexual 
dimorphism in the effects of verapamil on sleep timing and bout duration, with more pronounced 
adverse effects in female mice. We also found altered circadian clock gene expression in the 
cerebellum, hypothalamus, and trigeminal ganglion of verapamil-treated mice. Verapamil did not 
affect reporter rhythms in ex vivo suprachiasmatic nucleus (SCN) slices from Per2:Luc reporter mice, 
perhaps due to the exceptionally tight coupling in the SCN. Thus, verapamil affects both peripheral 
(trigeminal ganglion) and central (hypothalamus and cerebellum) nervous system structures involved 
in cluster headache pathophysiology, possibly with network effects instead of isolated SCN effects. 
These studies suggest that verapamil is a circadian modulator in laboratory models at both molecular 
and behavioral levels, and sex is an important biological variable for cluster headache medications. 
These observations highlight the circadian system as a potential convergent target for cluster head-
ache medications with different primary mechanisms of action.
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Introduction

Cluster headache (CH) is a headache disorder widely 
regarded as one of the most painful human experi-
ences (Burish et al. 2020) with a high rate of suicidal 
thoughts and attempts (Ji Lee et al. 2019; Rozen and 
Fishman 2012; Trejo-Gabriel-Galan et al. 2018). The 
diagnosis of cluster headache is made by defining 
criteria: 1–8 headache attacks per day of one side of 
the face, with each attack lasting between 15 min and 
3 h, associated with restlessness and/or cranial auto-
nomic features, such as a bloodshot eye and nasal 
congestion on the same side as the pain (Headache 
Classification Committee of the International 
Headache Society (IHS) 2018).

In addition to these defining criteria, CH has remark-
able circadian features. A total of 82% of the patients 
have headaches at the same time each day (Rozen and 

Fishman 2012); while there is inter-individual variabil-
ity, the most common attack in day-active persons time 
is 02:00 h, regardless of time zone (Barloese et al. 2015; 
Rozen and Fishman 2012; Steinberg et al. 2018). 
Anatomical imaging studies in CH have shown enlarge-
ment of the anterior hypothalamus, the location of the 
central pacemaker, the suprachiasmatic nuclei (Arkink 
et al. 2017). Physiology studies have shown alterations in 
two circadian-related hormones, melatonin and corti-
costeroids, in CH patients (Bruera et al. 2008; Chazot 
et al. 1984; Leone et al. 1998; Waldenlind et al. 1987). Of 
note, melatonin and corticosteroids are also effective 
treatments for CH (May et al. 2006).

Molecularly, the circadian system consists of cell- 
autonomous molecular oscillators which drive a cycle 
of activation and inhibition of gene expression lasting 
approximately 24 h. The oscillators can be modulated by 

CONTACT Seung-Hee Yoo Seung-Hee.Yoo@uth.tmc.edu 6431 Fannin Street, Suite MSB 6.526, Houston TX 77030, USA.
Supplemental data for this article can be accessed on the publisher’s website.

CHRONOBIOLOGY INTERNATIONAL                   
2021, VOL. 38, NO. 6, 839–850 
https://doi.org/10.1080/07420528.2021.1892127

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc- 
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built 
upon in any way.

https://doi.org/10.1080/07420528.2021.1892127
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/07420528.2021.1892127&domain=pdf&date_stamp=2021-05-15


external stimuli, including light (Albrecht 2012; Hughes 
et al. 2015; LeGates et al. 2014), food (Edmonds and 
Adler 1977; Lewis et al. 2020), and medications (Chen 
et al. 2018; Tamai et al. 2018). These core oscillators are 
present in most cell types in the body and are regulated 
by the suprachiasmatic nucleus (SCN) in the anterior 
hypothalamus. Lymphoblasts from CH patients show 
reduced expression of the circadian gene Nr1d1 (encod-
ing the nuclear receptor REV-ERBα) compared to con-
trol subjects (Costa et al. 2015).

Unfortunately, current CH treatments, especially pre-
ventive medications, are not particularly effective for 
many patients: based on patient reports, the most effec-
tive preventive treatments are corticosteroids and vera-
pamil, but they are highly effective in only about 50% of 
the patients (Lademann et al. 2015). Due in part to 
serious side effects of corticosteroids with long-term 
use, verapamil is considered the first-line preventive 
medication (May et al. 2018; McGeeney 2018). 
Verapamil is a canonical L-type calcium channel antago-
nist, though it also affects other calcium channels, 
sodium channels, potassium channels, and p-glycopro-
tein (Lemma et al. 2006; Tfelt-Hansen and Tfelt-Hansen 
2009). Although the transport of verapamil across the 
blood–brain barrier is limited by p-glycoprotein 
(Luurtsema et al. 2005; Petersen et al. 2019; 
Römermann et al. 2013), verapamil has known binding 
targets in the SCN (Nahm et al. 2005). Verapamil’s 
mechanism of action in CH is not fully understood 
(Petersen et al. 2019): many second- and third-line CH 
preventives do not have strong calcium channel inhibi-
tion, including melatonin, corticosteroids, lithium, and 
valproate (Burish et al. 2019). However, many second- 
and third-line CH medications, including all those listed 
here, have putative effects on the molecular circadian 
system (Dickmeis et al. 2013; Johansson et al. 2011; 
Kandalepas et al. 2016; Li et al. 2012; Meneses-Santos 
and Buonfiglio 2018; Yin et al. 2006). The molecular 
circadian effects of verapamil are not known, but clinical 
observations have noted that CH patients taking vera-
pamil have headaches approximately 1 h later than CH 
patients not taking verapamil (Barloese et al. 2018).

Given the lack of a clear common mechanism for 
preventive medications in CH and the multiple lines of 
evidence for circadian effects of CH medications and CH, 
itself, we sought to investigate the effects of the first-line 
medication verapamil on molecular and behavioral cir-
cadian rhythms. To address this, we analyzed the effects 
of verapamil on circadian reporter cells (Per2::LucSV 
mouse fibroblasts) and mouse wheel-running and sleep 
behaviors. We show that verapamil has circadian effects 
both in vitro and in vivo, shortening the period of 
PER2 protein oscillation in cells, shortening the 

period of mice on running wheels, and altering the 
expression of core circadian genes in reporter cells as 
well as the hypothalamus, cerebellum, and trigeminal 
ganglion. Furthermore, verapamil displays sexual 
dimorphic effects on sleep timing (daytime vs. nighttime) 
and sleep bout length. These studies demonstrate a clear 
circadian effect of verapamil on core oscillators and 
behavioral rhythms.

Materials and methods

Animals

Animal husbandry and experiments were carried out 
under international ethical standards (Portaluppi et al. 
2010), ARRIVE guidelines (Percie Du Sert et al. 2020), 
and local IACUC guidelines in an animal protocol 
approved by the University of Texas Health Science 
Center at Houston (UTHSC-H). A total of 129 mice 
were used in this study.

Cell culture studies

Adult mouse ear fibroblast cells isolated from Per2::LucSV 
knock-in mice by replacement of the 3ʹ-UTR with an 
SV40 late poly(A) sequence (Yoo et al. 2017) were used 
for real-time bioluminescence monitoring. Cells were 
grown to confluency on 35 mm plates in Dulbecco’s 
Modified Eagle’s Medium (DMEM) supplemented with 
10% Fetal Bovine Serum (FBS) and 1% penicillin/strepto-
mycin. Cells were synchronized with 200 nM dexametha-
sone (Sigma–Aldrich) for 1 h, and verapamil (Sigma- 
Aldrich) was then added at concentrations of 0 (nothing 
added), 0.03, 0.1, 0.3, 1, 3, and 10 µM, along with luci-
ferin-containing recording media (Yoo et al. 2004). The 
plates were then tightly sealed with vacuum grease and 
placed in a luminometer (LumiCycle 32, Actimetrics) for 
continuous bioluminescence monitoring over 6d. The 
data were detrended using a first-order polynomial, and 
then best-fit to a sine wave estimated by a Levenberg– 
Marquardt algorithm for measurement of circadian 
parameters in the LumiCycle data analysis program 
(Actimetrics). For real-time qPCR analysis of core clock 
genes, cells were synchronized with 200 nM dexametha-
sone (Sigma–Aldrich). Verapamil (Sigma-Aldrich) was 
then added at concentrations of 3 and 10 µM in recording 
media. Cells were harvested every 4 h for 28 h (8 time 
points) and total RNA were extracted.

RNA extraction and real-time RT-PCR analysis

RNA extraction and real-time RT-PCR analysis were 
carried out as previously described (Nohara et al. 

840 M. J. BURISH ET AL.



2020). Expression levels of 10 genes were analyzed using 
real-time RT-PCR. Total RNA from Per2::LucSV mouse 
fibroblasts, cerebellum, hypothalamus, and trigeminal 
ganglion was isolated using PureXtract RNAsol reagent 
(GenDEPOT, TX, USA) as indicated by the manufac-
turer’s protocol. Reverse transcription was performed by 
cDNA synthesis kit (GenDEPOT, TX, USA). All real- 
time RT-PCR reactions were performed with SYBR 
Green PCR Master Mix kits (GenDEPOT, TX, USA) 
on QuantStudio 7 Flex system (Applied Biosystems). 
Data were analyzed using Prism 8 software (GraphPad 
Software, Inc.). Gapdh and beta-actin were used as the 
housekeeping gene for controls. The primer sets used 
are shown in Table 1.

Mouse wheel-running behavioral study

C57BL6/J mice (Jackson Laboratory) at 9 weeks of age 
were transferred into individual cages equipped with 
running wheels. Mice were acclimated for 2 weeks in 
a 12 h light/12 h dark cycle (LD, light levels 300 lux, 
room temperature and relative humidity were main-
tained at 22.6–24.1°C and 38–42%, respectively), fol-
lowed by 2 weeks in constant darkness (DD) to 
measure baseline free-running periods in DD. Once 
a circadian period was established in DD (the free- 
running period), we measured the effects of verapamil 
on the free-running period by changing regular water 
to verapamil (1 mg/mL)-containing water and moni-
toring mouse activities for an additional 2 weeks. 
Water intake was measured once per week for mea-
surements of verapamil intake in the first 29 mice. 
Activity data were recorded continuously by a PC 
system (Chronobiology Kit, Stanford Software 
Systems) and analyzed using CLOCKLAB software 
(Actimetrics). Free-running period was calculated 
using a periodogram with 6 min resolution 
(CLOCKLAB). Wheel-running activity level was quan-
tified as a summation every 20 min for each mouse and 
averaged during the 14d data collection.

Piezo sleep recording

Sleep/wake recording was performed with a noninvasive 
piezoelectric transducer sleep/wake recording system 
(Signal Solutions, Inc.) as previously described (Nohara 
et al. 2019). The initial 48 h acclimation period was 
followed by data recording for 2d. Data were extracted 
and analyzed by using the Sleepstats software (Signal 
solutions, Inc).

Real-time bioluminescence measurement from SCN 
ex vivo cultures

Circadian bioluminescence measurement was performed 
as previously described (Yoo et al. 2004). Briefly, SCNs 
were dissected and sliced with oscillating tissue slicer 
(OTS-5000) into 300 um thickness. SCN slices were cul-
tured on Millicell culture membranes (PICMORG50, 
Millipore) in 35 mm tissue culture dishes containing 
2 mL DMEM media (Invitrogen) supplemented with 
352.5 μg/ml sodium bicarbonate, 10 mM HEPES 
(Invitrogen), 2 mM L-Glutamine, 2% B-27 Serum-free 
supplement (Invitrogen), 25 units/ml penicillin, 25 μg/ 
ml streptomycin (Invitrogen), and 0.1 mM luciferin potas-
sium salt (L-8240, Biosynth AG). DMSO or verapamil (10 
uM) was added to the recording media. Bioluminescence 
was recorded continuously using the LumiCycle lumin-
ometer (Actimetrics). Data were analyzed using 
LumiCycle data analysis program (Actimetrics).

Statistical analysis

Sample size was based on previous studies (Duong et al. 
2011; Nohara et al. 2019). No data were excluded, and 
no randomization or blinding was performed. Strategies 
were put in place to minimize confounders, included 
isolating animals in individual cages and placing all 
animals in the same cabinet of recording boxes. Data 
are presented as mean ± standard deviation (cell culture 
data) or mean ± standard error of the mean (wheel- 

Table 1. qPCR primer sequences.
Gene Forward (5ʹ-3ʹ) Reverse (5ʹ-3ʹ)
Clock CCTTCAGCAGTCAGTCCATAAAC AGACATCGCTGGCTGTGTTAA
Bmal1 CCACCTCAGAGCCATTGATACA GAGCAGGTTTAGTTCCACTTTGTCT
Per1 CCCAGCTTTACCTGCAGAAG ATGGTCGAA AGG AAGCCTCT
Per2 TGTGCGATGATGATTCGTGA GGTGAAGGTACGTTTGGTTTGC
Per3 GTGATTGTTCACGCGTCT GT CACTGCCATCTCGAGTTCAA
Cry1 TGA GGC AAG CAG ACT GAA TAT TG CCT CTG TAC CGG GAA AGC TG
Cry2 CTG GCG AGA AGG TAG AGT GG GACGCAGAATTA GCCTTTGC
Rev-erbα CATGGTGCTACTGTGTAAGGTGTGT CACAGGCGTGCACTCCATAG
Rev-erbβ TGAACGCAGGAGGTGTGATTG GAGGACTGGAAGCTATTCTCAGA
Dbp CTGGCCCGAGTCTTTTTGC CCAGGTCCACGTATTCCACG
Gapdh CAAGGTCATCCATGACAACTTTG GGCCATCCACAGTCTTCTGG
beta-actin TTGTCCCCCCAACTTGATG CCTGGCTGCCTCAACACCT
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running and sleep data). Statistical significance was 
determined by two-tailed Student’s t-test (Excel, 
Microsoft Office Professional Plus version 2016) and 
two-way ANOVA with Sidak’s multiple comparison 
test (GraphPad Prism version 8.20). P < .05 was consid-
ered statistically significant.

Results

Verapamil shortens the reporter period of Per2:: 
LucSV mouse fibroblasts

For cell culture dose determinations, the dose was based 
on the effective oral dose of verapamil in CH patients of 
200–960 mg/d (Blau and Engel 2004; A May et al. 2006; 
Petersen et al. 2019; Tfelt-Hansen and Tfelt-Hansen 
2009). We used data from the following studies to help 
determine our dose range. A single oral dose of verapa-
mil 80 mg in humans results in peak serum plasma levels 
of 38.4 ng/mL (McAllister and Kirsten 1982) or 0.08 µM, 
while a single oral dose of verapamil 160 mg results in 
a peak plasma level of 90.2 ng/mL (McAllister and 
Kirsten 1982) or 0.20 µM. Verapamil extended release 
240 mg results in a peak serum plasma level between 80 
and 164 ng/mL (fda.gov 2019) or 0.19–0.36 µM with 
a nonlinear correlation between dose and plasma level. 
A chronic 480 mg total daily dose of verapamil (120 mg 
four times daily) results in plasma levels between 125 
and 400 ng/mL (fda.gov 2019) or 0.27–0.88 µM. Taken 
together, we chose doses between 0.03 and 10 µM.

To investigate the effect of the first-line CH medica-
tion verapamil on molecular circadian rhythms, we used 
Per2::LucSV fibroblast cells, which express PER2::LUC 
fusion proteins from the endogenous Per2 gene promo-
ter to report circadian molecular rhythms with high 
sensitivity (Chen et al. 2012; Yoo et al. 2017). We per-
formed whole-field real-time bioluminescence record-
ings of Per2::LucSV fibroblast cell cultures. Verapamil 
significantly shortened the period at most concentra-
tions between 0.03 and 10 µM (Figure 1a,b). There was 
a dose-dependent period shortening from 0.03 to 1 µM, 
and the effect reached a nadir of 23.4 h at 1 µM (the 
period was 24.0 h in controls). Verapamil did not sig-
nificantly change the reporter amplitude of Per2::LucSV 
fibroblast cell cultures (Figure 1c). These results provide 
evidence that verapamil specifically alters circadian per-
iodicity at the oscillator level, without changing its 
robustness.

To investigate the molecular basis of verapamil’s 
effects on the circadian oscillator, we measured clock 
gene expression in Per2::LucSV fibroblast cells. At 10 µM 
verapamil concentration, we observed significant effects 
of verapamil on mRNA expression of Clock, Bmal1, 

Per1, Per3, Cry2, and Dbp (Figure 2). There was no 
significant change in Per2, Cry1, Rev-erbα, and Rev- 
erbβ. At a lower verapamil concentration of 3 µM, only 
Clock displayed altered mRNA expression, while all 
other genes were not significantly different from control 
(Supplemental Figure 1).

Verapamil shortens the period of free-running 
C57BL6/J mice

We next studied the effects of verapamil in an animal 
behavioral model. For mouse behavioral assay dose 
determinations, the dose of 1 mg/mL verapamil was 
chosen based on the conversion from human to mouse 
dosing from the FDA’s “Guidance for Industry for 
Estimating Safe Starting Doses for Clinical Trials” 
(DHHS et al. 2005). The initial conversion of dosage 
(mg/kg) to drinking water (mg/mL) assumed a daily 
water intake of 4 mL and weight of approximately 
25 g/20 g (male/female) in 12-week C57BL6/J mice. 
This dose corresponds to 768 mg (male) and 960 mg 
(female) daily doses in a 60 kg human. The dose of 1 mg/ 
mL verapamil in the drinking water has also been used 
in prior mouse studies (Abais et al. 2014; Chandra et al. 
2002; Dong et al. 1992; Morris et al. 1989).

C57BL6/J wild-type mice were individually housed in 
cages with running wheels. To establish baseline circa-
dian rhythms, mice were given food and water ad libi-
tum for 2 weeks in a 12 h light/12 h dark cycle (LD), 
followed for up to 4 weeks in constant darkness (DD). 
Once a circadian period was established in DD (the free- 
running period), we measured the effects of verapamil 
on the free-running period by changing regular water to 
1 mg/mL verapamil-containing water. The mice contin-
ued in DD and had access to food and verapamil water 
ad libitum for an additional 2 weeks. Water intake 
averages (across the first 29 mice) were 7.4 ml (LD), 
7.9 ml (DD), and 6.5 ml (DD/Verapamil water) 
per day, which are within the normal range 
(Bachmanov et al. 2002). The free-running period was 
found to be significantly shortened after treatment with 
verapamil in both male (23.75 ± 0.03 h vs. 23.63 ± 0.04 h, 
p < .0001) and female mice (23.78 ± 0.01 h vs. 
23.70 ± 0.02 h, p < .001) (Figure 3a,b for males and 
E and F for females). Likewise, verapamil significantly 
reduced activity levels in both sexes (males: 
30,162 ± 1425 counts/20 min vs. 20,071 ± 1191 counts/ 
20 min; p < .0001; females: 43,295 ± 1991 counts/20 min 
vs. 26,695 ± 1215 counts/20 min; p < .0001) (Figure 3c,d 
for males and G and H for females). In male mice, 
verapamil did not affect the activity onset (which 
occurred around Circadian Time 12), but it decreased 
the subsequent activity. Interestingly, however, activities 
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of female mice were reduced throughout the active per-
iod to a greater extent, suggesting a sexual dimorphic 
effect on the temporal pattern of activity between males 
and females.

Verapamil displays sex-specific effects on sleep

Next, we employed a piezo noninvasive sleep assay 
(Nohara et al. 2019) to investigate whether verapamil 
affects sleep. Male and female mice were pretreated with 
verapamil for two to three weeks prior to sleep measure-
ments and compared to control mice receiving regular 

water. Although the total amount of sleep was not 
altered by verapamil (Figure 4a,d), male and female 
mice exhibited distinct sleep changes in response to 
verapamil exposure (Figure 4b – dsss). Whereas verapa-
mil-treated male mice showed significantly more day-
time sleep (58.6 ± 1.2% vs. 63.0 ± 1.6%, p < .05), in 
female mice, verapamil increased sleep amount during 
the nighttime (22.1 ± 1.7% vs. 27.8 ± 1.2%, p < .01), the 
active phase for mice. Mean sleep bout duration time 
was significantly reduced by verapamil treatment only in 
female mice (Figure 4e). Furthermore, histogram analy-
sis of sleep bout distribution revealed a trend toward 

Figure 1. Verapamil shortens the circadian period of mouse Per2::lucSV reporter fibroblast cells. (a) Representative PER2::LUC 
bioluminescence recording of Per2::LucSV fibroblast cells. PER2::LUC fusion protein oscillations show a period shortening effect with 
verapamil compared to controls. (b) Average circadian period lengths for reporter fibroblast cells treated with increasing concentra-
tions of verapamil (n = 4 for each concentration). Error bars represent standard deviation, * represents a significant (p < .05) change 
compared to control (“Verapamil 0”). (c) Verapamil does not cause amplitude changes in Per2::LucSV fibroblast cells. Average amplitude 
values for fibroblasts treated with increasing concentrations of verapamil (n = 4 for each concentration) are shown. Error bars represent 
standard deviation, p < .05 indicates significance.
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Figure 2. Real time qPCR analysis of clock gene expression. (A-J) Circadian expression of Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, Rev- 
erbα, Rev-erbβ, and Dbp in Per2::lucSV reporter cells quantified by qRT-PCR for control (blue) and verapamil 10 uM (red). Data are shown 
as mean ± SEM every 4 h for 28 h (n = 3). Two-way ANOVA with Sidak’s multiple comparison test showed significant differences 
between control and Clock (p = .076), Bmal1 (p = .0001), Per1 (p = .0315), Per3 (p = .0199), Cry2 (p = .0004), and Dbp (p = .0345). The 
other clock genes examined were not significantly different from control.

Figure 3. Verapamil treatment shortens circadian wheel-running periods in mice. (a–d) Male mice (n = 29). (e–h) Female mice (n = 30). 
(a and e) Representative actograms are shown for C56BL6/J male and female mice. Arrowheads indicate the LD (light:dark) to DD (dark: 
dark) transition. Water containing Verapamil (1 mg/ml) was administered during the interval indicated by yellow shading on the 
actogram. (b and f) Free-running period of C56BL6/J male and female mice under DD (constant darkness) for normal water. Error bars 
represent ± SEM. (c and g) Average wave plots summarizing wheel-running activity during DD for normal water, and verapamil water. 
(d and h) Daily total wheel-running activity during DD for normal water and verapamil water. Data are presented as mean ± SEM. T-test 
shows the significant statistical differences between normal water and verapamil water (***, p < .001; ****, p < .0001).
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shorter bouts in female mice, while male mice did 
not exhibit significant changes (Figure 4f). These obser-
vations indicate strong sexual dimorphic effects of ver-
apamil on mouse sleep, with adverse effects in female 
mice, including increased nighttime sleep and shorter 
bout duration.

Verapamil alters clock gene expression in central 
and peripheral regions relevant for CH

The hypothalamus and cerebellum are central nervous 
system structures known to have pronounced circa-
dian oscillations and may be important structures in 
the pathophysiology of cluster headache (Arkink et al. 
2017; Clelland et al. 2014; May et al. 1998; Naegel et al. 

2014; Teepker et al. 2012; Yang et al. 2015). The 
trigeminal ganglion is an important peripheral ner-
vous system structure for cluster headache pain 
(Jarrar et al. 2003; May et al. 2018; McGeeney 2018), 
though its circadian oscillations are not well studied. 
To examine whether verapamil treatment can affect 
the expression of clock genes in these areas, we mea-
sured mRNA expression levels of 10 core clock genes 
collected at ZT6 and ZT18 from verapamil-treated and 
control mice (Figure 5). Verapamil altered circadian 
expression of Clock, Bmal1, Per1, Rev-erbα, and Dbp at 
ZT6 significantly in the cerebellum from verapamil- 
treated mice compared to control mice. In the 
hypothalamus, verapamil altered expression of 
Bmal1, Per1, and Cry2 at both time points, changed 

Figure 4. Verapamil shows sex-specific effects on sleep timing and quality in C57BL6/J mice. (a) Total percent sleep time of male and 
female mice with normal water (blue) and verapamil water (red). (b) Percent daytime sleep of male and female mice with normal water 
(blue; male n = 12, female n = 14) and verapamil water (red; male n = 12, female n = 16). (c) Percent nighttime sleep of male and 
female mice with normal water (blue) and verapamil water (red). T-test shows the significant statistical difference in percent sleep time 
between normal and verapamil water (*, p < .05; **, p < .01). (d) Representative sleep recording for hourly sleep percentage male and 
female mice with normal water (blue) and verapamil water (red). (e) Mean sleep bout duration for male and female mice with normal 
water (blue) and verapamil water (red). Data are presented as mean ± SEM. (f) Sleep bout length distribution of male and female mice 
with normal water (blue) and verapamil water (red). Data are presented as mean ± SEM. Two-way ANOVA with Sidak’s multiple 
comparison test shows the significant statistical difference between percent sleep of normal and verapamil water (*, p < .05; ****, 
p < .0001).
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expression of Per2 and Per3 at ZT6, and changed Cry1 
expression at ZT18. Furthermore, in the trigeminal 
ganglion, we found altered mRNA expression of Per3 
at both time points, altered mRNA expression of 
Bmal1 and Per2 at ZT6, and altered mRNA expression 
of Cry1 at ZT18. Taken together, these results show 
that verapamil can alter circadian clock gene expres-
sion in brain regions and in the trigeminal ganglion. 
Interestingly, Bmal1 mRNA expression was consis-
tently downregulated by verapamil at ZT6 in all tissues 
as compared to control.

We next sought to understand the effect of verapamil 
on the central clock of the circadian system, using SCN 
ex vivo cultures from Per2::Luc mice. Compared with 
control (DMSO), SCN cultures treated with verapamil 
10 µM did not show a significant difference in PER2:: 
LUC oscillation patterns (Supplemental Figure 2A). 
Accompanying analyses of circadian parameters 
revealed that the period length (Supplemental Figure 
2B; Mean value, 24.6 ± 0.15 h for DMSO vs. 
24.67 ± 0.38 h for 10 µM verapamil) and fold amplitudes 
(Supplemental Figure 2C; Mean value, 1.15 ± 0.2 for 
DMSO vs 1.09 ± 0.12 for 10 µM verapamil) of the 
bioluminescence oscillations were not significantly 
altered in SCN cultures treated with verapamil com-
pared with control.

Discussion

In this study, we show that verapamil, the first-line 
preventive medication for CH, has circadian effects at 
both the cellular and behavioral levels. Specifically, ver-
apamil altered the core circadian oscillators by short-
ening the period in Per2::LucSV fibroblasts. This core 
circadian alteration also had a behavioral correlate, as 

verapamil also shortened the free-running period of 
C57BL6/J wild-type mice. Importantly, verapamil dis-
played sex-specific effects, including differential wheel- 
running activities and sleep patterns, between male and 
female mice. The exaggerated nighttime sleep and 
reduced sleep bout lengths, indicative of dysregulated 
sleep timing and consolidation, suggest sleep perturba-
tion by verapamil in female mice.

As the central pacemaker is believed to be primarily 
responsible for driving behavioral rhythms (Moore and 
Eichler 1972; Ralph et al. 1990; Stephan and Zucker 
1972), our results suggest a central action of verapamil 
consistent with our current understanding of CH as 
a central nervous system disorder (May et al. 2018). The 
hypothalamus is considered a potential site for the initia-
tion of a cluster headache attack (May et al. 2018; 
McGeeney 2018), and verapamil alters core circadian 
genes in the hypothalamus (specifically Bmal1, Per1, 
Per2, Per3, Cry1, and Cry2 in our experiments). In SCN 
ex vivo slices, however, there was no change in PER2:: 
LUC reporter oscillations, perhaps due to the exception-
ally tight coupling of the SCN clock known to be resistant 
to genetic and pharmacological manipulation (Chen et al. 
2012; Liu et al. 2007). Of note, when verapamil was 
administered to mice systemically via drinking water, 
Bmal1 expression was broadly altered by verapamil in 
all tissues tested. Bmal1 was also altered by verapamil 10 
uM in our experiments on fibroblasts cultures. These 
findings suggest general effects of verapamil on Bmal1, 
including structures relevant to cluster headache.

While our data suggest a period-shortening effect, 
a human observational study suggests that CH patients 
display a 1 h phase delay in the timing of attacks if they 
take verapamil (Barloese et al. 2018). Typically, phase 
delays in humans are associated with period lengthening 

Figure 5. Verapamil alters circadian expression of clock genes. (a–j) Circadian expression of Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, 
Rev-erbα, Rev-erbβ, and Dbp in the cerebellum, hypothalamus, and trigeminal ganglion of control (blue bar, n = 4 for ZT 6, n = 3 for 
ZT18) and verapamil treated male mice (red bar, n = 4 for ZT6, n = 3 for ZT18). The data are shown as mean ± SEM (*, p < .05; **, 
p < .01; ***, p < .001; ****, p < .0001). Two-tailed unpaired t-test, p < .05 was considered significant.
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(not shortening) in rodent models, as is seen in delayed 
sleep phase disorder and mutations in CRY1 (Patke et al. 
2017). To our knowledge, no circadian free-running 
experiments in humans have been performed with ver-
apamil to reconcile the human phase delay with our 
findings of period-shortening. With our current lack of 
information on the molecular circadian alterations of 
cluster headache patients, it is difficult to directly com-
pare the findings of clinical and laboratory studies. 
Furthermore, there is currently no animal model of 
CH that includes a circadian timing of attacks (only 
animal models that explore the trigeminal pain system 
(Harriott et al. 2019) or the autonomic system (Akerman 
et al. 2009)). However, verapamil’s circadian effects 
appear to extend to humans, and additional studies are 
warranted to investigate the specific circadian effect of 
verapamil in humans.

In humans, CH is more common in males at a ratio of 
4.3:1 (Fischera et al. 2008). It has been suggested that 
verapamil is less effective in women, though no systema-
tic studies have been performed (Petersen et al. 2019). In 
our study, we found that verapamil caused more pro-
nounced disturbances in female sleep, specifically sleep 
timing (more sleep during the active phase) and quality 
(decreased sleep bout length). In addition, verapamil 
also altered the temporal pattern of wheel-running activ-
ity in a sex-specific manner, again with more significant 
changes in female mice. Sleep disturbances are a rare but 
occasionally documented side effect of verapamil in 
humans (PDR 2020), though sex-specific differences in 
sleep disturbances are not clear. Future studies are 
needed to investigate whether this sexual dimorphism 
is related to sex-dependent CH disease manifestations 
and treatment efficacy in humans.

In the treatment of CH, one issue limiting drug devel-
opment is the lack of a common mechanism amongst 
preventive medications. Our study reveals an interesting 
circadian modulatory mechanism shared by verapamil, 
corticosteroids, melatonin, lithium, and valproate because 
of the prominent circadian features of this disease. 
Additional studies are needed to determine the impor-
tance of the circadian effects of these medications in CH 
and to investigate the specific shared mechanism: these 
medications might have a common circadian target or 
might have different targets that result in a convergent 
effect on the core circadian oscillators.

In conclusion, our work reveals verapamil as a clock- 
altering drug, shortening the circadian period at both 
the molecular and behavioral levels. Importantly, we 
observed significant sex-specific effects of verapamil on 
sleep and wheel-running behaviors, consistent with the 
notion that sex is an important biological variable for 
CH and its medications. Verapamil is the first-line 

preventive medication for CH, a disorder with strong 
circadian features, and several CH medications share 
a circadian-altering effect but are otherwise unrelated 
mechanistically. Additional studies are needed to under-
stand whether these medications share an ability to 
modulate circadian rhythms, which will facilitate future 
chronotherapeutic developments against CH.
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