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Abstract

Background: An accurate evaluation of the nutritional status of malnourished hospitalized patients at a higher risk of
complications, such as frailty or disability, is crucial. Visual methods of estimating food intake are popular for evaluating the
nutritional status in clinical environments. However, from the perspective of accurate measurement, such methods are unreliable.

Objective: The accuracy of estimating leftover liquid food in hospitals using an artificial intelligence (AI)–based model was
compared to that of visual estimation.

Methods: The accuracy of the AI-based model (AI estimation) was compared to that of the visual estimation method for thin
rice gruel as staple food and fermented milk and peach juice as side dishes. A total of 576 images of liquid food (432 images of
thin rice gruel, 72 of fermented milk, and 72 of peach juice) were used. The mean absolute error, root mean squared error, and

coefficient of determination (R2) were used as metrics for determining the accuracy of the evaluation process. Welch t test and
the confusion matrix were used to examine the difference of mean absolute error between AI and visual estimation.

Results: The mean absolute errors obtained through the AI estimation approach were 0.63 for fermented milk, 0.25 for peach
juice, and 0.85 for the total. These were significantly smaller than those obtained using the visual estimation approach, which
were 1.40 (P<.001) for fermented milk, 0.90 (P<.001) for peach juice, and 1.03 (P=.009) for the total. By contrast, the mean
absolute error for thin rice gruel obtained using the AI estimation method (0.99) did not differ significantly from that obtained
using visual estimation (0.99). The confusion matrix for thin rice gruel showed variation in the distribution of errors, indicating
that the errors in the AI estimation were biased toward the case of many leftovers. The mean squared error for all liquid foods

tended to be smaller for the AI estimation than for the visual estimation. Additionally, the coefficient of determination (R2) for

fermented milk and peach juice tended to be larger for the AI estimation than for the visual estimation, and the R2 value for the
total was equal in terms of accuracy between the AI and visual estimations.

Conclusions: The AI estimation approach achieved a smaller mean absolute error and root mean squared error and a larger

coefficient of determination (R2) than the visual estimation approach for the side dishes. Additionally, the AI estimation approach
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achieved a smaller mean absolute error and root mean squared error compared to the visual estimation method, and the coefficient

of determination (R2) was similar to that of the visual estimation method for the total. AI estimation measures liquid food intake
in hospitals more precisely than visual estimation, but its accuracy in estimating staple food leftovers requires improvement.

(JMIR Form Res 2022;6(5):e35991) doi: 10.2196/35991
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Introduction

Background
The prevalence of malnutrition among hospitalized patients is
reportedly between 20% and 50% [1], and this rate is
significantly high among patients who are older or who have
cancer [2]. Malnourished hospitalized patients are at a higher
risk of complications, such as pressure ulcers, infections [3],
and frailty [4]. These are the risk factors of disability associated
with daily living activities, and they can result in death [5,6].
In current superaged societies, malnutrition poses an increased
risk. Therefore, an accurate evaluation of the nutritional status
of hospitalized patients is crucial for the prevention of
malnutrition among such patients [7].

Nutritional status is determined by anthropometric parameters
(eg, body mass index) and laboratory parameters (eg, ion or
protein concentration). Patients' food intake can also be used
as an assessment metric because it affects their nutritional status
[8]. Based on weight, the median plate waste in hospitals is 30%
higher than that in other food service sectors [9]. Therefore,
measurement and assessment of the actual amount of food
consumed by patients are necessary.

The most accurate method for measuring food intake among
hospitalized patients involves weighing foods before and after
consumption [10]. Although this method optimizes accuracy,
it is labor-intensive and requires space for holding soiled trays
to measure waste [11]. In clinical environments, a popular
method for evaluating food intake involves direct observation
by medical staff. This approach is commonly referred to as the
visual estimation method. However, it has been reported that
the accuracy of the visual estimation method is lower than that
of the weighing method [12,13], and the results obtained through
these methods tend to vary depending on the training of the
medical professionals and their job categories [14,15].
Additionally, although the measurement approach is simple,
various problems exist, such as the fact that patients are often
asked to measure their own food intake. This request is made
because it is difficult for medical professionals to check all the
food.

Recently, there have been significant advancements in the field
of artificial intelligence (AI), and technological approaches for
image analysis—such as organ segmentation [16] and lesion
detection support [17]—have been utilized in various medical
fields. Therefore, AI-based technological approaches can be

applied to ensure improved accuracy in the measurement and
evaluation of food intake among hospitalized patients.
Additionally, such methods are more convenient than visual
estimation methods because they estimate the remaining amount
of food using digital images of food obtained through
photography.

Currently, there exists an AI-based system that can estimate the
classifications and names of foods through photographic images
[18,19]. Additionally, Ege et al [20] proposed an AI-based
system for estimating calories through the selection of recipes
that match each food detected from photographic images.
However, their proposed AI-based system estimates the caloric
intake by identifying the predetermined menu based on
photographic images of the meal before consumption. Therefore,
there is no system that can be used to accurately measure and
evaluate the actual amount of food consumed by considering
the leftover amount.

Objective
In this study, an AI-based model was developed that can be
used to estimate the amount of leftover liquid food by learning
the pattern of leftover liquid food obtained from images of liquid
food in hospitals. There were three tasks associated with the
estimation of leftovers from images of different foods. An
object-detection approach was developed in this study for
detecting multiple types of food on a tray and a classifier for
determining the names of foods matching those in the detected
object. Furthermore, the accuracy of the remaining task was
evaluated because it pertains to the measurement and estimation
of leftover liquid food.

Methods

Measurement of Leftover Liquid Food in Hospitals
Liquid foods were photographed to evaluate their leftovers
(Figure 1). The liquid foods used in this study were similar to
those provided to hospitalized patients, with multiple food items
served on a tray.

The menu comprised a combination of staple food, side dishes,
packaged beverages, and seasonings. The types of liquid foods
are listed in Table 1. The leftover plates were evaluated through
a measurement of the actual amount of each liquid food item
on a digital scale, so that the leftovers of each liquid food item
were on an 11-point scale ranging from 0 to 10 (Table 2).
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Figure 1. Example of liquid food served on a tray in hospitals.

Table 1. Types of dishes and number of images used for artificial intelligence (AI) training and evaluation.

Accuracy evaluationEvaluation images, nTraining images, nType of food and liquid food name

Staple food

✓a432504Thin rice gruel

Side dishes 1

72144Japanese clear soup

72360Vegetable soup

72144Miso soup

666Red miso soup

Side dishes 2

✓7272Fermented milk

✓7272Peach juice

7272Grape juice

7272Orange juice

666Mixed juice

666Fruit mix

Packaged beverage

360504Milk

666Milk for toddlers

666Apple juice for toddlers

666Orange juice for toddlers

666Additive-free vegetable juice

Seasoning

432504Salt

aThe checkmark indicates the liquid foods used for accuracy evaluation.
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Table 2. Actual measurement of the converted values of the leftover liquid food.

Leftover liquid foodConverted value

Ingesting 5% or less of the entire amount.0

Ingesting between 5% and 15% of the entire amount.1

Ingesting between 15% and 25% of the entire amount.2

Ingesting between 25% and 35% of the entire amount.3

Ingesting between 35% and 45% of the entire amount.4

Ingesting between 45% and 55% of the entire amount.5

Ingesting between 55% and 65% of the entire amount.6

Ingesting between 65% and 75% of the entire amount.7

Ingesting between 75% and 85% of the entire amount.8

Ingesting between 85% and 95% of the entire amount.9

Ingesting 95% or more of the entire amount.10

AI estimation was conducted by analyzing the liquid food
images using an AI-based model for estimating leftover liquid
food. All images of the lunch menu containing thin rice gruel,
fermented milk, and peach juice were evaluated. Visual
estimation was conducted by a person looking at similar liquid
food images. Images were randomly selected from the images
of the lunch menu containing rice gruel, fermented milk, and
peach juice so that all the dishes with 0 to 10 leftovers of each
dish were evaluated, and dietitians and students evaluated the
same images. Each method used an 11-point scale to estimate
the leftover liquid food. Visual estimation was performed by
10 dietitians from Tokushima University Hospital and 6 students
from the Department of Medical Nutrition, Tokushima
University. A total of 576 images of liquid food (432 images
of thin rice gruel, 72 of fermented milk, and 72 of peach juice)
were analyzed through AI estimation and visual estimation.

Ethics Approval
This study was conducted as part of a study approved by the
clinical research ethics committee at Tokushima University
Hospital (#3758).

Data Set
For a single menu, 12 types of liquid food images were created,
each comprising the following portions: the state before eating
(no. 1 in Table 3), in which the amount of leftover liquid food
was 100%; 10 combinations of the states with some leftovers
(nos. 2-11 in Table 3), in which the amounts of leftovers for
each liquid food were at 0%, 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, and 90%; and the state with no leftovers (no. 12 in
Table 3), in which the amount of leftover liquid food was 0%.

Table 3. List of leftover liquid food combinations prepared for each grouping of dishes.

Side dishes 2aSide dishes 1aStaple foodaCategoryNumber

101010Before eating1

891Some leftovers2

683Some leftovers3

375Some leftovers4

167Some leftovers5

559Some leftovers6

240Some leftovers7

038Some leftovers8

726Some leftovers9

414Some leftovers10

902Some leftovers11

000No leftovers12

aConverted values of the leftover liquid food.

For the camera position, the standard angle was the angle taken
from directly above the liquid food tray at the height where the
entire tray was contained, and the margin maintained (Figure

2). Angles of 15° and 30° were added to the standard angle.
Additionally, the camera was repositioned to a lower position
that included the entire tray and eliminated any blank space.
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Similarly, angles of 15° and 30° were added to the standard
angles. A total of 6 different liquid food images were created

for a single portion of a single menu.

Figure 2. Photographs of a single portion of a single menu taken from six different camera positions.

In this study, liquid food images were taken separately for
breakfast, lunch, and dinner on multiple dates and times, each
under different conditions, such as light coming in from
outdoors, for application in clinical environments. Images of
the breakfast and dinner foods were used as the training images,
and images of the lunch foods were used as the evaluation
images. Therefore, the photographic environments for the
training and evaluation images differed. The liquid foods used
for accuracy evaluation are listed in Table 1.

AI-Based Model for Estimating Leftover Liquid Food
A convolutional neural network (CNN), which is commonly
applied in AI-based image analysis approaches, was used to
analyze the liquid food images employed in this study. The
AI-based model comprises two parts: (1) an object-detection
part that identifies the positions of multiple dishes on a tray and
extracts their regions from a single liquid food image and (2) a
leftover-estimation part that classifies the names of liquid foods
associated with the detected objects and estimates the amount
of leftover liquid food. YOLOv3 [21] was used for object
detection, following training using the FoodLog data set [22].
This is a one-class detection model with the liquid food region
as the foreground and the others as the background. A multitask
CNN was used to classify the names of liquid foods and estimate
the leftover liquid food. Liquid food name classification is a
task that consists of classifying 17 different liquid food names,
and leftover estimation is a task that consists of classifying
leftover liquid food on an 11-point scale. The architecture of
the multitask CNN involved a calorie-volume estimation model
based on the method proposed by Ege et al [23]. Both tasks
were shared up to the last fully connected layer of ResNet50v2
[24], thereby resulting in 512-dimensional fully connected
output layers for each task. The training process was fine-tuned

using data prepared for this study through the ImageNet training
model published by GluonCV [25] as the initial parameter. The
loss function L for training was calculated as follows:

where L1 represents the cross-entropy loss for liquid food name
classification, and L2 represents the cross-entropy loss for
estimating the amount of leftover liquid food. The AI-based
model development was performed using Python (version 3.6.5)
as the programming language and PhpStorm and PyCharm as
the integrated development environment.

Accuracy Evaluation
The accuracies of the AI estimation and visual estimation
methods were compared using actual measurements obtained
through the weighing method employed for each staple food
(thin rice gruel) and the side dishes (fermented milk and peach
juice) as well as the total of these three liquid foods combined.
The images of the side dishes created in different conditions
for the training and evaluation processes were those of fermented
milk, peach juice, grape juice, and orange juice. Fermented milk
images, which had the lowest AI estimation accuracy, and peach
juice images, which had the highest accuracy, were selected.
Then, visual estimation was used to evaluate these images and
those of the staple food (thin rice gruel).

In the hospital setting, liquid foods primarily contain milk,
milk-based products including oatmeal, and clear liquid food
[26]. In this study, menus that corresponded to these categories
were selected. Thin rice gruel was selected because rice is often
used in place of oatmeal in Japanese hospitals. Packaged
beverages, salt, and seasonings were excluded from this study
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because it is difficult to evaluate such leftover foods through
visual estimation.

Bland-Altman plots were used to examine the differences
between the estimated and measured values and the limits of
agreement were calculated as the mean difference ± 1.96 SD.
The mean values of the measurements were calculated, and a
paired t test was used to examine the differences.

There are two types of AI models: classification models, which
are used to classify the category to which the objective variable
belongs, and regression models, which are used to calculate the
estimated value of the actual measured value. In this study, the
estimated value of the continuous scale was used to estimate
the amount of leftover liquid food, which is the average of the
classification results achieved through multiple classification
models. Because the AI-based model for estimating leftover
liquid food predicts the estimated value of the actual measured
value, mean absolute error, root mean squared error, and

coefficient of determination (R2) were used as metrics for
determining the accuracy of the evaluation process. The mean
absolute error was calculated as follows:

where x represents the estimated value, and y represents the
measured value.

Welch t test was used to examine the differences between the
AI estimation and visual estimation approaches in terms of the
absolute error.

The root mean squared error squares the errors and then averages
them, so that large errors are weighted more heavily. It is a
useful metric when large errors are not particularly desirable.
The root mean squared error was calculated as follows:

The coefficient of determination (R2) indicates the insignificance
of the error compared to that of a model that always returns the
average of the measured values. The closer the value is to 1,
the higher its accuracy. It was used as a relative evaluation
metric of which estimate was closer to the actual

measurement—the AI estimation or the visual estimation. R2

was calculated as follows:

In addition, a confusion matrix of the estimated and measured
values was created to evaluate the distribution of the absolute
errors. The confusion matrix compares the measured values
with the estimated values to evaluate which values have been
incorrectly estimated. Statistical analyses were performed using
SPSS Statistics version 24 (IBM Corp).

Results

Differences Between Estimated and Measured Values
The limits of agreement from the Bland-Altman plot estimated
and measured values for AI estimation and visual estimation
were −3.4 to 2.1 and −3.4 to 2.7 (thin rice gruel), −0.8 to 1.9
and −4.4 to 2.5 (fermented milk), −1.0 to 0.9 and −3.0 to 1.9
(peach juice), −3.0 to 2.2 and −3.5 to 2.6 (total) (Figure 3). The
differences between the estimated and measured values by AI
estimation for fermented milk and peach juice were particularly
small. The value of the measurements by AI estimation for
peach juice was not significantly different from the estimated
value (4.53) and the measured value (4.58) (Table 4). The
estimated value by AI for fermented milk (5.15) was
significantly larger than the measured value (4.58). For the rest,
the estimated value was significantly smaller than the measured
value.
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Figure 3. Bland-Altman analysis of the differences between estimated and measured values of leftover liquid food. AI: artificial intelligence.
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Table 4. Comparison of estimated and measured values of leftover liquid food.

Visual estimationAIa estimationMeasured valueLeftover food, n

P valueEstimated valueP valueEstimated value

<.0014.21<.0013.934.58432Thin rice gruel

<.0013.62<.0015.154.5872Fermented milk

<.0014.01.354.534.5872Peach juice

<.0014.11<.0014.154.58576Total

aAI: artificial intelligence.

Mean Absolute Error
The mean absolute error of staple food leftovers obtained using
the AI estimation approach (0.99) was not significantly different
from that obtained via visual estimation (0.99) (Table 5).
Moreover, the mean absolute errors obtained through the AI
estimation approach for side dishes were 0.63 for fermented

milk and 0.25 for peach juice. These were significantly smaller
than those obtained using the visual estimation approach for
fermented milk (1.40) and peach juice (0.90). The total mean
absolute error obtained through AI estimation (0.85) was also
significantly smaller than that obtained through visual estimation
(1.03).

Table 5. Mean absolute errors obtained using the AIa estimation and visual estimation methods.

P valueVisual estimationAI estimationImages, n

.960.990.99432Thin rice gruel

<.0011.400.6372Fermented milk

<.0010.900.2572Peach juice

.0091.030.85576Total

aAI: artificial intelligence.

Root Mean Squared Error
The root mean squared error tended to be smaller for the AI
estimation of thin rice gruel (1.55), fermented milk (0.89), peach

juice (0.50), and total (1.39) than that for the visual estimation
of thin rice gruel (1.61), fermented milk (1.98), peach juice
(1.37), and total (1.64) (Table 6).

Table 6. Root mean squared error obtained using the AIa estimation and visual estimation methods.

Visual estimationAI estimationImages, n

1.611.55432Thin rice gruel

1.980.8972Fermented milk

1.370.5072Peach juice

1.641.39576Total

aAI: artificial intelligence.

Coefficient of Determination

The coefficient of determination (R2) for staple foods tended to
be smaller for the AI estimation method (0.69) than for the
visual estimation (0.78) method. However, the coefficient of

determination (R2) for side dishes tended to be larger for the AI

estimation of fermented milk (0.94) and peach juice (0.98) than
that for the visual estimation of fermented milk (0.62) and peach

juice (0.82) (Table 7). The R2 value for the total was equal in
terms of accuracy between the AI estimation (0.78) and visual
estimation (0.77) methods.
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Table 7. Coefficient of determination (R2) for the AIa estimation and visual estimation methods.

Visual estimationAI estimationImages, n

0.780.69432Thin rice gruel

0.620.9472Fermented milk

0.820.9872Peach juice

0.770.78576Total

aAI: artificial intelligence.

Distribution of Errors
The confusion matrix for staple foods (Figure 4) shows variation
in the distribution of errors, indicating that the errors in the AI
estimation were biased toward the case of many leftovers. The
values converged to a specific estimated value, as the estimated
values were biased toward 6 for images with measured values
of 6 to 9. In addition, many evaluations estimated that the

estimated value was less than the measured value for both the
AI estimation and visual estimation methods. However, for the
confusion matrix of side dishes, the AI estimation had a small
error, and the estimated and measured values were in close
agreement, whereas the visual estimation demonstrated a large
variability. The confusion matrix for the total also showed the
same trend as for the staple food, with more evaluations
estimating that the leftover was less than the measured value.
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Figure 4. Confusion matrices of the estimated and measured values. AI: artificial intelligence.

Discussion

Principal Findings
The AI estimation approach achieved a smaller mean absolute
error and root mean squared error and a larger coefficient of

determination (R2) than the visual estimation approach for the
side dishes. Additionally, the AI estimation approach achieved
a smaller mean absolute error and root mean squared error

compared to the visual estimation method, while the coefficient

of determination (R2) was similar to that of the visual estimation
method for the total. These results indicate that the accuracy of
the AI estimation method was high, except for staple foods. In
particular, peach juice was highly reliable because there was
no difference between the AI estimation and the weighing
method. Underestimating liquid food consumption can lead to
incorrect nutritional guidance, whereas a correct assessment of
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food intake can lead to improvement through nutritional
intervention.

The accuracy of estimation through the AI-based model was
evaluated by comparing the estimated value to that of the actual
measured value using the weighing method. For the accuracy
indicator of the continuous scale, it is recommended to use the
mean absolute error and the root mean squared error when
evaluating the prediction performance of the same scale and
applying measures, such as the coefficient of determination

(R2), when outliers are included [27]. Therefore, three
indicators—the mean absolute error, the root mean squared

error, and the coefficient of determination (R2)—were used in
this study. On the other hand, previous studies of human visual
estimation of photographed food images have used mean
differences as the accuracy indicator [28]. The analysis has been
reported to be highly reliable for visual estimation using food
images because it is highly correlated with the actual value
obtained via the weighing method.

The visual estimation approach used in this study was as
accurate as the visual estimation method used in previous
studies. The AI estimation approach achieved higher accuracy
than the visual estimation approach, suggesting that the AI
estimation approach is more reliable for the precise measurement
of liquid food intake. Moreover, the mean absolute error
achieved through the AI estimation method was 8.5% in this
study, indicating that the goal of this measurement method in
clinical contexts was also achieved because the measurement
method used in clinical contexts should have an error of less
than 10% using the weighing method [29].

Regarding the side dishes, the AI estimation approach had a
small error and was in close agreement with the measured values

(Figure 4). The value of the coefficient of determination (R2)
was also large, but it was smaller for staple foods. However,
there was no difference in the mean absolute error. These results
suggest that a large percentage of AI estimators made
evaluations that had large errors. The confusion matrix shows
that estimates for images with actual values ranging between 6
and 9 were biased toward 6, and the image features for
distinguishing between 6 and 9 were not well discovered during
the training process. For staple foods, the fact that the error grew
larger when there was a large amount of leftover liquid foods
remains an issue. In this study, liquid foods were prepared such
that the number of cases per leftover would be equal, to make
it easier to discern the accuracy of each leftover. However, in
a previous study conducted in a clinical environment, the mean
value of food intake was 82.5% [15]. Therefore, it is conceivable
that the accuracy of the AI estimation could be even higher in
actual clinical environments because there is less leftover food.

Liquid foods are recognized via the information obtained from
the image, such as its color, whether it is well-lit, and its density
[19]. In this study, the color and density of the liquid food were
ascertained from this information. The fact that the accuracy
levels achieved through AI estimation varied significantly

among different liquid food types suggests that the estimation
was affected by differences in color between the liquid food
and the dish and the density of the liquid food. In this study,
dishes that were actually served to patients in hospital wards
were used, assuming a demonstration in clinical contexts. The
thin rice gruel was pale white, and the dishes were white, thus
similar in color. Furthermore, it was difficult to distinguish the
border between liquid food and dishes because thin rice gruel
is translucent and thick. This attribute may be the reason for the
lower accuracy obtained compared to that of fermented milk,
which is similar in color. Therefore, the accuracy of AI
estimation for thin rice gruel could be improved by changing
the color of the dish to a non-white color.

Limitations
There are four limitations of this study. First, images of hospital
liquid food taken using a camera were used for the visual
estimation process to compare it with the AI estimation process.
In clinical contexts and environments, medical staff estimate
and record dietary intake by looking at the actual food.
Therefore, it is also necessary to compare the results of the
visual estimation approach by ensuring that medical staff look
at the actual foods provided to patients and compare the results
with those achieved through the AI estimation of food images
taken in wards. Second, packaged beverages were excluded
from this study because it is difficult to evaluate leftover liquid
foods through visual estimation. For such foods, it is necessary
to consider methods such as measuring by transferring the
leftover liquid food to another dish. Third, this study is limited
to the evaluation of liquid food images in a single institution.
Because the menus and plates of liquid foods served to patients
vary from institution to institution, it is necessary to evaluate
whether the training images used in this study can be used to
estimate the amount of leftover liquid food in multiple
institutions while determining the additional training images
required for each. Finally, the usability of the proposed AI-based
measurement method is unclear. In daily use, systems that use
image analysis to support food recording have been evaluated
for their usability [22]. In clinical contexts and environments,
further research is required to evaluate whether the use of
AI-based measurement methods can be easily executed by
medical staff.

Conclusions
The proposed AI-based model demonstrated improved accuracy
in the measurement and evaluation of leftover side dishes and
similar accuracy levels for the total leftovers compared to the
visual estimation method for leftover liquid foods. Additionally,
errors incurred in the AI estimation approach were within the
acceptable range of the weighing method, thereby indicating
that the proposed AI-based model for estimating the amount of
leftover liquid food can be applied in clinical contexts and
environments. However, further evaluations and improvements
of the AI-based model presented in this study are necessary for
the development of an AI estimation method that can be used
to accurately measure the intake of liquid food in hospitals.
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