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Abstract: Titin is a giant protein that functions as a molecular spring in sarcomeres. Titin interconnects
the contraction of actin-containing thin filaments and myosin-containing thick filaments. Titin breaks
down to form urinary titin N-fragments, which are measurable in urine. Urinary titin N-fragment
was originally reported to be a useful biomarker in the diagnosis of muscle dystrophy. Recently, the
urinary titin N-fragment has been increasingly gaining attention as a novel biomarker of muscle
atrophy and intensive care unit-acquired weakness in critically ill patients, in whom titin loss is
a possible pathophysiology. Furthermore, several studies have reported that the urinary titin N-
fragment also reflected muscle atrophy and weakness in patients with chronic illnesses. It may
be used to predict the risk of post-intensive care syndrome or to monitor patients’ condition after
hospital discharge for better nutritional and rehabilitation management. We provide several tips on
the use of this promising biomarker in post-intensive care syndrome.

Keywords: titin; muscle; diaphragm; atrophy; physical dysfunction; biomarker; urine; post-intensive
care syndrome; nutrition; rehabilitation

1. Introduction

Titin, also called connectin, is a giant sarcomere protein, which functions as a spring for
muscle extension and elasticity [1]. Titin interconnects the contraction of actin-containing
thin filaments and myosin-containing thick filaments. Recently, the N-terminal fragment of
titin, which is the breakdown product of titin, has become measurable using an enzyme-
linked immunosorbent assay kit (27900 titin N-fragment Assay Kit; Immuno-Biological
Laboratories, Fujioka, Japan) [2]. This kit has been used to evaluate muscle breakdown in
muscle dystrophy, in which the level of urinary titin N-fragment was 700-times above the
normal level [3].

Muscle atrophy and weakness are common in critically ill patients [4–6]. In particular,
muscle weakness has been widely recognized as an intensive care unit-acquired weakness
(ICU-AW) [7]. Although the pathophysiology of ICU-AW is still unknown, Swist et al.
found titin loss in the muscle biopsies of critically ill patients, and suggested that the titin
loss was a cause of ICU-AW [8]. Two study groups have recently reported the use of
urinary titin N-fragment in assessing ICU-AW. Nakanishi et al. found that the urinary titin
N-fragment reflected muscle atrophy and ICU-AW in critically ill patients [9]. Moreover,
the accumulated urinary titin was associated with mortality in these patients. Another
study group, Nakano et al., reported that urinary titin could be a possible biomarker of
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muscle atrophy and ICU-AW [10,11]. Urinary titin N-fragment may become an important
test in the ICU.

The ICU-AW remains years after ICU discharge, and is known as post-intensive
care syndrome (PICS) [12]. PICS is characterized by physical dysfunctions, psychological
disorders, or cognitive impairments that persist beyond ICU discharge. The state persists,
even five years after ICU discharge [13]. One of the important measures for reducing PICS
is to follow up high-risk patients after ICU discharge. The urinary titin N-fragment can
be used as a biomarker to identify patients who exhibit increased catabolism and need
intervention. We suggest several tips on how to efficiently use the urinary titin N-fragment
in PICS. In this review, we have summarized recent literature on titin, and the possible
applications of the urinary titin N-fragment in PICS.

2. Titin

Titin, initially known as connectin, was discovered in 1976 by Maruyama et al. [14].
Being the largest protein in the human body, it was renamed titin after the giant god,
Titan, from Greek mythology. Titin is the largest protein in humans, and is 3.0–3.7 MDa.
This protein is located in the muscle sarcomere, and interconnects the contraction of
actin-containing thin filaments and myosin-containing thick filaments. Passive tension
and elasticity during muscle contraction develops as a result of the titin protein by Ca2+-
dependent stiffening (Figure 1) [1,15].
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Cr in healthy adult volunteers [2]. 

3. Muscle Atrophy 

Figure 1. This is a schematic illustration of titin in the muscle. Muscle comprises of muscle fibers,
myofibrils, and the smallest units, known as sarcomeres. In the sarcomere (lower left), titin connects
actin-containing thin filaments and myosin-containing thick filaments. In the schematic illustration
of titin structure (lower right), titin is composed of Z-disk, I-band, A-band, and M-line regions, and
the I-band includes tandem Ig and PEVK (Pro-Glu-Val-Lys) domains.

During muscle degradation, titin is broken down into small fragments, and several
different fragments are measurable. In serum, the metalloproteinase (MMP) 2-cleaved
titin fragment and MMP 12-cleaved titin fragment are measurable. MMP 2-cleaved titin
reflected muscle atrophy in a human bed rest study [16]. On the other hand, MMP 12-
cleaved titin fragment could be used to assess cardiac infarction, because the level of the
fragment increased after an acute myocardial infarction [17].

Recently, the N-terminal fragment of titin, which is 25 kDa, and is known as the
urinary titin N-fragment, has become measurable in urine. Unlike serum, this urinary
biomarker is noninvasive, but requires correction by urinary creatinine to adjust for the
kidney function. The standard value of urinary titin N-fragment was 2.1 (1.2–2.6) pmol/mg
Cr in healthy adult volunteers [2].
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3. Muscle Atrophy
3.1. Limb and Trunk Muscle Atrophy

Muscle atrophy is a serious problem in critically ill patients [4]. After one week of
ICU admission, critically ill patients exhibited 13.2–16.9% of muscle atrophy in the upper
limbs, and 18.8–20.7% in the lower limbs [18]. These muscle atrophies are associated with
impaired physical function and mortality [19,20].

Muscle atrophy is caused by an increase in protein degradation or decrease in protein
synthesis. Increased protein degradation occurs mainly due to inflammation and immo-
bilization. Calpain, caspase, ubiquitin-proteasome, and autophagy-lysosome have been
implicated in this protein degradation pathway [21–23]. Decreased protein synthesis is
caused by suppressed insulin-like growth factor-1 and inactivated myogenesis [24].

In critically ill patients, inflammation is an important cause of muscle atrophy [25], and
various inflammatory cytokines are associated with muscle atrophy [26]. Immobilization is
frequently observed during critical illness, and causes muscle atrophy [27]. Malnutrition
causes a decrease in protein synthesis [28]. In critically ill patients, recommended protein
intake is 1.2–2.0 g/kg/day [29], but this level of intake is often not achieved in the ICU [30],
resulting in decreased protein synthesis.

Muscle mass can be assessed using computed tomography, bioelectrical impedance
analysis, and ultrasound [31]. Computed tomography is accurate, but exposes patients
to radiation, whereas bioelectrical impedance analysis is influenced by fluid changes in
critically ill patients [32]. Ultrasound can be used to monitor muscle atrophy at the bedside,
but it requires a skilled and experienced operator [33,34]. Thus, a biomarker to assess
muscle atrophy is urgently needed. In a rat study, Udaka et al. found that six weeks of
immobilization caused titin loss in the soleus muscle, which was associated with muscle
dysfunction [35]. Thus, it is theoretically reasonable to expect levels of urinary titin to be
elevated in the urine of patients with muscle atrophy.

In muscular dystrophy, the urinary titin N-fragment reflects the disease severity.
Patients with Duchenne muscular dystrophy had a higher concentration of the urinary
titin N-fragment than those with Becker muscular dystrophy (965.8 vs. 171.2 pmol/mg
Cr, p < 0.01) [36]. This result possibly reflects the amount of muscle breakdown in these
conditions. Recently, two studies have reported the usefulness of the urinary titin N-
fragment in the evaluation of muscle atrophy in critically ill patients. Furthermore, Nakano
et al. reported that urinary titin N-fragment could be used to evaluate muscle atrophy
in critically ill patients [11]. In their study, investigating four critically ill patients, there
was a negative correlation between mean urinary titin level during the first seven days
of ICU admission and femoral muscle volume measured using computed tomography
(r =−0.729). Furthermore, Nakanishi et al. reported that in 56 nonsurgical critically ill
patients, the cumulative urinary titin concentration on days 3, 5, and 7 was significantly
higher in the prominent muscle atrophy group (p ≤ 0.03), suggesting that urinary titin
reflects muscle atrophy in nonsurgical critically ill patients [9]. However, in their study, the
correlation between muscle atrophy and urinary titin was limited to r = 0.29–0.54 (p ≤ 0.03),
suggesting that urinary titin levels are affected by various physiologic conditions. As
inflammation is an important cause of muscle atrophy, the peak urinary titin N-fragment
level was higher in patients with sepsis (93.0 vs. 57.9 pmol/mg Cr, p = 0.02). Moreover, the
high levels of urinary titin N-fragment were associated with increased mortality. Although
further studies are required, it is clear that a relationship exists between muscle atrophy
and urinary titin N-fragment.

The molecular mechanism underlying titin breakdown remains unclear. Several path-
ways, activated by inflammation and immobilization, are involved in the breakdown of
titin. Calpain contributes to the cleavage of titin because titin has calpain-binding sites [37].
Lang et al. investigated the ubiquitination of titin in denervated mouse, and found that lev-
els of ubiquitinated titin gradually increased in denervation-induced muscle atrophy [38].
Consistent with this finding, Swist et al. found increased levels of ubiquitinated titin in
patients with critical illness [8]. In their study, the markers of the autophagy-lysosome
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pathway were also upregulated. Thus, the autophagy-lysosome pathway may be involved
in the breakdown of titin.

Unlike other promising biomarkers of muscle atrophy, urinary titin N-fragment is
noninvasive and reliable. Creatinine kinase and BUN/Cr are possible biomarkers for
muscle atrophy [39], but these biomarkers require blood tests. Furthermore, creatinine
kinase is derived from various tissues [40], and BUN/Cr is influenced by various conditions
including dehydration [39]. Urinary creatinine has also been suggested to be a biomarker
of muscle atrophy, but it does not consider kidney function [41]. Thus, urinary titin
N-fragment, corrected by urinary creatinine, is a reliable biomarker because it does not
depend on kidney function [9,10].

3.2. Diaphragm Muscle Atrophy

Diaphragm atrophy is observed in 60% of mechanically ventilated critically ill pa-
tients [42], and it is a serious problem because of its association with prolonged mechanical
ventilation and prolonged ICU stay [43]. As with limb muscle atrophy, diaphragm atro-
phy is caused by the calpain, caspase, ubiquitin-proteasome, and autophagy-lysosome
pathways [44–47]. As reported in limb muscles, inflammation and immobilization are
important causes of diaphragm atrophy. Sepsis is a cause of diaphragm atrophy [48], and
deep sedation causes immobilization of the diaphragm [49]. Most importantly, ventilator
settings strongly influence diaphragm atrophy and subsequent diaphragm dysfunction.
Thus, diaphragm dysfunction in such cases is termed as ventilator induced diaphragm
dysfunction [50].

Titin plays an important role in the diaphragm contractile force [51], and titin loss has
been associated with diaphragm dysfunction in rats [52,53]. In the diaphragm biopsy of
human subjects, Hussain et al. found that prolonged controlled mechanical ventilation
decreased titin levels and impaired the diaphragm myofibrillar force [54]. Furthermore,
Lindqvist et al. suggested that the positive-end expiratory pressure (PEEP) during ven-
tilation led to the breakdown of the diaphragm titin, because the PEEP stretched out the
sarcomere of the diaphragm muscle fibers [55]. Excessive extension may be detrimental to
diaphragm titin.

Although titin is associated with diaphragm atrophy and dysfunction, urinary titin
N-fragment is not useful for detecting diaphragm atrophy. Our previous study investigated
the change of diaphragm thickness in 50 critically ill patients using ultrasound. Diaphragm
atrophy, defined by a >10% decrease of diaphragm thickness, was observed in 32 patients
(64%), and the mean diaphragm thickness decreased by 4.9% ± 15.8%, 8.0% ± 16.9%, and
15.4% ± 10.2% on days 3, 5, and 7, respectively. On comparing the diaphragm atrophy
and unchanged groups, the levels of urinary titin N-fragment were not higher in the
diaphragm atrophy group than those in the unchanged group (147.9 vs. 192.4 pmol/mg in
the unchanged vs. atrophy group, p = 0.33) [9]. The urinary titin N-fragment can measure
the titin breakdown product in all muscles, and is not specific to the diaphragm. To quantify
the diaphragm atrophy, a diaphragm-specific titin kit is necessary. This may be theoretically
possible, because a cardiac-specific titin kit has been developed in another study [56].

Interestingly, several studies have reported that, as well as diaphragm atrophy, in-
creased diaphragm thickness has worsened clinical outcomes [42,43,57]. Insufficient ven-
tilatory support leads to excessive respiratory effort in mechanically ventilated patients.
This condition increases the diaphragm thickness. Since the increased muscle thickness has
worsened outcomes, the hypertrophied diaphragm may not have sufficient functional titin
to function appropriately. In a previous study on urinary titin N-fragment, there was no
significant difference in the cumulative urinary titin N-fragment between the unchanged
diaphragm thickness and increased diaphragm thickness groups (147.9 (79.0–257.8) vs.
426.1 (140.8–578.2) pmol/mg Cr in unchanged vs. increased, p = 0.45) [9]. The com-
bination of increased diaphragm thickness and atrophy also did not have a significant
difference in terms of the cumulative level of urinary titin N-fragment (147.9 (79.0–257.8) vs.



J. Clin. Med. 2021, 10, 614 5 of 14

206.5 (99.3–440.8) pmol/mg Cr in unchanged vs. combination, p = 0.31). The mechanism
underlying the increase in diaphragm thickness remains to be elucidated.

Diaphragm dysfunction is preventable and reversible. Therefore, it is important to
maintain spontaneous breathing and avoid excessive ventilatory support during mechani-
cal ventilation, which is called diaphragm protective ventilation [43]. Diaphragm protective
ventilation can prevent diaphragm atrophy, compared with lung protective ventilation [58].
Furthermore, O’ Rourke et al. reported that percutaneous electrical phrenic nerve stimula-
tion increased diaphragm thickness by 15.1% within 48 h [59]. Extracorporeal support is
also considered to prevent diaphragm injury [60], and in a case report, the early initiation
of extracorporeal support prevented diaphragm atrophy, with a relatively suppressed level
of urinary titin N-fragment of 24.1–38.4 pmol/mg Cr [61].

3.3. Other Respiratory Muscle Atrophy

In addition to the diaphragm muscle, intercostal muscle atrophy is also observed in
patients with mechanical ventilation [62], and is associated with prolonged mechanical
ventilation and prolonged ICU stay [42]. Moreover, muscle atrophy occurs in other expi-
ratory muscles, including the obliquus interna, obliquus externa, transversus abdominis,
and rectus abdominis muscles [63]. In the case report of a mechanically ventilated patient,
intercostal muscle biopsy showed the loss of myosin-containing thick filaments, with the
possible detachment of titin [64]. Titin loss may be an important cause of other respiratory
muscle dysfunctions, as well as that of the diaphragm. Jonkman et al. reported that
breath-synchronized electrical stimulation increased the thickness of abdominal expiratory
muscles (1.76 mm vs. −0.50 mm in intervention vs. control, respectively, p = 0.02) [65].
Thus, titin loss may be reversible by active rehabilitation.

4. ICU-Acquired Weakness

In the ICU, newly acquired muscle weakness is called ICU-AW, which is found in
40–50% of all critically ill patients [4]. In a previous study, ICU-AW was independently
associated with physical dysfunction at six months after ICU discharge [66]. The diagnosis
of ICU-AW requires muscle strength assessment using a medical research council score
<48 [67], and a low medical research council score is associated with impaired physical
functions, including handgrip strength, 6-min walking distance, and physical functioning of
SF-36, even five years after ICU discharge [68]. Moreover, because the diagnosis of ICU-AW
requires the active cooperation of patients, the assessment is not feasible in approximately
half of the critically ill patients [4]. Thus, the development of a biomarker is important to
diagnose ICU-AW. However, there has been no established available biomarker to diagnose
ICU-AW [69].

ICU-AW is classified into critical illness myopathy or neuropathy [7]. Although the
underlying mechanism is still unknown, damage to myosin-containing thick filaments
has been proposed to contribute to critical illness myopathy [70,71]. Recently, Swist et al.
collected biopsies of the tibialis anterior muscles in nine mechanically ventilated ICU
patients diagnosed with critical illness myopathy, and found that not only the levels of
myosin-containing thick filaments, but also those of titin, were lost in the muscle, whereas
the levels of actin-containing thin filaments were unchanged [8]. In their other study, a
titin-inactivated mouse had sarcomere disintegration, myocyte de-stiffening, and force
impairment, which were consistent with the muscle damage of critical illness myopathy.
Thus, they suggested that titin loss is a contributing factor to critical illness myopathy.
With regard to critical illness neuropathy, Chen et al. investigated the role of titin in
neuropathy [72]. They denervated the tibialis anterior muscles of rats, and measured the
amount of titin in the muscle. In the denervated muscle, titin loss was observed, and the
loss was dependent on the denervation time. They found that titin was translocated and
possibly cleaved from the sarcomere, and concluded that titin was sensitive to degradation
after denervation.
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Urinary titin N-fragment is useful to assess functional impairments. Ishihara et al.
reported that the level of urinary titin N-fragment correlated with functional impairments in
patients after stroke [73]. In the study, peak urinary titin N-terminal fragment levels during
the seven days of admission were correlated with modified Rankin scale score (r = 0.55,
p < 0.01), National Institute of Health stroke scale score (r = 0.72, p < 0.01), and Barthel
index (r = −0.59, p < 0.01) at the time of hospital discharge. In the multivariate analysis
adjusted for the disease severity, the urinary N-terminal fragment on day 2 predicted the
functional outcome at hospital discharge (odds ratio, 1.11; 95% CI, 1.01–1.28). This study
excluded patients with: in-hospital onset, dialysis, surgery, and seizure, as well as those
not having independent daily living. Thus, it is reasonable to believe that the urinary titin
N-fragment level reflected muscle breakdown and subsequent functional impairments.

Two study groups have recently reported the usefulness of urinary titin N-fragment
levels in ICU-AW. Nakanishi et al. investigated the urinary titin N-fragment in 56 nonsur-
gical critically ill patients, and found that the cumulative urinary titin N-fragment up to
discharge or day 7 was higher in ICU-AW than non-ICU-AW patients (314.1 (181.5–464.7)
vs 86.6 (66.3–171.1), p = 0.01) [9]. In the study, urinary titin level on day 2 predicted ICU-AW
with a sensitivity of 78% and specificity of 81% at the cut-off value of 64.8 pmol/mg Cr. In
another study, Nakano et al. investigated 50 consecutive critically ill patients, and found
that the medical research council score was lower in the high urinary titin N-fragment
group (37.0 (24.0–56.0) vs. 56.0 (51.0–60.0), p = 0.023) [10]. In multivariate analysis, urinary
titin N-fragment was independently associated with medical research council score <48,
almost equivalently with ICU-AW, after adjusting for age, sex, sequential organ failure
assessment score, and steroid dose (adjusted odds ratio: 1.02 (95% CI: 1.00–1.03), p = 0.02).
In their study, the mean urinary titin N-fragment level during the first 7 days of ICU
admission predicted ICU-AW with a sensitivity of 61.9% and specificity of 89.7% at the
cut-off value of 100 pmol/mg Cr. The area under the curve to predict medical research
council score <48 was 0.810 (95% CI: 0.688–0.931), whereas creatine kinase had an area
under the curve of 0.654 (95% CI: 0.494–0.814). As titin is a functional protein, it is theo-
retically understandable that urinary titin is a better biomarker of ICU-AW than creatine
kinase, which is an enzyme found in various tissues [40]. Indeed, another study reported
that creatinine kinase level did not differ in ICU-AW or non-ICU-AW patients (405 vs.
508 pmol/mg Cr, p = 0.10) [74].

It would be beneficial if we can predict ICU-AW using the urinary titin N-fragment
because ICU-AW is a preventable condition. Nutritional support and rehabilitation can
prevent ICU-AW [75]. In patients at risk of ICU-AW, we can provide intense nutrition
and rehabilitation management. Moreover, we can avoid, or at least reduce, the risk
medications including catecholamines, steroids, or neuromuscular blockers [71,76,77]. The
measurement of urinary titin N-fragment may change our clinical practice regarding the
management of critically ill patients.

5. PICS

PICS is characterized by physical, psychological, or cognitive impairments persisting
beyond ICU discharge [12]. Survivors of acute respiratory distress syndrome have pro-
longed muscle atrophy, impaired gait speed, and a deteriorated 6-min walk distance at
6–12 months after ICU discharge [78]. These physical dysfunctions can persist for up to
five years in certain patients [13]. In a study, 46% of patients had persistent symptoms of
ICU-AW for 5–10 years [79]. These prolonged physical dysfunctions hinder the ability of
patients to return to work [80].

Recently, PICS has been gaining increased attention because of the aging society
and the coronavirus disease 2019 (COVID-19) pandemic [81]. The elderly population is
increasing worldwide, and this population has a high risk of PICS [12]. At 12 months after
hospital discharge, the Barthel index was lower in patients aged >75 years than in those
aged 65–74 years (p < 0.01) [82]. In COVID-19, muscle weakness <48 was observed in 66%
of patients [83], and ICU-AW was observed in 52% of patients at ICU discharge and 27% of
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patients at hospital discharge after COVID-19 infection [84]. After the COVID-19 pandemic,
a PICS pandemic is anticipated, requiring some preparation [85].

The loss of titin may be a cause of the prolonged physical dysfunction of PICS. We
considered two hypotheses: (1) prominent muscle breakdown in the ICU, (2) prolonged
muscle breakdown after hospital discharge (Figure 2).
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First, prominent muscle breakdown will lead to increased muscle atrophy and weak-
ness. The change in the acute phase may persist into PICS. There are several strategies
to prevent the prominent muscle breakdown in the acute phase. Rehabilitation has been
proven to be effective in preventing muscle atrophy and physical dysfunction [86,87].
Nakanishi et al. reported that electrical muscle stimulation was effective in preventing
muscle breakdown [88]. In the study, blood branched-chain amino acid, which is an im-
portant muscle component, was investigated, and the amino acid level was lower in the
patients who received the electrical muscle stimulation intervention (40.5% (−7.4–75.3%)
vs. 71.5% (38.8–116.9%)), suggesting a decrease in muscle breakdown. Another strategy
is to ensure sufficient protein intake during the acute phase. Nakamura et al. reported
that protein intake of 1.5 g/kg/day prevented muscle atrophy during the first 10 days of
ICU admission, compared with 0.8 g/kg/day (12.9% ± 8.5% vs. 16.9% ± 7.0% in 1.5 vs.
0.8 g/kg/day, p < 0.01) [89]. These strategies in the acute phase will possibly prevent PICS.

Second, patients with PICS may have prolonged muscle breakdown due to the chronic
inflammation or decreased mobility. Some patients experience chronic inflammation,
which is also known as persistent inflammation, immunosuppression, and catabolism
syndrome [90]. This condition may be caused by various conditions including disseminated
intravascular coagulopathy [91] and electrolyte imbalance [92]. Chronic inflammation is
known to cause muscle atrophy [93]. Decreased mobility is also a cause of prolonged
muscle breakdown. After hospital discharge, impaired physical function or endurable
pain will lead to decreased mobility [94]. Although early mobilization is important to
prevent physical dysfunction, Fuke et al. reported that early mobilization is not sufficient
to prevent PICS [95]. One of the strategies to prevent PICS is following up the patient after
the hospital discharge. Although PICS follow-up has been shown to decrease mortality
and medical cost [96], few facilities conduct PICS follow-up. In most facilities, human
resources and financial support are not sufficient to conduct PICS follow-up [97]. Thus, the
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international consensus conference of critical care medicine recommended selecting the
patients to follow up, and that the selection should be conducted within 2–4 weeks after
hospital discharge [98].

We consider that the detection of the level of urinary titin N-fragment may be im-
portant for the screening, follow-up, and management. Urinary titin N-fragment reflects
ongoing muscle breakdown because the fragment can detect muscle breakdown within
at least 2 h of its onset [73]. The measurement of urinary titin N-fragment can identify
patients at high risk of prolonged muscle breakdown. In a previous report, Oshida et al.
investigated the level of urinary titin N-fragment in patients with non-alcoholic fatty liver
disease [99]. They found that the urinary titin N-fragment was negatively correlated with
skeletal muscle mass (r = −0.134, p < 0.05), grip strength (r = −0.203, p < 0.01), and knee
extension muscle strength (r = −0.191, p < 0.05), and positively correlated with the echo
intensity of the rectus femoris muscle (r = 0.361, p < 0.001), which indicates the fibrous
changes of the muscle tissue [100]. Although the reported average of urinary titin N-
fragment concentration was 2.1 (1.2–2.6) pmol/mg/Cr, the level was increased several
times in some patients with, and without, non-alcoholic fatty liver disease. Another study
by Miyoshi et al. investigated patients with gastrointestinal tract and hepatobiliary pan-
creatic malignancies, and found that the urinary titin N-fragment was significantly higher
in sarcopenia (8.3 (1.9–20) vs. 4.9 (2.3–15) pmol/mg Cr, p = 0.04) [101]. In their study,
urinary titin N-fragment showed statistically significant negative correlations with skeletal
muscle volume index (r = −0.16, p = 0.04). These two studies suggest that the urinary titin
N-fragment may be utilized to assess the muscle breakdown state in PICS.

Before we use the urinary titin N-fragment in clinical practice, we need to know
several factors. First, a spot urine test is available for urinary titin N-fragment. Although
the 24-h urine sample appears reliable, it is not feasible during follow-up. In urinary
titin N-fragment, circadian variations are limited [102]. Second, surgical procedures may
increase the urinary titin N-fragment. This is theoretically reasonable, and urinary titin
N-fragment was indeed elevated shortly after cardiac surgery [103]. Third, the standard
level of the urinary titin N-fragment differs according to age. Age is associated with
muscle atrophy due to increased catabolism [104]. Indeed, in a previous study, the average
urinary titin N-fragment level was 2.3 ± 1.4 pmol/mg Cr in patients aged <30 years old,
4.3 ± 3.7 pmol/mg Cr in those aged 31–60 years, and 5.7 ± 4.0 pmol/mg Cr in those aged
>60 years [99]. In another study, urinary titin N-fragment was correlated with age (r = 0.11,
p = 0.04) [101]. Fourth, active exercise should be refrained from before the measurement of
urinary titin N-fragment, because exercise increases the urinary titin N-fragment [105,106].
Due to the elastic property of titin, eccentric exercises are more injurious to the titin of
muscles than concentric exercise [107]. Another study investigated the change of urinary
titin N-fragment in people playing a soccer match, and they found that the urinary titin
N-fragment was increased during the 24 h after the soccer match, and returned to the
baseline value at 48 h after the match [108]. The increased urinary titin N-fragment
generally remains for 2–3 days after exercise [2]. Fifth, urinary titin N-fragment is also
increased by cardiac damage, because the urinary titin N-fragment reflects the breakdown
products of titin, including the cardiac source. Titin loss is a contributing factor of dilated
cardiomyopathy [109]. In a previous study, increased urinary titin N-fragment predicted
the mortality in patients with dilated cardiomyopathy (p < 0.05) [110]. We summarized
several factors that lead to an increase in the urinary titin N-fragment, as supported by
various studies (Table 1).

We can intervene if patients have increased urinary titin N-fragment after hospital
discharge. Nutrition and rehabilitation interventions are important in PICS [111]. After hos-
pital discharge, continuous physical therapy is important in the home or community-based
settings [112]. In the exploratory analyses of a randomized controlled trial, continuous
rehabilitation after hospital discharge led to an improvement of the 6-min walking distance
at the 12 month follow-up [113]. Some patients may have persisting inflammation, but
exercise has anti-inflammatory effects [114], and physical therapy is expected to reduce
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the inflammatory reaction [115]. Nutritional support prevents muscle breakdown in the
chronic phase [116]. Regarding titin, Ulanova et al. reported that L-arginine administra-
tion decreased the loss of titin in rat soleus muscle [117]. Since nutritional support team
involvement can improve calorie and protein delivery [118,119], a multidisciplinary team
intervention is expected to be important in PICS if urinary titin is elevated in patients.

Table 1. Factors leading to an increase in the urinary titin N-fragment.

Factors Level of Urinary Titin N-Fragment Evidence

Age 2.3, 4.3, 5.7 pmol/mg/Cr in ≤30, 31–60, ≥61 years old [99]
Exercise 40–100 pmol/mg/Cr in exercise-induced muscle damage [106,107]
Surgery 30–50 pmol/mg/Cr after cardiac surgery [103]

Cardiac damage ≥7.26 pmol/mg/Cr in a third of dilated cardiomyopathy [110]

6. Conclusions

Titin plays an important role in the muscles, and urinary titin N-fragment can measure
muscle breakdown in critically ill patients, and possibly in PICS. As reported in muscle
dystrophy, urinary titin N-fragment reflected the extent of muscle atrophy in critically ill
patients. Furthermore, urinary titin N-fragment reflected the muscle weakness, consistent
with the functional role of the urinary titin N-fragment. It is important to note that
the urinary titin N-fragment increases with age, exercise, surgery, and cardiac damage,
in addition to muscle atrophy and weakness. Our results indicate that urinary titin N-
fragment may be a marker in PICS for identifying patients with increased catabolism, and
requiring interventional support.
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