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Abstract 

Although, using physical stimuli is accepted in the area of oncology, it may 

be harmful to normal tissue. So this study was conducted to investigate the 

effects of two different physical treatments (weak electric current (WEC) 

and hyperthermia) on tumor and testicular tissues, respectively. In the first 

section of this thesis, I investigated the effects of WEC on tumor. I 

postulated that WEC amplifies the enhanced permeability and retention 

(EPR) effect in solid tumors by dissociating intercellular junctions based on 

a previous study that reported that WEC triggers an intracellular signaling 

pathway in the skin, which opens the intercellular space apparatus. Based on 

this premise, I tested the antitumor activity of WEC treatment in 

combination with PEG-modified doxorubicin encapsulated nanoparticles 

(DOX-NP) or alone in B16-F1 melanoma bearing mice. I found that WEC 

treatment enhanced the EPR effect of DOX-NP. Also, WEC treatment alone 

prevented tumor growth. To clarify the mechanism of the tumor growth 

prevention effect of WEC, I examined the effect of WEC treatment on B16-

F1 melanoma cells in vitro. I found that WEC treatment prevented the 

proliferation, but no cytotoxic effect was observed. Furthermore, WEC 

treatment suppressed cyclin B1 protein expression, which is considered a 

key regulatory protein involved in mitosis. In the second section of this 

thesis, I evaluated the impact of thermal treatment on testicular cells. 

Previous researchers have found that hyperthermia impairs testicular 

function through a variety of mechanisms, including apoptosis, oxidative 

stress, and induction of heat shock proteins, but the exact mechanism is 

unknown. Here, I studied the effect of thermal treatment on male fertility, 

focusing on the CatSper channel (cation channel of sperm) as a new 

mechanism of hyperthermia-induced testicular injury and examined the time 

dependent change of this cation channel after heat treatment. I found that 

thermal treatment caused notable downregulation of CatSper1 and-2 gene 

expression on day 1, day 14 and day 35. I also found a reduction in testis 

weight and a deterioration of sperm motility in heat stressed rats, which was 

correlated with reduced CatSper gene expression and the decline of this gene 

expression was dependent on the incubation time after heat treatment and 

not the repetition of heat exposure. In conclusion, physical treatment by 
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WEC and heat reduced the tumor and testis size, respectively, by two 

distinct mechanisms. 
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General introduction 

Physical treatments like iontophoresis (IP), hyperthermia, irradiation, and 

ultrasound are commonly used these days. There are several applications of 

these treatments. IP is a transdermal technology that uses WEC (weak 

electric current) to administer medications like lidocaine and dexamethasone 

[1] and is used to treat palmar and plantar hyperhidrosis [2]. Whole-body 

hyperthermia can be utilized to cure metastatic cancer cells that have spread 

rapidly inside the body [3]. Irradiation is also a curative therapy for many 

cancers, as well as an effective palliative treatment for individuals suffering 

from tumor-related symptoms [4]. The FDA has approved the use of 

therauptic ultrasound for the treatment of uterine fibroids [5], cardiac 

ablation [6], and visceral soft tissue ablation [7]. 

However, it has been reported that the applications of hyperthermia, 

ultrasound, and irradiation affect normal tissue such as the testis. Rat testis 

showed an increased rate of germ cell apoptosis following hyperthermia [8] 

or irradiation [9]. Also, using therapeutic ultrasound resulted in impaired 

spermatogenesis in rats [10]. In this part of the thesis, I focused on the 

physical treatments by WEC and heat in relation to tumor growth and testis 

function, respectively. 

1. IP 

IP is a non-invasive method that uses physiologically acceptable electric 

current to facilitate and enhance transdermal delivery of various drugs into 

the body [11].  

1.1. IP mechanisms 

IP increases drug flow through the skin through three mechanisms: 

electrorepulsion, electoroosmosis [12], and damage effect from current-

induced skin permeation [13]. Electrorepulsion occurs when molecules are 

placed under under an electrode with a similar charge. It increases the flux 

of small lipophilic cations [14].Whenever an electric potential difference 

across a membrane occurs, electroosmotic flow occurs. This flow is always 

in the same direction as that of counterions.  Due to the negatively charged 
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nature of human skin, the electroosmotic flow is from anode to cathode. As a 

result, cathodic delivery of anions is hampered, while electrosmosis aids 

anodic transport of cations. Electroosmosis involves the delivery of both 

neutral and positively charged ions [15]. 

1.2. IP pathway 

There are three possible pathways for IP; the paracellular or 

intercellular ones, which occur between corneocytes along the lamellar 

lipids; the intracellular or transcellular ones that take place via the cells; and 

the shunt or appendageal pathways, which occur through sweat ducts, hair 

follicles, and secretary glands [16]. Shunt pathways are preferred by ions. 

Hydrophilic molecules are more likely to be found in hair follicles, whereas 

hydrophobic molecules are more likely to be found in the lipid intercellular 

parts of epidermal keratinocytes and stratum corneum lipid membranes [17]. 

1.3. Advantages of IP 

IP has several benefits, including the avoidance of the hepatic first-path 

effect; The risk of overdosing or underdosing can be eliminated through the 

delivery of drugs at the required therapeutic dose;  prevention of absorption 

variation [18]; improved patient compliance [19]; a significant reduction in 

intra- and inter-subject variance in drug delivery [20]; and reduced needle 

insertion pain [21]. 

1.4. Factors affecting IP 

IP drug delivery is affected by numerous factors, which include the 

physicochemical properties of the molecules (charge, molecular size, 

polarity, and concentration), as well as the drug formulation (pH, ionic 

strength, presence of co-ions), and used current (strength, duration, constant 

vs. pulsed current). 

1.4.1. Molecular size 

The drug's molecular size has an impact on its iontophoretic transport 

capability. The permeability coefficient reduces as the molecule size 

increases, as ions that are small transfer faster than those that are larger [22]. 
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1.4.2. Charge 

Although cations have been demonstrated to transport better than anions, 

this is not so straightforward because an increase in charge requires a fall in 

pH, which reduces the electrotransport process and causes the drug to bind 

strongly to the membrane, forming a reservoir that slows the rate at which 

the steady state flow is reached [23].  

1.4.3. Concentration 

The apparent steady state flux of a number of medicines, including as 

rotigotine and ketorolac, has been demonstrated to rise as concentration 

increases [24]. 

1.4.5. Polarity  

In general, hydrophilic compounds are considered ideal candidates for 

optimum flux; for example, the flow of nalbuphine and its ester improved 

when the lipophilicity of the compound dropped [25]. 

1.4.6. pH 

pH affects the iontophoretic delivery of drugs in two important ways [26]. 

First, increasing the skin pH above 4 helps in ionization of the carboxylic 

acid moieties and the anodal IP enhances cationic drug permeation. Second, 

drug ionization is affected by donor solution pH as weakly basic drugs will 

be ionized to a lesser degree at pH higher than their pKa and will permeate 

through electro-osmosis rather than electromigration [19]. 

1.4.7. Ionic strength  

Iontophoretic permeation of pharmaceuticals is directly connected to the 

ionic strength of a drug delivery system [27]. Drugs like ketorolac exhibited 

greater flux when ionic strength decreased [24]. 

1.4.8. Presence of co-ions 

When a co-ion (an ion with the same charge as the drug) is present, 

competition between the drug and the co-ion occurs, resulting in a reduction 
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in the proportion of current carried by the drug and, as a result, a reduction 

in drug transdermal flux [28]. 

1.4.9. Current strength 

Theoretically, there is a direct relationship between the flux of drug 

molecules and current intensity. To avoid patient discomfort, non-specific 

vascular reactions, and skin irritation, the current needs to be limited to 

1mA/cm
2
 area [29]. 

1.4.10. Current duration 

With increasing application time, the drug's iontophoretic penetration rose 

linearly. For instance, with an increasing duration of iontophoretic 

application of insulin, blood glucose levels were reduced by 2-4 folds [30]. 

1.4.11. Constant vs. pulsed current 

Continuous current causes skin polarization, which reduces the efficacy of 

iontophoretic administration. Pulsed current can be used to solve this issue. 

When compared to continuous current, pulsed current improved the 

iontophoretic transport of peptides and proteins [31]. 

1.5. Delivery of macromolecules by IP 

To know how IP permeates drugs through the skin barrier, Hama et al. 

applied IP with cationic liposome through rat skin. Hama et al. showed that 

WEC triggers an intracellular signaling pathway in the skin, which opens the 

intercellular space apparatus, which allows the migration of liposomes 

through the skin barrier. Two of these processes are cleavage of gap 

junctions via lowering connexin 43 levels and depolymerization of F-actin 

associated with tight junctions [32]. Hasan et al. also reported that 

endocytosis is responsible for the low electric current-induced cellular 

uptake of siRNA [33]. 

Although hydrophilic, charged, and low molecular weight molecules are 

the optimal candidates for IP, many scientists have been successful in 

delivering macromolecules.  Kigasawa K. et al. investigated IP delivery of 

unencapsulated siRNA through skin and used IP of siRNA against IL-10 on 
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actopic dermatitis skin, discovering that IP significantly reduced IL-10 

mRNA expression by 73% [34]. In B16-F1 melanoma-bearing mice, IP-

mediated skin administration of CpG-ODN produced an immunological 

response and inhibited tumor growth [35]. Fukuta et al. revealed that in an 

imiquimod-induced psoriasis skin model, frequent administration of the anti-

TNF drug etanercept (recombinant human soluble TNF-receptor: Fc fusion 

protein) by IP reduced IL-6 mRNA expression by 50% [36]. This author also 

found that a single dose of NF-B decoy ODN given by a combination of IP 

and the AT1002 analog peptide showed improved therapeutic advantages 

against psoriasis, decreasing epidermal hyperplasia as well as TNF-and IL-6 

mRNA production [37]. 

2. Physical treatment by heat 

Male reproductive problems are increasing and becoming a major public 

health concern nowadays [38]. Infertility affects approximately 10-15% of 

all couples [39], with male-related factors accounting for 50% of fertility 

problems [40]. Male reproductive dysfunction is associated with several 

factors, including psychological stress, obesity, smoking, prolonged 

exposure to hazardous toxic agents (chemotherapy, heavy metals, pesticide 

residues), chronic disorders like cancer and diabetes, and exposure to high 

temperatures [41]. These factors, individually or in combination, may have 

an influence on sperm production, ultimately leading to male infertility [42]. 

2.1 . Thermal regulation of testis 

Normal spermatogenesis requires a temperature difference of 2 to 6 degrees 

Celsius between the male gonads and the body core in most mammals [43]. 

The scrotal temperature is kept below the body's normal body temperature 

by five anatomical factors. The first is the dartos muscle, a smooth muscle 

surrounding the scrotum which relaxes as the ambient or core temperature 

rises [44]. The second is the cremaster muscle fibres, skeletal muscle fibers 

in the spermatic cord that control the distance between the testes and the 

body [45]. The third is the testicular artery, which receives blood from the 

abdominal aorta and transports it to the testis, passing through the 

pampiniform plexus of veins, which returns blood from the testis. This 
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configuration aids in controlling scrotal temperature by allowing an 

exchange of heat between the arteries and the surrounding veins [46]. The 

fourth is the scrotal skin's lack of subcutaneous fat, and this allows heat loss 

from the scrotum [47]. The final one is the abundant sweat glands on the 

skin of the scrotum [48]. Damaged spermatogenesis can arise from impaired 

thermoregulation in the testis, resulting in temporary or permanent infertility 

[49]. 

2.2. Factors that contribute to heat stress 

2.2.1. Lifestyle and behavioral factors 

2.2.1.1. Clothing and posture 

Walking lowers scrotal temperatures compared to sitting because scrotal 

movement improves circulation of air and thermal dispersion [50]. 

Testicular temperature rises when the testis is cradled between the thighs or 

when lying down with the scrotum resting on the thighs in cases of 

prolonged sitting. The use of tight underwear on a regular basis has been 

shown to lower sperm quality as it reduces the amount of space available for 

scrotal mobility and air movement. and consequently increases genital 

temperatures [51]. 

2. Hot baths and sauna 

Full-body immersion in a heated Jacuzzi, a warm bath, or whirlpool for 30 

minutes or more, three times a week for three months or longer, produces 

hyperthermia, which negatively affects sperm production [52]. 

2.2.1.2. Laptop use 

Using a computer on the lap is harmful to sperm parameters because it is 

near to the genital region and resting, including one leg adjacent to the other 

for lengthy periods of time raises scrotal temperature [53]. 

2.2.1.3. Obesity 

Obese males have altered testicular thermoregulation as a result of lower 

physical activity and increased sitting times, as well as higher fat 
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accumulation in the abdominal, spermatic cord, suprapubic, and upper thigh 

areas, all of which lead to spermatogenesis suppression [54]. 

2.2.1.4. Occupational factors 

Certain jobs involve exposure to strong levels of heat, such as welders [55], 

ceramic oven operators, and beakers [56], and this negatively affects 

fertility. Also, increased scrotal temperatures are more common in 

occupational drivers and people who have long daily drives [57]. 

2.3. Effect of heat stress on spermatogenesis 

2.3.1. Spermatogenesis process  

Spermatogenesis takes place in seminiferous tubules in which germ cells and 

sertoli cells reside. During spermatogenesis, somatic sertoli cells that 

surround the seminiferous tubules support and nourish germ cells. The 

interstitial tissue between the seminiferous tubules including lymphatic and 

blood vessels, macrophages and Leydig cells, which produce growth factors 

and testosterone. Tubules are surrounded by peritubular myoid cells, which 

provide structural support, growth factors, and assist with fluid and sperm 

passage across the tubule lumen [58]. 

Briefly, diploid spermatogonia (2C cells) transform into preleptotene 

spermatocytes, which become 4C cells after multiple mitotic divisions. After 

that, the first meiotic division produces secondary spermatocytes with two 

copies of each gene (2C cells). The secondary spermatocytes produce 

haploid spermatids (1C cells) after the second meiotic division, which will 

develop into spermatozoa [59]. 

The rapid rate of mitosis in germ cells increases their susceptibility to 

thermal stress [60]. Pachytene and diplotene spermatocytes, and also early 

round spermatids, are the germ cells most vulnerable to heat in both rats [61] 

and humans [62]. 

2.3.2. Effect of hyperthermia on sperm characteristics 

Testicular heat induces changes in sperm parameters in both fertile and 

infertile males [63]. It promotes spermatogenic arrest and atrophy of the 
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testicular germinal epithelial cells [51], and this is linked to a considerable 

drop in sperm concentration [64] and sperm motility [65], resulting in poor 

sperm quality. Also, it reduces the formation of sperm membrane-covering 

proteins, culminating in more sperm with defective morphology [66]. Men 

subjected to hyperthermia have been found to have lower sperm quality and 

sperm motility, as well as aberrant sperm [67]. Rao et al. found that there 

was a significant drop in sperm concentration and motility in human 

individuals exposed to scrotal warming in a 43 °C water bath for 30 minutes 

a day for 10 consecutive days [68]. Hamerezaee et al. also demonstrated that 

workers showed decreased semen quality after exposure to hyperthermia 

[69]. Gong et al. revealed that the percentage of progressive motility in boar 

sperm subjected to heat at 42°C for 6 hours was significantly lower than the 

control [70]. Furthermore, rats treated with thermal stress at 32°C for 2 

h/day for 7 weeks had a notable decrease in sperm motility compared with 

control group [71]. Sperm counts in laboratory mice subjected to 36°C 

whole body heat for two days showed a reduction 21 days later [72]. Mice 

subjected to 42°C for 30 minutes had lower sperm numbers as early as 7-21 

days after the exposure [73]. 

2.4. Heat stress-related mechanisms 

The testis exhibits a variety of mechanisms in response to heat stress, 

including heat-shock response, oxidative stress response, and apoptosis, 

through modulating the expression of many genes [49]. 

2.4.1. Heat-shock response 

HSPs are a broad group of molecular chaperones that are essential for cell 

survival and development. Based on its similar molecular masses, it can be 

split into two groups. The first category includes ATP-independent HSPs 

with a molecular mass of 8 to 28 kDa, such as ubiquitin, the -crystallins, 

HSPB1 (also known as HSP 25 in mice or HSP 27 in rats and humans), and 

a variety of others [74]. The second one is ATP-independent HSPs with a 

molecular mass of 40 to 105 kDa, such as the 70 and 90 kDa groups. The 

stress-inducible HSP 70 and the constitutively expressed heat shock cognate 

70 (HSC70) make up the 70 kDa group. Inducible HSP 90 and constitutively 
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expressed HSP 90 are the two primary isoforms of the 90-kDa category. Due 

to the difficulty of isolating these isoforms, much research has resorted to 

examining co-purified aggregates including both categories of HSP 90, 

collectively referred to the entire as HSP 90 [75]. 

The heat shock factor 1 (HSF1) protein, which governs the production of 

HSPs, is one of the most important elements in the Heat Shock response. 

HSPs are required for spermatocytes to mature into healthy mature 

spermatozoa because of their crucial role in maintaining proper protein 

assembly and transport and preserving the cell from environmental stress 

[76]. HSPs have been found on the surfaces of mouse, rat, bull, boar, and 

human sperm, and members of the HSP70 family tend to be prominent on 

the surface of sperm [77]. HSP 90 is found in the testes of mouse [78], pig 

[77], and rat [79]. Lee et al. have identified high levels of HSP90 transcripts 

in mouse meiotic prophase spermatogenic 

cells.  Male mice lacking HSF1 produce 20% fewer sperm and more sperm 

with abnormal head morphology [80]. Pei et al. found that heat stressed 

rabbits showed significant elevations of HSP60, HSP90, and HSC70 after a 

9-week heat treatment [81]. Also, primary HSP70 mRNA and protein, as 

well as HSP90 mRNA, were upregulated in primary hepatocytes of broiler 

embryos subjected to heat stress [82]. 

2.4.2. Oxidative stress response 

ROS and RNS are powerful  reactive chemicals that can be free radicals 

such as superoxide, peroxyl, hydroxyl, hydroperoxyl, nitrogen dioxide, and 

NO, or non-radicals such as hydrogen peroxide, hydrochlorous acid, nitrous 

oxide, peroxynitrite, and alkyl peroxynitrates. The oxidases and 

mitochondrial function pathways produce superoxide, whereas the Nitric 

Oxide Synthase (NOS) pathway generates NO [83]. ROS participates in all 

spermatozoal processes like acrosome reaction, capacitation, 

hyperactivation, and sperm-oocyte fusion [84]. In spite of this, excess ROS 

can harm sperm and result in infertility in men. Spermatozoa are extremely 

vulnerable to ROS-induced oxidation because sperm plasma membranes 

comprise high levels of polyunsaturated fatty acids such as docosahexaenoic 

acid, which has six double bonds per molecule [85]. 
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Hyperthermia has also been shown to have a negative impact on cell 

physiology by interrupting transcription and changing oxidative metabolism 

in animal and human tissues [86]. It promotes oxidative damage to the, 

leydig cells, germ cells, and sertoli cells in the testes [87]. It also affects 

oxidative stress markers like glutathione, a non-enzymatic antioxidant, as 

well as antioxidant enzymes like catalase and superoxide dismutase [84]. 

Previous studies in rodents and primates showed that testicular heat stress 

(43 °C for 15 minutes) causes an increase in germ cell death via oxidative 

insult [88]. Delkhosh et al. demonstrated that Superoxide dismutase, 

glutathione peroxidase, and catalase activity were reduced in rat testis 

submerged in a water bath at 43°C for 20 minutes every other day for 8 

weeks, but lipid peroxidation was increased [89]. In contrast, mice exposed 

to a single scrotal hyperthermia at 42°C for 30 minutes demonstrated 

increased mRNA expression of haem oxygenase-1 (HMOX-1) as well as 

glutathione peroxidase activity and ROS [90]. 

2.4.3. Apoptosis response 

Apoptosis occurs in the testis by means of two pathways: the intrinsic and 

extrinsic pathways [91]. The intrinsic pathway (or mitochondrial pathway) 

involves translocation of BAX from the cytosol to the mitochondria, where 

it stimulates cytochrome C release. When cytochrome C attaches to the 

apoptotic activating factor-1, the initiator caspase 9 is activated, followed by 

the executioner caspases 3, 6, and 7, culminating in apoptosis [92]. Members 

of the BCL2 protein family are implicated in this pathway by forming 

dimers with BAX [93]. The extrinsic pathway (also known as the death 

receptor pathway) includes Fas ligand activation of FAS protein on target 

cells, which triggers initiator caspase 8 and then executioner caspases, 

inducing apoptosis [94]. 

Previous investigations suggested that heat promote germ cell apoptosis and 

DNA damage [95]. Kanter et al. reported that there was an increase in germ 

cell apoptosis on days 1 and 14, but a decrease on day 35 in rat testes heated 

to 43°C for 30 minutes [8]. Caspases-3 expression increased 9 fold or 27 

fold in mice testes 6 h and 24 h after being exposed to 43°C for 30 minutes 
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[49]. The number of TUNEL-positive apoptotic cells in a mouse testis 

heated to 42°C for 15 minutes increased significantly after 12 hours of heat 

treatment [96]. Apoptosis may be time-temperature dependent [97]. Germ 

cell apoptosis is induced as early as 8 hours after local scrotal heat stress of 

43°C for 20 minutes, while it was unaffected by lower temperatures of 39–

40°C [98]. 

2.5. Heat stress and testosterone synthesis 

Testosterone synthesis is required for proper spermatogenesis [99]. 

Testosterone synthesis is activated by luteinising hormone (LH) in Leydig 

cells. Briefly, binding of LH to its receptors stimulates adenylyl cyclase, 

which boosts cyclic adenosine monophosphate (cAMP) generation in Leydig 

cells, and the latter activates multiple members of the steroidogenic 

pathway, resulting in enhanced testosterone synthesis [100]. Testosterone 

synthesis starts in the inner mitochondrial membrane by the enzymatical 

conversion of cholesterol. First, cholesterol must be transported from the 

cytoplasm to the inner membrane of the mitochondria by steroidogenic acute 

regulatory protein (StAR) [101]. After that, Cholesterol is transformed to 

pregnenolone under the action of the C27 cholesterol side-chain cleavage 

cytochrome P450 enzyme (CYP11A1) found in the inner mitochondrial 

membrane matrix. Pregnenolone then is converted into testosterone by 17α-

hydroxylase/17,20 lyase (CYP17A1), 3β-hydroxysteroid dehydrogenase (3 

β-HSD; HSD3B), and type 3 17β-hydroxysteroid dehydrogenase (17 β-

HSD3, HSD17B) in the smooth endoplasmic reticulum [102].  

Testosterone is primarily produced in the Leydig cells and is essential for 

normal spermatogenesis. The synthesis of testosterone is severely harmed by 

heat stress in the testes [103]. Previous research revealed that rams exposed 

to scrotal insulation for 72 hours had lower serum levels of testosterone 

[104], and serum testosterone concentrations were considerably lower in rats 

subjected to 43 °C for 30 minutes for 3, 5, or 10 days [105]. Li et al. 

revealed that adult rats subjected to a single hyperthermia at 43°C for 30 min 

exhibited low expression of cytochrome P450 family 17 (CYP17) and 

steroidogenic acute regulatory (STAR) protein in Leydig cells [105]. Yon et 

al. found that mouse testis heated at 43°C for 20 min exhibited a 
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considerable reduction in serological testosterone levels and testicular 3 β-

HSD mRNA expression [106]. 

2.6. CatSper channel and male fertility 

2.6.1. Structure of the Catsper channel complex 

On the plasma membrane of sperm, there are two types of sperm-specific ion 

channels: the Ca
2+

-permeable CatSper (sperm cation channel) and the K
+
-

permeable KSper (sperm pH-regulated K
+
 channel), both of which are vital 

in fertilization [107]. 

CatSper is a sperm-specific, weakly voltage-dependent, Ca
2+

-selective, pH-

sensitive ion channel that regulates the entry of positively charged calcium 

ions into sperm cells, which is required for sperm hyperactivation and male 

fertility [108]. It was identified in mouse sperm as a putative Ca
2+

 channel in 

2001[109]. 

The mammalian CatSper channel complex includes at least 10 different 

proteins, four pore-forming subunits (CatSper 1-4) and six accessory 

subunits (CatSper β, γ, δ, ε, δ, and EFCAB9) [110]. 

Each of CatSper's four pore-forming subunits has six transmembrane 

segments (S1–S6), each with two functionally distinct modules: the voltage 

sensor domain (S1–S4) and the pore-forming domain (S1–S6) (S1-P loop- 

S6). The fourth transmembrane segment (S4) contains many positively 

charged amino acid residues (lysine/arginine). Six positively charged amino 

acid (lysine or arginine) residues are found in CatSper-1. CatSper-2 includes 

four of these residues, but CatSper-3 and CatSper-4 only have two [109]. 

The degree of interspecies homology among mouse and human CatSper 

subunits is weak, varying from 50 % (CatSper-1) to 69 % (CatSper-4) [111]. 

CatSper β has two transmembrane segments, also with two small 

cytoplasmic domains and a big extracellular domain [112]. A single 

transmembrane segment with a large extracellular domain and a short 

cytoplasmic tail makes up CatSper γ [113]. The CatSper δ gene was recently 

identified and has also a single transmembrane segment with a large 

extracellular domain and a short cytoplasmic tail [114]. 
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EF-hand calcium-binding domain-containing protein 9 or EFCAB9 is a new 

CatSper complex component and CatSper δ direct binding partner. The 

EFCAB9-CatSper δ complex binds specifically to the channel pore and 

provides pH-dependent activation and Ca
2+

 sensitivity, regulating the 

opening and closing of the CatSper channel [110].  

2.6.2. Localization the Catsper channel complex 

According to the localization pattern in mice and humans, The CatSper 

channel is confined to the sperm principal piece [115]. CatSper1–3 is only 

found in the testis, whereas Catsper-4 is mostly found in the testis, with 

some faint amount in the lung and placenta tissues [116]. 

The mouse CatSper-1 gene, located on chromosome 19, encodes a 686 

amino acid protein, while the CatSper-2 gene, found on chromosome 2, 

encodes a 588 amino acid protein. CatSper-3, which is found on mouse 

chromosome 13, encodes a 395-amino-acid protein, while CatSper-4, which 

is found on mouse chromosome 4, encodes a 442-amino-acid protein [117]. 

CatSper-1 [109], CatSper-3, and CatSper-4 transcripts [118] are found in 

late-stage germ line cells (spermatids), whereas CatSper-2 is found in the 

early stages of spermatogenesis (pachytene spermatocytes) [119]. CatSper β 

[112], CatSper γ [113], and CatSper δ [114] are expressed in spermatocyte 

and spermatids of testes.  

2.6.3. Calcium Homeostasis in Spermatozoa 

Ion channels like voltage-gated H
+
 channel (Hv1) and ion pumps like 

Na
+
/Ca

2+
 exchanger, plasma membrane Ca

2+
 adenosine triphosphatase 

(ATPase), and sperm Na
+
/H

+
 exchanger have been proposed to work in 

tandem with the CatSper complex to maintain calcium homeostasis in 

sperm. 

The Catsper channel is in charge of delivering transferring Ca
2+

 into the 

spermospore, which enhances sperm motility. The Ca
2+

ATPase is a Ca
2+

/H
+
 

exchanger that allows H
+
 to enter the sperm cell while removing intracellular 

Ca
2+

 [120]. Moreover, the Na
+
/Ca

2+ 
exchanger exports one Ca

2+
 ion from 

sperm while allowing three Na
+
 ions to enter, which is necessary to maintain 
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the intracellular Ca
2+

 equilibrium [121]. Hv1 is responsible for maintaining 

sperm intracellular pH [122]. KSper/SLO3 is a seven-transmembrane helical 

pH-sensitive channel that hyperpolarizes mouse spermatozoa, and this 

process promotes Ca
2+

 entry through CatSper channels. In male mice lacking 

SLO3, sperm motility is drastically reduced, resulting in sterility [123]. The 

sperm Na
+
/H

+
 exchanger stimulates soluble adenylyl cyclase (sACY), which 

enhances CatSper-dependent Ca
2+

 entry through PKA-dependent 

phosphorylation [124]. 

2.6.4. Role of the Catsper channel complex in male fertility 

The CatSper channel, in conjunction with other ion channels and pumps, 

promotes calcium influx, which is required for large alterations in sperm 

motility which allows spermatozoa to travel through the female reproductive 

tract and contact the egg for fertilization [125]. 

All four CatSper genes have a role in male fertility. CatSper-1 and CatSper-2 

are currently considered vital for sperm flagella beat and hyperactivated 

sperm motility [126], whereas CatSper-3 and CatSper-4 are involved in the 

acrosome reaction and egg coat penetration. Increase calcium influx initiates 

hyperactive motility. It is characterized by high amplitude whip-like 

asymmetrical tail bending that is non-progressive in aqueous low-viscosity 

conditions but progressive in the physiological viscosity of the upper female 

reproductive canal [127].  

Also, an increase in Ca
2+

 stimulates the acrosome reaction, which permits 

sperm to pierce the cumulus oophorus and the zona pellucida (ZP) 

enveloping the oocyte by releasing proteolytic enzymes. This response is 

essential for spermatozoa to effectively fertilize the egg [128]. 

2.6.5. Physiological regulators of the Catsper channel complex  

The complexity of the CatSper channel is crucial for its functional 

coordination, localisation to the flagella, and sensitivity to intracellular pH, 

progesterone, other proteins, and cell-signaling molecules and activators 

[129]. 
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There are some physiological stimuli that cause a CatSper dependent rise in 

Ca
2+

, such as alkaline depolarization, ZP glycoproteins, and bovine serum 

albumin (BSA) [130]. The CatSper channel is activated by the alkaline 

environment of the female reproductive system [131]. Furthermore, 

progesterone and PGs promote Ca
2+

 influx in humans via activating CatSper 

directly [130]. 

2.6.6. Factors impair CatSper channel complex 

In both humans and animals, a disruption in the functionality of the CatSper 

channels and associated genes will cause fertility problems. Previous 

research has suggested that various factors influence the CatSper gene level 

in testicular tissue. Askari et al. found that in aged mice, overall CatSper 

gene expression and sperm motility decreased. However, by using Escanbil 

(Calligonum) extract, CatSper-2 and-4 gene expression and sperm motility 

improved [132]. Furthermore, Rezaian et al. investigated that lower CatSper-

1 and-2 expression levels are hypothesized to be responsible for impaired 

sperm motility in the spinal cord injury animal model [133]. Also, Kerack 

may have an impact on the expression of CatSper genes [134]. It interferes 

with spermatogenesis by lowering sperm motility and CatSper expression 

levels. 

Specifically disrupting CatSper 1–4 results in male infertility due to the 

impairment of channel function and hyperactivated motility [135]. It has also 

been demonstrated that CatSper-null mouse spermatozoa do not have the 

ability to fertilize ZP-intact oocytes [109]. Furthermore, CatSper δ null mice 

are infertile, and the level of CatSper-1 in spermatozoa is significantly 

reduced, implying that the CatSper δ subunit is required for the creation of a 

functional CatSper channel. In contrast to CatSper knockout mice, the 

absence of CatSper δ disturbs the quadrilateral longitudinal nanodomain 

structure of the CatSper complex, while the channel is still functional, 

resulting in subfertility only in mutant animals [114]. 

The objective of this study was to investigate the influence of physical 

treatment by WEC on tumor microenvironment and physical treatment by 

heat on testicular tissue. 



17 
 

 

 

 

 

 

 

 

 

 

Chapter I 

Effect of weak electric current on 

tumor environment and growth 

 

 

 

 

 

 

 

 

 



18 
 

1.1 Introduction 

The microenvironment of solid tumors is characterized by a leaky and 

loosely compacted vasculature with poor lymphatic drainage. Intravenously 

administered nano-sized agents, such as liposomes, micelles, polymeric 

conjugates, macromolecular drugs, and imaging agents, preferentially enter 

the interstitial space of tumors through leaky blood vessels and are retained 

there. This phenomenon is EPR effect [136]. Currently, the passive targeting 

of tumor using nanoparticles via EPR effect is the major strategy for 

anticancer therapy. 

The therapeutic efficacy of nanoparticles encapsulating chemotherapeutic 

agents following passive targeting is hampered because of the significant 

heterogeneity of the EPR effect [137]. Tumors exhibit a variety of shapes, 

sizes, cell densities, microenvironments, and developmental stages. Their 

variable endothelial gaps, irregular blood flows, differences of stromal 

content, and distinct interstitial fluid pressures result in a non-uniform EPR 

effect [138,139]. For example, renal cell carcinoma, and hepatocellular 

carcinomas tend to have good vasculature networks that support a strong 

EPR effect [140]. In contrast, melanomas, pancreatic cancers, prostate 

cancers, and metastatic liver cancers are hypovascularized; the consequently 

poor EPR effect results in the suboptimal delivery of nanoparticles into these 

tumors [141,142]. 

To ameliorate the delivery efficiency of nanoparticles, several approaches 

for the augmentation of the EPR effect have been evaluated. These strategies 

include increasing of tumor blood flow by either vasoconstriction or 

vasodilation [143,144]; modulation of the tumor vasculature by application 

of exogenous growth factors [145]; and changing of tumor stroma via 

enzymatic degradation of the extracellular matrix [146]. Although these 

strategies improved intratumor delivery and distribution of nanoparticles, the 

systemic administration of these pharmacological EPR modulators may also 

cause the delivery of NPs into the normal tissue. 

To address the non-specific impacts of current EPR modulating strategies, 

effort to enhance the EPR effect locally within tumors have garnered 
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significant research attention. Several strategies reported in this regard 

include micro- or nanobubble assisted ultrasound, radiotherapy, and 

hyperthermia-based augmentation of nanoparticle EPR [39,147,148]. These 

strategies have achieved success to varying degree, but they all require very 

sophisticated instruments. Furthermore, the application of ionizing radiation 

and high intensity-ultrasound may damage the normal tissue surrounding a 

tumor [149,150]. 

Here, I propose an alternative strategy, IP, for the enhancement of the EPR 

effect. IP is a noninvasive transdermal drug delivery technology that 

employs WEC treatment by placing electrodes on the skin surface 

[20,33,151]. A physiologically acceptable electric current density is used in 

WEC treatment does not exceed 0.5 mA/cm
2
. It provides the driving force 

for the transdermal permeation of substances across the skin barriers [180]. 

Although small ionic and hydrophilic molecules are preferable for WEC 

based delivery, Kogure's group has successfully employed WEC in the 

noninvasive transdermal delivery of antibodies, siRNA, CpG oligo DNA, 

and NPs-encapsulated insulin [34-36,153,154].
 

In pursuit of an understanding of the molecular mechanisms underlying 

WEC-mediated transdermal permeation of nanoparticles, Kogure's team 

observed that the application of WEC activates an intracellular signaling 

pathway leading to the opening of the intercellular space apparatus in the 

skin [32,155]. In particular, the WEC-mediated opening of gap junctions and 

depolymerization of F-actin associated with tight junctions dramatically 

altered cell-cell interactions and created a paracellular pathway that 

contributed to the transdermal permeation of macromolecules or 

nanoparticles [32,152]. Although the cutaneous physiology is different from 

that of tumors, in this study I hypothesized that the application of WEC on a 

solid tumor may increase the EPR effect via dissociation of intercellular 

junctions. Based on the hypothesis, I evaluated the EPR effect of PEG-

modified DOX-NP, the status of gap junction expression in tumors, and the 

antitumor effect of DOX-NP co-administered with WEC. Taken together, 

this study offers a novel physical approach for the augmentation of the EPR 

effect and effective anticancer therapy by combination of nanoparticles and 
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WEC. In addition, I attempted to study the effect of WEC alone on tumor 

growth. 

1.2 Materials and methods 

1.2.1 Materials 

I used C57BL/6J (5 weeks old, male) mice purchased from Japan SLC, Inc. 

(Shizuoka, Japan). All animal procedures in this study were conducted in 

compliance with Tokushima University Animal and Ethics Review 

Committee. B16-F1 murine melanoma cells (Dainippon Sumitomo Pharma 

Biomedical Co. Ltd., Osaka, Japan) were grown in 10% fetal bovine serum 

(FBS) supplemented Dulbecco’s modified Eagle's medium (DMEM) and 

incubated at 37 °C in a 5% CO2 atmosphere. Extracellular matrix (ECM) gel 

was obtained from Sigma-Aldrich Co., Ltd. (St. Louis, MO). 1,2-distearoyl-

sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] 

(ammonium salt) (DSPE-PEG 2000) and Egg phosphatidylcholine (EPC) 

were collected from NOF Corporation (Tokyo, Japan). The fluorescent 

compound 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine 

perchlorate (DiIC18) was purchased from Thermo Fisher Scientific 

(Waltham, MA, USA). DOX, as doxorubicin hydrochloride, was obtained 

from Nacalai Tesque, Kyoto, Japan. An anti-connexin 43 (Cx43) antibody 

(mouse monoclonal) was purchased from Santa Cruz Biotechnology, Inc. 

(Santa Cruz, CA). An anti-Cx43 (phospho Ser367) antibody (rabbit 

polyclonal) was obtained from arigo Biolaboratories (Taiwan). A rabbit 

polyclonal anti- Protein Kinase C (PKC) (phospho T497) antibody, an Alexa 

Fluor 647 conjugated goat anti-mouse IgG antibody, and an Alexa Fluor 488 

conjugated goat anti-rabbit IgG antibody were purchased from Abcam 

(Cambridge, UK). 

 

1.2.2 Preparation of DOX-NP 

DOX-NP was prepared according to our previous report [156]. In brief, 

EPC/DSPE-PEG2000 (10:1 molar ratio) was added in chloroform, and a thin 

lipid film was prepared by nitrogen gas drying. The resulting film was then 
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hydrated with 250 mM ammonium sulfate. For fluorescent labeling of the 

nanoparticles, DiIC18 (1 mol% of total lipid) was used. After incubation, a 

freeze-thawed cycle was performed three times using a dry ice/ethanol bath 

followed by extrusion through 100 nm pores of polycarbonate membrane 

filters (Nuclepore, Cambridge, MA, USA). After adjusting the size, the 

nanoparticle suspension was loaded into a PD-10 column (GE Healthcare 

Japan, Tokyo, Japan) and eluted with PBS to eliminate the excess 

ammonium sulfate. Then, ultracentrifugation of nanoparticles was carried 

out at 112500 g for 60 min at 4ºC followed by the addition of 20 mM 

HEPES (pH 8.8) to resuspend the nanoparticle pellet. The resulting 

nanoparticle suspension and a DOX solution (prepared at a concentration of 

2 mg/ml in 20 mM HEPES (pH 8.8)) were then mixed together to incubate 

for 20 min at 37ºC. Next, the free DOX was separated by ultracentrifugation, 

and nanoparticle encapsulating DOX was evaluated by measuring the 

absorbance of DOX-NP dissolved in Triton X-100 (1%) at 484 nm. The 

nanoparticle size, δ-potential, and polydispersity index were measured with a 

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). The average 

particle diameter was 140.83 ± 13.30, the δ-potential was -1.64± 1.32 mV, 

and the polydispersity index was 0.23 ± 0.02. 

 

1.2.3 Application of WEC and evaluation of DOX-NP accumulation in 

tumors 

To develop melanoma-bearing mice, a suspension of 1 × 10
6
 B16-F1 cells 

and ECM gel were mixed following a ratio of 5:1 (v/v), and the cells were 

implanted into the left posterior flank of mice that were 5 to 6 weeks of age 

[157]. After inoculation, tumor volumes were evaluated over time following 

this formula: tumor volume = 0.4 × a × b
2  

where the tumor volume is 

calculated in mm
3
, a indicates the larger diameter in mm, b indicates the 

smaller diameter in mm. Intratumor accumulation of NPs following WEC 

application was evaluated when the tumor volume reached approximately 

500 mm
3
. Intravenous (IV) injection of DilC18-labeled DOX-NP was 

performed 1 h before the WEC treatment. For the application of WEC, 

anesthesia was induced in mice by intraperitoneal administration of chloral 
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hydrate (400 mg/kg) in phosphate-buffered saline (PBS), and the hair 

covering the tumor was trimmed. Ag-AgCl electrodes (3 M Health Care, 

Minneapolis, MN, USA) with a thin layer of PBS-soaked cotton on the 

adhesive surface was applied to the tumor surface. The tumor was then 

treated with a constant current (0.4 mA/cm
2
 for 1 h) by adjusting the 

electrodes to an external power supply (model TCCR-3005, TTI ellebeau, 

Inc., Tokyo, Japan). After twenty-four hours of DOX-NP administration, 

tumors were collected and sized into appropriately pieces. The resulting 

tumor tissues were subjected to snap-frozen in optimal cutting temperature 

(OCT) compound in a dry-ice/ethanol bath and sectioned at 10 μm thickness 

with a cryostat. Next, tumor sections were stained with 4’,6-diaminidino-2-

phenylindole (DAPI) (Dojindo, Kumamoto, Japan) and mounted with 

PermaFluor Aqueous Mounting Medium (Thermo Fisher Scientific), 

followed by observation with an LSM700 confocal laser scanning 

microscope (CLSM) (Carl Zeiss, Germany). For quantitative analysis, the 

fluorescence intensity of tumor cross-sections was quantified using ImageJ 

software. 

 

1.2.4 Determination the Effect of WEC on the pharmacokinetics (blood 

retention of DOX-NP) after administration of DOX-NP to normal 

mouse without cancer 

IV injection of DOX-NP (3 mg DOX per Kg) was performed 1 h before the 

WEC treatment (0.4 mA/cm
2
 for 1 h). WEC treatment was performed as 

described in the materials and methods. After 6, 12, 24 and 48 h, the blood 

was collected, and plasma was obtained. Then, the concentration of DOX 

was quantified by high performance liquid chromatography (HPLC). The 

mobile phase of HPLC consist of methanol and 20 mM ammonium acetate 

(50: 50 (v/v %)), the octa decyl silyl column (TSK gel ODS-80 TM (Tosoh, 

Japan)) was used, and DOX was detected by UV at 252 nm. The 

concentration of DOX in the plasma after deproteinization was calculated 

using calibration curve of DOX. 
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1.2.5 Immunohistochemical analysis of Cx43, phospho Cx43 (Ser367), 

and phospho PKC (T497) in tumor cross-sections after WEC treatment 

Immediately after WEC treatment as described above, tumors were 

harvested and 10 μm frozen sections were generated using a cryostat. After 

washing with PBS (two times for 5 min) all tumor sections were blocked by 

PBS containing 3% bovine serum albumin (BSA) and Triton- X-100 (0.1%, 

50 μl) for 1 h at room temperature. Then, three additional washing steps 

were performed with PBS for 2 min and cross-sections were incubated with 

mouse anti-Cx43, rabbit anti-Cx43 (phospho Ser367), or rabbit anti-PKC 

(phospho T497) in 3% BSA/PBS at dilutions recommended by the 

manufacturer. After overnight incubation at 4 °C, three washing steps were 

carried out with PBS for 2 min, and then cross-sections were treated with an 

Alexa Fluor 647 conjugated anti-mouse IgG antibody or an Alexa Fluor 488 

conjugated anti-rabbit IgG antibody in 3% BSA/ PBS for 1 h at room 

temperature followed by manufacturer’s instructions. Next, sections were 

subjected to wash again with PBS and then observed with CLSM. 

Fluorescence intensity of antibody staining was quantified using ImageJ 

software. 

 

1.2.6 Investigation of the antitumor activity of DOX-NP in combination 

with WEC After inoculation with B16-F1 cells in mice 

After inoculation with B16-F1 cells, mice (n=24) were randomly divided 

into four experimental groups as WEC (-) (untreated), WEC (+) (treated 

with WEC), DOX-NP (treated with DOX-NP), and DOX-NP + WEC (+) 

(treated with DOX-NP combined with WEC). IV administration of DOX-NP 

(3 mg DOX per Kg) was started when tumor volumes reached 

approximately 100 mm
3
 and continued it on the scheduled days. After 1 h of 

DOX-NP administration, WEC (0.4 mA/cm
2
 for 1 h) was applied on the 

tumor as described above. Over the study period, tumor volume and body 

weight were monitored. Mice were sacrificed at day 20 and tumors were 

harvested. 
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1.2.7 Cell culture 

B16-F1 murine melanoma cells (Dainippon Sumitomo Pharma Biomedical 

Co. Ltd., Osaka, Japan) were grown in 10% fetal bovine serum (FBS) 

supplemented Dulbecco’s modified Eagle's medium (DMEM) and incubated 

at 37 °C in a 5% CO2 atmosphere. 

 

1.2.8 WEC of cells 

B16-F1 cells were cultivated at 1 × 10
5
 cells per dish on 35 mm dishes. Ag-

AgCl electrodes with a 2 cm
2
 surface area (3 M Health Care, Minneapolis, 

MN, USA) were placed into the dish and cells were treated with a constant 

current of 0.34 mA cm
−2

 for 15 min at 24 h and 48 h after cultivation. 

 

1.2.9 Determination of cell proliferation and viability of B16-F1 

melanoma cells following WEC using trypan blue exclusion method 

After 24 h of WEC, the cells were treated with trypsin and collected for 

measurement of cell viability using the trypan blue staining method. Cell 

viability is the percentage obtained by dividing the number of cells stained 

with trypan blue by the total number of cells. 

 

1.2.10 Western blotting analysis of cyclin B1 protein after WEC 

treatment  

Western blotting was performed according as follow. Briefly, 1 × 10
5
 B16-

F1 cells were seeded in 35 mm dishes. After 24 h of WEC, the cells were 

washed with PBS and treated with lysis buffer (25 mM Tris-HCl [pH 6.5], 

1% [v/v] glycerol, 1% [v/v] SDS, 5% 2-mercaptoethanol and the 

phosphatase inhibitor cocktail PhosSTOP [Sigma Aldrich]). The amount of 

protein in the samples was determined by BSA Protein Assay (Thermo 

Fisher Scientific Inc., Waltham, MA, USA) and equal amounts of proteins 

(20 μg/lane) were loaded on 10% SDS-PAGE gels. Proteins were separated 
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by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) 

membranes that were then blocked by 5% skim milk in Tween solution 

(500 mM Pi buffer, 150 mM NaCl, 0.16% [v/v] Tween 20). Membranes 

were incubated with primary antibody (diluted and incubated according to 

the manufacturer’s instructions) followed by incubation with the indicated 

secondary antibody diluted 1:3000. The blots were detected using ECL 

Western blotting detection reagent (GE Healthcare, Waukesha, WI) and a C-

DiGit blot scanner (LI-COR Biosciences GmbH, Germany). Quantitative 

analysis of blots was performed by Image Studio Digits software (ver. 5) 

(LI-COR Biosciences GmbH, Germany). In this analysis, GAPDH was used 

as an internal control. 

 

1.2.11 Statistical analysis 

A one-way ANOVA followed by a Tukey post-hoc test was conducted for 

statistical analysis. Comparisons between two groups were accomplished by 

a Student’s t-test. Data were representing as means  standard deviations 

(SD).  P values < 0.05 were considered to be significant. 
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1.3 Results 

1.3.1 The effect of WEC on the intratumor accumulation of DOX-NP 

I first examined the effect of WEC on the intratumor accumulation of DOX-

NP. After IV administration of DiIC18-labeled DOX-NP into a tumor-

bearing mouse, WEC was applied to the surface of the tumor. After 

indicated incubation time, tissue from the tumor was processed for frozen-

sectioning, and then the nanoparticle accumulation into the tumor sections 

was observed by CLSM. From these observations, it was found that 24 h 

after WEC, the fluorescent signal was markedly increased in tumor tissue 

sections. In contrast, few fluorescent signals were observed in tissue from 

control tumors that did not receive WEC mentioned as WEC (-) (Fig. 1). 

Fig.1 Effect of WEC on intratumor accumulation and distribution of DOX-NP. 

DilC18-labeled DOX-NP was administered into mice bearing B16-F1 tumors 

via an IV route following application of WEC on the surface of the tumor. 

After 24 h of WEC, tumors were collected, and their cross sections of various 

regions were examined with CLSM: (A) untreated surface region; (B) surface 

region subjected to WEC; (C) untreated internal region; (D) internal region 
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subjected to WEC. Red indicates the accumulation of DOX-NP while blue 

indicates DAPI-stained nuclei. Scale bars indicate 100 µm. (E) Quantitative 

analysis of DOX-NP accumulation increased by WEC. Relative fluorescence 

intensity of tumor sections was quantified by using image analysis software 

ImageJ. Data are expressed as mean ± S.D (n > 3). *p < 0.05. 

 

1.3.2 Effect of WEC on the pharmacokinetics (blood retention of DOX-

NP) after administration of DOX-NP to normal mouse without cancer 

I also examined the effect of WEC on the pharmacokinetics (blood retention 

of DOX-NP) after administration of DOX-NP to normal mouse without 

cancer inoculation. In this experiment, I used normal mice, not tumor 

bearing mice, to avoid the change of pharmacokinetics of DOX-NP by 

enhancement of EPR effect by WEC. DOX concentrations in blood after 

intravenous injection of DOX-NP with or without WEC treatment were 

almost the same. 

Fig. 2 Effect of WEC on doxorubicin concentration in blood after administration 

of DOX-NP to normal mouse without cancer inoculation. IV injection of DOX-

NP (3 mg DOX per Kg) was performed 1 h before the WEC treatment (0.4 
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mA/cm
2
 for 1 h). WEC treatment was performed as described in the 

MATERIALS AND METHODS. After 6, 12, 24 and 48 h, the blood was 

collected, and plasma was obtained. Then, the concentration of DOX was 

quantified by high performance liquid chromatography (HPLC). The mobile 

phase of HPLC consist of methanol and 20 mM ammonium acetate (50: 50 (v/v 

%)), the octa decyl silyl column (TSK gel ODS-80 TM (Tosoh, Japan)) was 

used, and DOX was detected by UV at 252 nm. The concentration of DOX in 

the plasma after deproteinization was calculated using calibration curve of DOX. 

 

1.3.3 The expression levels of Cx43, phospho Cx43 (Ser367), and 

phospho PKC (T497) in tumors following WEC 

Next, I evaluated the expression levels and phosphorylation of the gap 

junction protein Cx43 in tumors following WEC. Interestingly, I found that 

WEC treatment significantly reduced the amount of Cx43 by approximately 

57% of control levels (Fig. 3) while it increased the amount of 

phosphorylated Cx43 by approximately 25% of control levels (Fig. 4). To 

further investigate gap junction formation following WEC, we examined the 

expression and phosphorylation of PKC. Here, I found that phosphorylation 

of PKC was upregulated in the tumor immediately after application of WEC 

(Fig. 5). Quantitatively, the amount of phosphorylated PKC was increased 

by approximately 28% of control levels in WEC-treated tumors. 
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Fig. 3 Immunohistochemistry of Cx43 expression in tumors after WEC. 

Following WEC on the surface of tumor, cross sections of tumors were subjected 

to immunohistochemistry using an anti-Cx43 antibody and an Alexa Fluor 647 

conjugated secondary antibody following observation with CLSM: (A) untreated 

tumor; (B) tumor subjected to WEC. Red indicates the intratumor expression of 

Cx43. Scale bars indicate 100 µm. (C) Fluorescence intensity of tumor cross 

sections was quantified by ImageJ software. Data are expressed as mean ± S.D (n 

> 3). *p < 0.05. 

Fig. 4 Immunohistochemistry of Cx43 phosphorylation status in tumors after 

WEC. Following application of WEC on the surface of tumor, cross sections of 

various regions of tumors were subjected to immunohistochemistry using an anti-

Cx43 (phospho Ser367) antibody and an Alexa Fluor 488 conjugated secondary 

antibody followed by observation with CLSM: (A) untreated tumor; (B) tumor 

subjected to WEC. Green indicates the phospho-Ser367 Cx43. Scale bars indicate 

100 µm. (C) Fluorescence intensity of tumor cross sections was quantified by 

ImageJ software. Data are expressed as mean ± S.D (n > 3). *p < 0.05.  
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    Fig. 5 Immunohistochemistry of activation of PKC in tumors by WEC. Following 

application of WEC on the tumor surface, cross sections of tumors were subjected 

to immunohistochemistry using an anti-PKC (phospho T497) antibody and an 

Alexa Fluor 488 conjugated secondary antibody, followed by observation with 

CLSM: (A) untreated tumor; (B) tumor subjected to WEC. Green indicates the 

phospho T497 PKC. Scale bars indicate 100 µm. (C) Fluorescence intensity of 

tumor cross sections was quantified by ImageJ software. Data are expressed as 

mean ± S.D (n > 3). *p < 0.05. 

 

1.3.4 The effect of combination of DOX-NP and WEC on tumor growth 

in a mouse melanoma model 

I investigated the effect of combination of DOX-NP and WEC on tumor 

growth in a mouse melanoma model. DOX-NP alone showed the significant 

suppression of the tumor growth by 65% and 71% compared to untreated 

control (WEC (-)) on day 14 and 17, respectively (Fig. 6). Furthermore, 

combination of DOX-NP with WEC (+) significantly inhibited the tumor 

growth by 80, 83 and 88 % on day 14, 17 and 20, respectively. The tumor 

volumes of the group treated with the combination of DOX-NP and WEC 

(+) were around 43 % compared to those of DOX-NP alone on day 14, 17 
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and 20. In addition, WEC treatment alone (WEC (+)) also reduced the tumor 

growth, although the effect of WEC (+) was not statistical significant (Fig. 

6). This result suggests that weak electricity has the possibility of anticancer 

activity. 

     Fig. 6 Antitumor effect of DOX-NP combined with WEC in B16-F1 tumor-

bearing mice. B16-F1 cells were injected subcutaneously in C57BL/6J mice at 

day 0. After cells inoculation, mice (n=24) were randomly divided into four 

groups and treated with WEC/DOX-NP/DOX-NP with WEC at the indicated time 

point (). The WEC (-) group did not receive any treatment. (A) Tumor growth is 

indicated as tumor volume measured twice in a week. Each value represents as 

mean  SD for six mice from each group. *P<0.05, ** P<0.01 vs WEC (-) for 

(DOX-NP + WEC (+)); 
#
 P<0.05 vs WEC (-) for (DOX-NP). (B) Representative 

image of dissected tumors at day 20. 

 

1.3.5 The effect of WEC on cell proliferation and viability of B16-F1 

melanoma cells 

I investigated the effect of WEC on cell proliferation and viability of B16-F1 

melanoma cells in vitro. I found that WEC without anticancer drug 
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prevented tumor growth. WEC (+) showed significant suppression of cell 

proliferation by 48% compared to untreated control (WEC (-))(Fig. 7 A), 

while there was no significant change in cell viability (%) between the two 

groups (Fig. 7 B). Thus, I expected that physical treatment (WEC) can be a 

new cancer treatment. 

Fig. 7 The effect of WEC on cell proliferation and viability of B16-F1 melanoma 

cells. B16-F1 cells were cultivated at 1 × 10
5
 cells per dish. Cells were treated 

with a constant current of 0.34 mA cm
−2

 for 15 min at 24 h and 48 h after 

cultivation and 24 h after last WEC, cells were collected and cell proliferation (A) 

and viability (B) was measured using trypan blue exclusion method. Data are 

expressed as the mean ± SD (n = 3). ∗∗P < 0.01 vs. untreated control (WEC (-)) 

group. 

 

1.3.6 The effect of WEC on the expression levels of cyclin B1 protein in 

B16-F1 melanoma cells 

Then, to clarify the mechanism behind the inhibitory effect of WEC on 

tumor cell growth, I focused on cycle B1 protein, an important regulator of 

cell division. It attaches to cyclin-dependent kinase (cdk1) to create a cyclin 

B/cdk1 complex. Once this complex is activated, it phosphorylates a crucial 
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set of proteins to initiate the events of mitosis [158]. I found that WEC 

treatment reduced the amount of cyclin B1 protein compared to not treated 

group, although the difference was non statistically significant.  

 

 

 

 

 

     Fig. 8 The effect of WEC on the expression levels of cyclin B1 protein in B16-F1 

melanoma cells. B16-F1 cells were cultivated at 1 × 10
5
 cells per dish. Cells were 

treated with a constant current of 0.34 mA cm
−2

 for 15 min at 24 h and 48 h after 

cultivation and 24 h after last WEC, cells were collected for protein extraction and 

the expression levels of cyclin B1 protein was determined using western blotting 

analysis. Data are expressed as the mean ± SD (n > 3). P = 0.09 vs. untreated 

control (WEC (-)) group. 
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1.4 Discussion 

I first examined the effect of WEC on the intratumor accumulation of DOX-

NP. After IV administration of DiIC18-labeled DOX-NP into a tumor-

bearing mouse, WEC was applied to the surface of the tumor. 

Quantitatively, the fluorescent intensity was significantly higher in WEC-

treated tumors compared to untreated control tumors (Fig. 1). These results 

indicate that the intratumor accumulation of nanoparticles was dramatically 

increased following WEC, consistent with an augmentation of the EPR 

effect by WEC. Additionally, I examined the effect of WEC on the 

pharmacokinetics (blood retention of DOX-NP) after administration of 

DOX-NP to normal mouse without cancer inoculation. DOX concentrations 

in blood after intravenous injection of DOX-NP with or without WEC 

treatment were almost the same (Fig. 2). Therefore, I concluded that WEC 

hardly affected the pharmacokinetics (blood retention of DOX-NP) after 

administration of DOX-NP. 

Next, I attempted to delineate the signaling events leading to improved 

intratumor accumulation of nanoparticles mediated by WEC.  It has been 

reported that WEC stimulation on the skin surface causes a transport shunt 

for topically applied nanoparticles or drugs into the epidermis or dermis via 

a paracellular pathway [152]. This paracellular route was facilitated by 

WEC-mediated opening of intercellular junctions [32,152]. Among several 

candidate intercellular junctions, the proteins that form gap junctions are 

reported to be responsive to electric stimuli. For example, in the heart, gap 

junctions mediate rapid current transmission between adjacent cells, and 

they transmit presynaptic electrical currents to the postsynaptic sites in 

electrical synapses of neurons [159,160]. Furthermore, increased 

degradation of gap junctions in diabetic retinopathy is reported to contribute 

to endothelial cell dysfunction and causes leakage of the blood-retinal 

barrier [161,162]. 

Therefore, to elucidate the mechanism of improved intratumor delivery and 

distribution of nanoparticles, I evaluated the expression levels and 

phosphorylation of the gap junction protein Cx43 in tumors following WEC. 

Interestingly, I found that WEC treatment significantly reduced the amount 
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of Cx43 by approximately 57% of control levels (Fig. 3) while it increased 

the amount of phosphorylated Cx43 by approximately 25% of control levels 

(Fig. 4). As Cx43 phosphorylation is reported to attenuate gap junction 

assembly and to potentially induce Cx43 degradation [163], therefore, these 

results are consistent with an augmentation of the EPR effect via WEC-

mediated opening of gap junctions within the tumor microenvironment. To 

further investigate gap junction formation following WEC, I examined the 

expression and phosphorylation of PKC, which colocalizes with and directly 

phosphorylates Cx43 [164]. Here, I found that phosphorylation of PKC was 

upregulated in the tumor immediately after application of WEC (Fig. 5). 

Quantitatively, the amount of phosphorylated PKC was increased by 

approximately 28% of control levels in WEC-treated tumors. Taken 

together, these results suggest that application of WEC on the tumor surface 

leads to activation of the signaling molecule PKC, followed by the 

phosphorylation of Cx43. Phosphorylated Cx43 promotes the dissociation of 

gap junctions and augmentation of the EPR effect. Regarding the WEC-

induced change of the amount of Cx43 in the skin, it was suggested that 

regeneration of Cx43 protein might be occurred after decrease in the amount 

of Cx43 protein by enhancement of phosphorylation for recovering gap 

junction at 6 h after iontophoresis in our previous report [32]. Probably, 

regeneration of Cx43 protein in tumor occurs approximately 6 h after WEC 

treatment. Since the phosphorylation of PKC in tumor is a trigger event for 

change in intercellular junctions, this phenomenon would stop before Cx43 

protein regeneration begins. 

As WEC increased DOX-NP accumulation in the tumors (Fig. 1), I 

investigated the effect of combination of DOX-NP and WEC on tumor 

growth in a mouse melanoma model. DOX-NP alone showed the significant 

suppression of the tumor growth by 65% and 71% compared to untreated 

control (WEC (-)) on day 14 and 17, respectively (Fig. 6). Furthermore, 

combination of DOX-NP with WEC (+) significantly inhibited the tumor 

growth by 80, 83 and 88 % on day 14, 17 and 20, respectively. The tumor 

volumes of the group treated with the combination of DOX-NP and WEC 

(+) were around 43 % compared to those of DOX-NP alone on day 14, 17 

and 20. Thus, although DOX-NP alone also inhibited tumor growth, the 
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combined application of DOX-NP with WEC (+) provided a more potent 

antitumor effect. This result is consistent with the improvement in 

intratumor accumulation of DOX-NP by WEC (Fig. 1). In addition, WEC 

treatment alone (WEC (+)) also reduced the tumor growth, although the 

effect of WEC (+) was not statistical significant (Fig. 6). This result suggests 

that weak electricity has the possibility of anticancer activity.  

I found that WEC treatment alone (WEC (+)) reduced the tumor growth in 

melanoma bearing mice, although the effect of WEC (+) was not statistically 

significant (Fig. 6). Based on this finding, I evaluated the in vitro effect of 

WEC on cell proliferation and viability of B16-F1 melanoma cells. I found 

that cell proliferation was inhibited by WEC and cell viability was not 

affected. This result indicates that WEC has suppression effect of cancer cell 

proliferation without using anticancer agent. To elucidate the mechanism 

behind this result, I examined the effect of WEC on cyclin B1 protein 

expression.  Cyclin B1, known as a mitotic cyclin, is a key component in the 

control of cell cycle progression from G2 to M phase and participates in cell 

growth, differentiation, and metastasis in various cancer types [165-167]. 

Fang et al. found that overexpression of Cyclin B1 promoted cell 

proliferation and tumor growth in human colorectal cancer [168]. My results 

revealed that WEC suppressed Cyclin B1 protein expression in B16-F1 

melanoma cells, although this effect was not significant. So, this result 

suggests that the inhibitory effect of WEC on cell proliferation may be due 

to arresting the cell cycle by down-expression of cyclin B1. 

 

 

 

 

 

 

 



37 
 

 

 

 

 

 

 

 

 

Chapter II 

Deleterious effect of thermal treatment on 

testicular tissue via alteration of sperm-

specific calcium channels in rats 
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1.1 Introduction 

Infertility is a health issue affecting approximately 15% of couples who have 

regular unprotected intercourse [169]. The latest WHO statistics indicate that 

approximately 50–80 million people suffer from infertility worldwide 

[170,171]. According to recent studies, 20–70% of infertility cases are 

attributed to male-related factors [38,172]. 

The mammalian testis must be in the temperature range of 2–8 °C below the 

core body temperature for normal spermatogenesis and good testicular 

function [173]. A rise in testicular temperature may be harmful to 

spermatogenesis and, as a result, can cause infertility [174,175]. This 

condition is becoming more prevalent nowadays, as a result of occupational 

or lifestyle exposures such as prolonged driving or sitting, sauna use, and 

wearing tight-fitting underwear [176,177]. The testis exhibits a range of 

mechanisms in response to heat stress, including heat shock, oxidative stress, 

and apoptosis [49,8] and heat stress reduces sperm count and motility and 

causes an increase in an abnormal sperm percentage [150]. Additionally, 

heat stress induces apoptosis of the spermatogonial germ cells in the 

seminiferous tubules, resulting in lower sperm density, altered testicular 

morphology [179,180], and consequently poor fertilization capacity both in 

vivo and in vitro. 

Mammalian spermatozoa must proceed through a variety of challenges after 

ejaculation before fertilizing an egg [181]. These processes are usually 

stimulated by activation of ion channels expressed on the sperm membrane 

[107,182] , such as the cation channel of sperm (CatSper) channel complex, 

which consists of four pore-forming subunits (CatSper1–4) and five 

accessory subunits (β, δ, ε, γ, and δ) [183]. CatSper1 and -2 are considered 

vital for flagellar beat and hyperactivated motility of sperm, whereas 

CatSper3 and -4 are involved in the acrosome reaction and egg coat 

penetration [116,127,184]. Any disruption in the functions of CatSper 

channels and associated genes will affect fertility in both humans and 

animals [109,185]. 



39 
 

Previous studies demonstrated downregulated expression of CatSper genes 

are in mice orally administrated bisphenol A [186], cadmium [187], 

dutasteride or nifedipine [188]. CatSper expression was also suppressed after 

oral methamphetamine administration in rats [189], spinal cord injury in a 

mouse model [133], and experimental varicocele in rats [190]. However, 

there have been no studies on the relationship between heat stress and 

CatSper gene expression. Thus, in this study, I investigated the changes in 

the gene expression of CatSper1, CatSper2, 3β-HSD as steroidogenesis 

marker, and BAX as apoptotic marker and in sperm parameters (motility, 

number, and abnormal sperm percentage) and testicular weight in heat-

stressed rats at different time points. Additionally, I investigated the 

influence of single or repeated exposure to scrotal heating on the expression 

of CatSper1 and -2 genes in testicular tissue. 
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1.2 Materials and methods 

1.2.1 Materials and animals  

Chloral hydrate, 1% eosin Y solution and 10% neutral buffered formalin 

were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, 

Japan). All other reagents used were of the highest grade commercially 

available. Eight-week-old male Wistar rats (180–200 g) were purchased 

from Japan SLC, Inc. (Shizuoka, Japan). All animal experiments were 

evaluated and approved by the Animal and Ethics Review Committee of 

Tokushima University. 

 

1.2.2 Heat treatment of rat testes 

The rats were randomly divided into two separate groups (control and heat-

treated groups). In the heat-treated group, rats were anesthetized by 

intraperitoneal administration of chloral hydrate (400 mg/kg), and then the 

testes of rats were immersed in a thermostatically controlled water bath at 

43°C for 30 min once daily for 6 days. Control group rats were treated in the 

same way, except the testes were immersed in a water bath maintained at 

22°C. Then, the rats were killed by cervical dislocation at 1, 14, or 35 days 

after treatment according to Kanter et al. [8], and the cauda epididymis and 

testis were collected to determine sperm parameters, testicular weight, and 

the expression of CatSper1, CatSper2, 3β-HSD, and BAX. 

 

1.2.3 Characteristics of spermatozoa 

The cauda epididymis was removed and placed in a sterilized petri dish 

containing 2 mL normal saline prewarmed to 37°C and was subsequently 

macerated to release epididymal contents in a suspension that was handled 

precisely like the semen [191].  

 

1.2.3.1 Sperm motility analysis 
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Sperm motility was analyzed according to the procedure by Slott et al., 

[192]. A drop of the epididymal suspension was placed on a prewarmed 

glass slide and covered with a prewarmed glass cover slide, which was then 

inspected under a light microscope (Axio Vert.A1, Carl Zeiss, Germany) to 

assess individual sperm motility. Several microscopic fields were examined 

to evaluate the percentage of motile spermatozoa.  

 

1.2.3.2 Measurement of sperm count 

The sperm cell concentration per milliliter of semen was determined as 

described by [193]. Semen was further diluted with normal saline, and a few 

drops of formalin were added to kill the spermatozoa. The sperm were 

counted using an improved Neubauer hemocytometer counting chamber 

(Matsunami Glass Ind, Ltd, Osaka, Japan). 

 

1.2.3.3 Evaluation of abnormal sperm  

The number of abnormal sperm was performed using the method of [194]. 

Briefly, one drop of semen was mixed with one drop of eosin stain. A smear 

was prepared, air-dried, examined under a light microscope. Abnormal 

sperm was recorded as a percentage (%) of the number of abnormal 

spermatozoa relative to the total sperm concentration. 

 

1.2.4 mRNA Quantification using real-time RT-PCR 

Total RNA was extracted from the testis and purified using NucleoSpin® 

RNA (Macherey-Nagel, Germany) according to the manufacturer's 

instructions. The total RNA concentration was measured using the Nanodrop 

8000 (Thermo Fisher Scientific, Rockland, USA). cDNA was synthesized 

from 200 ng total RNA with PrimeScript RT Master Mix (Perfect Real 

Time, Takara Bio, Otsu, Japan) on the MJ Mini Personal Thermal Cycler 

(Bio-Rad, Hercules, CA, USA). The reverse transcription reaction was 

performed at 37°C for 15 min followed by 85°C for 5 s. Real-time RT-PCR 
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was performed using TB Green
TM

 Premix Ex TaqTM II (Tli RNaseH Plus, 

Takara Bio) and the Thermal Cycler Dice Real-Time System III (Takara 

Bio). To analyze the mRNA expression levels of CatSper 1, CatSper 2, 3β-

HSD, BAX, and β-actin, the cDNA was denatured at 95°C for 30 s, followed 

by 40 cycles of 95°C for 5 s and 60°C for 30 s for amplification. The 

following primer sequences were used: CatSper1, (forward) 5′-

TCTTGGAGCGATGAGGAC-3′) and (reverse) 5′-

GACGATTGTGTCAGGCA-3′; CatSper2, (forward) 5′-

TGGTTGTTGCTTGGT-3′ and (reverse) 5′-TTCCTTGACTGGTTCCTCT-

3′; 3β-HSD, (forward) 5′ TCCCCAGTGTATGTAGGCAATGTGGC-3′ and 

(reverse) 5′-CCATTCCTTGCTCAGGGTGC-3′; BAX (forward) 5′-

CGCGTGGTTGCCCTCTTCTACTTT-3′ and (reverse) 5′-

CAAGCAGCCGCTCAACGGAGGA-3′; and β-actin, (forward) 5′-

ACTATCGGCAATGAGCGGTTCC-3′ and (reverse) 5′-

CTGTGTTGGCATAGAGGTCTTTACG-3′. CatSper1, CatSper2, 3β-HSD, 

and BAX mRNA levels were calculated using the 2 
–ΔΔCt

 method and were 

normalized to those of β-actin. 

 

1.2.5 Determination the effect of single or repeated heat exposure on the 

expression of CatSper 1 and-2 in rat testis 

Based on the above condition, in which rat testes were subjected to six 

heat treatments at 43°C for 30 minutes (one per day for six days) at 43°C 

for 30 minutes, I further divided rats into three groups: the first, in which 

rat testes were subjected to a single heat treatment at 43°C for 30 minutes; 

the second, in which rat testes were subjected to two heat treatments at 

43°C for 30 minutes (one per day for two days); and the third, in which rat 

testes were subjected to three heat treatments at 43°C for 30 minutes (one 

per day for three days). After that, the expression of CatSper 1 and-2 genes 

was measured at 1, and 14 days after treatment. In order to fix the 

incubation time after heat treatment in all experiment groups, rat testes 

were subjected to one, two, or three heat treatments at 43°C for 30 

minutes, and the expression of CatSper 1 and-2 genes was measured at 7, 
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6, and 5 days after treatment and compared to the 1 day incubation time 

after six heat treatments. 

 

1.2.6 Statistical analysis  

One-way ANOVA followed by Tukey’s post-hoc test was conducted for the 

statistical analysis. Data presented as the mean ± SD. P values < 0.05 are 

considered to indicate significance. 
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1.3 Results 

1.3.1 The effect of heat treatment on testis weight at various time 

intervals 

I first examined the effect of heat treatment on testis weight at various time 

intervals (Fig. 9). Treated rats exhibited a significant decrease in testis 

weight at 1 day after heat stress compared with control rats, and this 

decrease did not improve even after 14 and 35 days. 

Fig. 9 Effect of heat treatment on testicular weight  

The white and black columns indicate the testicular weight of the control and 

heat-treated rats, respectively. Data are presented as the mean ± SD of four rats 

from each group. ∗∗P < 0.01 vs. control group. 

 

1.3.2 The effect of heat treatment on sperm parameters at different time 

points 

Next, I investigated the effect of heat treatment on sperm parameters at 

different time points (Fig. 2). Heat treatment significantly decreased sperm 

motility at 1 and 14 days compared with the control group (Fig. 10A). Sperm 

count was also markedly decreased after heat treatment at 1 and 14 days 
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compared with the control group (Fig. 10B). Furthermore, there were a 

significant decrease in the percentage of normal sperm (Fig. 11A) and an 

obvious increase in the percentage of abnormal sperm (Fig. 11B–F) in the 

heat-stressed rats compared with the control rats at days 1 and 14 (Fig. 10C). 

We noted a cessation in sperm production at 35 days after heat treatment. 

Fig. 10 Effect of heat treatment on sperm parameters  

A) Sperm motility (%), (B) sperm number (×10
6
 sperm/mL), and (C) abnormal 

sperm (%). The white and black columns indicate the sperm parameters of the 

control and heat-treated rats, respectively. Data are expressed as the mean ± SD of 

four rats from each group. ∗∗P < 0.01 vs. control group. (ND: no sperm detected). 
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    Fig. 11 Microphotographs of morphologically normal sperm and of various sperm 

abnormalities  

(A) Normal rat sperm, (B) headless sperm, (C) detached head, (D) bent neck, (E) 

tailless sperm, and (F) coiled tail. 

 

1.3.3 The effect of heat treatment on CatSper1 and -2, steroidogenesis 

and apoptosis genes expression at various time points 

Then, I evaluated the influence of heat treatment on CatSper gene 

expression, steroidogenesis, and apoptosis gene expression in rat testes at 

various time points (Fig. 12). For the first time, I found a notable 

downregulation of CatSper1 expression in the heat-treated group compared 

with the control group on day 1, and this downregulation remained at 14 and 

35 days after heat stress (Fig. 12A). I also observed a significant reduction in 

CatSper2 expression in heat-stressed rats compared with control rats, and the 

reduction was significantly greater on days 14 and 35 than on day 1 after 

heat stress, suggesting that CatSper2 downregulation occurred in a time-

dependent manner (Fig. 12B). On the other hand, heat treatment resulted in 

significant upregulation of 3β-HSD expression at 14 and 35 days compared 

with the control group; its expression was also increased, but not 

significantly, on day 1 (Fig. 12C). BAX gene expression was increased in 
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rats exposed to heat stress compared with control rats, as soon as day 1, and 

this increase was maintained on days 14 and 35 (Fig. 12D). 

Fig. 12 The effect of heat treatment on the expression of certain genes 

in the rat testis  

A) CatSper1, (B) CatSper2, (C) 3β-HSD, and (D) BAX. Data are 

presented as the mean ± SD of four rats from each group. ∗∗P < 

0.01 vs. control group. ∗P < 0.05 vs. control group. 

 

1.3.4 The effect of single or repeated heat exposure on the expression of 

CatSper 1 and-2 in rat testis 

I found that rats exposed to scrotal heating at 43°C for 30 min for one 

and two times showed no significant change in CatSper1 and a 

significant reduction in CatSper2 gene expression on day 1 compared to 

the control group. Also, the expression of CatSper1 and-2 was 

downregulated in rats exposed to scrotal heating at 43°C for 30 min, 



48 
 

three, and six times, in comparison to the control group. Among the heat-

treated groups, repeated exposure to heat treatment at 43°C for 30 min 

showed a gradual decrease in CatSper1 and-2 expression levels on day 1, 

while there was no significant change in CatSper1 between one and two-

time treatment and no significant change in CatSper2 between two and 

three-time treatment on day 1 (Fig. 13A-B). 

Fig. 13 The effect of single or repeated heat exposure on the expression of 

CatSper 1 and-2 in rat testis on day 1. Data are presented as the mean ± SD of 

three rats from each group. ∗∗P < 0.01 vs. control group.  

 On the other hand, rats subjected to heat treatment at 43°C for 30 min 

once, twice, three, or six times showed a significant reduction in 

CatSper1 and-2 mRNA levels on day 14 compared to the non-treated 

group. Among the heat-treated groups, two, three, and six-time 

treatments showed significant decreases in CatSper1 and-2 expression 

levels on day 14 compared to rats exposed to one-time heat. I noted that 

there was a non-significant change in CatSper1 gene expression on day 

14 between two, three, and six-time exposure groups. Furthermore, rats 

exposed to three- and six-time heat had significantly lower levels of 
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CatSper2 expression on day 14 when compared to rats exposed to two-

time heat (Fig. 14A-B).  

 

Fig. 14 The effect of single or repeated heat exposure on the expression of 

CatSper 1 and-2 in rat testis on day 14. Data are presented as the mean ± SD of 

three rats from each group. ∗∗P < 0.01 vs. control group. ∗P < 0.05 vs. control 

group. 

I also found that after fixing the incubation time after heat treatment in 

the four experimental groups, rats subjected to heat treatment at 43°C for 

30 min once, twice, three, or six times showed a significant reduction in 

CatSper1 and-2 mRNA levels compared to the control group. Among the 

heat-treated groups, two, three, and six-time treatments showed 

significant decreases in CatSper1 and-2 expression levels compared to 

rats exposed to one-time heat. 
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   Fig. 15 The effect of single or repeated heat exposure on the expression of CatSper 

1 and-2 in rat testis at fixed incubation time. The expression of CatSper 1 and-2 genes 

was measured at 7, 6, and 5 days after one, two, and three treatments, respectively, to 

resemble 1 day of incubation time after six heat treatments. Data are presented as the 

mean ± SD of three rats from each group. ∗∗P < 0.01 vs. control group. ∗P < 0.05 

vs. control group. 
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1.4 Discussion 

In this study, I first examined the effects of heat stress on testis weight and 

sperm characteristics (motility, number, and abnormalities). Testicular 

weight was significantly reduced in heat-stressed rats compared with control 

rats at 1, 14, and 35 days. This finding is consistent with that of Hand et al. 

[195] who observed testicular weight loss in adult male mice starting at 1 

week after heat shock and persisting for at least 3 weeks. Sailer et al. [196] 

reported that the testicular weight of mice exposed to 42°C for 60 min 

decreased significantly, even until 35 days after exposure. According to 

Nicolino and Forest [197], the reduction in testicular weight may be due to 

decreased numbers of Sertoli and germ cells within the seminiferous 

epithelium. Gasinska and Hilli [198] suggested that heat can cause 

denaturation of some cytoplasmic bridges in the syncytium, which can lead 

to degeneration of neighboring cells. Furthermore, Rasooli et al. [179] 

reported that heat stress increases apoptosis of spermatozoa, which leads to 

reduced testis and epididymis weights. 

Sperm density and mobility are crucial factors for male fertility [199]. The 

present results showed decreases in sperm motility and number and an 

increase in the percentage of abnormal sperm in rats exposed to high 

temperatures after 1 and 14 days, with cessation of sperm production at 35 

days. These findings accord with those Mahdivand et al. [200], who 

observed significant decreases in sperm concentration, count, and viability 

and in fertility and an increase in chromatin abnormalities after heat stress. 

Rams subjected to scrotal insulation showed reduced sperm motility and an 

increased number of sperm with head or midpiece abnormalities, starting 2 

weeks after the initiation of insulation and lasting 3 weeks [201]. The 

decrease in sperm quality could be due to damage of the sperm plasma 

membrane by overproduction of reactive oxygen species stimulated by heat 

stress. Spermatozoa are vulnerable to reactive oxygen species due to the 

high level of polyunsaturated fatty acids in their plasma membrane [202]. 
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Next, I investigated the effect of heat stress on the expression of CatSper1 

and -2 genes in rat testis. In both mice and humans, the CatSper gene family 

is expressed mainly in the testis and plays a key role in sperm motility and 

male fertility [109,203]. Reduced CatSper channel expression in sperm may 

impede sperm motility and hyperactivity, leading to male infertility [129]. 

The CatSper genes are crucial for mammalian fertilization, and based on my 

results, CatSper1 and -2 expression levels were downregulated in testicular 

tissue at 1, 14, and 35 days after heat stress. Based on these findings, I 

additionally investigated the effect of the effect of single or repeated heat 

exposure on the expression of CatSper 1 and-2 in rat testis. I found that 

alteration of CatSper 1 and-2 mRNA levels showed a gradual decrease 

between the heat treated groups on day 1. On day 14, there was a significant 

reduction in CatSper 1 and-2 gene expression in the heat treated groups 

compared to the control group. Also, there was no significant change in 

CatSper 1 and-2 gene expression between two, three, and six-time 

treatments. However, two, three, and six-time treatments showed a 

significant decrease compared to one-time treatments at day 14 and fixed 

incubation times. These findings indicated that the suppression of the 

expression of CatSper 1 and-2 in rat testis after heat treatment was 

dependent on time despite the frequency of heat exposure as they decreased 

with increasing incubation time except for one-time treatment. Furthermore, 

my findings are consistent with a prior study in which the use of oral 

methamphetamine reduced the expression of these genes in a rat model 

[204]. Rezaian et al. [133] also revealed that the gene expression of 

CatSper1 and -2, but not CatSper3 and -4, was decreased at 2 weeks after 

spinal cord injury in a mouse model. The authors hypothesized that one of 

the causes of reduced sperm motility in this spinal cord injury mouse model 

was the downregulated CatSper1 and -2 expressions. Infertile men with 

asthenozoospermia exhibit similar reductions in CatSper1–4 gene expression 

as well as CatSper1 and -2 protein expression [205]. Conversely, CatSper1 

or -2 null mouse spermatozoa showed impaired sperm motility, aberrant 

flagellar beating, and lack of hyperactivity and acrosome reaction, 

culminating in overall infertility [109,113,206]. 
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I also examined the effect of heat stress on 3β-HSD and BAX expression in 

rat testis as marker of steroidogenesis and apoptosis, respectively. Synthesis 

of testosterone in the testis is essential for normal spermatogenesis [99]. The 

expression of highly regulated genes, such as 17β-HSD3 and 3β-HSD, was 

shown to be critical for precise testosterone synthesis [174]. My findings 

revealed a significant increase in the expression of 3β-HSD at days 14 and 

35 and a non-significant increase at day 1 in heat-stressed rats compared 

with control rats. These results are consistent with those of Shiraishi et al. 

[207], who found that elevated scrotal temperature upregulates testosterone 

in patients, possibly to reduce testicular oxidative stress-mediated apoptosis. 

Furthermore, testosterone levels were highest on day 4 after heat stress, 

which indicates that mice may stimulate the hypothalamic-pituitary-Leydig 

cell axis to protect germ cells from heat damage [208].  

I observed significant upregulation of BAX expression at 1, 14, and 35 days 

after heat exposure. My results were similar to those of Delkhosh et al. [89], 

who reported increased mRNA expression of caspase 3 and Bax in the 

testicular tissue of rats immersed in a water bath at 43°C for 20 min every 

other day for 8 weeks. This was due to heat stress, which can cause protein 

and DNA damage in the testicles and enhance the rates of cellular injury and 

apoptosis [8]. 
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Conclusion 

From the results of this thesis, I concluded that the application of two 

different physical treatments (WEC and thermal treatment) inhibited cell 

growth in tumor and testicular tissue, but the mechanism is different. WEC 

enhanced the EPR effect of an anticancer drug through opening intracellular 

junctions in tumors and has a direct suppression effect on cancer cell 

proliferation. On the other hand, thermal treatment reduced testicular weight 

and induced significant deterioration of sperm motility, which was 

correlated with reduced CatSper gene expression and this finding shed light 

on one of the mechanisms underlying male infertility caused by heat stress 

and suggest new concepts for further therapeutic strategies. 
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