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ABSTRACT 

Using less electric power or speeding up processing is catching the 

interests of researchers in deep learning. Models have grown in complexity and 

size using as much precision depth as can be computationally supported 

regardless of how expensive the minimum required cooling system might cost. 

Quantization has offered ease of deployment to small devices lacking floating 

precision capability, but little has been suggested about the floating numbers 

themselves. This thesis evaluates hardware acceleration for embedded devices 

that cannot support the energy requirements of floating numbers and proposes 

solutions to challenge the limits of power consumption and apply them to 

measure their effectiveness in terms of energy demand and speed capacity. 

Experts have declared the end of Moore’s law with the current state of 

nanotechnology coming to terms with its inability to increase the performance 

per transistor density ratio. Accelerators, although providing a countering 

measure, have also increased their power needs to unsustainable levels. At the 

same time there has been sufficient increase in knowledge, such as distributed 

computing, to branch-off into possibilities that could reduce power demands 

while maintaining, or possibly increase microprocessor performance. This 

thesis highlights some important challenges that were born out of the rapid rise 

of deep learning. 

We present experimental results showing that low-powered devices can 

serve as powerful tools in low cost deep learning research. In doing so we are 

interested in slowing down the ongoing trend that favors expensive investment 

in deep learning computers. Using known properties in computer architecture, 

hardware acceleration, and digital arithmetic we implement ways to design 

algorithms that symbiotically match their performance in accordance with the 

theoretical limits afforded by the hardware components that run them. 
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Computer processors are utilized based on their ability to execute 

instructions defined in code or machine-readable format. Some processors are 

multi-purpose, others are domain-specific, the former being good at a wide 

range of tasks and the latter only focused for specific tasks. While executing 

any task an ideal processor should engage all its transistors to ensure that no 

part is left underutilized. However, in practice it is not always the case, which 

is why domain-specific processors are optimized to carry only the instructions 

for which they would fully commit their components. 

It is considered good practice when algorithms are designed to 

encourage the maximum use of available capacity for any execution. Our 

proposed method improves the symbiotic complementarity in peak algorithm 

performance and theoretical hardware capacity. 
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CHAPTER 1 
 

INTRODUCTION 

Since as far back as historical records show, humans have always 

attempted to recreate intelligence, either through artificial means, or by providing 

cognitive training to animals. Around the middle of the 20th century the general 

academic consensus revolved around giving scientific super-calculators, the 

predecessors to modern computers, the ability to reason. New discoveries would 

then be tested against mathematics theorems such as the Principia Mathematica 

that were exclusively used to reason about new mathematical proofs. 

In recent years deep learning has emerged considerably and cemented itself 

as a part of the daily discourse on scientific progress and cutting-edge technology. 

Multiple advances were registered in many other fields that chose to use deep 

learning methods in new or existing computer-assisted practices. Deep learning 

is an umbrella term under the machine learning field, another umbrella term. 

Machine learning comprises theories, tasks, algorithms, devices, etc. used to 

develop techniques, software and hardware used in solving a number of 

problems, generally using computers. Along with the rapid emergence of deep 

learning, expensive computer configurations and intimidating verbiage, artificial 

intelligence has grown into complexity and made it hard to get started in the field. 

At the same time there has been a mounting cost in terms of time, money, and 

knowledge. This research is meant to address another cost associated with the 

measure of performance in using deep learning. 

The true potential of computer systems lies within two essential 

capabilities: to automate given tasks and to help make informed decisions. From 

the beginning of the modern computing era these two capabilities have been 

harnessed, improved, and applied to the workplace, to transportation, to 

businesses and industries, to science and space, to personal and home needs and 

to many other lifestyles. 
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Most machine learning systems are data-based, i.e., they use data that has 

been prepared in advance. This data scheme has grown tremendously in ways that 

pushed the costs highlighted above even higher. Most machine learning systems 

are made of parameters that are tuned by computations in a process called 

training. Training may take weeks or days depending on the performance of the 

computing platform in use. Any machine learning practitioner is then responsible 

for making the right, cost-effective choices that would afford them the best 

solutions. A priori there is the initial cost associated with the time and effort 

invested in acquiring adequate knowledge and expertise which directly correlates 

with the capacity to choose the techniques, methods, algorithms, tasks, software, 

and hardware needed for a particular study. It is at this juncture that the scientific 

community is divided based on access to knowledge and tools. On one side there 

is heavy industry investments in super-computers capable of covering for most if 

not all needs above. On the other side there is everyone else trying to make do 

with available means, either a laptop or a PCB (printed circuit board) computer. 

This divide has pushed the community to invest capacity in understanding and 

improving the performance of machine learning systems with minimal cost. 

Machine learning systems help uncover patterns from large amounts of 

data. The generated patterns constitute their understanding of the problem, be it 

in self-driving cars, healthcare, language synthesis, or recommender systems. 

Large data takes large computations to process as their “understanding” of the 

data is largely built from primitive operations such as accumulation and 

multiplication of floating-point numbers, known to be error prone [1]. Human 

interference is meant to provide feedback for the computer to adjust its accuracy, 

which improves the computer’s representation of the information, resulting in 

better predictions. In this context the “understanding” of the data and the 

representation of information could be used interchangeably. 
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1.1 High-performance computing 

Scientific research is best explained with data in mind. It is a collection of 

techniques and rigorous measures, depending on the field, ordered in a manner 

which collects, processes then transforms raw data into useful information that 

advances knowledge in said field. Contextually, in machine learning as is the 

subject of this thesis, the transformation is not meant to generate useful 

information but rules that a computer can use to understand the data, or new, 

unseen data. Over the years computers have evolved a tool of choice for scientific 

researchers (Figure 1). In fact, as computer performance and computer 

networking evolved, scientific research made greater strides to tap into the vast 

capabilities presented by these evolutions. Suddenly, problems that could take 

months or years to solve could be answered much sooner by assigning as much 

computing power as necessary. 

 
Figure 1: Evolution spaces in the number of processing cores for GPU (green color) and 

CPU (blue color) for computing architectures 

With the possibility to ask new questions came the need to gather more 

data, at the expense of infrastructure capacity, or to avoid the risk of stalled 

research or diminishing utility. The core count for CPU stalled at about 64 cores 

since around 2010, which meant that it wasn’t possible to increase the 
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performance simply by increasing the number of cores, unlike GPUs which 

maintained a steep climb to date. Writing applications that are sequential in their 

execution style became harder which gave rise to parallel execution. 

To prevent any delay or slowdown, resource pooling became a way to 

bypass certain issues. High-performance computing is a resource pooling 

mechanism that aggregates many computers to act as one unit, with the 

underlying objective that the more computers are clustered the faster research 

could accelerate, turning months into mere hours or minutes. But another 

objective is the possibility to answer multiple questions at the same time. Parallel 

computing is a paradigm that essentially breaks down pooled resources into 

independent or semi-independent operators for simultaneous execution. Each 

operator can expand or shrink its resources according to its needs. The main 

advantage of resource pooling is to increase capacity in terms of processing, 

storage, or access (networking). 

Let’s consider the traditional machine learning research steps: 

- Training: Assumes data collection, model definition and data learning 

- Validation: Uses a sample of data to evaluate the learning process 

- Testing: Applies new, unseen data to assert the learning effectiveness 

The first step is usually the longest because it is hard to automate 

completely. Data collection requires human participation to annotate or label the 

data correctly. Human involvement is often referred to as human-in-the-loop and 

is a bottleneck area that is extremely difficult to assign to a computer. This thesis 

proposes to maintain human involvement as a crucial practice by improving the 

tools that would instead accelerate human effort or save it. That would enable 

cost-savings on several aspects of scientific research. 

In a machine learning research activity, experimentation is halted as soon 

as the testing phase achieves acceptable results based on the collected data. 

However, in real-world environments data is continuous, which may drag 

research into a continuous loop where the steps above are repeated to take into 
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consideration the latest data. Instead of repeating the training from scratch every 

time, a method referred to as “fine-tuning” is used. 

High-performance computing is also an amalgamation of several 

computing fields including systems administration, parallel programming as 

briefly stated above, digital electronics, computer architecture, system software, 

programming languages, algorithms, and computational techniques [2]. And its 

use in machine learning is an unfortunate series of choices that begin with the 

need for more. This has propelled research into assuming the best results should 

be associated with costly choices, therefore making machine learning an 

expensive and exclusive research direction reserved for the wealthy and 

resourceful organizations and individuals. Along the evolution of computing, and 

following Moore’s law, it became clear around the turn of the 21st century (1999-

2001) that it was not possible to increase the performance of transistors without 

negatively affecting voltage or other sensible circuitry parameters. It was then 

that the idea of having transistors grouped together in smaller units for the 

purpose of carrying computations independently from another group of 

transistors took off under the now common multi-core and/or multi-threaded 

processing. Table 1 shows the constraints associated with increasing electrical 

power per millimeter-squared of processing area. Soon, a limit forced by 

inadequate or expensive cooling, or both inadequate and expensive cooling. 
Table 1: Scaling results for circuit performance showing electrical properties of 

transistor scaling, for kÎ{1,..., 10} (Source: Robert Dennard, IEEE) 

Device or circuit parameter Scaling factor 
Device dimension tox, L, W 1/k 
Doping concentration Na k 
Voltage V 1/k 
Current I 1/k 
Capacitance eA/t 1/k 
Delay time/circuit VC/I 1/k 
Power dissipation/circuit VI 1/k2 
Power density VI/A 1 
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HPC is not to be confused with super-computing. It used to be the case that 

pooling was targeted from a single computing infrastructure the size of several 

rooms, but nowadays it is associated with clusters, cloud, or virtualization 

because of the internet. HPC is generally associated with research, but engineers 

and businesses also use it for computer-aided design (CAD), big data mining, or 

transaction processing in finance. 

High-performance computing (HPC) remains the de facto environment for 

many deep learning projects. Apart from the architectural complexity that goes 

into designing, operating, and maintaining HPC, this research also argues against 

its relatively elevated costs, financial or otherwise. Notwithstanding the 

continued investments from both the academia and industry to achieve high 

results with minimal consumption. To tap into low resources computing 

alternatives it is important to discuss HPC’s appeal in the first place. 

Deep learning is a subset of machine learning that deals with repetitive, 

layered computations that exploit patterns in data by associating them with 

weights. This is made possible in part because of the sheer amount of data, and 

on the other part because of the flexibility and composability of the mathematics 

principles used. As one could easily conclude, the more capable a computer, the 

more expensive it is. Not only that, but also the more environmental waste it 

expels, which introduces environmental considerations in the practice of machine 

learning. The nascent field of deep learning is already regarded as a powerful 

problem-solving technique that any individual should consider. Associated with 

this growing sentiment is the resurgence of domain-specific architectures (DSA) 

that attempt to leap over the barrier caused by the slowing of Moore’s law without 

further aggravations to environmental conditions. 

As highlighted in Table 1, domain-specific or application-specific 

processing came by after it was increasingly difficult to maintain acceptable 

power consumption levels at the same level as the cooling technology state-of-

the-art. Instead of having transistors used for multi-purpose processing, 
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accelerators were devised to focused on specific types of processing that later 

favored and nurtured the sudden growth realized in deep learning. 

Recent computer designs have pushed towards specializations that 

maximizes computational resources such as storage, memory, and processing, to 

push performance to higher limits while keeping costs manageable. When it 

comes to the manufacturing of computers the standards have not been as 

homogeneous as expected to provide a means for cross-compatibility across 

varying use-cases, form factors, or demands. The personal computer, or PC, is 

the most striking proof of this homogeneity, especially in the design of its 

processing architecture. When it comes to machine learning and deep learning in 

particular, these architectural designs underperform and therefore the need to 

branch off in the direction of the demands of machine learning create a breach in 

the pursuit for homogeneous computing. New types of processing architectures 

are required, and old methods are revisited to maintain cross-compatibility. For 

example, industry-leading efforts have explored quantum computing for large 

machine learning computations and others have revisited analog computing to 

replace digital computing. 
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Figure 2: Evolution of model parameters with estimated computation (in petaFLOPS) 

required in large AI training runs. Source: ourworldindata.org 

Several considerations, other than market trends such as shown in Figure 

2, come into focus when building high-performance computers, including: 
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- Parallelization: Clusters of DSA arranged in a specific manner can 

mitigate the slowdown of computation that arises from the sequential 

nature of processing steps. Parallel resources can therefore split up and 

share computations in a simultaneous orchestration. This has immediate 

effect on the total time it takes to process. It also requires lots of electrical 

power. 

- Memory: Weights generated from learning patterns need to be 

accessed multiple times by multiple processes. Disc reads and writes 

cannot sustain this traffic alone. Temporary storage such as RAM needs to 

be considerably vast to accommodate this demand. 

- Computation: Although machine learning computations are merely 

accumulations and multiplications, the amount of data to process can 

quickly overwhelm the most performant CPU. More cores need to be 

activated at a time, sometimes in the order of several hundreds. Figures 1 

and 2 show a correlation in core count increase and the explosion in large 

models over the past two decades. 

- Flexibility: In a repetitive layered approach such as is expected in 

deep learning, algorithms switch quickly and are overturn by new methods 

or best-practices that are not bound to one specific type of architecture. 

Therefore, architectural designs need to account for flexibility and expect 

shifting configurations, workloads, or techniques. 

- More data: Along with storage considerations, there is also concerns 

about the format in which data is stored. 32-bit floating point format is the 

industry format for its capacity to capture precision. However, the same 

format is known to be error-prone and take up lots of resources such as 

memory and electrical energy. 

A modern super-computer is critically measured against all the above listed 

features. However, the defining factor is its interconnect design, or how the 

components communicate together. The way signals move from one component 
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to another, say from memory to processing, is an area of engineering prowess that 

large companies invest in without hesitation. Designing a super-computer 

involves arranging its components to improve interconnect speeds, most termed 

as reducing latency. 

Parallelization is implemented at the hardware level and configured to 

interface with software through firmware or other proprietary software or 

libraries. Multi-core processing can be generalized or specialized, and market 

trends continue to show upward movement in both capabilities. 

1.2 Embedded systems 

Taken at face value, an embedded system is nothing more than some 

processing chip, some internal memory, and some peripherals to connect to the 

outside, put together to perform some computations. The market perception 

associated with this understanding has contributed more details such as the size, 

shape, and form factor of an embedded system. Generally, an embedded system 

has a domain-specific purpose that involves controlling a larger mechanical or 

electronic system in which it is embedded. Embedded systems are typically small 

and require very little power to function. One other important aspect of embedded 

systems is that they are perpetually in use i.e., there is no on/off switch or some 

sort of booting routine. It should therefore come to no surprise that HPC may 

include embedded systems. 

A single unit of embedded system may also include an accelerator, or 

several accelerators, that offer parallel computing capacity within the low-

powered limitations. Their size presents a versatility that is boundless. Embedded 

systems can be found everywhere, in more utilities than humanly imaginable such 

as cables, watches, rings, earphones, light bulbs, etc. Miniaturization in the 

computing environment has become just as vast and complex as the parent field 

itself, bridging many gaps while at the same time improving the symbiotic 
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relationship between humans and computers. As this thesis demonstrates, a 

common class of dedicated accelerators is the digital signal processor or DSP. It 

has a particular property that incidentally makes machine learning possible. 

Given the market forces governing where efforts should focus, the machine 

learning community has devised standards and categories. The pursuit of high 

performance has given rise to sophisticated manufacturing technologies that 

compete to cram as much processing power as possible onto as little surface as 

possible. On one hand there are the maximalists who opt into high performance 

along with energy requirements such as cooling systems and expensive 

manufacturing, and on the other hand the minimalists who are keen on low-

powered, low-resource computing devices that maintain acceptable performance. 

However, research has shown that embedded computing has evolved based on 

similar principles to produce powerful devices that compete with personal 

computers such as laptops or smartphones. 

Depending on which side one stands on, there are 2 distinct types of 

processing influenced by the type of machine learning task: 

- Inference only: this is a type of processing that is concerned with 

running predictions only. That is, the host or processor is pre-loaded 

with all weights and algorithms necessary to deliver expected estimates 

when queried. 

- Training and inference: this type of processing can learn to generate its 

own weights and algorithms before it provides predictions. 
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Figure 3: Diagram showing how the central processing unit shares resources with the 

accelerator (in light purple) in a parallel computing architecture 

 

Despite the many benefits low-resource computing present, the machine 

learning has slowly adopted its use compared to HPC. Figure 3 presents the basic 

arrangement of a computing architecture that HPC or embedded systems emulate, 

often called the von Neumann architecture. We go through the main reasons why 

this is the case and present experimental analysis for promising solutions We 

propose targeting embedded systems for various social-economic reasons, and 

our experiments focus on addressing some of the limitations caused by IEEE 754-

2008 floating points computations. 

The motivation behind targeting low-powered devices has long been 

argued even though the most cited applications of deep learning are utilitarian in 

nature, and thus demand to be deployed closer to their intended users, on their 

personal computers, cell phones, or cameras, for instance. Deep learning has 

hindered the motivation for low-powered devices by increasing the computation 

complexity with parallel computing such as is shown in Figure 1 or giving rise to 

alternative options like distillation, model pruning and quantization [2] [3]. 

Floating numbers are a good choice to avoid precision decay over multiple 

rounds of operations. For this reason, the deep learning community has given 

preference to expensive computer systems for training with floating numbers, and 

the resulting models are converted to integers format for smaller form factors like 
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embedded systems. However, research has shown that replacing floating numbers 

with integers does not deal a heavy toll on the accuracy of a model but instead 

improves its storage and access speed [4]. 

Deep learning has shown potential in other areas like healthcare, home 

consumer products, and the creative industry. There is growing interest that is 

pushed back by the relatively high barrier of entry caused by expensive 

computing requirements and complex verbiage. Transfer learning has provided 

some improvement, but more efforts are required to allow anyone to contribute 

new ideas from scratch, free from any prior limitations or cumbersome 

requirements. 

1.3 Overview of experiments 

We formulate and analyze a configuration based on a mix-and-match of 

existing solutions in deep learning. We are interested in testing embedded 

systems capabilities when applying these solutions. Our approach applies to the 

mathematical operations at the core of computations. 

Specifically, we modify arithmetic operations in existing software 

algorithms to manipulate a different type of number notation to assess whether 

models can be trained without precision loss on operations like convolution or 

automatic differentiation and challenge the boundaries of power and latency for 

embedded systems. 

In general, ongoing contributions can be split into the hardware and 

software distinctions where each proposes specialized methods. A third 

distinction that is a hybrid software-hardware mix tries to challenge the shortfalls 

in linking innovations in hardware and the rapidly changing software. This work 

is on the latter distinction, using domain-specific accelerators and software. For 

our experimentations, hardware and software considerations include existing 

proprietary and open-source devices and libraries. 
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1.4 Scope and key assumptions 

The paradigm shift introduced with the popularization of machine learning, 

especially deep learning, has reaffirmed the importance of human supervision, 

especially in the early stages of experiments. It brought to prominence human-in-

the-loop (HITL) systems. In AI, HITL enables human intervention at all stages 

of the workload to verify, correct, or abort processes. It can present itself as a 

dashboard UI giving broad view of all resources engaged in the workload, or it 

can be a set of standard checklists and kill switches that are always within reach. 

HITL is beneficial to critical applications such as healthcare, financial services, 

governance, or others. Benefits such as risk mitigation, exception handling, 

productivity monitoring, cost control, or data completeness are not only helpful 

at the beginning, or at the end, but throughout the entire workload. 

Let’s consider healthcare with its data-dependent and extremely risky 

industry. Not only does the approximations have to be always spot-on, but they 

must also remain reliable for future decisions, not only present actions. Machine 

learning sounds like the perfect medicine to handle this situation, but recent years 

have shown mounting claims that AI is a black box of unexplainable processes 

and algorithms, sometimes rendering human experience in the field baseless 

while achieving results that cannot be traced or assessed. Although dealing in 

approximations, machine learning is also making good progress in robotics and 

self-driving cars, two fields that rely on precision. The only way to always be 

precise is to fully understand how that precision was approximated, or at the very 

least always maintain human presence. If automation’s objective is to limit 

human presence, then HITL is a contrarian endeavor. 

The role of AI in healthcare is to support personnel in decision-making, 

and HITL is a feedback loop that preserves human experience and incorporates it 

in the approximation workload. 
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Because we are interested in the limitations of floating numbers on small 

form factors like embedded systems, we outline key heuristics or conditions. First 

and foremost, we are not interested in any type of dataset, nor are we measuring 

the accuracy or overall effectiveness of a deep learning model. Instead, we solely 

consider computations which manipulate floating numbers and analyze their 

performance. In other words, we are discussing the engineering side of deep 

learning computations. Rooted in scientifical computations, machine learning is 

as deep as it is wide, touching almost every corner of engineering disciplines, 

lifestyle, or experimental research such as deep space exploration. Simply 

because machine learning research takes place on a computer does not 

automatically make it a subset of software engineering, nor does computing 

become a subset or artificial intelligence for more or less the same reasons. 

Research in machine learning happens in stages that must be organized in a 

manner that each stage takes from the one prior, does some processing, and passes 

its results to the next stage, like a conveyor belt. 

Machine learning pipelines can be multi-disciplinary, with computing 

holding a limited responsibility to the overall flow. One thing that is universally 

the same is human input and control of the entire flow. And therefore, our 

proposed method fits into the human-in-the-loop (HITL) systems. Its advantages 

include mobility, low-power, and other attributes associated with embedded 

systems. From an engineering standpoint this research is more concerned about 

the relevance of software code used to solve a given deep learning task and the 

symbiosis or complementarity with host hardware. 

Posit arithmetic also falls out of scope of this research simply because the 

energy requirements do not improve on IEEE 754-2008 floating point number 

arithmetic [5]. 

For deep learning algorithms to be effective, useful features must be 

extracted from large amounts of data. For this reason, there is a cost, and perhaps 

a well-founded argument, associated with the performance of the host system 



 

 16 

used. Distillation is a mechanism used to reduce the resources needed by a model 

without hurting its performance. The same distillation can be applied to the data 

as well, by reducing its size or replacing some samples with synthetic ones. This 

research commends all these methods but considers them out of scope as well. 

Metrics like accuracy or precision are used with regards to digital arithmetic 

operations, or computations in general. Energy and latency are measured on the 

computational instructions carried by a host processing unit. Energy represents 

the computational effort (in terms of energy, measured in Joules) of performing 

a given task, while latency (delay) refers to the time it takes to complete a task. 

One of the key theoretical insights of deep learning is that in recent years 

the general consensus agrees that increasing the depth of deep layers results in 

better model performance. The argument is so far proving to be correct to the 

detriment of host systems that cannot counter-argue for lack of capacity or 

compatibility with deep-layered models. The fundamental basis on which tensor 

calculus is implemented digitally remains open to experimentation. Automatic 

differentiation is also applied at the code level to take advantage of the benefits 

this approach may have on small form factors. 

One of the main components in a deep-layered model is the fully connected 

layer, a collection of computation nodes each carrying the exact operation on a 

chunk of the input. The hurdle with convolutional neural networks, as the deep-

layered model will be referred as henceforth, is that the computation of each node 

scales as the square of number of inputs. Very quickly, what looks like mere 

addition and multiplication can explode in complexity. Research has progressed 

towards the use of distributed computing as a means of allocating portions of the 

operations to other host systems to ease the complexity of the task, but also to 

arrive at the solution quicker. Given that host systems can have relatively 

expensive power and maintenance costs, it makes sense to consider ways to 

reduce or at most alleviate any cost associated with the distribution of tasks. The 

aim of this work is to contribute efforts on the use of low-powered devices for 
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deep learning research, that also includes the possibility of using distributed 

embedded devices to maintain the cost to relatively affordable levels for 

individual researchers as well as small teams that have financial constraints 

towards the realization of their endeavors. Lastly, another scope limiting factor is 

the use of a digital signal processing (DSP) accelerator for domain-specific 

computations, namely convolutions. 

Research in general is an exercise of approximation, always edging closer 

to some optimal objective without precisely hitting it. The use of floating-point 

arithmetic in deep learning is both an enabler and a limiting factor for common 

tasks. On one hand, it enables precision depth that ensure optimal 

approximations, and on the other hand it requires resource-intensive 

computations that accrue the cost of conducting research very fast. AI 

accelerators are a stark example of this dilemma, precisely in the design of inexact 

arithmetic circuits. This paper uses 3 types of hardware accelerations to critically 

consider their singular contributions in deep learning computations. Each locks 

the user in a set of dependent libraries that are either open-source such as 

OpenCL, or proprietary (closed-source) such as NVIDIA’s CUDA. Each has 

specific instructions on how to best utilize the maximum processing units for any 

task, or how to engage in parallel processing by ensuring all available processing 

units participate equitably. 

In recent years, AI accelerators have grown considerably with ever 

demanding energy requirements considering that their design favors parallel 

processing, with each parallel unit adding to the energy requirements. Parallel 

computing is only beneficial in specialized conditions, most of which can also be 

handled by sequential (general) computing. However, each parallel annexation is 

potentially an increase in costs (financial and otherwise) that must be critically 

considered beforehand. This research experiments provide a pathway into 

lowering these costs by using parallel computing with cheaper alternatives. That 

is one of the objectives we set out to reach with the use of embedded systems. 
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1.5 Outline of the report 

This paper is organized into 4 parts. The introduction gives an overview of 

the ecosystem and context necessary to this research. The research problem, 

justification, scope, and key assumptions are also presented in the first part. 

The second part presents the literature for the research problem. Here we 

review similar works and their key contributions, paying attention to the best 

results. 

The third part describes the methodology used. The tools necessary for our 

experiments are highlighted before the fourth and last part closes with our results, 

conclusion, and recommendations. In the conclusion section we go in depth to 

discuss our method execution showing how multi-faceted the proposal is. 

Knowledge and best practices are gathered from a wide range of disciplines, 

including cardiology, in attempting to present the results of this thesis. 
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CHAPTER 2 
 

LITERATURE REVIEW 

In recent years mobile computing has grown to become an essential 

component of life and work. With the recent attention around deep learning since 

2012 and later the enormous investments in high-performance computing (HPC), 

deep learning and mobile computing have continued to attract each other in what 

continues to be a tug-of-war between deep learning at the edge or in the cloud. 

The mixing of mobile computing and deep learning have given a new definition 

to smart devices. Deep learning is poised to enable new frontiers of discoveries 

and innovations in both the mobile computing and HPC spaces. 

To provide a guide for this thesis it is important to scope our research. First 

and foremost, we do not discuss any specific outcome from model training such 

as accuracy or errors. We are strictly limiting our explorations to computational 

performance. Secondly, although we introduced HPC this thesis focuses on low-

powered computing, including acceleration. 

Several algorithms are discussed for their prevalence in the deep learning 

field and used to demonstrate our proposal via experiments. This section 

introduces notions in computing and machine learning that are worth keeping in 

mind as we contribute further to the growth of deep learning for constrained 

computation. 

Computing platforms and form-factors present advantages and 

inconveniences that simply do not favor one over the other, and when it comes to 

small devices the choices remain ambiguous. However, the vendors provide tools 

and libraries to further accelerate the commercial adoption in HPC as well as 

embedded computing, so it is no surprise that leading manufacturers have offers 

covering the entire range of platforms and form-factors, from cheap low-powered 

micro-controllers to geographically distributed super-computers. 
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 By nature, computers have limited capacity. There is only so much they 

can do. However, the limitations are less and less of a concern nowadays. In the 

early days of modern computing, algorithms were programmed with the same 

procedural logic used in manual calculations. Floating numbers are arranged in 

large multi-dimensional matrices called tensors. Tensor operations are 

computationally expensive, and more so on embedded devices. 

In digital signal processing, a multiply-accumulate operation (MAC) is an 

instruction execution step that computes the product of two scalars and adds the 

result to a summation, or accumulator. A single DSP core can handle up to 50,000 

multiply-accumulate operations per second (MACS) due to its relatively low 

wattage. Typically, this is done fast for integers but not for floating point 

numbers. 

The 2008 revision of IEEE-754 that improves digital floating-point 

arithmetic, or IEEE 754-2008, specifies a novel instruction, called FMA for fused 

multiply-add, that fixes the inherent properties of digital floating-point arithmetic 

of non-associativity and non-distributivity by a single rounding rather than two 

as is the case for common DSPs [6]. Certain operations with higher order 

polynomials could lead to errors unless careful considerations are made with 

regards to the memory space allotted to the result of the operations [7]. FMA is 

also great for the software implementation of arithmetic division and square root, 

but it is relatively inadequate for low-powered devices [8]. 

 
Figure 4: A timeline of other breakthroughs in deep learning image classification since 

the 2012 win of the AlexNet model, the blue zone on the right shows the beginning of the 
large-scale training era. Source: microsoft.com 
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2.1 Low-powered computing accelerators 

In recent years, hardware accelerated neural networks have been proposed 

in lieu of their traditional CPU focused alternatives for improved processing 

speeds [9] dictated in large by breakthroughs as shown in Figure 4. Different 

types of existing hardware were repurposed, and new types of hardware were 

designed specifically to support acceleration for the most critical computations 

found on many neural networks [10]. GPUs are the most common and consumer-

ready, plug-and-play type of accelerator [11]. Given a supporting architecture, 

and a pre-installed special purpose kernel library like the proprietary CUDA or 

the open-source OpenCL, a GPU can significantly improve computational 

speeds. 

This is not exclusive to GPUs, however, as industry efforts continue to 

provide drivers for other types of processors like DSP. A notable innovation in 

high-performance computing is the TPU, a type of ASIC (application-specific 

integrated circuit) accelerator designed purposefully for neural networks on large 

data centers. The motivation for TPUs grew out of the need to address limitations 

on consumer devices like smartphones that could not process computations fast 

enough, therefore posting requests to a server and returning the results. For some 

of these special-purpose hardware, a dedicated matrix calculator is implemented 

at the hardware level instead of the common software level. TPUs, for instance, 

have a systolic array configuration to reduce delay. 

Matrix multiplication continues to keep researchers busy to date. It helps a 

lot with tensor calculus. By defining a matrix with coordinates corresponding to 

rows and columns in a grid-like pattern, each element of the matrix can be found 

wherever a row and column intersect. It would take at least n3 operations to 

multiply a n*n square matrix. Over the years researchers have attempted to 

optimize this task by rewriting the algorithm to computer specifications. In 1969 
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the best algorithm used n2.8074 operations. In 2014 François Le Gall achieved 

n2.3728639, and as of 2020 n2.3728596 was achieved [12]. 

2.2 Execution steps in accelerated computing 

Once a given deep learning task has been compiled and scheduled for 

execution it must be sent to the correct hardware accelerator that will carry said 

execution and return its results [13]. This is also the time to parallelize. Specific 

libraries help in this regard; like CUDA from NVIDIA, or OpenCL from the 

Khronos Group, an open-source consortium of industry and academia leaders, of 

which NVIDIA is a part of. The reason NVIDIA is mentioned is because of their 

monopoly in the deep learning space. 

Vendors make different hardware accelerators, and OpenCL is meant to be 

compatible with as many as possible. A GPU may require a specific workflow 

between its components, which is different from how a CPU implements a similar 

workflow. A CPU may require vectorization to execute vector instructions but 

doesn't have components that are specialized for vectorization. A platform may 

have one or more of different types of accelerators, therefore achieving 

parallelism requires partitioning the task amongst a heterogeneous ecosystem to 

appropriately distribute the execution workload. 

2.3 Floating versus fixed point numbers 

Generating deep learning models with fixed-precision parameters as 

opposed to floating points has shown advantages [14] in terms of accuracy [15]. 

Fig. 1 shows why digital floating-point arithmetic is non-associative and non-

distributive. Floating point precision has long been a standard in computers [16], 

but the popularization and consumer adoption of deep learning applications has 

pushed scientists and engineers to rethink this standard because of major concerns 
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on embedded systems [17]. Floating point scalars consume more energy 

compared to fixed point scalars. 

Fixed-point arithmetic is a more efficient alternative, but the programmer 

must manually control and accurately determine the range and flexibility of the 

variables as shown in Table 1. Digital signal processing falls between two 

computationally distinct categories: 

˚ Fixed point 

˚ Floating point 

These categories refer to the format used to persist and manipulate numeric 

data. Integers are represented with 16 bits and floats, as they are commonly 

called, with 32 bits. This way, floating point is fit for scientific purposes for its 

wider range, from very large numbers to extremely small ones. When it comes to 

operations that can quickly grow in complexity like exponentiation, a dynamic 

format like floating point is, again, preferred over fixed point. 

In every DSP execution a quantization step is applied which yields errors. 

This error is a gap between the actual manual computed result and the digital 

result. Quantization here is a process of rounding and or truncating a result to the 

nearest value that satisfies a given format [18]. In fixed point format the gap is 

noticeably bigger, hence floating-point format is, once again, preferred. 

Without disregarding the many great benefits of fixed-point and floating-

point DSP alike, generally the latter is meant for computationally intensive 

applications where precision is paramount. The former works great for general 

purpose, high-volume applications. However, in the next section we reveal ways 

to manually manage the gaps derived from fixed-point operations in DSP, and 

even include differential steps in the execution. 
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2.4 Q-format number notation 

The Q format is a proprietary, logical representation, or notation, of 

fractional bits and optional integer, non-fractional bits, that is fixed in advance; 

in other words, with Q-format floating numbers are treated like integers. This 

notation is intended for use in programming implementations of routines that 

manipulate numbers on hardware that does not support floating precision. Under 

strict precautions, Q format numbers can be used in automatic differentiation, 

although the memory capacity of the resulting gradient must be known in advance 

to avoid memory overflow errors. 

Q-format is an abstraction that allows to represent rational numbers that 

behave like integers by pre-defining the space required for the fixed part and the 

space required for the fractional part. Using this abstraction, it becomes easy to 

bring together the benefits of floating-point format into the fixed-point format 

and maintain a reasonably low rounding gap error. One of the caveats is to 

consider saturations, or scenarios that may lead to an output of a higher format 

range than the inputs. 

 
Figure 5: Q-format is a hybrid notation that introduces the power efficiency of integers while 

maintaining the dynamic range of floating-points 
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Consider A=64 and B=64, 2 scalars of Q-format type with a fixed part of 

size 8 and a fractional part of size 24, noted Q8.24. This is a signed format that 

can hold numbers up to 127 (one of the eight fixed part bits is used to hold the 

sign). The addition of the values yields 128, a number that this format cannot 

support. This saturation can be handled by either forcing the result to 127, 

therefore creating a gap of 1, or by choosing a larger Q-format type. 

2.5 Convolution operations in deep learning models 

Multiply-accumulate operations are among the most common in machine 

learning computation. Table 2 shows a few algorithms along with the energy and 

speed requirements for each based on MAC units. The basic idea is to utilize the 

hardware capacity to its maximum by leveraging algorithms. Other consideration 

including I/O bus speeds, pipelines, off-chip memory access or on-chip buffering, 

whichever composition of methods is best to maximally execute any given task. 
Table 2: Multiply accumulate readings for some algorithms evaluated on a DSP accelerated 

embedded ARM architecture. Energy savings (picojoules per MAC), Latency savings (MAC per 
second), and % Gains (comparison to IEEE754-2008) 

Algorithm Energy savings 
(pJ/MAC) 

Latency savings 
(GMAC/sec) 

% Gains 

ABS (Absolute) 1.33 3 11 
FFT 1.9 1.8 24 
BatchNorm 1.67 2 27 
2D Conv 1.9 2 21 
Softmax 1.2 2 16 

 

2D convolution is among the most repeated tasks in deep learning [19]. It 

is implemented in 2 major ways: the sliding-window technique or a large matrix 

multiplication. The former has come to be known simply as 2D convolution and 

is focused around a smaller 2-dimensional matrix "sliding" over the larger matrix, 

such as the pixel values of an image. Each step is a Hadamard product between 

the small matrix, called a kernel filter, and the corresponding portion of the large 

matrix. The second method converts the input map into a matrix and simply 



 

 26 

multiplies it by the kernel. Either method presents advantages and setbacks that 

fall outside the scope of this work, but we experiment on differentiation applied 

to the following algorithms: 

1) Fast Fourier Transform (FFT): research showed that a 2D 

convolution solution is the same as the Hadamard product of two FFT 

transformations followed by an inverse FFT [20]. This discovery helped reduce 

the complexity from O(n2k2) to O (n2logn) +O(n2) when assuming a square 

matrix. The approach is not optimal for small kernel sizes, which most 

convolutional neural networks use [21]. 

2) Winograd Minimal Filtering was proposed to reduce the complexity 

of convolutions with 3x3 kernels by slicing 4x4 tiles out of the input image [22]. 

Although this method is limited to a 3x3 size it is in response to a growing trend 

in the scientific community. See Figure 5 for details. 

 
Figure 6: Depiction of a Winograd convolution showing 4 matrix-to-matrix operations. 
All operations are multiplications except (3) which is element-wise multiplication. It 
means all except (3) can be computed by add/shifting operations such that the total 

number of operations is equal to the number of element-wise multiplications. This total is 
significantly less than conventional convolution operations. 
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Models used in deep learning are highly structured with particularly few 

control dependencies, sometimes borrowing from other structured concepts such 

as graph theory. FFT consists of multiply-accumulate operations that are easy to 

track in partial or complete executions [23][24]. This, in turn, enable elaborate 

synergies between hardware and software in ways that could greatly benefit 

embedded systems. FFT is also highly differentiable. 

2.6 Automatic differentiation 

Automatic differentiation (AD) is a technique for computers to 

automatically return certain values for tracking an execution in the same manner 

that differentiation in mathematic can let us track the rate of change during a set 

of calculations. AD evaluates a solution in a non-symbolic manner to avoid 

infinite differences by providing a trace that can be fully pieced together using 

the chain rule. It is powerful enough to trace even control flows, on top of the 

easier closed-form computations. 

Traces can be generated by logically finding the derivatives of a function 

with respect to some given variable set, one variable at a time. The forward mode 

AD is one algorithm that computes the primal and tangent traces, though we are 

interested in the former only. These intermediate variables are the pieces needed 

to constitute a trace of execution, which allows for “time-stamp” computation 

and provides a powerful means of arbitrarily or randomly walking back or 

resuming at whatever period of execution. The adjoint mode AD, commonly 

called reverse mode generates a trace by starting from the end of an execution 

path, which means that it is useful only when gradients are provided, most likely 

from a forward mode operation. 

Automatic differentiation is increasingly proposed as the default method 

of computing derivatives in deep learning [25]. Differentiation is a mathematical 

algorithm (see Algorithm 1) used in tensor calculus since most problems in deep 
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learning are expressed in terms multi-dimensional matrix multiplications and 

summations [26].  Software programming frameworks like TensorFlow [27], and 

PyTorch [28] are efficient in part due to their automatic computation of gradients. 

Scalar summation and multiplication are the basis of convolution operations in 

deep learning. While digital integer is associative, that is notoriously not the case 

with floating point, causing problems with parallelization and reproducibility. 

There exist solutions that unfortunately are not implemented on modern 

computers. 

One of the main contributions of this work is the use of differentiation [25] 

on the Q-format notation. Automatic differentiation is the computation of 

gradients during execution without explicit request from the user [29]. During 

model definition, the user typically defines the forward path of execution, and the 

automatic differentiation generates a backward path. 

2.7 Multiply-accumulate (MAC) 

The concept of multiply-accumulate is closely associated with digital 

signal processors, and a major hardware concept in convolutional neural 

networks. In fact, the same principles are found in systolic arrays because the 

elements of said array, formally called processing elements (PEs) are multiply-

accumulate units. Systolic arrays are hard-wired nodes of computation that are 

optimized for a unique operation that work to achieve a bigger operation. Each 

node receives data upstream, performs the operation, saves the result then pass 

the same result downstream. This sort of collaborative arrangement can be 

encoded at the transistor level, but it is also abstracted at the software level using 

existing mathematical rules such as the fast Fourier transform or the Winograd 

convolution, each offering its advantages and inconveniences based on the 

problem definition, the available computing architecture, and the requirements of 
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the users that may include environmental parameters such as temperature, 

electrical power, etc. 

 
Figure 7: Logical organization of transistors in an accelerator or CPU that shows how 
instructions are carried by multiply-accumulate units. This logical representation (a) is 
very similar to a 2-dimentional array structure, which they are primarily designed to 

manipulate. Each MAC is a set of transistors and capacitors (b) that provide gates and 
registers respectively to multiply 2 inputs and add the result to registry before passing all 

values, including the input, downstream to the next MAC. 

MAC, as shown in Figure 6 (b), is inspired by a mathematical rule used to 

evaluate polynomial functions, also called the Lagrange method or Horner’s rule, 

and has been used since the early days of computing as a method to solve said 

functions efficiently. As a reminder, this rule essentially reorganizes the function 

into a series of additions and multiplications. But because of the recursive nature 

of the rule, the number of additions and multiplications can grow exponentially 

and present a bottleneck in processing. The nodes of transistors in a MAC unit 

are meant to split these recursive steps amongst themselves and evaluate the 

function simultaneously in a tree-like structure, like a systole that expertly pumps 

a load of blood equally in all arteries during a cardiac cycle. Systolic arrays, 
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which we discuss in this thesis were named and inspired by this ingenious feat of 

nature. 

Given a degree-n polynomial, and by contrast to the monomial form or rule 

which requires at most n additions and (n2 + n) / 2 multiplications, the Lagrange 

method reduces its steps to n additions and n multiplications. 

Parallel processing has lots of approaches, but we devote the next 

paragraphs to diving deeper into systolic processing. A systolic array is a network 

of processing elements (PEs) that rhythmically compute and pass data during a 

given cycle of execution. The name is an analogy to how blood flows through 

arteries to capillaries in one heart contraction and how it is sucked out of the 

capillaries and into the veins when the heart expands. The contraction and 

expansion are also called systole and diastole respectively. In the same manner, 

data flows into the PEs in a rhythmic way before it is returned to memory. 

In a systolic array, there are many identical processors arranged in a clear 

linear or 2-dimensional structure. Each PE is connected to others and has its own 

private storage, or registry. This structure can be manufactured physically on 

hardware, or virtually as written or compiled computer code. This research uses 

computer code to design a systolic array as a 2D structure of PEs that are mapped 

to physical MAC units on the target processor. 

Regularity, reconfigurability, and scalability are some of the features of 

systolic design. The objective is to maximize throughput capacity. Multi-

dimensional image processing, video streaming, non-linear optimization, 

convolution operations or decision-based algorithms are some of the many that 

are computationally demanding and therefore can benefit from systolic design. 

Hardware and software must go hand-in-hand to remove the memory 

hierarchy bottleneck and improve performance. Using a dependence graph as a 

mapping between software and hardware makes it accessible to achieve a space-

time transformation. Mapping is 
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Figure 8:  Capillary network showing the systole and diastole. The design is called 

systolic because data flows through the chip in waves, like the way the heart pumps blood 

Systolic design methodology maps N-dimensional dependence graph to a 

lower dimensional architecture using transformations. Matrix multiplication can 

be considered a systolic structure. 

In terms of performance research has shown that systolic design can boost 

the performance-per-watt capacity of its host, depending on the instruction set the 

system host is based on. The topic of instruction set architecture falls outside the 

scope of this thesis, but the reader is encouraged to explore more on their own. 

However, typical RISC processors rely on scalar processing to perform simple 

calculations such as addition or multiplication. At high clock speeds this should 

not be an issue, but for matrix operations a better option is needed. One such 

option is called vector processing and is implemented on modern CPUs as an 

extension to the instruction set such as SSE or AVX, and on modern GPUs as 

streaming multiprocessors (SMs). Vector processing makes it possible to execute 

multiple operations in one cycle. It means that intermediate results are retained 

on the processor until the matrices are traversed in their entirety, which 

significantly reduces power demand. 
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Target host resources can be a complex endeavor which requires complete 

mastery of the hardware instruction set architecture as well as other companion 

specifications and software libraries used to access these resources. As an 

example, let’s consider GPUs processing with its proprietary CUDA library for 

manipulating the accelerators. When writing algorithms for operations that we 

want to execute on such processors, we must use the proposed way CUDA 

implements them. Like simple addition or multiplication, the library has a big 

library and even bigger documentation on the way to target their hardware. For 

general-purpose processor such as CPU, instruction set extensions such as SSE 

or AVX present standard techniques to implement vector processing, but this is 

limited because the architecture of a CPU is primarily sequential in nature. 
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CHAPTER 3 
 

PROPOSED METHOD 

To increase computing resources savings and reduce latency, we propose 

to use the Q-format notation. The Fast Fourier Transform and Winograd minimal 

filtering algorithms are evaluated on this notation. Human-in-the-loop systems 

built on the assistive intelligence concept are conditioned on fast processing and 

portability, the former being the missing feature for embedded systems. Our 

contribution provides a proof of concept for deep learning tasks on embedded 

systems by applying automatic differentiation (Figure 7) on the Q-format 

notation. 

 

Figure 9: Proposed implementation of automatic differential processing 
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3.1 Assistive intelligence 

The precipitated rise of deep learning in recent years has shifted the norms by 

which data is processed, modeled, and interpreted. In the vastly complex of 

decision making and business intelligence such as trade, finance, government, 

etc. deep learning is used to recognize patterns in spoken or written language, 

objects, people, buildings, geo-spatial scans, and many more. Deep learning is 

now actively contributing real change in control systems with such undertakings 

as autonomous vehicles, unmanned drones and ships, intelligent farming and 

more. There are so many aspects of living and doing business that could be 

presented, or even core systems issues such as privacy, encryption, or data 

compression, energy/resource planning and utilization, but that would fail to 

objectively discuss what is scoped under this thesis. 

Applications such as those highlighted above are very close to their intended 

users. The growth accumulated in the number of use-cases has followed closely 

the continued climb in mobile technology or mobile computing to the point where 

analysts firmly predict deep learning will redefine smart devices of the future. It 

would be a mistake to ignore the invasive growth of deep learning without 

noticing its insatiable need for more power and speed, two core requirements that 

defy the constrained nature of mobile computing. 

HPC has skipped over the fence predicted by Moore’s law by promoting parallel 

computing using accelerators or completely rethinking the hardware components 

that best match the needs of deep learning researchers. Domain-specific hardware 

such as Google’s TPUs have contributed to the ongoing perception that deep 

learning is an expensive undertaking requiring stellar investments that common 

mobile computing users can only consume, but not contribute to. 

With the possibility offered by these expensive accelerators, new horizons of 

possibilities have come to light where models and data growth has grown in terms 

of storage capacity in ways that essentially leave a common individual unable to 
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build or apply deep learning to their own situation, whatever that may be. But 

since we’re talking about building systems that must be consumed, in turns out 

that the consumers have strongly chosen to consume on smaller and smaller 

devices. This therefore has made it hard to ignore intelligence on small form 

factors. Across multiple domains in hardware, software and learning techniques 

there are proposals that benefit resource constrained computations. 

 This thesis is among the efforts promoting assistive intelligence away from 

high-performance computing and close to end-users to establish a platform for 

training and inference. The term “assistive” is chosen to signify the augmenting 

capability that AI offers to its non-artificial counterpart. Under the human in the 

loop (HITL) concept this term further consolidates the dependence on a human’s 

constant oversight and presence at all steps of training and inference for deep 

learning to truly be consumed, as opposed to the large industry investments that 

relegate deep learning to those who have enough capital. 

 The role of training is to generate parameters based on available, a process 

currently assumed to happen outside of a final destination, notably referred to as 

inference device. What is also assumed is that all the data needed, called ground-

truth must be available before the sequential activities generally understood by 

“training a network” are engaged. Any new data made available after training has 

been engaged is put on hold to serve in inferring or training anew. A convolution 

is a process formulation that essentially extracts representations from input data 

and increase the complexity of the representation further down the layers of the 

learning network until input data is abstracted enough to accurately estimate or 

recognize signals or patterns. 

There are multiple ways to observe intelligent abilities, whether shown by a 

human or not. The imitation game, for instance, used language to design 

observable tasks that, once executed, could lead to a measure of intelligence by 

using a human as benchmark. Understandably, using natural language ability 

alone was a limiting proposal. 
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Over the years more tests have been designed and implemented by including 

other abilities, such as speech understanding, speech, object recognition and 

more. Subject-specific benchmarks were also devised to monitor advances in 

technology from multiple fronts. 

Embedded systems offer the least requirements to host assistive intelligence, but 

heavy reliance on floating point precision makes it difficult to counter the energy 

requirements. Human-computer interaction scenarios should flow quickly and 

seamlessly. Therefore, embedded systems should be able to support the 

requirements of assistive intelligence. 

The experiments we conducted provide results towards the realization of assistive 

intelligence as a means of augmenting or assisting natural intelligence with 

artificial intelligence. 

3.2 Accelerated computing in embedded systems 

Using a kernel library such as OpenCL means critical computation that has 

been marked for acceleration is compiled to a lower machine instruction code. 

Memory management may decide which resources to use, either the ones closest 

to the processor unit or even larger ones availed by the platform itself, such as 

RAM or hard disks. Luckily this complex undertaking is easy to recognize as a 

pattern of control and data flow. Memory management can be done manually by 

the programmer or automated by a caching mechanism that prioritizes reusability 

and handles overflows. It becomes a matter of balancing, even when units 

perform in a heterogeneous way. Kernel libraries are responsible for tiling or 

splitting tensors in smaller tensors and then passing them to different caching 

orders at the same time while auto evaluating the tiling process itself.  

To make optimal use of caching, it is better to concentrate the bulk of 

operations on one or a few tiles to avoid bottlenecks on the I/O routes. Execution 

may include repetitions such as loops that cascade into other loops. In this case 
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multiple inner-loop executions for multiple tiles can be serialized to their 

corresponding outer loops in a process called fusion. Generally, caching is 

implemented by a technique referred to as SIMD, or single instruction multiple 

data, and is part of the instruction set architecture (ISA) of a computing device. 

Parallel computing addresses some processing bottlenecks by spreading 

the instructions over multiple simultaneous processors, or accelerators, to both 

speed up computation and freeing the core processor, or CPU, to focus on 

orchestration. 

Neural networks rely on parallel computing [30], constituting a major 

setback for embedded systems whose resources and energy consumption 

discourage parallelism. However, as we will demonstrate in this report, there are 

domain-specific accelerators that are tuned for convolution operations and 

consume little energy. 

There is a strong correlation between progress registered in machine 

learning, deep learning, and progress in parallel computation [31]. Deep learning 

applications, in particular tasks like computer vision, machine translation, speech 

recognition, etc. have shown that more computation leads to more energy 

consumption. Operating costs have forced deployments to a client-server 

approach because low-powered devices cannot bear the energy consumption 

demands of deep learning applications. There are increasingly more energy-

limiting options because industry trends lean towards privacy-preserving options. 

3.3 Representing and manipulating numbers 

High-performance computing (HPC) remains the de facto environment for 

many deep learning projects. Ongoing efforts are required to contextualize 

machine learning to edge devices. In the early days of modern computing, the 

energy requirements far exceeded what is experienced today. Part of the efforts 
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is therefore to continue achieving high results with minimal consumption. This 

trend is gaining more traction in machine learning and deep learning. 

Let’s say there is an unsigned fixed-point integer with a scaling of 0.01. 

Based on this assumption, the calculation 0.01 + 0.01 will naturally result in exact 

0.02. Assigning the same calculation using floating-point, 0.01 + 0.01 will result 

in 0.0199999995529651641845703125. It’s close to 0.02 but not the exact value. 

If we have a look at the value 0.01, we can see that it is neither represented in an 

exact way. This becomes clear if we look at how the value 0.01 is really 

represented in floating-point. A floating-point value is made up of 3 elements: 1 

bit for the sign, 8 bits for the exponent and 23 bits for the mantissa totaling 32 

bits. To represent a certain number, the mantissa represents a certain value with 

the exponent. 

Computer scientists are expected to understand the binary representation 

of numbers, even if most are not comfortable with its use daily. Binary integers 

are easy enough: the digits, going from right to left, represent 20, 21, 22, 23 and 

so on. So, the number 10011 is 1 + 2 + 16 = 19. 

It is less common to see floating point numbers represented in binary, but 

just as useful to understand how they work. The left of the binary point, or the 

whole part of the number, is represented like a binary integer. That is obvious. 

The more confusing part is to the right of the binary point, or the fractional part 

of the number. Here the digits represent 2-1, 2-2, 2-3, 2-4 (1 /2, 1 /4, 1 /8, 1 /16) and 

so on. So, the number 0.11011 is 0.5 + 0.25 + 0.0625 + 0.03125 = 0.84375 

The IEEE-754 along with its 2008 revision are engineering standards that 

specify how digital floating numbers arithmetic is implemented on software and 

hardware. Every iteration of the standard is meant to keep up with the current 

state-of-the-art in hardware design while pursuing efficiency and stability. These 

objectives have led researchers to investigate a finer control of exponent and 

mantissa bits to strike the right balance of accuracy and energy consumed. For 

example, numerical computations often iterate over multiple solvers where the 



 

 39 

residual error is a function of the input itself. In such cases the only way forward 

is to manually commit conversions and multi-versioning, which is a threat to code 

objectivity. Programs could potentially get off track with the intent of the 

software they are working on if they manually handle too many of these residual 

errors. Modern compilers provide many safeguards that can help mitigate residual 

errors to stay within acceptable ranges of accuracy and power consumption. 

Compilers play a crucial role that leverages efficient use of floating-point 

numbers by targeting representations supported by the host system. 

To maintain good results when manipulating digital numbers, 

programmers must design the basic arithmetic operations such as addition, 

subtraction, and multiplication, to handle the values defined in the notation on the 

host system. This requires considerations of the host architecture with details such 

as parallelism, large multipliers, leading zeros, counters, etc. Although they 

continue to be challenging engineering problems, little consideration was given 

to the importance of energy consumption and latency, especially for embedded 

systems. 

With the high availability of data and the rise of deep learning [32], power 

and speed are exacerbated with every new development in the field. Figure 9 

shows a proposed method to convert a floating-point number to Q-format 

notation. 
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Figure 10: Proposed conversion from IEEE754-2008 to Q-32 notation 

Tensor representations on computer systems have evolved with the 

remarkable achievements in computer vision tasks [31]. Tensors are represented 

as large multi-dimensional arrays of floating numbers. Although the 

manipulations do not go beyond mere summations and multiplications, the tensor 

itself as a data structure takes millions of steps to be fully traversed, often using 

multiple levels of control loops, and other repetitive instructions. Floating 
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numbers are suited for this type of computation at the expenses high energy and 

latency costs, which embedded systems cannot overcome easily. 

As shown in Algorithm 2, we propose a 32-bit width with user defined 

rounding mechanisms. The algorithm shows how a single precision floating 

number can be converted to the proposed Q-format notation in Section 4. 

Efficiency in deep learning, especially for embedded systems, is measured 

according to: 

˚ The energy consumption of the architecture for any evaluated algorithm, 

model, or computation [33]. Here we detail the specifications of the process that 

we subject to computational analysis, although we return to the convolution since 

it is the most used. The number of trips from processor to memory should also be 

accounted for. 

˚ The latency corresponds mostly to memory bandwidth [34]. This metric 

should be found in the actual run time for various executions by comparing 

timestamps at different stages of execution. 

˚ The area cost of the physical processor or chip. It is the core execution area 

spent by the instructions. 

3.4 Hardware equipment used in experiments 

We compare our configuration with different other modes available, 

including accelerators like the Intel Movidius2 Neural Stick. Popular frameworks 

like PyTorch and TensorFlow already provide most of the proposed features like 

automatic differentiation. 

Our implementations focus on embedded systems (see Fig.3) by applying 

automatic differentiation to a proprietary number format that is more adapted to 

low-powered, low-latency environments. 

Convolution has a periodic characteristic to that makes it particularly 

suitable for digital signal processing. Convolution operations take a lot of time 
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and therefore parallelism in hardware accelerators should be harnessed to shorten 

the time. Considering a typical convolutional neural network, say with 15 layers 

consisting of 9 convolutions and 6 pooling layers; It would take as less as half the 

time for the Winograd algorithm to process all the layers through a digital signal 

processor with parallelism as it would if only targeting a CPU with sequential 

computing.  DSP can only support a limited range of MACs [35] but we feature 

this type of accelerator in our experiments because it requires little power. 

Floating point format is supported in most DSP accelerators at the cost of 

increased power consumption. Integers are known to consume less energy 

compared to floating numbers. 

Consumer devices have features that address some of the challenges raised 

in this report, and therefore provide a benchmark on which to assess our 

implementations. Expressions are evaluated on these pre-packaged devices using 

Numpy and Python with hardware acceleration abstracted by the open-source 

OpenCL kernel library that is supported in all 3 devices shown in Figure 9. Some 

devices allow for limited configurability beyond a certain point for reasons that 

fall outside the scope of this work. We take advantage of the differences in 

devices to show how each supports our proposed methods. 

We compared automatic differentiation for first-order derivatives on our 

implementations against open-source alternatives mentioned in Section 2.5. We 

also focused on scalar-valued functions that allowed the use of fixed-precision 

format. 

 
Figure 11: Three embedded systems used for our experiments. More and more vendors 

continue to show interest when it comes to deep learning on small form factors 
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Thanks to programmable hardware technology such as FPGA it is possible to 

envision and implement a DSP accelerator, adapt, and apply Winograd and FFT 

algorithms to it then analyze how values are manipulated by the custom system. 

Such flexible and speedy experimentations allow for better benchmarks to be 

adopted. For example, a convolutional neural network such as YOLOv2 can be 

improved, first using a power efficient value notation such as Q-format, next by 

targeting a low-powered accelerator like the DSP, then by using the Winograd 

algorithm to reduce by half the number of multiplication operations, resulting in 

reduced processing times. A leading and often expensive accelerator can process 

a large image in 16 milli-seconds, but this low-powered version can set a new 

benchmark, lowering the time it takes to process the same image to 10 milli-

seconds. 
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CHAPTER 4 
 

EXPERIMENTS AND RESULTS 

For our experiments we designed a 32-bit implementation of the Q-format 

notation using a modified open-source code base, and we also used the 

OpenBLAS scientific calculations library as a benchmark for latency 

measurements. 

The structure of a neural network in deep learning is comprised of layers 

in a graph-like execution process. Each layer has nodes where certain 

mathematical operations take place, the result of which are passed on to the nodes 

in the following layer. A loss function is used to supervise this entire mechanism 

by applying differentiation to generate parameters, or weights, that best estimate 

a solution for the problem being solved. 

Layers, nodes, and parameters are essentially matrices, and the operations 

taking place are summations and multiplications. There are so many matrices 

multiply operations that it serves to measure the complexity of a neural network 

by simply counting the number of matrix multiplications. Technically the result 

of the multiplication is added to an accumulator, therefore a MAC, or multiply-

accumulate, is a unit of operation. MAC is used to measure the efficiency, 

expressed in pico-Joules per MAC (pJ/MAC), and throughput, expressed in Giga-

MAC per second (GMAC/sec), of our modified algorithms. We also measure the 

same for IEEE 754-2008. 

In our experiments we design tensors and implement the tensor 

manipulation algorithms discussed in Section 2.5. These algorithms are used to 

write functions common in deep learning. Since many libraries have different 

implementations of the same functions, we benchmarked our results against the 

open-source OpenBLAS commonly associated with tensor manipulations. The 

functions are: (i) 2D Convolution, (ii) Element-wise addition, (iii) absolute, and 
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(iv) product, (v) Softmax, (vi) Batch normalization, (vii) ReLU and (viii) the fast-

Fourier transform (FFT). 

We are interested to find out how efficient and performant our algorithms 

are when subjected to hardware acceleration on 3 different architecture types. 

DSP acceleration requires the least energy at the expense of limited applications. 

4.1 CUDA acceleration 

Writing kernels or assembly instructions is a recommended method for 

targeting hardware acceleration on NVIDIA graphic accelerators. Using the 

proprietary CUDA language with its custom compiler, we applied the Q-32 

notation on several algorithms. 

The results shown in Figures 10 and 11 illustrate how the same algorithms 

perform using conventional 32-bit floating numbers versus Q-format notation. 

Auto-differentiation has no increased effects as expected. 

 
Figure 12: Energy gains (picojoules per MAC operation) in comparison to IEEE-754 

floating point for similar tasks on 3 different architectures 

 

4.2 MKL acceleration 

Intel hardware acceleration takes place in the central processing unit, 

giving it a notable difference over the other options we observe in our 
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experiments. Given this particularity, we used proprietary libraries to better take 

advantage of this architecture. Figure 12 shows more details. 

 
Figure 13: Q-32 notation (dark purple) shows performance improvements over its 

IEEE754-2008 alternative (light purple) on an NVIDIA Jetson Nano 

4.3 OpenCL acceleration 

DSP acceleration is limited to signal processing and other related functions. 

Incidentally, convolutions are particularly suited for this type of acceleration. 

Using the open-source OpenCL kernel library we can target computations that 

best utilize this architecture. Of all the devices used for experimentation, DSP is 

the least power-consuming platform and therefore presents an obvious advantage. 

Our proposed method could only be fully implemented with the open-

source OpenCL library. Although supported on all 3 devices presented, only 1 

features a DSP accelerator that best improve the symbiotic performance between 

hardware and software. Refer to Figure 12 and more details in Table 3. The 

percentage gains compared our method to their floating-point alternative. 
Table 3: FPBench aggregate precision error comparative results on AM572x with C66x DSP 

(with arbitrary rounding modes) 

Algorithm Energy savings 
(pJ/MAC) 

Latency savings 
(GMAC/sec) 

Energy Gains 
(%) 

Latency gains 
(%) 

Absolute 1.33 3 11 14 
FFT 1.9 1.8 24 28 
BatchNorm 1.67 2 27 25 
2D Conv 1.9 2 21 17 
Softmax 1.2 2 16 16 
Abbreviations: ABS (Absolute), FFT (fast Fourier transform), BatchNorm (batch normalization), 2D Conv 

(2-dimensional convolution, Softmax (Softmax) 
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4.4 Advantages of using DSP hardware accelerator 

As explained in section 3 OpenBLAS is an open-source library for 

scientific computations and it contains several algorithms for linear algebra like 

matrix multiplications. The right-most column in table 2 shows how algorithms 

adapted to our proposed method compare to their OpenBLAS counterpart in 

terms of energy gains. This library makes extensive use of multiply-accumulate 

operations, giving us an ideal environment for evaluation. 

 
Figure 14: CPU acceleration for the same Q-32 notation (dark purple) still shows 

significant gains over IEEE754-2008 (light purple) on Intel NCS2. 

We apply our evaluations on 3 devices with the use of Q-format notation 

for auto-differentiation. For similar tasks, we notice that domain-specific tasks 

that target DSP acceleration have a clear opportunity to spend less resources 

without sacrificing performance. Q-format introduces the missing feature for 

low-powered intelligent assistants unless IEEE 754-2008 addresses the design 

gaps highlighted in previous sections. But as Table 3 shows, Q-format aggregate 

precision error (or adjustment error) is slightly reduced from IEEE754-2008 

regardless of host architecture. Rounding-up or truncating is a common operation 

in digital arithmetic. FPBench is a benchmark used to evaluate precision errors in 

floating-point digital arithmetic. 

We compare the algorithms on throughput and latency. We also show the 

quality gains on replacing floating numbers with Q-format notations. To check 
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for errors, we manually re-write some arbitrary algorithms to handle our proposed 

notation, which means we define the operands logic for add and multiply. 

 
Figure 15: DSP accelerated algorithms show best overall results because of domain-

specific environment for convolutions. In dark purple: Q-format with auto-differentiation. 
In light purple: the IEEE 754-2008 results under similar conditions. 

We divided our experiments into multiple phases for as many devices as 

we have. Each phase measures energy and speed, along with precision error for 

several algorithms and the energy gains compared to floating numbers. 

Our sample implementation uses a 32-bit Q-format equivalent to IEEE 

754-2008 single floating number. Other bit schemes can be used. Conventionally 

switching from a single floating number to a double floating number is used to 

further increase the precision of operations at the expense of computing 

resources. When representing images as 2D matrix with Q-format notation, 

convolution operations benefit from the reduced errors caused by rounding and a 

few other known limitations in the IEEE 754-2008 standard. 
Table 4: FPBench aggregate precision error comparative results on AM572x with C66x DSP 

(with arbitrary rounding modes) 

Operation Q-32 roundup 
(e-23) Q-32 truncate (e-23) 

Float-32 
round-to-nearest 
(e-23) 

Sum 6.9 7.1 7.2 
Logexp 6 6.3 6.2 
matrixDet1 11.7 13.7 13.9 
matrixDet2 11.8 14.1 14.4 
Sqrt_add 9.9 10.3 11 

Abbreviations: Logexp (exponential logarithm), matrixDet1, 2 (determinant matrix 1, 2), Sqrt_add (addition 
of square roots) 
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The proposed method to improve the convolution can be interpreted under 

the lens of the systolic array concept. Matrix multiplication in Figure 14 and its 

execution in Figure 15 present similarities, at least visually, between a 2D matrix 

layout and an array of MAC units. Matrix multiplication can be considered a 

systolic structure because one matrix is fed one row at a time while the other is 

fed a column at a time. Values are passed into MAC units until each unit has seen 

a whole row or column. At this point the result can be passed back to memory 

and the structure can proceed with its flow down and across the input arrays. 

By comparison, a CPU differs from a systolic design in its per-watt 

performance capacity, which is a “by design” constraint since CPUs are general-

purpose processors. Any processor featuring a systolic design is not general-

purpose, but its limitation is also its raison d’être. To implement its generality, 

CPUs store values in registers, and a controller tells the ALU (arithmetic logic 

unit) which register to load, the operation to perform (addition, multiplication, 

etc.) and the register into which to store the result. A program is made of a 

sequence of such instructions to read, operate, then write but each step has a cost 

in resources such as time, energy, and storage. 

Systolic arrays typically reduce the number of reads by reusing one 

register’s value multiple times before completing a read-operate-write cycle. As 

discussed in 2.5 the Winograd algorithm has limits with regards to the input size. 

Our implementation is able to chop an input matrix into equal size sub-matrices 

and distribute them among all available registers to limit the off-chip shared 

memory access. 

For as long as the critical path of the proposed convolution algorithm is 

taking place there is reduced trips outside of the acceleration chip, and the 

resulting effect is reflected in the results (Figures 11, 12, 13, and Table 4). 
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Figure 16: Matrix multiplication rule 

The other reason is largely attributed to the way our algorithm leverages 

chip architecture to optimize how input is fed to the accelerator. There are 2 ways 

input is fed: one is sequentially which may present bottlenecks and leave certain 

portion of Pes waiting until they are activated depending on the size of the input; 

the other essentially fills all the input registers of the MAC units in a systolic 

manner, which means that the critical path of the execution is not blocking or 

forcing processing to wait for activation. 

 
Figure 17: MAC units are activated and passing input downstream in a manner which fills 

the blue array diagonally. From the first input (top-left square) down to the last unit 
(bottom-right square) 

Q-format notation has the same energy requirements as integers which are 

less then floating-point requirements by design. By proposing this notation, we 
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provide a possibility to lower the energy requirements without affecting the 

accuracy of models built because of this thesis proposals. 

Systolic arrays ensure the entirety of the input is kept on the processing 

unit’s internal registers and buffers, and that only the result is put back into shared 

memory or persisted to disk. Traditionally only chunks of the input would be fed 

to the processor, one at a time, resulting in unnecessary back-and-forth exchanges 

that cause a heavy toll on the energy consumption. 
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CHAPTER 5 
 

CONCLUSION AND FUTURE WORKS 

In this work we propose an alternative notation that mimics integer format. 

We are interested in analyzing the gains this replacement has on embedded 

devices in terms of power consumption and latency. 

Our evaluation shows gains in throughput and latency on a few common 

algorithms used in deep learning. We show up to 21% gain in energy savings and 

up to 22% reduced latency while maintaining optimal output error (2.1% average 

relative error). Our measurements are based on multiply-accumulate (MAC) with 

throughput, or performance expressed in the number of MACs per second, and 

energy in pico-Joules per MAC. Processor manufacturers publish theoretical 

numbers for speed, usually expressed in FLOPS (floating operations per second) 

which we based our estimated latency reduction on. 

Assistive intelligence is a growing field provides interfaces where 

continuous input is expected throughout execution. The foundations of 

computing architecture can be revisited without stalling the progress achieved. 

Hybrid hardware-software tinkering is open to improvement and better numerical 

approximations. Support systems and feedback loops, especially in human-in-

the-loop systems, benefit from the mobility and low-power requirements of 

small-factor computing architectures, and it will only serve to achieve more 

research in areas such as healthcare, self-driving cars, or robotics. In specific 

applications like diagnosing cancer from MRI scan data can only assist, not 

replace, the experience of a professional. A handy assistant is one that is always 

within reach. 

To lower the cost of implementation, DSP processors are designed for use 

with only integers. Q-format is a notation that allows to mimic floating numbers 

by using integer types. By manipulating the binary notation of the fractional and 

exponent parts of a decimal number, we can spoof the processor into supporting 
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digital floating number arithmetic. Depending on where the binary point is 

placed, a given number can be interpreted as several different values. For 

simplicity, we generally rely on the programming language being used to 

maintain a fixed binary point. In the case of Q-format notation that means 

explicitly stating how many bits hold the exponent, and how many hold the 

mantissa. For example, to specify that we are using 3 bits for the exponent part 

and 4 bits for the mantissa, we define a Q-format notation as Q3.4. Although this 

notation is only defined once and used for all values in the expected operations, 

the choice of bits is a strategic one to avoid any possible overflows or under-

utilization that may cost in terms of resources down the execution pipeline. 

Adding two N-bits Q-format numbers may result in a N+!-bits value. Any such 

possibilities must be supported and safeguarded when designing the notation. 

Once set, a Q-format must be maintained. 

Q-format notation demands a manual overhaul in the number notation 

design, which require advanced skills in several fields in computer science and 

artificial intelligence. Researchers are encouraged to spend more of their skills in 

lowering the barrier of entry for all people to join this field. That is a much better 

endeavor to making deep learning an affordable problem-solving toolkit. 

A major consideration in future works is to fully implement a task such as 

object classification or pose estimation using the proposed methods and 

comparing whether the accuracy of the models generated maintain state-of-the-

art results with minimal consumption. 

Proven mathematical operations like the Hadamard product have helped 

improve convolutional neural networks in the context of digital arithmetic. Others 

have proposed to replace multiplications with additions to reduce the load on the 

processing unit or holding critical operations on the processing unit until a result 

is obtained to reduce the travel between memory and processor. In point 2.1 of 

the literature review we discuss how matrix to matrix multiplication has always 

been a difficult operation on computers. We also show that much has been done 
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to make it easier, highlighting key benchmarks and achievements that are 

continuously contributed by mathematicians and computer scientists. What we 

don’t mention is that most of these achievements consider matrix that are too 

large for common computers to handle. The algorithms designed to break the 

records we highlight are called galactic algorithms because they are too large to 

handle on current computers. The Winograd algorithm however is not in that 

category, which means that its benefits are directly accessible to not only high-

performance computing, but to embedded systems as well. 

Optimizing algorithms is never a completed task since the host systems 

they rely on evolve, and therefore opportunities for improvement arise. In some 

cases, FFT-based convolutions can be faster than Winograd minimal filtering, 

especially since the latter is only limited to small kernels (3x3 sizes). We use both 

methods to make room for as many use cases as possible for the next phases of 

our experiments, when we put into consideration the accuracy of the results 

achieved using our proposed method. We can do so by completing a model 

architecture that takes in values in Q-format notation, manipulates them and 

outputs a score or some type of metric that we can compare with existing floating-

point based models, such as the open-source collection of models compiled by 

the TensorFlow Lite community. 
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