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Abstract 

Language and writing play an irreplaceable role in human communication as natural 

products of civilization. As a branch of natural language processing (NLP), natural 

language generation (NLG) has received extensive attention since its inception. In the 

process of human communication, NLG and natural language understanding (NLU) are 

the two most essential components. In modern human-computer interactions, NLG is 

also a core functional requirement of machines. As an automated process that generates 

human-readable text from input information with specific interaction goals, NLG 

employs different inputs for different tasks. From the perspective of input information, 

NLG can be classified as text-to-text, data-to-text, multimodality-to-text, or zero-to-

text, also known as unconditional text generation. Because no input is provided in the 

task of unconditional text generation, the model is required to generate natural language 

text freely. The Generative Adversarial Network (GAN) for text is a standard model for 

unconditional text generation tasks. 

Initially proposed in 2014, GANs have been widely used in Computer Vision (CV) 

tasks. However, the development of GANs for text generation has progressed slowly. 

On one hand, the guidance information passed by a discriminator to the generator is 

generally extremely weak. On the other hand, gradients cannot be transferred 

appropriately between the generator and discriminator, which prohibits normal 

gradient-based training. In response to these issues, the key contributions of this thesis 

are summarized below. 

(1) Compared with the conventional loss function, the Wasserstein Distance can 

provide more information to the generator. We proposed a new architecture based on 

RelGAN and WGAN-GP, dubbed WRGAN. The discriminator network structure of 

WRGAN uses the 1-dimensional convolution of multiple kernel sizes and residual 

modules. Correspondingly, we adjusted the network’s loss function with the gradient 

penalty Wasserstein loss. This thesis provides and analyzes the experimental results on 
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multiple datasets and the influence of hyperparameters on the model. The experiments 

demonstrated that our model outperformed most current models on real-world data. 

(2) We improved TILGAN for unconditional text generation by refactoring the 

generator. In short, we implemented Multi-head Self-Attention to replace the linear and 

BN layers to endow the generator with superior text generation capabilities. Our model 

consists of three components: a Transformer autoencoder, a Multi-head Self-Attention-

based generator, and a linear discriminator. In the transformer autoencoder, the encoder 

component encodes the distribution of real samples, whereas the decoder decodes real 

or generated sentence vectors into text. The loss functions for autoencoder and GAN 

are cross entropy and KL divergence, respectively. On the MSCOCO and EMNLP 

WMT News datasets, the proposed model has achieved a higher BLEU score than 

TILGAN. Our ablation experiments also demonstrate the effectiveness of the proposed 

generator network for the unconditional text generation. 
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Chapter 1 

 Introduction 

1.1  Motivation 

 Natural Language Generation (NLG) is essential research in the field of Natural 

Language Processing (NLP) [1]. NLG system can be defined as generating readable 

textual representations using information that is not limited to textual forms as input. 

NLG can be regarded as the inverse of Natural Language Understanding (NLU). The 

NLU system needs to clarify the meaning of the input sentence and generate a machine 

expression language. The goal of the NLG system is how to translate concepts into 

readable language. The working process starts from the abstract concept level and 

generates text by selecting and executing specific semantic and grammatical rules [2].  

Achieving high-quality NLG is a vital sign of the gradual maturity of artificial 

intelligence technology. NLG technology has a wide range of applications, such as 

intelligent question answering, human-machine dialogue, machine translation, 

automatic generation of advertising words, and automatic news generation [3]. NLG 

reduces the difficulty of human-machine dialogue. It has a huge impact on our daily life 

and work, and has become a typical project in both academia and industry. Text 

generation systems such as automated insights, narrative science, and the “Xiao Nan” 

and “Xiao Ming” robots have been put into use. With the development of technology, 

many excellent models and extensive cutting-edge research have emerged in the field 

of NLG, but there are still many problems to be solved. For example, natural language 
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is not standardized. Although we can observe some basic rules, natural language is still 

too flexible. The same meaning can be expressed in many ways. This causes difficulty 

for NLG, whether the aim is to understand natural language based on rules or learn the 

inherent characteristics of data through machine learning. Thus, for NLG systems, 

computational methodologies need to be continuously developed and optimized for 

more natural and smooth text generation. 

In general, NLG systems are an essential research field in NLP and still have many 

application prospects and research values. For this reason, we chose NLG content for 

our research.  

1.2  Background 

NLG is an essential research branch in NLP with a long history. In the 1950s, NLG 

was first proposed as a sub-problem of machine translation [4]. In the 1970s, NLG 

began to generate simple explanations for expert systems and to write natural language 

answers for the results returned by database queries. In the early 1980s, NLG gradually 

emerged as an independent research field within NLP, and researchers began to explore 

its unique concerns and research questions. In the 1980s and 1990s, researchers 

proposed statistical language models and began to describe language and characters 

from the perspective of probability and statistics. Since then, the era of statistical 

language models has already started. In 2003, Bengio [5] proposed a feedforward neural 

network, which changed the modeling ideas of traditional language models. In 2013, 

due to the proposal of the word vector [6], language modeling based on the neural 

network began to appear in large numbers. Today, language models based on neural 

networks have dominated NLG methods. 
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1.2.1 Language Models  

NLG is broadly defined as the automated process of generating human-readable 

language text from given input information under a specific interaction goal. NLG has 

different inputs depending on the task setting, but the output must be readable natural 

language text. 

According to different generation ideas, NLG models can be roughly divided into the 

traditional pipeline [7] and the end-to-end [8] models based on neural networks. 

(1) The pipeline model includes multiple independent steps, and the data are processed 

by each module to obtain the final output. The classic pipeline model is mainly divided 

into six steps [9]. The first step is content determination [10]. The purpose of this step 

is to determine what information should be included and excluded in the generated text. 

For example, in a ticket booking system, the information about the ticket is obtained by 

querying the ticket. This information is the content that should be included in the output 

statement. The second step is text structure [11], which aims to organize the order of 

the text reasonably or reasonably arrange which information is displayed first and which 

information is displayed later. The third step is sentence aggregation [12]. Not every 

piece of information needs to be expressed in one sentence. The function of this step is 

to cluster the information and express the information that can be combined in one 

sentence. Through the first three steps, it is determined how many sentences need to be 

generated, what information each sentence contains, and in what order the information 

is expressed. The fourth step is grammaticalization [13], which introduces some 

connecting words to facilitate the formation of a sentence later. The fifth step is 

reference expression generation [14], and the purpose is to select words related to the 

content domain for modification and adjustment. At this moment, each sentence is still 

a collection of words and does not constitute a real sentence. So the final step is to 

formally convert the previous set of sentences into a complete well-structured sentence 

[15, 16]. Note that the model proposed in a 2002 paper called plan-based NLG [17] 

simplifies the text generation process into three stage: sentence plan generation, 
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sentence plan reranking, and surface realization. In the sentence plan generation stage, 

the sentence planning tree is generated, each node is an action of the dialogue, and the 

sentence planning tree is converted into the final sentence, which is to be generated in 

the surface realization stage. Although plan-based NLG simplifies the generation stage, 

it still has the disadvantages of pipeline models. The quality of the results of the 

previous step directly affects the next step, thus affecting the results of the entire 

training. In addition, this model requires a great investment of manpower and time for 

the manual annotation of specific fields, and it is difficult to extend to new fields. 

(2) End-to-end models mainly refer to the NLP model developed based on neural 

networks. When end-to-end models handle the natural language standardization 

problem, they no longer divide the sub-problems manually, but include the intermediate 

operations in the neural network, eliminating the need for costly and error-prone data 

labeling. End-to-end models increase the overall fit of the model and improves the 

efficiency of the system in solving problems by reducing manual preprocessing. In 

recent years, the NLG field has generally used the end-to-end method. However, the 

end-to-end NLG generation framework lacks both the explicit utilization of linguistic 

knowledge and the effective means to control the quality of the generated content, 

which is not suitable for situations where data are lacking. The advantages and 

disadvantages of excellent text generation models in recent years and a brief 

introduction of each model are listed in Table 1.1. 
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Table 1.1 The excellent text generation models in recent years. 

Models Introduction 
Advantages and 

Disadvantages 

RNN [18] 

The Recurrent Neural Network (RNN) passes 

the sequence information of each item 

through the feedforward network. It uses the 

output as the input of the next item in the 

sequence, and each item stores the previous 

step’s information. 

A: Get sequence 

features of input 

data. 

D: Cannot generate 

long sentences and 

parallel compute. 

LSTM [19] 

The Long Short-Term Memory (LSTM) 

networks and their variants can solve the 

vanishing gradient problem and generate 

longer sentences. They handle the 

dependencies in long sequences of inputs 

more accurately. 

A: Solve the 

gradient 

disappearance 

problem and get 

longer sentences. 

D: Cannot parallel 

compute. 

Seq2Seq 

[20, 21] 

The Sequence-to-Sequence (Seq2Seq) is 

generally based on the encoder-decoder 

framework. It was proposed to solve the 

problem that most sequence lengths are not 

equal. For example, in machine translation, 

the source language sentences and the target 

language often do not have the same length. 

The model is good at using the sequence’s 

global information, synthesizing the 

sequence’s context, and generating another 

corresponding representation sequence. 

A: Handling 

unequal length 

sequences. 

D: Exposure Bias 

and decoder often 

fails to align 

encoder. 
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VAE [22] 

The Variational Autoencoder (VAE) is a 

popular method for unsupervised learning of 

complex probability distributions. The most 

significant feature of VAE is to imitate the 

learning and prediction mechanism of the 

automatic encoder and to encode and decode 

between measurable functions. 

A: Can learn latent 

propertiesand 

construct new 

elements. 

D: Tend to produce 

more ambiguous 

data. 

Transformer 

[23] 

The Transformer consists of a set of encoders 

and decoders. The job of the encoder is to 

process the input of arbitrary length and 

generate the encoding, and the job of the 

decoder is to convert the encoding to words. 

The Transformer uses the Self-Attention 

mechanism to obtain the relationship between 

all other words and generates an encoding for 

each word.  

A: Directly capture 

the relationship 

between all words 

in a sentence 

(global 

information). 

D: Insensitive to 

word position 

information. 

ELMo [24] 

The Embeddings from Language Models 

(ELMo) does not use a word corresponding 

to a fixed vector but implements a sentence 

or a paragraph into the model. The model 

infers the word vector corresponding to each 

word according to the context. The ELMo 

adopts a typical two-stage process: The first 

stage is to get the pre-training language 

model. The second stage is to extract the 

word embedding of each layer corresponding 

to the word from the pre-training network as 

a new feature to add to downstream tasks. 

A: Understand 

polysemy 

accurately. 

D: Still using 

LSTM. 
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GPT [25-

27] 

The Generative Pre-Training(GPT) is a 

typical pre-training and fine-tuning two-stage 

model. The pre-training stage uses massive 

text data to acquire linguistic knowledge 

through unsupervised learning. In contrast, 

fine-tuning uses the training data of 

downstream tasks to obtain models for 

specific tasks. 

A: Perform very 

well on multiple 

NLP tasks. 

D: Huge amount of 

parameters, difficult 

to fine-tune. 

BERT [28] 

The Original BERT is not suitable for NLG 

tasks. However, a model called MASS 

combined the GPT model to form an 

encoder-decoder framework in 2019, 

supplemented by sophisticated pre-training 

techniques. It performed well in some NLG 

tasks. MASS randomly masks a contiguous 

segment of the sentence and then generates 

the segment by predicting through the 

encoder-attention-decoder framework. 

A: Unified pre-

training framework 

(including GPT and 

Bert). The decoder 

has strong language 

modeling ability. 

D: Large amount of 

calculation. 

1.2.2 Tasks in Natural Language Generation  

According to different task requirements and different input formats, NLG can be 

roughly divided into text-to-text generation, data-to-text generation, multimodality-to-

text generation, and unconditional text generation. The different generation tasks and 

their corresponding inputs are listed in Table 1.2. 

Table 1.2 Tasks of text generation and corresponding inputs. 

Tasks Input 

Text-to-text generation Text sequence 

Data-to-text generation Structured data 
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Multimodality-to-text generation Image,video and voice data 

Unconditional text generation Random noise 

(1) Text-to-text generation can be divided according to different tasks: document 

summarization [29], sentence compression [30, 31], sentence fusion [32, 33], 

and paraphrase generation [34, 35]. Document summarization can be divided 

into extractive summarization [36] and generative summarization [37]. 

Extractive summarization is relatively simple, and usually uses different 

methods to evaluate document structural units (e.g., sentences and paragraphs), 

assign a certain weight to each structural unit, and then select the most 

important structural units to form a summary. The extractive summarization 

method is widely used, and the structural unit usually is a sentence. Generative 

summarization methods usually need to use NLU technology to analyze the 

grammar and semantics of the text, fuse the information, and use NLG 

technology to generate new summary sentences. Current document 

summarization methods are mainly based on sentence extraction [38]. The 

sentence in the original text is used as a unit for evaluation and extraction. The 

advantages of this method are that it is easy to implement and can ensure good 

readability of the summary sentence. This type of method mainly includes two 

steps: the first is to calculate or sort the importance of the sentences in the 

document, and the second is to select important sentences and combine them 

into a final summary. There are also some researchers who study generative 

summarization [39]. They usually represent the original document as a deep 

semantic form, then conduct an analysis to obtain a deep semantic 

representation of the abstract, and finally generate a summary text from the 

deep semantic representation of the abstract, such as Abstract Meaning 

Representation (AMR) [40]. Such methods are relatively complex, and the 

current methods are still in the exploratory stage. The performance of 

generative summarization methods is unsatisfactory. Sentence compression 
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and sentence fusion techniques are generally used in text summarization 

systems to generate summaries with more compact information. Sentence 

fusion technology combines two or more related sentences with overlapping 

content to obtain a sentence. According to different purposes, one type of 

sentence fusion only retains the common information in multiple sentences and 

then filters irrelevant details. The other type of sentence fusion only filters out 

multiple sentences. The paraphrase generation technology generates a new 

paraphrase text by rewriting the given text. Generally, the output text and input 

text have the same mean but different expressions.  

(2) In the task of data-to-text generation, the knowledge graphs [41] are widely 

used in NLP since 2020, there are many NLG methods that utilize a series of 

Resource Description Framework (RDF) triples, AMR graphs, or a series of 

table cells. They can generate coherent human-readable text such as 

instructions or questions. Mei [42] et al. added the aligner to select important 

information based on the encoder-decoder model, and proposed an end-to-end 

model for generating text from data based on deep learning. Song [43] et al. 

applied a slightly modified Transformer encoder that explicitly handles surface 

form relationships and then added two autoencoder losses to the standard 

language model losses, which are specifically designed to capture and 

linguistically structure the graph. 

(3) There are also different tasks in multimodality-to-text generation, such as 

image caption, story generation, and visual question answering (VQA) [44]. On 

the image caption task, Vinyals et al. use an encoder-decoder-like model for 

generation. Xu [45] et al. further added the Self-Attention mechanism. Huang 

et al. proposed the task of generating stories for image sequences, and then 

provided three levels of datasets: descriptive text for a single image, stories for 

a single image, and stories for a sequence of images [46]. While VQA is a task 

that combines Computer Vision (CV) and NLP, given a picture and a question, 



 

10 

 

INTRODUCTION                                                                10 

its goal is to infer the correct answer to the question from the visual information 

of the picture. Shih [47] et al. proposed a model based on the Self-Attention to 

encode pictures with VGG, use the word vector to average the problem, and 

finally generate the answer through a two-layer network. Wu [48] et al. 

proposed integrating image caption models and external knowledge bases to 

generate answers. 

(4) On the task of unconditional text generation, the sequence GAN (SeqGAN) [49] 

created a mode of Generative Adversarial Network (GAN) [50] in text 

generation. The maximum-likelihood augmented discrete GAN (MaliGAN) 

[51] proposed a new loss function of the generator to replace the Monte-Carlo 

[52] tree search (MCTS) and was found to obtain better results. The margin-

ranking GAN (RankGAN) [53] changed the original discriminator from a 

binary classification model to a sorting model. The long-text generation via 

adversarial training with leaked information (LeakGAN) [54] leaked the 

characteristic information of the high-level discriminator to the manager 

module to guide the generator to generate long text. The masked-text GAN 

(MaskGAN) [55] used the Actor-Critic algorithm in reinforcement learning 

(RL) to train the generator and then uses maximum likelihood and stochastic 

gradient descent to train the discriminator. The diversity-promoting GAN (DP-

GAN) [56] was proposed by focusing on diversified text generation. The author 

improved the discriminator based on SeqGAN and proposed a discriminator 

based on the language model. The generating sentimental texts via mixture 

adversarial networks (SentiGAN) [57] has multiple generators and a multi-

class discriminator. Multiple generators are trained simultaneously, aiming to 

generate text with different emotion labels without supervision. For a detail 

introduction to the model of unconditional text generation, refer to Chapter 2. 
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1.3  Research Objective and Content 

1.3.1 Improved RelGAN with Wasserstein Loss  

In this study, we proposed a new architecture based on RelGAN [58] and WGAN-

GP [59] named WRGAN. We rebuilt the discriminator architecture with the 1-

dimensional convolution of multiple kernel sizes and residual modules [60]. 

Correspondingly, we modify the generator and discriminator loss functions with the 

gradient penalty Wasserstein loss. Then, we made the discriminator and the generator 

with relational memory coordinated by Gumbel-softmax relaxation to train the GAN 

model on discrete data. The paper provided the experimental results on multiple 

datasets and analyzed the influence of hyperparameters on the model. The experiments 

demonstrated that our model outperformed most current models on real-world data. 

1.3.2 Improved Transformer-Based Implicit Latent GAN 

In this study, we improved the transformer-based implicit latent GAN (TILGAN) [61] 

for unconditional text generation by refactoring the generator. In short, we use Multi-

head Self-Attention [62] to replace the linear and BN layers to endow the generator 

with better text generation capabilities. Our model consists of three components: a 

Transformer autoencoder, a Multi-head Self-Attention-based generator and a linear 

discriminator. The encoder in the Transformer autoencoder encodes the distribution of 

real samples. The decoder decodes real or generated sentence vectors into text. The loss 

functions for autoencoder and GAN are cross entropy and KL divergence, respectively. 

On the MSCOCO [63] and EMNLP WMT News [64] datasets, the proposed model has 

achieved a better BLEU [65] score than TILGAN. Our ablation experiments also 

verified the effectiveness of the proposed generator network for unconditional text 

generation. 
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1.4  Organizations 

This thesis mainly investigates the background and research status of the NLG task 

and then proposes some unconditional text generation approaches for addressing some 

existing challenges. The organizational structure of this thesis is as follows: 

Chapter 1 discusses the motivation and background of the NLG task and introduces 

the main research contents and organizational structure of this thesis. 

Chapter 2 introduces related works on the unconditional text generation task. This 

chapter first introduces GAN, GAN for text generation methods, and problems of GAN 

for text generation. Then, the research status and progress of unconditional text 

generation technology in recent years are reviewed. 

Chapter 3 introduces the proposed model architecture based on RelGAN and 

WGAN-GP, describes the training process, gives the results of the model on multiple 

datasets, and explores the influence of hyperparameters for the model. 

Chapter 4 introduces the improved model based on TILGAN, describes the training 

process, and gives the results of the model on multiple datasets. 

Chapter 5 concludes the thesis and discusses future works. 
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Chapter 2 

 Related Works 

2.1  Unconditional Text Generation Models 

According to different modeling ideas, unconditional text generation models can be 

roughly divided into three categories: the Generative Pre-Training (GPT) models based 

on Transformer, the Variational Autoencoder (VAE) models, and the Language GANs. 

GPT is a typical pre-training and fine-tuning two-stage model. The pre-training stage 

uses massive text data to acquire linguistic knowledge through unsupervised learning, 

while fine-tuning aims to use the training data of downstream tasks to obtain models 

for specific tasks. The structure of the GPT model fulfills two important points: one is 

to use Transformer as a feature extractor, and the other is to use a one-way language 

model. With the advancement of technology, the GPT model has developed to the third 

generation, namely GPT-3. In addition to common NLP tasks, GPT-3 achieves 

impressive performance on many difficult tasks. Beyond its excellent performance, 

GPT-3 is also huge. GPT-3 is the largest Transformer model released to date in NLP, 

with 175 billion parameters, 45 TB of training data, and up to $12 million in training 

costs. 

As a generative model comparable to GAN, VAE combines the advantages of 

Bayesian methods and deep learning. It has an elegant mathematical foundation, a 

simple and easy-to-understand architecture, and satisfactory performance. The original 

VAE model framework is shown in Figure 2.1. 
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Figure 2.1 The original VAE framework. 

The ability of VAE to extract disentangled latent variables also makes it more 

meaningful than general generative models. VAE is a kind of latent variable model. 

The basic idea of the autoencoder is to transform a set of real samples into an ideal data 

distribution through the encoder network. Then a set of generated samples is obtained 

by passing a decoder network. An autoencoder model is obtained when the generated 

samples are close enough to the real samples. VAE has achieved excellent results in 

multiple NLP tasks, and similar ideas to VAE can also be seen in language GANs. 

Both GAN and VAE are deep generative models that can generate data with a 

complex distribution from random noise. However, the data are generated from 

different perspectives. They construct different loss function forms to measure the 

generated data. For VAE, the researcher believes that the data 𝑥 are generated by a 

latent variable 𝑧, and 𝑧 contains the features and information of 𝑥. For GAN, the 

researchers believe that the complex distribution of 𝑥 can be obtained from a simple 

distribution 𝑝(𝑧) through a series of transformations, where 𝑧 is random noise and 

has no physical meaning. 

Traditional language models use a combination of teacher forcing and maximum 

likelihood in the training process. However, the traditional language models have some 

problems that cannot be ignored while training. Using the GAN method can effectively 

alleviate the problems of repetitive, short, and meaningless generation caused by the 

traditional language models based on the maximum likelihood estimation objective 

function. Therefore, many unconditional text generation models choose GAN-based 

methods. 
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2.2  GAN for Text Generation 

 GAN is an unsupervised learning method that was proposed by Ian Goodfellow and 

his colleagues in 2014. With the improvement of the theory, GAN has shown its great 

potential gradually. Moreover, GAN has produced many fancy CV applications, such 

as image generation [66], image conversion [67], style transfer [68, 69], and image 

restoration [70]. GAN can be leaned in an unsupervised way by letting two neural 

networks play against each other. GAN includes a generator and a discriminator, where 

the goal of the generator is to generate fake samples that can fool the discriminator. The 

goal of the discriminator to distinguish between the real and fake samples. In the end, 

the generator and the discriminator reach a Nash equilibrium in the process of playing 

against each other [71]. In this way, learning GAN models can essentially be thought 

of as a minimax game, with the objective function given by:  

𝑚𝑖𝑛 
𝐺

𝑚𝑎𝑥
𝐷

 𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))],  (1) 

where 𝑥 represents the real sample, and 𝑧 represents the random noise. The goal of 

the generator is:  

𝑎𝑟𝑔 𝑚𝑎𝑥 𝑃 (𝐷(𝐺(𝑧))),                       (2) 

and the goal of the discriminator is:  

𝑎𝑟𝑔 𝑚𝑎𝑥 𝑃 (𝐷(𝑥)) − 𝑃 (𝐷(𝐺(𝑧))),                  (3) 

In the field of CV, GANs have rapidly become the hotspot in recent years owing to 

their superior performance [72]. However, the development has been relatively slow in 

NLP. There are some problems when extending the idea of GAN to text generation. 

The two main problems are detailed below. 

(1) When GAN faces discrete data, the discriminator cannot pass the gradient to 

the generator through backward propagation. In Equation 2, 𝐺(𝑧) generates 

samples through the 𝑎𝑟𝑔 𝑚𝑎𝑥, which is also called sampling [73]. Because 

this operation in text generation is a non-derivable process, gradients cannot 

transfer properly between the generator and the discriminator, which prohibits 

the normal gradient-based training [74]. For example, we assume the 
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vocabulary vector is [“𝑝𝑒𝑛𝑔𝑢𝑖𝑛”, “𝑐𝑎𝑡”]  and the vocabulary vector 

corresponds to the vector [𝑥0, 𝑥1] = [1,0] . With the 𝑎𝑟𝑔𝑚𝑎𝑥(𝑥0, 𝑥1) , we 

always obtain the same word “𝑝𝑒𝑛𝑔𝑢𝑖𝑛,” even if the value of 𝑥1 increases 

from 0 to 0.999. In this case, the gradient of 𝑥𝑖 is always equal to 0. 

(2) The training process of GAN is unstable. We need to balance the generator and 

the discriminator carefully. Moreover, the generation task is much more 

complicated than discrimination. Simultaneously, the discriminator’s guidance 

to the generator is too weak [75], and the direction contains little information. 

For the generator, it can only obtain a “true or false” probability in return. 

Furthermore, the discriminator may even “cheat.” Because the real sample uses 

one-hot vectors, the discriminator does not need to judge whether the 

generating data distribution is closer to the real data [76]. It just needs to 

identify whether only one item of the current data is 1, and the rest iterms are 

all 0. 

For the above problems, text GANs offer some effective solutions, such as RL for 

sequence generation, Gumbel-softmax relaxation [77], and Wasserstein Distance [78]. 

At present, GANs for text generation have been able to generate fluent texts. GANs are 

often used in unconditional text generation. In some tasks that need to control the 

generation direction, such as machine translation, dialogue generation, text 

summarization, GANs do not achieve excellent performance yet. Therefore, this thesis 

only involves unconditional text generation. The most wildly used of the evaluation 

datasets used for unconstrained text generation include the COCO Image Captions [79], 

EMNLP WMT, Chinese Poems [80], MSCOCO. 

2.2.1 Reinforcement Learning for Sequence Generation  

For the above problems, the first solution is the combination of GAN and RL for 

sequence generation [81].  

For example, SeqGAN is proposed by Yu et al. with the RL algorithm. This solution 

deals with non-differentiable problems by considering the RL algorithm. For the 

discriminator’s difficulty in evaluating incomplete sequences, the author proposed to 
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draw on the idea of the MCTS, which can evaluate non-complete sequences at any time. 

The model structure is shown in Figure 2.2.  

 

Figure 2.2 SeqGAN structure. 

In Figure 2.2, 𝐺𝜃  represents the generator and 𝐷𝜑  represents the discriminator. 

The policy network is regarded as 𝐺𝜃. The existing node is called the current state, and 

the next node to be generated is called action. Because 𝐷𝜑 needs to score a complete 

sequence, the MCTS completes the action sequences for obtaining the rewards. 𝐷𝜑 

generates rewards for these complete sequences, and sends them back to 𝐺𝜃.  

Generally, the authors suggest using the RNN or LSTM as a generator, inputting 

word embedding into each node, and combining with a linear hidden layer to get the 

probability of outputting each word. The generator can sample a batch of generated 

sequences according to this probability. The MCTS selects the next action based on the 

probability distribution of each node. After obtaining the sampled sequences, the 

discriminator obtains a set of probabilities with the sampled sequences. The average 

value of this set of probabilities is considered the reward. When we train the generator 

via policy gradient, we can increase the selection probability of actions with more 

rewards and decrease the selection probability of actions with fewer rewards. 

The LeakGAN, which is an improvement of the SeqGAN, also uses the RL algorithm 

for training. Unlike SeqGAN, the author additionally “leaks” some high-level 

information of the discriminator to a “manager.” The manager module is an LSTM 
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network that acts as an intermediary to help the generator to complete the generation 

task. Specifically, in addition to the reward given by the discriminator, the generator 

can additionally obtain the high-level feature representation of the discriminator at each 

moment. In this way, the generation of long texts is more accurate and diverse. The 

model structure is shown in Figure 2.3. 

The starting point of LeakGAN is that the discriminator is a specific model set by 

humans, such as CNN, rather than a “black box” system. Because the internal structure 

of the discriminator is known in advance, the discriminator can provide detailed 

structural information to the generator. In LeakGAN, the discriminator is divided into 

the feature extractor and the softmax classification layer. The feature extractor obtains 

a high-level feature representation based on the current state and provides this 

representation to the “manager” as “leak” information. The manager module receives 

the “leak” information provided by the discriminator and obtains the action sub-goal 

after transformation. After that, the action sub-goal performs a dot product with the 

action embedding generated by LSTM. Finally, the generator uses the result to draw a 

sample of the next word. 

 

Figure 2.3 LeakGAN structure. 

In the training process of SeqGAN, updating the parameters of the generator relies 

on the reward of the discriminator combined with RL. In addition to the scalar reward, 

the high-level feature representation of the discriminator can be obtained at each 
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moment as an additional “feature.” This feature helps the generator to generate text 

sequences, which provides a guidance for long-term text generation. 

To generate high-quality language descriptions, RankGAN was proposed. The 

authors relax the training of the discriminator to a learning-to-rank optimization 

problem. Furthermore, they turn the discriminator into a ranker. Correspondingly, the 

input of the ranker consists of a generated sentence and multiple human-written 

sentences. The goal of the ranker is to rank the generated sentence lower than human-

written sentences. Therefore, the reward of RankGAN contains the ranking score. The 

overall optimization goal is: 

𝑚𝑖𝑛 
𝜃

𝑚𝑎𝑥 
∅

ℒ(𝐺𝜃, 𝑅∅) = 𝔼𝑠~𝑃ℎ
[𝑙𝑜𝑔𝑅(𝑠|𝑈, 𝐶−)] + 𝔼𝑠~𝐺𝜃

[𝑙𝑜𝑔(1 − 𝑅(𝑠|𝑈, 𝐶+))],  (4) 

where 𝑈 is the set of reference data for obtaining relative ordering. 𝐶− is sampled 

from generated data when the input 𝑠 is real data. While 𝐶+ is sampled from real data 

when 𝑠 is generated data. The model calculates the cosine similarity between the input 

𝑠  and the reference data 𝑢 (𝑢 𝜖 𝑈) to obtain the ranking score. The definition of 

reward in RankGAN is the same as in SeqGAN. However, the quality of text generated 

by RankGAN is superior to SeqGAN due to the additional ranking information of 

RankGAN. 

SentiGAN has multiple generators and a multi-class discriminator to address the 

above problems. In the SentiGAN framework, multiple generators are trained 

simultaneously, aiming to generate texts with different sentiment labels in an 

unsupervised manner. A penalty-based objective is included in the generator to force 

each of the generators to produce diverse examples of a specific sentiment label. 

Furthermore, using multiple generators and a multi-class discriminator allows each 

generator to focus on accurately generating its examples of specific sentiment labels. 

Unlike the previous work, SentiGAN uses a penalty-based loss function instead of a 

reward-based loss function. This strategy enables the generator to generate more diverse 

sentences. Given 𝐾 categories of sentiments, SentiGAN uses 𝐾 generators and one 

discriminator. The goal of the 𝑖 − 𝑡ℎ generator is to generate text with the 𝑖 − 𝑡ℎ 

sentiment type, fooling the discriminator as much as possible. The goal of the 
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discriminator is to distinguish the generated text from the real text with 𝐾 categories 

of sentiments. 

In MaskGAN, both the generator and the discriminator use the same Seq2Seq 

structure. The generator is trained by the RL algorithm, and the discriminator is trained 

by the previous maximum likelihood method. In order to solve the problem that GAN 

is non-differentiable in dealing with discrete data, the authors adopt a convenient Actor-

Critic algorithm [82], which can fill in the missing parts of masked sentences according 

to the context. To address the problem of training instability in GANs, the authors treat 

text generation as a fill-in-the-blank or in-filling task. The text generation process can 

rely on the context information around the missing parts for word prediction and word 

filling. The generator aims to make the generated text and the corresponding real text 

indistinguishable from the discriminator. 

Combined with the RL algorithm, the gradient problem caused by the text 

discretization output is alleviated. As a result, many RL-based GANs have emerged for 

text generation. However, a single scalar reward signal obtained from the RL algorithm 

leads to two problems of information sparseness and information incompleteness in 

training the generator. Although many methods consider making full use of the 

information from the discriminator and providing a highly diverse reward to the 

generator, the problem of information sparseness still exists. Thus, the improved 

methods can only alleviate the problem rather than solve it. 

2.2.2 Wasserstein Distance  

Firstly, we explain the distance measurement method called “Earth Mover’s 

(Wasserstein) Distance” 𝑊(𝑞, 𝑝), which is informally defined as the minimum cost of 

transporting mass in order to transform the distribution 𝑞  into the distribution 𝑝 , 

where the cost is the mass times the transport distance. Under mild assumptions, 

𝑊(𝑞, 𝑝)  is continuous everywhere and differentiable almost everywhere. The 

Wasserstein Distance 𝑊(𝑞, 𝑝) can be defined as: 

𝑊(𝑞, 𝑝) = 𝑚𝑖𝑛
𝛾

𝐸(𝑞,𝑝)∼𝛾||𝑞 − 𝑝||,                   (5) 

where γ is a joint probability distribution that satisfies the constraints: 
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∫ 𝛾(𝑞, 𝑝)d𝑞 = 𝑃𝑔(𝑞), ∫ 𝛾(𝑞, 𝑝)d𝑝 = 𝑃𝑓(𝑝).              (6) 

Compared with KL and JS divergence, Wasserstein Distance can still reflect their 

distance even if the two distributions do not overlap. On the one hand, the Wasserstein 

Distance is smooth. If we use the gradient descent method to optimize the distance 

parameters, KL and JS cannot provide gradients in some cases, while the Wasserstein 

Distance can solve this problem normally. Similarly, if the two distributions do not 

overlap or the overlap is negligible in a high-dimensional space, then KL and JS can 

neither reflect the distance nor provide gradients, while the Wasserstein Distance can 

provide meaningful gradients. Thus, we calculate the distance between the generated 

data distribution and real data distribution through the Wasserstein Distance. 

To address the unstable training process of GANs, Arjovsky et al. proposed the 

WGAN and the WGAN-GP. They provide the theoretical solution. WGAN converts 

the discriminator’s task from a binary classification into calculating the Wasserstein 

Distance. Forcing the discriminator to calculate the distance between the generated and 

the true data distribution prevents the discriminator from “cheating.” The discriminator 

can also provide more accurate guidance information to the generator, not just the 

probability of “true or false.” Because the weight clipping strategy in WGAN causes 

most of the weights to approach two extremes, WGAN-GP was proposed, which uses 

gradient penalty to replace weight clipping. This strategy makes the training more stable 

and produces higher-quality images. 

To address the difficulty in passing the gradient, Wasserstein Distance can directly 

calculate the distance between the real and the generated sample distribution without 

the 𝑎𝑟𝑔 𝑚𝑎𝑥 . The non-derivable problem no longer exists, theoretically. WGAN 

completely solves the problem of unstable GAN training and no longer needs to 

carefully balance the training degree of the generator and the discriminator. 

Unfortunately, WGAN is used more in CV. The proposal of WGAN is not aimed at 

solving the problems of GANs in text generation, and there are few applications in text 

generation. For example, when using Wasserstein loss in RelGAN, we found that the 

gradient would disappear, and the discriminator loss was almost equal to 0 during 
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training. The detailed description and the performance of RelGAN using Wasserstein 

loss can be found in section 3.6.6. 

2.2.3 Gumbel-softmax Trick 

There is a reparameterization trick in VAE that uses random sampling while ensuring 

that the gradient can be passed back so that the model can be trained and updated. 

Gumbel-softmax is also a reparameterization technique. Gumbel-softmax makes the 

process of sampling discrete variables derivable in an approximation. 

Gumbel-softmax was first proposed for the reparameterization of categories. The 

improvement goal applied to GAN can be considered to design a more “powerful” 

softmax, which can replace the sampling operation in the original GAN. 

For the discrete variables 𝑧 and the distribution vector 𝜋 = [𝜋1; 𝜋2; … ; 𝜋𝑘], we can 

obtain the discrete variables 𝑧 as: 

                  (7) 

where 𝑔𝑖  is a sample taken from a 𝐺𝑢𝑚𝑏𝑒𝑙 (0,1)  distribution. The Probability 

density function (PDF) function of 𝐺𝑢𝑚𝑏𝑒𝑙 (0,1) is defined as: 

          (8) 

The 𝐺𝑢𝑚𝑏𝑒𝑙 (0,1) distribution can be sampled using inverse transform sampling 

by drawing 𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1)  and computing 𝑔 = − 𝑙𝑜𝑔(− 𝑙𝑜𝑔(𝑢)) . In order to 

enable the derivation of the sample for the statistical parameter, it is also necessary to 

solve the problem that 𝑎𝑟𝑔 𝑚𝑎𝑥 cannot be derivable. Then the softmax is used instead 

of 𝑜𝑛𝑒ℎ𝑜𝑡 (𝑎𝑟𝑔 𝑚𝑎𝑥), the collected samples can be written as: 

           (9) 

where 𝜏 is the temperature parameter. The smaller 𝜏 is, the closer the sampling is to 

the result of 𝑎𝑟𝑔 𝑚𝑎𝑥, and the closer the sample is to the one-hot vector, but the 
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variance of its corresponding gradient estimator is also larger. During normal training, 

the 𝜏 will be gradually reduced.  

The typical representative network is RelGAN. To address the difficulty in passing 

the gradient, RelGAN utilizes Gumbel-softmax relaxation to simplify the model. 

RelGAN uses relational memory on the generator, which gives it more vital expression 

ability and better generation ability on long text. RelGAN also uses multi-layer word 

vector representation on the discriminator to make the generated text more diverse. 

Experiments showed that RelGAN achieved good results in the quality and diversity of 

the generated text. In addition, multi-channel feature extraction is performed on the 

discriminator. The results of more detailed ablation experiments prove that text GAN 

can also be based on the traditional GAN framework, and the RL is not necessary. Thus, 

we believe that the GAN structure that uses Gumbel-softmax approximate sampling is 

more flexible than the RL-based model. 

2.2.4 Autoencoder Framework 

Firstly, a brief introduction to the autoencoder [83] framework is given. The 

framework of autoencoder is shown in Figure 2.4. 

 

Figure 2.4 The framework of autoencoder. 

The autoencoder framework consists of two major modules: the encoder and the 

decoder. The input data 𝑥 is mapped to 𝑧 in the latent space through the encoder 𝑔. 

Then 𝑧 is mapped back to the original space through the decoder 𝑓 to obtain the 

reconstructed sample �̂�. In the optimization process, autoencoder does not need to use 

the label of the sample. By minimizing the reconstruction error, the autoencoder learns 
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the 𝑧  of the sample. This unsupervised optimization method greatly improves the 

model generality. 

In 2018, David Donahue proposed to introduce autoencoder into GAN. The author 

named the model LaTextGAN [84]. The model structure of LaTextGAN is shown in 

Figure 2.5. 

 

Figure 2.5 The framework of LaTextGAN. 

LaTextGAN consists of three parts: a generator, a discriminator, and textual 

autoencoder based on LSTM. 𝑧  is random noise, 𝑠𝑐𝑜𝑟𝑒  is the score of the input 

vector by the discriminato. The goal of the generator is to improve the score as much 

as possible. Therefore, the latent space vector generated by the generator should be as 

close as possible to the latent space vector obtained by the LSTM of the real sentence. 

This model architecture relies on the ability of the autoencoder to reproduce text, and 

the training process of the autoencoder and GAN must be coordinated. In addition, the 

model is prone to mode collapse during the training process. Limited by the extract 

sentence features ability of LSTM, LaTextGAN does not perform well in text 

generation. However, LaTextGAN is still a good model, opening up new ideas for 

subsequent models. 

Benefiting from the idea of WGAN and the extensive use of the Transformer 

autoencoder, the idea of GAN in text generation can be slightly changed. The 

generator’s output is not necessarily a sentence but also a sentence vector in the latent 

space. Correspondingly, the task of the discriminator has also changed. The 

discriminator needs to judge whether the current sentence vector is true. Therefore, 

TILGAN was proposed. Before TILGAN training, the author trains a Transformer-
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based autoencoder on the real corpus. After the training, the sentence vectors in the real 

corpus through the encoder are used as real data, while the generated sentence vectors 

are used as fake data. 

In general, there have been many excellent variants of GAN in the field of text 

generation in recent years. Nevertheless, there are still many problems to be solved. 
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Chapter 3 

 WRGAN: Improved RelGAN with 

Wasserstein Loss for Text Generation 

3.1  Problem Definition 

To address the discriminator’s lack of ability to backpropagate the gradient to the 

generator, we conducted experimental testing and concluded that Gumbel-softmax 

relaxation technology is more effective than RL. However, since the LSTM-based 

generator may lack sufficient expressive power for text generation, we employed 

relational memory in its place. The discriminator provides insufficient guidance 

information to the generator. Therefore, we used the Wasserstein loss accordingly. We 

carefully designed the discriminator network corresponding to the Wasserstein loss to 

ensure the network can be coordinated. Since the improved model represents an 

improved RelGAN model with Wasserstein loss, we dubbed it WRGAN. 

3.2  Overall Framework 

The overall framework of WRGAN, as illustrated in Figure 3.1, consists of three 

major components: a relational memory-based generator, the Gumbel-softmax 

relaxation, and a 1-dimensional convolution-based discriminator. After the generator 

completed standard MLE training over several epochs, the network initiated adversarial 

training. In accordance with RelGAN, for each 𝑀𝑡  at time 𝑡 , we can obtain the 

updated memory �̃�𝑡+1 as: 
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�̃�𝑡+1 =  [�̃�𝑡+1
1 : … : �̃�𝑡+1

𝐻  ],                    (10) 

�̃�𝑡+1
ℎ =  𝜎 (

𝑄𝑡
ℎ𝐾𝑡

ℎ𝑇

√𝑑𝑘
) 𝑉𝑡

ℎ,                      (11) 

where 𝜎 is softmax function. 𝑄, 𝐾, and 𝑉 denote the query, key, and value vectors, 

respectively. 𝐻 is the number of heads. Then the output of generator 𝑜𝑡 is given by: 

𝑜𝑡 = 𝑓𝜃(�̃�𝑡+1, 𝑀𝑡),                        (12) 

where 𝑓𝜃 is a combination of skip connections, multi-layer perceptron (MLP), gated 

operations and/or pre-softmax linear transformations [85]. 

After obtaining the generator output 𝑜𝑡, it is entered into Gumbel-softmax to obtain 

the generated data �̃�, defined as: 

�̃� = 𝜎(𝛽(𝑜𝑡 + 𝑔)),                       (13) 

where 𝜎 is a softmax function. 𝛽 is a tunable parameter set to 100 in this study. 𝑔 is 

defined as: 

𝑔 = −𝑙𝑜𝑔(−𝑙𝑜𝑔(𝑢)),                      (14) 

where 𝑢 follows a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) distribution. 

Figure 3.1 The overall framework of WRGAN. 
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Then, we put the generated, real, and mixed data into the discriminator to obtain the 

loss. This loss, which represents the relative distance between the generated and real 

data distributions, is used by the model to adjust network parameters. 

3.3  Relational Memory-Based Generator 

In this study, we introduce a powerful module in the generator in the form of 

relational memory [86], wherein multiple memory slots interact through Self-Attention. 

Relational memory module lets the generator to express the data distribution as 

comprehensively as possible. The structure of the generator is shown in Figure 3.2. 

 

 

Figure 3.2 The generator framework. 

In the pre-training process, the input consists of real data processed by word 

embedding, whereas in the adversarial training process, the input is a normally 

distributed random noise vector. After the linear transformation is applied, the input is 

merged with the memory slot of the previous moment. Subsequently, through Self-

Attention and splicing operations, the memory of the current moment is formed. This 

process essentially enables the generator to obtain global information. As a result, the 

generated long text is more accurate, and the generator’s expressive ability is improved. 
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3.4  Rebuild the Discriminator 

The proposed discriminator framework is shown in Figure 3.3, and used parameters 

are listed in Table 3.1. We selected one-hot as the input form, and 

[𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑙𝑒𝑛𝑔𝑡ℎ] as the input shape. The first layer is 

a 1-dimensional convolutional [87] layer for dimension conversion. The second layer 

consists of three groups of ResBlock layers with different sizes of 1-dimensional 

convolution kernels. The structure of each ResBlock [88] is shown in Figure 3.4. The 

sizes of the three groups of convolution kernels are [1,3,5], and the padding is [0,1,2]. 

The ResBlock also contains a hidden hyperparameter corresponding to its 

dimensionality. Different data sizes correspond to different dimensions. A detailed 

analysis of this parameter’s impact on the model can be found in Section 3.7. The three 

channels are concatenated with different convolution kernel sizes. Notably, the two 

linear layers do not contribute any activation functions. 

 

Figure 3.3 The proposed discriminator framework. 

 

Figure 3.4 The Resblock. 
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Table 3.1 The discriminator parameters. 

Layers Input Shape Kernel Shape 

Conv1D (Batch size, Vocab size, Max length) (1, Vocab size) 

ResBlock (Batch size, Dim, Max length) (1, Dim), (3, Dim), (5, Dim) 

Linear1 (Batch size, Dim × Max length × 3)  

Linear2 (Batch size, 1000)  

Output (Batch size, 1)  

 

We assume that the weight of the convolutional layer is 𝑊𝑑
𝑡, where 𝑑 ∈ [1,2,3]. The 

real and generated inputs correspond to [𝑟1: … : 𝑟𝑇] and [�̂�1: … : �̂�𝑇], respectively. For 

real data, the distributed representation ℎ𝑟
𝑡  is: 

ℎ𝑟
𝑡 = 𝑊𝑑

𝑡𝑟𝑡.                            (15) 

The distributed representation ℎ𝑦
𝑡  of generated data is: 

ℎ𝑦
𝑡 = 𝑊𝑑

𝑡�̂�𝑡.                            (16) 

3.5  Network Training 

3.5.1 Loss Function  

In this study, we employed the gradient penalty Wasserstein loss. According to 

WGAN-GP, the gradient penalty prevents all network parameters from approaching 

extreme values, ensuring that the weights are evenly distributed within a specific 

interval. Thus, the gradient penalty maintains the stability of adversarial training. The 

discriminator loss can be defined as: 

𝐿𝐷 = 𝔼[𝐷(�̃�)] − 𝔼[𝐷(𝑥)] + 𝜆𝔼[(||𝛻�̂�𝐷(�̂�)||2 − 1)2],         (17) 

where �̂� is mixed data by real and generated data. 𝜆 is the penalty coefficient. All 

experiments in this study used 𝜆 =  10. The generator loss is given by: 

𝐿𝐺 = −𝔼[𝐷(�̃�)].                           (18) 
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By plugging Equations 15 and 16 into Equations 17 and 18, the following expressions 

are obtained for 𝐿𝐷 and 𝐿𝐺: 

𝐿𝐷 =
1

3𝑇
∑ ∑ 𝐷(ℎ�̂�

𝑡 )

𝑇

𝑡=1

3

𝑑=1

−
1

3𝑇
∑ ∑ 𝐷(ℎ𝑟

𝑡 )

𝑇

𝑡=1

3

𝑑=1

+
𝜆

3𝑇
∑ ∑ (||∇m̃𝐷(ℎ�̃�

𝑡 )||
2

− 1)
2

𝑇

𝑡=1

3

𝑑=1

, 

(19) 

                    (20) 

where �̃� is obtained by randomly mixing real data and generated data. 

3.5.2 Training Details 

Limited by hardware equipment, we set the batch size to 64 during the training 

process and employed the Adam [89] optimizer. During adversarial training, the 

learning rates of the generator and discriminator were both 1  ×  10−4 . The L2 

regularization weight decay was 0.01 [90], and the dropout of the discriminator was 

0.25. The maximum number of iterations was 2,000, and the generator embedding [91, 

92] dimension was 32. 

3.5.3 Baseline 

To comprehensively evaluate the proposed model, we compared its performance 

with that of several baselines: 

(1) SeqGAN: a text GAN model based on RL algorithm and MCTS, training on 

COCO Image Captions, EMNLP 2017 WMT News, and Chinese poetry 

datasets.  

(2) RankGAN: a text GAN model based on RL algorithm, training on COCO 

Image Captions, EMNLP 2017 WMT News, and Chinese poetry datasets. 

(3) LeakGAN: a text GAN model based on RL algorithm and LSTM, training on 

COCO Image Captions, EMNLP 2017 WMT News, and Chinese poetry 

datasets. 
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(4) RelGAN: a text GAN model based on relational memory cell (RMC) and 

Gumbel-softmax, training on COCO Image Captions, EMNLP 2017 WMT 

News, and Chinese poetry datasets. 

(5) SentiGAN: a text GAN model based on RL algorithm and LSTM, training on 

Movie Reviews datasets. 

(6) CSGAN: a text GAN model based on RL algorithm and RNN, training on 

Movie Reviews datasets. 

(7) CatGAN: a text GAN model based on RMC and hierarchical evolutionary 

learning algorithm, training on Movie Reviews datasets. 

3.6  Experiments and Analysis 

To evaluate the model’s performance, we tested our model on real-world data, 

including the COCO Image Captions, EMNLP 2017 WMT News, Movie Reviews [93], 

and Chinese poetry datasets. Specific experimental parameter settings are presented in 

each corresponding subsection.  

3.6.1 Evaluation Metrics  

Similar to other models, we used two evaluation metrics. 

The first evaluation metric is the negative log-likelihood (𝑁𝐿𝐿𝑔𝑒𝑛 ) [94] and its 

counterpart (𝑁𝐿𝐿𝑜𝑟𝑎𝑐𝑙𝑒), defined as: 

  𝑁𝐿𝐿𝑔𝑒𝑛 = −𝔼𝑌1:𝑇∼𝑃𝑟
𝑙𝑜𝑔𝑃𝜃(𝑌1, … , 𝑌𝑇),                (21) 

𝑁𝐿𝐿𝑜𝑟𝑎𝑐𝑙𝑒 = −𝔼𝑦1:𝑇∼𝑃𝜃
𝑙𝑜𝑔𝑃𝑟(𝑦1, … , 𝑦𝑇),               (22) 

where 𝑃𝜃 and 𝑃𝑟 are the generated and real data distributions, respectively. We used 

𝑁𝐿𝐿𝑔𝑒𝑛 to evaluate the diversity of generated data. 

The other evaluation metrics of real data is bilingual evaluation understudy (BLEU). 

The BLEU score is used to compare and count the number of commonly occurring 𝑛 −

𝑔𝑟𝑎𝑚 words for the quality evaluation of the generated text. To enable BLEU scores 

as an evaluation metric, we also use test data [95]. 
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3.6.2 COCO Image Captions 

The Microsoft COCO dataset consists of 20,000 manually generated image captions. 

After preprocessing [96], we got a dictionary with 4,682 unique words, and the 

maximum sentence length is 37. Additional properties of this dataset are listed in Table 

3.2. 

Table 3.2 The details of the COCO Image Captions dataset. 

Vocabulary size 4,682 

Maximum length 37 

Number of training sentences 10,000 

Number of test sentences 10,000 

A comparison between the BLEU scores of tested models is presented in Table 3.3. 

We adopted the same evaluation settings for all models. Except for the BLEU-5 score, 

all scores achieved by our model exceeded those produced by other models. This 

indicates that our model is highly effective for the COCO dataset. The 𝑁𝐿𝐿𝑔𝑒𝑛 score 

shows that the improved model also performed well on data diversity.  

Figure 3.5 shows a line graph generated after 2,000 training iterations for a 

hyperparameter dimension of 128. No strong fluctuations were observed in the training 

process, indicating relative stability in the model. The samples generated from the 

COCO dataset can be found in Section 3.8.1. 

Table 3.3 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores on COCO Image Captions dataset. 

Method BLEU-2 BLEU-3 BLEU-4 BLEU-5 𝑁𝐿𝐿𝑔𝑒𝑛 

MLE 0.731 0.497 0.305 0.189 0.718 

SeqGAN 0.745 0.498 0.294 0.180 1.082 

RankGAN 0.743 0.467 0.264 0.156 1.344 

LeakGAN 0.746 0.528 0.355 0.230 0.679 

RelGAN (100) 0.849 0.687 0.502 0.331 0.756 

RelGAN (1000) 0.814 0.634 0.455 0.303 0.655 
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WRGAN 0.853 0.687 0.509 0.318 0.673 

 

 

Figure 3.5 The BLEU scores for COCO Image Captions. 

3.6.3 EMNLP 2017 WMT News  

Table 3.5 lists the BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores for the EMNLP 2017 WMT News 

dataset, with the dimension of 256. The dataset in question contains approximately 

270,000 sentences, as well as 10,000 sentences of testing data. After preprocessing, we 

obtained a vocabulary size of 5,255, with a maximum sequence length of 51. The 

additional details about the dataset are listed in Table 3.4. 

Table 3.4 The details of the EMNLP 2017 WMT News dataset. 

Vocabulary size 5,255 

Maximum length 51 

Number of training sentences  270,000 

Number of test sentences 10,000 

 

The training curves corresponding to BLEU scores are shown in Figure 3.6. These 

results indicate that, despite slightly weaker data diversity, the improved model 

outperformed all other models in terms of BLEU scores. The figure also shows that the 

model can achieve higher performance and more stable results even on a large-scale 
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dataset. Data samples generated from the EMNLP 2017 WMT News dataset can be 

found in Section 3.8.2. 

Table 3.5 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores on EMNLP 2017 WMT News dataset. 

Method BLEU-2 BLEU-3 BLEU-4 BLEU-5 𝑁𝐿𝐿𝑔𝑒𝑛 

MLE 0.768 0.473 0.240 0.126 2.382 

SeqGAN 0.777 0.491 0.261 0.138 2.773 

RankGAN 0.727 0.435 0.209 0.101 3.345 

LeakGAN 0.826 0.645 0.437 0.272 2.356 

RelGAN(100) 0.881 0.705 0.501 0.319 2.482 

RelGAN(1000) 0.837 0.654 0.435 0.265 2.285 

WRGAN 0.952 0.782 0.539 0.336 2.812 

 

 

Figure 3.6 The BLEU scores for EMNLP 2017 WMT. 

 

3.6.4 Chinese Poetry  

The Chinese poetry dataset consists of 16,394 Tang poems, each of which contains 

five Chinese words per sentence. Additional details pertaining to this dataset are 

presented in Table 3.6. 
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Table 3.6 The details of the Chinese Poetry dataset. 

Vocabulary size 4,140 

Maximum length 20 

Number of training sentences  8,197 

Number of test sentences 8,197 

Since we used the BLEU score as the evaluation metric, we randomly selected 8,197 

poems as the training set, with the remaining 8,197 poems allocated to the testing set. 

After preprocessing, we obtained a vocabulary with a size of 4,140. Table 3.7 lists the 

BLEU-2 scores for this dataset. Here, the improved model also achieved satisfactory 

results. 

Table 3.7 The BLEU-2 scores on the Chinese poetry dataset. 

Method SeqGAN RankGAN RelGAN LeakGAN WRGAN 

BLEU-2 0.738 0.812 0.817 0.456 0.835 

3.6.5 Movie Reviews (MR) 

The Movie Reviews (MR) dataset contains two sentiment classes (negative and 

positive) and 4,503 total samples. Of these samples, 3,152 were allocated for training, 

with the remaining 1,351 set apart for testing. Additional details pertaining to this 

dataset are listed in Table 3.8. 

Table 3.8 The details of the Movie Reviews dataset. 

Vocabulary size 6,216 

Maximum length 15 

Number of training sentences  3,152 

Number of test sentences 1,351 

After preprocessing, we obtained a vocabulary with a size of 6,216 and a maximum 

sentence length of 15. Table 3.9 lists the BLEU and NLL scores for Movie Reviews 

dataset. Except BLEU-5, all scores obtained by the improved model were satisfactory. 
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Table 3.9 The BLEU and 𝑁𝐿𝐿𝑔𝑒𝑛 scores for the Movie Reviews dataset. 

Method SentiGAN CSGAN CatGAN [97] WRGAN 

BLEU-2 0.532 0.452 0.589 0.623 

BLEU-3 0.285 0.204 0.335 0.337 

BLEU-4 0.167 0.112 0.194 0.193 

BLEU-5 0.143 0.082 0.144 0.128 

𝑁𝐿𝐿𝑔𝑒𝑛 2.436 2.912 1.619 0.8061 

3.6.6 Comparison of RelGAN and WRGAN on COCO Dataset 

The discriminator loss when using the Wasserstein loss in RelGAN is shown in 

Figure 3.7. We found that the discriminator and generator losses were nearly equal to 

zero throughout the training process, ranging from 0.0005 to 0.005. In this case, the 

discriminator yields no useful guidance information to the generator, and the two 

networks cannot perform adversarial learning. Therefore, the discriminator did not 

perform well on these datasets. Excluding some obvious causes of error, we located the 

problem in the discriminator structure, which was modified after several experiments. 

  

Figure 3.7 The discriminator loss of RelGAN. 

Figure 3.8 compares the BLEU-2 scores of the three RelGAN-based models based 

on the COCO dataset with 1,400 iterations. The parameters in the figure represent those 

used in the original study. We found RelGAN to exhibit strong fluctuations when using 

the Wasserstein loss, which resulted in suboptimal performance. 
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Figure 3.8 The BLEU-2 scores on the COCO Image Captions compared with 

RelGAN. 

3.7  Impact of Hyperparameters  

3.7.1 Impact of Dimension 

This section analyzes the impact of the dimension hyperparameter on the model. In 

Figure 3.9, the BLEU-2 scores of the model on the COCO dataset are plotted for 

dimensionalities of 128 and 64. For the dimensionality of 128, overfitting is apparent 

after approximately 1,000 iterations. However, when the number of dimensions was 64, 

there was no clear overfitting. After the experiments, we determined that the 

dimensionality should be proportional to the amount of training data. The training curve 

for the EMNLP 2017 WMT News dataset confirms this view, as it did not exhibit 

obvious overfitting with a dimensionality of 256. The dimension hyperparameter was 

not minimized, as the model may not fully obtain the sentence vector’s characteristics 

with a small dimensionality. Accordingly, we ensured that the dimensionality was 

sufficiently large. 
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Figure 3.9 The BLEU-2 scores on COCO Image Captions where the dimension is 64 

and 128. 

3.7.2 Impact of 𝒌  

The hyperparameter 𝑘 represents the quotient of the generator and discriminator 

steps. As shown in Figure 3.10, the model gradually deteriorated and destabilized as 𝑘 

increased. We believe that this was caused by an insufficient amount of discriminator 

training, as the generator became too “experienced” to perform adversarial training. 

Perhaps, as the number of training sessions increases, the model will gradually stabilize 

again. However, this remains conjecture, and 𝑘 cannot be minimized. A smaller value 

of 𝑘  corresponds to increased training time for the discriminator, which in turn 

accelerates the overfit. Therefore, after several experiments, we set 𝑘 to 1/5. 

 

Figure 3.10 The BLEU-2 scores on COCO Image Captions where 𝑘 is 5, 1, 1/3 and 

1/5. 
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3.8  Case Study 

We randomly selected 10 generated samples from the short and long text datasets for 

this case study. The maximum lengths of the generated sentences in the two datasets 

were 15 and 51. The performance of the model on the two datasets exhibited good 

agreement with experimental data. In other words, owing to the relatively simple 

distribution of samples in the short text dataset, the model achieved higher accuracy but 

poor diversity. In contrast, the generated sentences corresponding to the long text 

dataset featured lower precision but higher diversity. 

3.8.1 The Generation Data from COCO Image Captions  

Table 3.10 lists samples generated during adversarial training with a dimension of 64 

and 𝑘 of 1/5, after pre-training with the COCO image caption dataset. The generated 

sentences do not have obvious errors, such as the identifiers “EOS” and “BOS.” 

However, the samples do exhibit minor grammatical errors. The accuracy of sentences 

generated by the model on the short-text dataset is therefore acceptable. We found that 

the majority of sentences start with the article “a,” which indicates that sentence 

diversity must be improved. 

Table 3.10 The samples generated from the COCO image caption dataset. 

Samples 

a yellow bicycle parked next to a red wall. 

a white and blue plane flying in the blue sky. 

a white cat has caught a bird on its tail.  

a woman in the kitchen is holding a dog.  

a man is looking at motorcycle in the road by the building.  

two wet young boys on a table.  

a bathroom with a toilet and a sink. 

a young girl sitting on top of a bike near the ocean.  
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3.8.2 The Generation Data from EMNLP 2017 WMT News  

Table 3.11 lists samples generated during adversarial training from the EMNLP 2017 

WMT News dataset for the dimensionality of 256 and 𝑘  of 1/5. The sentences 

generated here do not exhibit obvious errors, such as the identifiers “EOS” and “BOS.” 

However, these samples show more grammatical errors than those generated with the 

short text dataset. This may be because the model is not sufficiently complex to 

accurately express the distribution of real samples. In terms of the diversity of generated 

sentences, the model performed relatively well without many repeated words. 

Table 3.11 The samples generated from EMNLP 2017 WMT News dataset. 

Samples 

the security services, an independent has already said: “there is a need to follow up 

the process of the project in 2017. 

i have been together with russia, because we just don’t know if that is the need to 

make it,” he said. 

he will tell the player he didn’t want to continue to make his opinion on that. 

we are making sure that we will better understand that we need to strengthen our 

order for the next 18—and we will get ourselves into our future. 

in some cases, it is the first time in the past three years, a few of them needed to be 

with other. 1% of the population is even more within the trump administration. 

after the festival, his wife, who was in contact with a police in the UK. 

now, it is amazing when people on the court, including a man from the police. 

“I’m really concerned, because it was a very careful in my life,” she said. 

he has had to quit from the hospital after a 13-year-old who had been on three 

years. 

“we are back with this, and we are not about that,” he said in a statement for several 

years. 

some people on the snow covered field. 

many motorcyclists gather in front of a bus. 
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3.9  Summary  

In this study, we proposed a new and improved model for text generation based on 

RelGAN and WGAN-GP and named it WRGAN. We redesigned the model structure 

to allow various modules to operate in coordination, applied the Wasserstein Distance 

in text generation to provide more useful information to the generator, and employed 

relational memory as the generator architecture to reduce mode collapse. Compared 

with existing models, our model produced higher evaluation scores and sample quality. 

The proposed model also achieved superior results in a comparative experiment using 

RelGAN. We then analyzed the effect of hyperparameters on model performance 

subsequently, tested the model using multiple real datasets. Several important issues 

remain open, including relatively low BLEU-5 scores and suboptimal performance with 

synthetic data. However, we still need to adjust the model structure to address these 

issues. We plan to continue improving this network in the future and apply it to further 

NLP tasks. 
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Chapter 4 

 TSGAN: Improved Transformer-Based Implicit 

Latent GAN with Multi-head Self-Attention 

4.1  Introduction 

In this study, we propose a new generator architecture based on the Multi-head Self-

Attention and linear layers. The overall structure of GAN is improved from TILGAN. 

We rebuilt the generator architecture with Multi-head Self-Attention to make the 

generator obtain superior text generation capabilities. Our model consists of a 

Transformer autoencoder, a generator with Multi-head Self-Attention, and a linear 

discriminator. We use the Kullback-Leibler (KL) divergence as the GAN’s loss 

functions. The encoder of the Transformer autoencoder encodes the distribution of real 

samples, and the decoder decodes real sample encoding or generated sample encoding 

into text. The loss function of autoencoder is cross entropy. The detailed model 

structure and parameters can be found in section 4.2. We experiment on the MSCOCO 

and EMNLP WMT News datasets. The proposed model has achieved a better BLEU 

score than TILGAN. Through the ablation experiments, we prove that the proposed 

generator has a better ability for unconditional text generation. 



 

44 

 

TSGAN:Improved Transformer-based Implicit Latent GAN with Multi-head Self-Attention  

                                                                            44 

4.2  Overall Framework 

The overall framework of our model is shown in Figure 4.1. The model receives a  

random noise 𝜀 under a Gaussian distribution and takes in real text samples from a 

corpus 𝑋. Through the generator network 𝐺𝜃, random noise 𝜀 is transformed into the 

generated sentence vector �̂�. Through the Transformer encoder, the real text sample is 

transformed into 𝑍. �̂�and �̃� represent the sentences obtained by �̂� and 𝑍 through 

the Transformer decoder, respectively.  

 

 

Figure 4.1 Overall framework of TSGAN. 

The proposed GAN framework can be divided into three parts: the Transformer 

autoencoder, the generator and the discriminator.  

The Transformer encoder is used to generate the distribution of real samples, and the 

decoder is used to decode sentence vector into text. The loss function of autoencoder is 

cross entropy. The task of Transformer is to minimize the gap between 𝑋 and �̃� to 

ensure the accuracy of the real sentence vector distributions. 

The discriminator consists of three linear layers and two BN layers, with the ReLU 

activation function for each layer. The loss function of GAN is Wasserstein Distance 

or KL divergence. The generator’s goal is to minimize the distance between the 

generated sentence vector and the sentence vector of the real sample. On the other hand, 

the discriminator tries to maximize the distance between real and fake data. 
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4.3  Multi-head Self-Attention-Based Generator 

Different from the stacking of linear layers and BN layers of the TILGAN generator,  

we use Multi-head Self-Attention to build the generator. The proposed generator 

framework is shown in Figure 4.2, where ⊗ means the dot product, and the two linear 

layers are used for reshaping.  

 

Figure 4.2 Proposed generator framework. 

4.3.1 Multi-head Self-Attention 

In recent years, the Self-Attention has been widely used in various deep-learning-

based NLP tasks. It learns the similarity between each source word and the other words. 

Self-Attention can capture syntactic or semantic features between words in the same 

sentence. In essence, the Self-Attention maps the query and a series of key-value pairs 

to an output. 

The Multi-head Self-Attention performs multiple sets of Self-Attention on the 

original input sequence. Then, each set of Self-Attention results is concatenated and 

linearly transformed to obtain the final output. Multi-head Self-Attention utilizes 

multiple versions of the same query to implement multiple the Attention modules in 

parallel. Each head has its multiple query, key, and value vectors. It obtains multiple 

queries by linearly transforming the query through different weight matrices.  
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4.3.2 The Proposed Generator 

The essence of the Self-Attention is to obtain the attention weight of each position of 

the sentence in the encoding process through a mathematical calculation and then 

calculate the implicit vector representation of the entire sentence in the form of the 

weighted sum. We note that the essence of the Self-Attention coincides with the 

generative process of GAN. GAN also generates complex distributed data through a 

series of transformation calculations. We believe that the Self-Attention and GAN can 

work well together. Therefore, we add the Multi-head Self-Attention to the GAN 

generator. The influence of the hyperparameter head number 𝑛ℎ𝑒𝑎𝑑 on the model and 

the choice of the 𝑛ℎ𝑒𝑎𝑑 are described in detail in section 4.8.2. 

As shown, the random noise input goes through a linear layer. The primary role of 

this layer is to reshape noise. After the weighted calculation of Multi-head Self-

Attention, the sentence vector is generated through another linear layer. Formally, we 

employ 𝐿(𝜀) to represent the processed noise 𝜀 through the linear layer. By setting 

the number of Attention heads to 𝐼, we can get 𝐼 sets of queries, keys, and values. For 

each Attention head, we have: 

{

𝑄𝑖 = 𝐿(𝜀)𝑊𝑞
𝑖

𝐾𝑖 = 𝐿(𝜀)𝑊𝑘
𝑖

𝑉𝑖 = 𝐿(𝜀)𝑊𝑣
𝑖.

                          (23) 

Accordingly, we can get the sentence vector �̂� by: 

�̂� = 𝐿′ (𝜎 (
𝑄𝑖(𝐾𝑖)

𝑇

√𝑑𝑘
) 𝑉𝑖),                       (24) 

where 𝜎 is the softmax function, and 𝑑𝑘 is the column dimension of the keys, 𝐿′ is 

the linear layer after Muti-head Self-Attention. 

4.4  The Proposed Discriminator 

The proposed discriminator framework is shown in Figure 4.3. The 𝐼𝑛𝑝𝑢𝑡  is a 

mixture of the generated sentence vector and the sentence vector obtained from the real 

sample using a Transformer autoencoder. The mixed input passes through the 
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discriminator’s three linear layers, two BN layers, and two RELU layers to get the 

current batch score. The score, in turn, guides the output of the generator. The input and 

output shapes of the three linear layers are listed in Table 4.1.  

 

Figure 4.3 The proposed discriminator framework. 

Table 4.1 The discriminator parameters. 

Layers Input Shape Output Shape 

Linear1 (Batch size, Sentence vector shape ) (Batch size, 300 ) 

Linear2 (Batch size, 300) (Batch size, 300 ) 

Linear3 (Batch size, 300) (Batch size, 1 ) 

4.5  The Transformer Autoencoder 

The Transformer autoencoder framework is shown in Figure 4.4. The role of 

Transformer autoencoder in the model is divided into two parts. The encoder encodes 

the input real samples into sentence vectors as positive samples and inputs them into 

the discriminator, while the decoder decodes the sentence vectors generated by the 

generator into readable sentences in the test and evaluation.  
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Figure 4.4 The Transformer autoencoder framework. 

During the training process, the task of the Transformer autoencoder is to restore the 

input samples. �̂� should be as similar to 𝑥 as possible. In this study, we use cross 

entropy as the loss function of the autoencoder. Since the autoencoder directly affects 

the generation, we should choose the autoencoder parameters carefully. In section 4.8.2, 

we detail the impact of the choice of the learning rate of the autoencoder on model 

generation. The best autoencoder parameter choices so far are: 2 layers, 4 heads, 512 

hidden dimensions, and a 0.12 learning rate. 

4.6  Network Training 

4.6.1 Loss Function 

As mentioned above, autoencoder uses cross entropy as loss function.The cross 

entropy can be defined as: 

                    (25) 

GAN can use Wasserstein Distance or KL divergence as loss function. Since the 

Wasserstein Distance has some additional hyperparameters, the current loss function is 

temporarily KL divergence. KL divergence can be defined as: 
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                   (26) 

4.6.2 Training Details 

Limited by hardware equipment, we set the batch size to 64 or 128. We used the 

Adam optimizer, the learning rate of the generator is 1 × 10-4. The learning rate of the 

discriminator is 1 × 10-4, and the learning rate of autoencoder is 0.12.  

4.6.3 Baseline 

To comprehensively evaluate the proposed model TSGAN, we compare our model 

with the following baselines: 

(1) SeqGAN: a text GAN model based on RL algorithm and MCTS, training on 

MSCOCO dataset, EMNLP WMT News dataset.  

(2) RankGAN: a text GAN model based on RL algorithm, training on MSCOCO 

dataset, EMNLP WMT News dataset. 

(3) LeakGAN: a text GAN model based on RL algorithm and LSTM, training on 

MSCOCO dataset, EMNLP WMT News dataset. 

(4) GSGAN [98]: a text GAN model based on Gumbel-softmax and LSTM, 

training on MSCOCO dataset, EMNLP WMT News dataset. 

(5) WGAN: a GAN model based on CNN and Wasserstein Distance, training on 

MSCOCO dataset, EMNLP WMT News dataset. 

(6) TILGAN: a text GAN model based on Transformer autoencoder, training on 

MSCOCO dataset, EMNLP WMT News dataset. 

4.7  Experiments and Analysis 

To evaluate the performance of the model, we tested our model on real-world data, 

including the MSCOCO and EMNLP WMT News datasets. The specific experimental 

parameter settings are given in each subsection. 
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4.7.1 Evaluation Metrics  

In this study, two metrics were used to evaluate the model. The first metric is the 

bilingual evaluation under study (BLEU-test). This score indicates the similarity of the 

candidate sentence to the reference sentence. The BLEU-test value is in the range [0,1], 

and a larger BLEU-test value indicates a better generation result. The BLEU score can 

provide an overall assessment of model quality. The BLEU-test can be defined as: 

                   (27) 

where 𝑤𝑛 is the weight of the 𝑛 − 𝑔𝑟𝑎𝑚. Usually, 𝑤𝑛 = 1/𝑁. 

𝐵𝑃 is the penalty coefficient. 𝐵𝑃 can be defined as: 

𝐵𝑃 = {
1                𝑖𝑓 𝑐 > 𝑟

𝑒(1−𝑟/𝑐)    𝑖𝑓 𝑐 ≤ 𝑟,
                       (28) 

where 𝑐 is the length of the candidate sentence, 𝑟 is the length of the valid reference 

sentence. 

𝑝𝑛 can be defined as: 

                      (29) 

where 𝑀  is the set of candidate sentences, 𝑚  and 𝑚′  are the 𝑛 − 𝑔𝑟𝑎𝑚  of 

candidate sentences 𝐶 and 𝐶′, respectively. 𝐶𝑜𝑢𝑛𝑡 is the number of times that the 

𝑛 − 𝑔𝑟𝑎𝑚 appears in candidate sentences. 𝐶𝑜𝑢𝑛𝑡𝑐𝑙𝑖𝑝(𝑚) can be defined as: 

              (30) 

where 𝐶𝑜𝑢𝑛𝑡𝑟𝑒𝑓  is the number of times that the 𝑛 − 𝑔𝑟𝑎𝑚  appears in reference 

sentences.  

The second metric is Self-BLEU. Self-BLEU is a diversity metric that calculates the 

similarity between a generated sentence and the entire remaining generation. A lower 

Self-BLEU score indicates a higher diversity in the generated texts. 

Specifically, following Chen [99] et al., we report BLEU-2, 3, 4, 5 for BLEU-test 

and BLEU-2, 3, 4 for Self-BLEU. 
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4.7.2 Microsoft Common Objects in Context (MSCOCO) 

In order to test our model, we first conduct experiments on the MSCOCO dataset. 

All the preprocessing steps are the same as other models. The details of the dataset are 

listed in Table 4.2. 

Table 4.2 The details of MSCOCO dataset. 

Vocabulary size 27,842 

Average length 10.4 

Number of training sentences  120,000 

Number of test sentences 10,000 

 

We set the Transformer autoencoder with 2 layers, 4 heads, and 512 hidden 

dimensions. In addition, we set the generator with 4 heads, a 256 head size, and 32 

hidden dimensions. All the sentences will be padded to the maximum length during 

training. Then the BLEU scores on the MSCOCO dataset are listed in Table 4.3. The 

proposed model has achieved significantly better performance than the existing models 

in BLEU-2, 3, and 4 and Self-BLEU-2, and 3. The results suggest that our text 

generation model is generally more effective on the MSCOCO dataset than the existing 

models. 

Table 4.3 The BLEU scores on MSCOCO dataset. 

Method 
BLEU-test Self-BLEU 

BLEU-2 BLEU-3 BLEU-4 BLEU-5 BLEU-2 BLEU-3 BLEU-4 

SEQGAN 0.820 0.604 0.361 0.211 0.807 0.577 0.278 

RANKGAN 0.852 0.637 0.389 0.248 0.822 0.592 0.288 

LEAKGAN 0.922 0.797 0.602 0.416 0.912 0.825 0.689 

GSGAN 0.810 0.566 0.335 0.197 0.785 0.522 0.230 

WGAN 0.730 0.538 0.342 0.125 0.904 0.809 0.690 

TILGAN 0.967 0.903 0.772 0.532 0.616 0.356 0.099 

Our model 0.986 0.928 0.799 0.420 0.548 0.270 0.121 
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4.7.3 EMNLP WMT News 

We also conduct experiments on the EMNLP WMT News dataset. All the 

preprocessing steps are the same as other models. The details of the dataset are listed in 

Table 4.4. 

Table 4.4 The details of EMNLP WMT News dataset. 

Vocabulary size 5,728 

Average length 27.8 

Number of training sentences  278,000 

Number of test sentences 10,000 

 

We set the Transformer autoencoder [100] with 2 layers, 4 heads, and 512 hidden 

dimensions. In addition, we set the generator with 2 heads, a 256 head size, 32 hidden 

dimensions, and 128 batch size. All the sentences will be padded to the maximum length 

during training. The model is iterated 100 times on the EMNLP WMT News dataset. 

The curve changes of the BLEU-test and Self-BLEU scores of the model are shown in 

Figure 4.5 and Figure 4.6, respectively. For BLEU-test, the higher the model score can 

reflect the higher quality of the generated text to a certain extent so that the BLEU-test 

score should be as high as possible. For Self-BLEU, the lower the model score, the 

lower the repetition of the generated text is, and the more diverse the generated texts 

are. Therefore the score of Self-BLEU should be as low as possible. As a result, the 

training process is to reduce the Self-BLEU score as much as possible while ensuring 

a high BLEU-test score to achieve the optimal solution of the model. 
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Figure 4.5 Training curves of BLEU-test scores on EMNLP WMT News dataset. 

 

Figure 4.6 Training curves of Self-BLEU scores on EMNLP WMT News dataset. 

Then the BLEU scores on the WMT News dataset are listed in Table 4.5. The 

proposed model has achieved significantly better performance than the existing models 

in BLEU-2, 3, and 4 and Self-BLEU-2. The results suggest that our text generation 

model is generally more effective on the EMNLP WMT News dataset than the existing 

models.  
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Table 4.5 The BLEU scores on EMNLP WMT News dataset. 

Method 
BLEU-test Self-BLEU 

BLEU-2 BLEU-3 BLEU-4 BLEU-5 BLEU-2 BLEU-3 BLEU-4 

SEQGAN 0.630 0.354 0.164 0.870 0.728 0.411 0.139 

RANKGAN 0.774 0.484 0.249 0.131 0.672 0.346 0.118 

LEAKGAN 0.920 0.725 0.502 0.321 0.857 0.696 0.373 

GSGAN 0.723 0.440 0.210 0.107 0.682 0.410 0.231 

WGAN 0.891 0.774 0.502 0.267 0.933 0.910 0.886 

TILGAN 0.929 0.817 0.617 0.407 0.663 0.445 0.280 

Our model 0.937 0.840 0.640 0.400 0.638 0.464 0.312 

4.7.4 Ablation Experiment 

To indicate that our changes to the generator are effective, we also conduct an 

ablation experiment on the MSCOCO dataset. We keep all model parameters the same 

with TILGAN except the generator (including learning rate, model structure, number 

of autoencoder layers, and number of hidden layers). The BLEU-3 curve is shown in 

Figure 4.7. The overfitting part is not shown in the figure.  

The curves show that our generator converges much faster than TILGAN. The results 

show that our generator has better text generation ability. Our model can achieve better 

results on large datasets and for long text generation than the original generator. 

 

Figure 4.7 Ablation Experiment. 
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4.8  Impact of Hyperparameters 

The model inevitably contains hyperparameters. The appropriateness of the 

hyperparameters also affects the performance of the model. In this section, we select 

three representative hyperparameters for discussion: head number 𝑛ℎ𝑒𝑎𝑑 , learning 

rate 𝑙𝑟 of the Transformer autoencoder, and initial distribution of the input noise. 

Notably, the single-variable principle is used in all hyperparameter experiments. 

4.8.1 Impact of the Head Number 

This study uses the Multi-head Self-Attention mechanism to enhance the generator’s 

performance. As a result, the number of heads significantly impacts the model’s 

performance and the diversity of generated data. After 100 iterations on the EMNLP 

WMT News dataset, the performance of the model when 𝑛ℎ𝑒𝑎𝑑 is 2 and 4 is shown 

in Figure 4.8, where 𝐵𝐿𝐸𝑈𝑥 − ℎ2 (𝑥 = 2, 3, 4, 5)  represents the corresponding 

BLEU scores when 𝑛ℎ𝑒𝑎𝑑 is 2 . Correspondingly, 𝐵𝐿𝐸𝑈𝑥 − ℎ4  represents the 

BLEU scores when 𝑛ℎ𝑒𝑎𝑑 is 4.  

 

Figure 4.8 Training curves of BLEU-test scores on EMNLP WMT News dataset with 

different 𝑛ℎ𝑒𝑎𝑑. 
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From the figure, we find that the scores of BLEU-4,5 of the model when 𝑛ℎ𝑒𝑎𝑑 is 4 

are much lower than that when 𝑛ℎ𝑒𝑎𝑑 is 2 , whereas the scores of BLEU-2,3 are 

relatively close for the same scenarios. This result shows that the sentences generated 

when 𝑛ℎ𝑒𝑎𝑑 is 4 are trivial and of relatively poor quality. In addition, the data of the 

first ten iterations suggest that there is another possibility that the model may overfit. 

This is also one of the reasons why we finally chose 2 heads. Subsequently, we obtained 

the Self-BLEU score map of the model iterated 100 times on the dataset.  

The Self-BLEU score curve of the model iterating 100 times on the dataset is shown 

in Figure 4.9. The three blue curves represent the scores of Self-BLEU-2, 3, and 4 when 

𝑛ℎ𝑒𝑎𝑑 is 2. Correspondingly, the three orange curves represent the scores of Self-

BLEU-2, 3, and 4 when 𝑛ℎ𝑒𝑎𝑑 is 4. Since the lower the Self-BLEU score, the better, 

we find that the model with 4 heads outperforms that with 2 heads on the diversity of 

the generated text. It again shows that the data generated by the model when the  

𝑛ℎ𝑒𝑎𝑑 is 4 is scattered. In contrast, perhaps because of the characteristics of the Multi-

head Self-Attention mechanism, each head pays attention to different aspects of the data, 

making the generated text more diverse.  

 

Figure 4.9 Training curves of Self-BLEU scores on EMNLP WMT News dataset with 

different 𝑛ℎ𝑒𝑎𝑑. 
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In addition, the experimental results of Figure 4.8 and Figure 4.9 also confirm an 

inversed relationship between the quality and diversity of the generated samples. 

Therefore, during the training process, we must find a delicate balance between the 

generation quality and diversity of the model. Thus, the generated samples have both 

excellent quality and diversity. Subsequently, we also conducted experiments with 1 

head. When the 𝑛ℎ𝑒𝑎𝑑 is 1, the model fails to converge. We believe the model is not 

sufficiently complex to express the latent space distribution of the current dataset when 

the 𝑛ℎ𝑒𝑎𝑑 is 1. We will continue to explore this question in future research. 

4.8.2 Impact of the Learning Rate 

Adjustment of learning rate is a significant part of parameter adjustment. The 

learning rate is one of the the essential hyperparameters. Our model had the largest 

effective capacity when the learning rate was optimal. Therefore, to train a neural 

network, one of the critical hyperparameters that must be set is the learning rate [101]. 

Choosing the optimal learning rate is essential because it determines whether the neural 

network can converge to a global minimum. Larger or smaller learning rates will trap 

the model at the saddle point. We determined the current optimal learning rate on the 

EMNLP WMT News dataset by gradually increasing the learning rate 𝑙𝑟  of the 

Transformer autoencoder for each experiment. When the learning rate 𝑙𝑟  of the 

autoencoder is 0.12 and 0.15, respectively, the BLEU-test and Self-BLEU scores of the 

model are shown in Figure 4.10 and Figure 4.11, respectively. The blue curve 

corresponds to the BLEU-test and Self-BLEU score curves of the model when 𝑙𝑟 is 

0.12. Correspondingly, the orange curve represents  the BLEU-test and Self-BLEU 

score curves of the model when 𝑙𝑟 is 0.15 
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Figure 4.10 Training curves of BLEU-test scores on EMNLP WMT News dataset 

with different learning rates 𝑙𝑟. 

 

 

Figure 4.11 Training curves of Self-BLEU scores on EMNLP WMT News dataset 

with different learning rates 𝑙𝑟. 

We found that when the initial learning rate of the autoencoder is increased from 0.12 

to 0.15, the performance of the generator will drop rapidly. At the same time, when 𝑙𝑟 

is 0.15, the Self-BLEU curve no longer shows a gradual downward trend. Instead, it 
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becomes chaotic. These signs indicate that the generator cannot complete the generation 

task correctly, and the generated samples are chaotic. Based on the analysis, we believe 

there are two reasons for this. First, as the learning rate of the autoencoder is too high, 

the gap between the sentence vector of the real sample and the sentence vector 

generated by the generator is too large. There is little overlap between the distributions 

of the two sets of sentence vectors. The KL divergence is invalid in this case. The score 

given by the discriminator cannot guide the generator, and the generator cannot learn 

any meaningful information. Second, owing to the high learning rate of the autoencoder, 

the autoencoder falls into a saddle point. The autoencoder cannot effectively encode 

sentence vectors of real samples. The discriminator cannot provide helpful information 

to guide the generator. However, regardless of the problem, the generator can generate 

samples with higher scores when 𝑙𝑟 is 0.12 and the learning rate of the autoencoder 

used by the current model is 0.12.  

4.8.3 Impact of the Initial Distribution  

Data initialization also has a considerable impact on the performance of the model. 

Commonly used initialization distributions are as follows:  

(1) zeros initialization: Initialize with zero matrix 

(2) constant initialization: Initialize with specified constant 

(3) ones initialization: Initialize with all-ones matrix 

(4) identity initialization: Initialize with identity matrix 

(5) random normal initialization: Initialize with random normal (Gaussian) 

distribution 

(6) random uniform initialization: Initialize with uniform distribution in a given 

interval [𝑓𝑟𝑜𝑚, 𝑡𝑜] 

In this section, we discuss only the impact of Gaussian and Uniform initializations 

on the model. The scores of BLEU-test and Self-BLEU on the EMNLP WMT News 

dataset with different initialization distributions of noise input are shown in Figures 

4.12 and 4.13. The orange curve (named 𝐵𝐿𝐸𝑈𝑥 − 𝑛 and 𝑠𝑒𝑙𝑓𝑥 − 𝑛) represents the 

scores of BLEU-test-2, 3, 4, 5 and Self-BLEU-2, 3, 4 when the model initialization 
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input follows a Gaussian distribution, and the blue curve (named  𝐵𝐿𝐸𝑈𝑥 − 𝑓  and 

𝑠𝑒𝑙𝑓𝑥 − 𝑓) indicates that the model initialization input follows a Uniform distribution. 

The initialization parameters of Gaussian distribution are a 𝑚𝑒𝑎𝑛  of 0 and a 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 of 1, and the initialization parameters of Uniform distribution 

are a 𝑓𝑟𝑜𝑚 of 0 and a 𝑡𝑜 of 1. 

We found that the Gaussian distribution is slightly better regarding the quality of 

generated sentences but slightly worse in diversity than the Uniform distribution. 

Considering the comprehensive situation, we chose to use the Uniform distribution as 

the initial random noise distribution on the EMNLP WMT News dataset. 

 

Figure 4.12 Training curves of BLEU-test scores on EMNLP WMT News dataset 

with different initialization distributions. 
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Figure 4.13 Training curves of Self-BLEU scores on EMNLP WMT News dataset 

with different initialization distributions. 

 

4.9  Case Study  

We randomly selected 10 generated samples from the short and long text datasets for 

the case study. The maximum lengths of generated sentences in the two datasets are 15 

and 32, respectively. The performance of the model on the two datasets exhibited in 

good agreement with the experimental data. 

4.9.1 The Generation Data from MSCOCO dataset 

Table 4.6 lists the samples generated from the MSCOCO dataset. We set the 

Transformer autoencoder with 2 layers, 4 heads, and 512 hidden dimensions. The 

generator had 4 heads, a 256 head size, and 32 hidden dimensions. All the sentences 

were padded to their maximum length during training. From the table, we found that 

the generated sentences do not have obvious errors, such as identifiers “EOS” and 

“BOS.” In terms of sentence grammar, occasionally, the subject and object of the 
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sentence or the use of prepositions are inappropriate. The results show that the accuracy 

of the sentences generated by the model on the short sentence dataset was acceptable.  

Meanwhile, we find that sentences starting with “a” accounted for the majority, 

which indicates that the diversity of sentences generated by the model on the short 

sentence dataset needs to be improved. We believe that there are two possible reasons 

for this finding. First, inappropriate parameter selection of the model makes the model 

too complex relative to the sample distribution of the MSCOCO dataset, resulting in 

overfitting. Second, we count 120,000 training data in the MSCOCO dataset and found 

that 81,450 sentences begin with “a,” and 4,950 sentences begin with “an.” The 

proportion of sentence types in the MSCOCO dataset is listed in Table 4.7. Therefore, 

the samples generated by the model will most likely start with “a.” In this case, we can 

only attempt to adjust the parameters to reduce the degree of overfitting of the model. 

Table 4.6 The samples generated from the MSCOCO dataset. 

Samples 

a man and bathtub in a small wooden building 

a man is standing on the side of a street 

a tree on a grassy field next to some rocks 

young man and woman in a small wooden building 

a police performs a trick in makeshift lines window 

a man is standing by a woman holding a child 

a man is sitting on a bench with a dog 

a close up of a person riding a bicycle 

a man is standing in front of a bus 

a group of people standing around a table eating food 

Table 4.7 The percentage of sentence types in the MSCOCO dataset. 

Beginning with “a” “an” other 

Percentage 67.875% 4.125% 28.00% 
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4.9.2 The Generation Data from EMNLP WMT News  

Table 4.8 lists the samples generated from the EMNLP WMT News dataset during 

adversarial training. We set the Transformer autoencoder with 2 layers, 4 heads, and 

512 hidden dimensions. The generator had 2 heads, a 256 head size, 32 hidden 

dimensions, and a batch size of 128. All the sentences will be padded to their maximum 

length during training. Our model performed better on the EMNLP WMTNews dataset 

than the MSCOCO dataset. From the table, we can see that the generated sentences do 

not have apparent errors. In terms of sentence grammar, occasionally, the subject and 

object of the sentence or the use of prepositions are inappropriate. Our model’s 

performance benefits from the huge data volume of 270,000 and the excellent 

expressive ability of the generator in medium and long text generation. 

Table 4.8 The samples generated from the EMNLP WMT News dataset. 

Samples 

It’ s a big-time job to get a lot of people, but i‘ m not sure they’re going to be a good 

team. 

I’ m not sure how much you can do with him, but i think he’s going to get the ball. 

We’ re going to get a good job and get to the best, and we can do that. 

the former secretary of state, said that the government would be able to take over the 

next few weeks, but it was not clear. 

the first of the year, a new york businessman has been killed by a man who has been 

killed by a police officer in the past. 

“we’re going to get a lot of people in the world, and that’s what we’re doing,” he 

said. 

in the past, the number of people who have been killed in the past year has risen to 

more than a decade ago. 

he said he would be able to get a job of keeping it in the car on the road, which is not 

the case. 

“ this is a very important part of the world, and it is a great opportunity to play,” he 

said. 
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it is not clear whether the man was arrested on suspicion of murder, but it was not 

believed to be in the case. 

4.10 Summary  

This study proposes an improved model for text generation. We rebuilt the generator 

architecture with Multi-head Self-Attention to improve the text generation capabilities 

of the generator. Our model consists of a Transformer autoencoder, a generator with 

Multi-head Self-Attention, and a linear discriminator. We use the KL divergence as the 

GAN’s loss functions. The encoder of the Transformer autoencoder is used to generate 

the distribution of real samples, and the decoder is used to decode the real samples 

encoding or the generated samples encoding into text. The loss function of the 

autoencoder is cross entropy. Our model has higher evaluation scores and diversity on 

MSCOCO and EMNLP WMT News datasets than existing models. Finally, we 

analyzed the influence of hyperparameters on the model. In future work, we will 

continue to conduct experiments on other datasets while seeking the best model 

parameters to obtain better performance. 
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Chapter 5 

 Conclusion and Future Work 

With successive improvements, the theory behind GANs has gradually shown a high 

degree of potential, and many excellent variants of GANs have been developed for text 

generation. Nevertheless, many problems are yet to be addressed, including poor 

consistency, logical contradictions, insufficient information, and redundancy in 

generated content. All of these challenges indicate excellent development potential. 

This thesis focuses on the GANs for unconditional text generation. This chapter 

summarizes the entire thesis and suggests future work. 

5.1  Conclusion 

This thesis focuses on the research of GANs for unconditional text generation. We 

proposed methods for generating high-quality and diverse texts. Overall, our work 

revolves around the remaining challenges in the field of unconditional text generation. 

(1) Gradients cannot transfer appropriately between the generator and the 

discriminator. 

(2) The training process of a GAN is unstable, and the generation task is 

significantly more complicated than discrimination, as the discriminator’s 

guidance for the generator is too weak. 

(3) Mode Collapse: The generator begins to degenerate, as it continuously 

generates the same samples, and cannot learn any meaningful information. 

To address these challenges, we proposed two models. 
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(1) We proposed a novel architecture based on RelGAN and WGAN-GP, dubbed 

WRGAN, which effectively solves the issues identified above. We rebuilt the 

discriminator architecture with the 1-dimensional convolution of multiple 

kernel sizes and residual modules. Correspondingly, we modify the generator 

and discriminator loss functions with gradient penalty Wasserstein loss. Then, 

the discriminator and generator with relational memory were coordinated by 

Gumbel-softmax relaxation to train the GAN model on discrete data. 

(2) We improved TILGAN for unconditional text generation by refactoring the 

generator. In short, we used Multi-head Self-Attention to replace the linear and 

BN layers to endow the generator with superior text generation capabilities. 

Our model consists of three components: a Transformer autoencoder, a Multi-

head Self-Attention-based generator, and a linear discriminator. In the 

transformer autoencoder, the encoder generates the distribution of real samples, 

whereas the decoder decodes real or generated sentence vectors into text. The 

loss functions for autoencoder and GAN are cross entropy and KL divergence, 

respectively. 

We then demonstrated the effectiveness of our proposed models by comparing their 

performance with that of existing models on multiple datasets. We also analyzed the 

effect of some typical hyperparameters in the proposed model. Our ablation 

experiments also demonstrated the effectiveness of the proposed generator network for 

unconditional text generation. 

5.2  Future Work 

This thesis comprises studies on unconditional text generation. There is still 

significant potential for improvement in this field, such as the creation of a model 

suitable for more datasets, particularly small datasets, and the development of a more 

suitable structure to enable the generation of high-quality samples. To apply the model 

to conditional text generation so that the model can generate text as we wish.  
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In the future, we will explore more effective methods for generating high-quality and 

diverse samples. However, there is still a significant gap between the language 

generated by machines, and that developed by humans. At the same time, we will 

neither limit the GAN models nor the field of NLG. Currently, the model based on 

multi-modal fusion is more in line with human cognition than a single-modal model. 

With the continuous development of technology, multi-modal generation will continue 

to be an important subject of research.  
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