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Abstract: Mobile devices could augment their ability via cloud resources in mobile cloud computing
environments. This paper developed a novel two-layered reinforcement learning (TLRL) algorithm
to consider task offloading for resource-constrained mobile devices. As opposed to existing literature,
the utilization rate of the physical machine and the delay for offloaded tasks are taken into account
simultaneously by introducing a weighted reward. The high dimensionality of the state space
and action space might affect the speed of convergence. Therefore, a novel reinforcement learning
algorithm with a two-layered structure is presented to address this problem. First, k clusters of the
physical machines are generated based on the k-nearest neighbors algorithm (k-NN). The first layer
of TLRL is implemented by a deep reinforcement learning to determine the cluster to be assigned
for the offloaded tasks. On this basis, the second layer intends to further specify a physical machine
for task execution. Finally, simulation examples are carried out to verify that the proposed TLRL
algorithm is able to speed up the optimal policy learning and can deal with the tradeoff between
physical machine utilization rate and delay.

Keywords: mobile device; task offloading; tradeoff; mobile cloud computing; two layered
reinforcement learning

1. Introduction

Internet of things (IoT) [1] connects mobile devices to the internet and makes it possible for objects
to connect. However, due to their limited memory, storage, CPU, and battery life, mobile devices
need to offload computing-intensive or energy-consuming tasks to cloud computing infrastructure
via the internet. Mobile cloud computing (MCC) [2] is a new paradigm for augmenting devices via
remote cloud resource, which can overcome resource constraints for mobile devices. It is a hotspot for
research on how to run applications on mobile devices by utilizing cloud resource effectively in an
MCC environment.

Offloading the tasks that require considerable computational power and energy to the remote
cloud server is the best way to augment ability and reduce the energy consumption for mobile
devices. Many different offloading methods have been proposed in recent research. The offloading
strategy is based on many factors such as the energy consumption of mobile devices, the network
bandwidth, latency, the capacity of cloud servers, and the application structures that save bandwidth
or speed up the execution, etc. Considering these factors, the offloading strategy compares the
cost of local and remote execution in order to decide which tasks should be offloaded. The cloud
computing [3] makes task offloading possible which is adopted in MCC environment. One of its
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core techniques is virtualization, which is used to run multiple operating systems and applications
based on maintaining isolation. The virtual machines (VMs) run on physical machines (PMs) in the
remote cloud. By offloading tasks to the remote cloud, the energy consumption of mobile devices
can be reduced [4,5]. The offloaded tasks run on corresponding VMs that are commonly deployed in
distributed cloud centers. Offloading tasks to different PMs may lead to a different delay for mobile
devices. Moreover, the utilization rate of PM in a cloud center should be considered as this could cause
the waste of physical machine resources if it is at a lower level.

The main contributions of this paper are as follows:
First, we take into account utilization rate of PM and delay for task offloading simultaneously.

Then, based on theoretical analysis, we find that a higher utilization rate of PM and a lower delay
are conflicting commonly with each other. In order to trade off between utilization rate of PM and
delay, we use deep reinforcement learning (DRL) to find optimal PM to execute the offloaded tasks by
introducing a weighted reward. Moreover, a novel two-layered reinforcement learning algorithm is
presented to address the problem, in which the high dimensionality of the state space and action space
might affect the speed of learning optimal policy.

This paper is organized as follows: Section 2 introduces the related works. We propose the
problem that our paper focuses on and give the definition of the utilization rate of PM and delay in
Section 3. Section 4 introduces the deep reinforcement learning. In Section 5, we formulate our problem
using DRL and propose an algorithm for task offloading based on DRL. Moreover, a two-layered
reinforcement learning (TLRL) structure for task offloading is proposed to improve the speed of
learning optimal policy. We show the advantage of our proposed algorithm for task offloading through
simulation experiments in Section 6. In Section 7, we conclude our paper.

2. Related Works

Much research has studied the task offloading in MCC environment. They propose many different
methods for different optimization objects. Zhang et al. [6] provides a theoretical framework for
energy-optimal MCC under stochastic wireless channel. They focus on conserving energy for the
mobile device, by executing tasks in the local device or offloading to the remote cloud. The scheduling
problem is formulated as a constrained optimization problem in their study. The paper [7] proposed
a scheduling algorithm based on Lyapunov optimizing problem, which schedules the tasks for the
remote server or local execution dynamically. It aims at balancing the energy consumption and delay
between the device and remote server according to the current network condition and task queue
backlogs. Liu et al. [8] formulate the delay minimization problem under power-constrained using
Markov chain. An efficient one–dimensional search algorithm is proposed to find the optimal task
offloading policy. Their experimental results show that proposed task scheduling policy could achieve
a shorter average delay than the baseline policies. Considering the total execution time of tasks.
Kim et al. [9] considered the situation that the cloud server is not smooth and large-scale jobs are
needed to process in MCC. They proposed an adaptive mobile resource offloading to balance the
processing large-scale jobs by using mobile resources, where jobs could be offloaded to other mobile
resources instead of the cloud. Shahzad and Szymanski [10] proposed an offloading algorithm called
dynamic programming with hamming distance termination. They try to offload as many tasks as
possible to the cloud server when the bandwidth is high. Their algorithm can minimize the energy
cost of the mobile device while meeting a task’s execution time constraints.

There are also some studies focused on resource management for task offloading. Wang et al. [11]
proposed a framework named ENORM for resource management in fog computing environment.
A novel auto-scaling mechanism for managing the edge resources is studied, which can reduce the
latency of target applications and improve the QoS. Lyu et al. [12] considered the limited resource in the
proximate cloud and studied the optimization for resource utilization and offloading decision. They try
to optimize the resource utilization for an offloading decision, according to the user preferences on task
completion time and energy consumption. They regard the resource of proximate clouds as a whole
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with limited resource. They proposed a heuristic offloading decision algorithm in order to optimize
the offloading decision, and computation resources to maximize system utility. Ciobanu et al. [13]
introduced a Drop Computing paradigm that employs the mobile crowd formed of devices in close
proximity for quicker and more efficient access. It was different from traditional method, where every
data or computation request going directly to the cloud. This paper mainly proposed the decentralized
computing over multilayered networks for mobile devices. This new paradigm could reduce the costs
of employing a cloud platform without affecting the user experience. Chae et al. [14] proposed a
cost-effective mobile-to-cloud offloading platform, which aimed at minimizing the server costs and
the user service fee. Based on ensuring the performance of target applications, the platform offloaded
as many applications to the same server as possible.

Machine learning technologies have been applied for offloading decision. Liu et al. [15]
developed a mobile cloud platform to boost the general performance and application quality for
mobile devices. The platform optimized computation partitioning scheme and tunable parameter
setting for getting a higher comprehensive performance, based on history-based platform-learned
knowledge, developer-provided information and the platform-monitored environment conditions.
Eom et al. [16] proposed a framework for mobile offloading scheduling based on online machine
learning. The framework provided an online training mechanism for the machine learning-based
runtime scheduler, which supported a flexible policy. Through the observation of previous offloading
decisions and their correctness, it can adapt scheduling decisions dynamically. Crutcher et al. [17]
focused on reducing overall resource consumption for computing offloading in mobile edge networks.
They obtained features composed of a “hyperprofile” and position nodes by predicting costs of
offloading a particular task. Then a hyperprofile-based solution was formalized and a machine
learning techniques based to predict metrics for computation offloading was explored in this paper.

However, existing researches have some limitations. Papers [6–8,10] only consider the energy
and delay as optimization objects that ignore the management of cloud resources. Moreover, some
works [11,12,14] focus on resource management for task offloading, which do not consider utilization
rate of cloud resources. These works rarely consider utilization rate of PM in cloud server and delay
caused by arranging the offloaded task to different PMs in the cloud simultaneously. They do not
consider the detail of the remote cloud, which has an impact on offloaded tasks. The bandwidth
between the different PMs of the cloud and mobile devices are different because PMs of the cloud
are distributed geographically in a real environment. This can affect the transmission time that a task
is offloaded from mobile device to the PM. Moreover, a waiting time in the cloud for the offloaded
task will be taken into consideration. Besides, the resources of the cloud are also limited. If the
number of offloaded tasks is too large due to the popularity of mobile devices, the utilization rate
of cloud resources should be considered to avoid waste of cloud resources. Our paper intends to
study scheduling the offloaded tasks to optimal PM by trading off between utilization rate of physical
machine and delay, in which the delay comprises of the waiting time, the execution time of offloaded
task and data transmission time. We model the problem using DRL to obtain an optimal policy
for task offloading, which is more effective than traditional reinforcement learning when facing to
high-dimension state space and action space. Different from existing studies [15–17] that applied
machine learning technologies for offloading based on related historical data, we intend to study an
online learning method based on DRL where a weighted reward is introduced for tradeoff between
utilization rate of PM and delay. Furthermore, we propose a two-layered reinforcement learning
(TLRL) algorithm for task offloading to improve learning speed, where the dimensions of state space
and action space are reduced by utilizing the k-NN [18] to classify the PMs in the remote cloud.

3. Problem Statement

Previous works for task offloading focus on whether to offload corresponding tasks to a cloud
server in order to optimize a certain parameter. They regard the cloud resource as a whole and make
decisions for task offloading according to resource availability, energy consumption etc. They do
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not consider improving the utilization rate of cloud resource, which may lead to a waste of cloud
resources. A dedicated cloud resource manager is in charge of optimal resource allocation following its
optimization objects, such as saving energy, decreasing the waste of computing resource etc. It does not
consider the impact on mobile devices in mobile cloud computing environment. In our paper, we intend
to improve the utilization rate of cloud resource and reduce the latency when the cloud resource is
applied to augment mobile devices, which is seldom considered by other studies on the issue of task
offloading. Moreover, the selection of physical machines that an offloaded task runs in can affect the
delay of offloaded tasks. Therefore, it is necessary to make sure a high utilization rate of PM and a low
delay for offloaded tasks when offloading tasks to the cloud. We will mainly study the tradeoff between
the optimal utilization of cloud resource and the delay for offloaded tasks in our paper.

We consider the real cloud environment where all tasks run on the virtual machines and a physical
machine could deploy several virtual machines. The proximity cloud may reduce data transmission
time between the mobile device and cloud. In our paper, we consider the bandwidth between mobile
devices and the PMs. As shown in Figure 1, PMi represents the ith physical machine (PM) in cloud
center that is used to run VMs. We can see that the number of VMs running in each PM are different.
The PM4 is not in a running state that there are no VMs running in. The bandwidth between mobile
devices and the ith PM is denoted as BWi correspondingly. Suppose that the number of current
running PMs is NCP and the max number of VMs that NCP PMs could run is NTV . The number of
current running VMs on these NCP PMs is NCV and the max number of VMs each PM can run is NV .
We defined utilization rate of PM as follow

UR = NCV/NTV ∗ 100% (1)

NTV = NV ∗ NCP (2)
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We can see that proposed algorithm should decrease the NCP and increase the NCV in order to
get larger UR when offloading tasks to cloud server. Therefore, offloaded tasks should be assigned to
those PMs that have run VMs preferentially than being assigned to a new PM. However, it may lead to
a higher delay than offloading tasks to a new PM.

We define the delay caused by an offloading task as follow:

TD = Tc + TW + S/BW (3)

where Tc is the execution time of offloaded tasks in cloud server, and S is the amount of data to be
transferred between the mobile device and the cloud server. TW is the waiting time when an offloaded
task is assigned to the VM that existing another task is running in. As shown in Figure 2, the Task1
is running on VM1 in the time among 0 and t1, and only one VM is running in current PM during
that period time. The Tc of Task1 is t1. If an offloaded task Task2 arrives at t0, then there are two
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ways to choose for running the offloaded task Task2. One way is that the Task2 is assigned to VM1,
it will be executed at t1 when the Task1 is completed. Therefore the waiting time caused by this way
is TW = t1 − t0. Another way is that the Task2 is offloaded to a new running VM VM2 that no task is
running on. The Task2 can be executed in VM2 at t0 and there is no need to wait, TW = 0. Moreover,
the VMs from different PMs are in different running states, which could lead to different waiting time
for offloaded tasks. Meanwhile, the bandwidths between mobile devices and the PMs are also different.
We need choosing the optimal PM for offloaded tasks to make the delay lower according to Formula (3).
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Through this analysis above, we find that choosing different physical machines to run offloaded
tasks may affect the latency and the utilization rate of physical machines. In this paper, we mainly
focus on assigning the offloaded tasks to an optimal PM for making sure a higher utilization rate of
PM UR and a lower delay TD.

Our proposed algorithms will be deployed in the remote cloud, and the process of offloading
tasks to the remote cloud is illustrated in Figure 3. Fist, the information of offloaded tasks will be sent
to Proposed Algorithms in step 1. According to the information, the module of Proposed Algorithms
can select an optimal physical machine for executing the offloaded tasks. Therefore, the ID of the
obtained optimal physical machine from the module of Proposed Algorithms will be sent back to
the corresponding mobile devices in step 2. Moreover, the offloaded task and the ID of the optimal
physical machine will be sent to the module of Resource Management. Finally, the module of Resource
Management arrange the offloaded tasks to corresponding physical machines.
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4. Deep Reinforcement Learning

Reinforcement learning (RL) is a subfield in machine learning, in which the agent can learn from
trial and error by interacting with the environment and observing reward [19]. As shown in Figure 4,
the agent, also referred to as the decision-maker, obtains an immediate reward r from the environment
according to the current action at when its current state is st. Moreover, the agent’s state transits to st+1

after executing the action at. The goal of RL is to lean an optimal policy for an agent that can make it
choose the best action according to current state.
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We can use a tuple 〈S, A, R〉 to present the RL, the action an agent can choose is at ∈ A and the
state an agent can reach is st ∈ S. R represents the space of reward value.

Q learning is a model-free algorithm [20] for RL, which can be used to get the optimal policy.
The evaluation function Q(st, at) represents the maximum discount cumulative reward when the agent
starts with state st and uses at as the first action. Therefore, the optimal policy π∗ could be denoted as:

π∗(st) = argmax
at

Q(st, at) (4)

According to the Formula (4), in order to obtain the optimal policy π∗, an agent needs to select
the action that maximizes Q(st, at) when agent is in state st. In general, Q(st, at) could be iteratively
updated by the following Formula:

Q(st, at)← Q(st, at) + α[r + γmax
a′

Q
(
st+1, a′

)
−Q(st, at)] (5)

where r represents immediate reward when the agent is in state st and selects action at to execute.
γ (0 ≤ γ < 1) is a constant that determines the discount value of a delayed reward. α(0 ≤ α ≤ 1) is
learning rate, a larger value of αwill lead to a faster convergence for Q function.

However, when the state space and the action space are too large, it is very hard to make Q(st, at)

converge by traversing all states and actions. DRL can handle the complicated problems with large state
space and action space [21]. It has been successfully applied to Alpha Go [22] and playing Atari [23].

When facing high-dimension state space and action space, it is difficult to obtain Q(st, at) according
to the original method. Suppose that if Q(st, at) could be represented by a function, it will be regarded
as a value function approximation problem for obtaining Q(st, at). Therefore, we can approximate the
function Q(st, at) by using function Q′(st, at, ω), where ω represents related parameters.

Q(st, at) ≈ Q′(st, at, ω) (6)

The loss function was defined by using the mean-square error for DRL that was proposed in
paper [24]. Therefore, we follow their definition about the loss function in our paper:

Loss(ω) = E
[
(r + γmax

a′
Q′
(
st+1, a′, ω

)
−Q′(st, at, ω))

2
]

(7)
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Then, the gradient of Loss(ω) is:

∂Loss(ω)

∂ω
= E

[
(r + γmax

a′
Q′
(
st+1, a′, ω

)
−Q′(st, at, ω))

∂Q′(st, at, ω)

∂ω

]
(8)

In Formula (8), ∂Q′(st ,at ,ω)
∂ω could be calculated by a deep neural network (DNN) [25]. Therefore,

the DRL is composed of an offline DNN phase and an online Q-learning progress. Different from RL,
a DNN for estimating the Q value is constructed according to each state-action pair and corresponding
Q value. Therefore, all the Q value cloud be estimated by the DNN in each decision step, which makes
algorithm not need to traverse all states and actions. The related training data is usually obtained
from actual measurement [22], where the experience memory M defined with capacity CM is used
to store state transition profiles and Q values. Then, the weight set ω of the DNN could be trained
by these training data. In the progress of online Q-learning, the DRL also adopts the ε-greedy policy
for selecting action to update the Q value. Take a decision step t as an example, the agent is in the
state st. By using the constructed DNN, the agent can estimates the corresponding Q(st, at) for all
possible actions. The agent can select the maximum Q(st, at) value estimate with probability 1− ε,
and select a random action with probability ε. When the selected action at is executed, the agent
observes corresponding reward r that is used to update the Q value according to Formula (5). After
this decision, the DNN will be updated by the latest observed Q value.

5. Proposed Methods

5.1. Deep Reinforcement Learning for Task Offloading

Task offloading in MCC environment tries to offload computing-intensive or energy-consuming
tasks to cloud servers. As described in Section 3, we should select the optimal PM to execute offloaded
tasks by trading off the utilization rate of PM and delay. Existing machine learning methods [15–17]
for task offloading belong to supervised learning. They need to learn the optimal policy through
amount of historical data, in which the selection of historical data will affect the effectiveness of the
corresponding algorithm. In order to learn the optimal task offloading policy from real-time data,
we mode this problem using DRL in which action space is the set of PMs in the cloud. This method
can update policy constantly according to real-time data until it converges. Usually, these PMs are
distributed geographically and large scale in order to meet the needs of a large number of devices.
This can lead to a large action space.

We define state space according to the waiting time and the number of VMs that run in PMs that
are introduced in Section 3. Suppose that, there are P PMs in cloud for task offloading and the pth PM
is denoted as PMp. The number of VMs that run in the pth PM is Np

c at current decision step t. We use
Tp

w to denote the waiting time that a task is offloaded to the pth PM in the cloud. Therefore, we could
define the state for task offloading as follow:

state : St < T1
w, N1

c , T2
w, N2

c · · · TP
w , NP

c > (9)

The dimension of state in our proposed problem is 2 ∗ P, where P is always lager in real cloud
infrastructure. Therefore, our proposed problem has a high-dimension state space.

We define the reward value according to the utilization rate of PM and delay which are also
the goal of optimization. However, the highest utilization rate of PM and the lowest delay often
cannot be met at the same time. If the action PMp is selected and the task is offloaded to the pth PM
correspondingly, then the reward is defined as follow:

R = β ∗UR + (1− β)TD = β
(

NCV/NTV ∗ 100%
)
+ (1− β)Normal(1/Tc + TW + S/BW) (10)
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The first part is current utilization rate of PM in the cloud, and the second part is the delay caused
by task offloading. Then β(0 ≤ β ≤ 1) is a weight factor that is used to trade off the utilization rate of
PM and delay. If β is larger, it means that the utilization rate of PM is preferred than the delay and vice
versa. In order to trade off between UR and TD efficiently by adjusting the weight factor β, we need
to normalize the two metric. The Min-Max normalization is used to the two metric. Because the value
of UR is between 0 and 1, we only normalize the TD in general. In Formula (10), function Normal
represents the normalization of the TD.

In DRL, before the process of online learning, we construct the DNN by learning from the related
training data or initializing parameters randomly. The construction and updating of the DNN are
based on experience replay [26,27]. The experience M consists of a tuple 〈st, at, rt, st+1〉 at each time
step t in this paper. The input of DNN is the state of PMs in cloud according to Formula (9) and the
output of DNN is the corresponding Q value for selecting each PMs. Therefore, the dimension of input
is 2 ∗ P, and the dimension of output is P.

The Figure 5 shows the process of our proposed task offloading algorithm based on DRL that
focuses on the online Q learning. When the offloaded task arrives at time step t, the algorithm obtains
current states st and decides how to select the action at that represents the PM in cloud that the
offloaded task executes on. It will select a random action with probability ε as shown in step 3 and
select a PM that has a large Q value through the estimation of DNN with probability 1− ε as shown in
step 2. In step 4, the system offloads the task to selected PM and calculates the reward value according
to Formula (10). Moreover, the system updates the current state with st+1 in step 5 and updates the
current Q value according to Formula (6). Store the transition profiles 〈st, at, rt, st+1〉 in experience
memory M for experience replay in step 6. Finally, update the parameter ω of DNN according to
experience memory M. The details of our proposed algorithm are shown in Algorithm 1.
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As mentioned above, the dimension of state, the input of DNN, is 2 ∗ P. The dimension of action
is P and the action is the output of DNN. If the number of PMs in cloud P is large, it will lead to a
high dimension of state and action. Therefore, in each decision step, the DNN will estimate Q value of
every possible action in the current state. Moreover, the high dimensional input of the DNN requires
a greater number of neurons in hidden layers, which could lead to high computational complexity.
We try to reduce both the dimension of state and action for decreasing the computational complexity
in order to speed up the optimal policy learning.
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Algorithm 1. Task offloading algorithm based on deep reinforcement learning

1 Initialize the parameter ω of DNN, Q(s, a) and parameters α, ε, γ, β;
2 For each offloaded tasks do
3 With probability ε select a random action (PM), with probability 1− ε select at = argmax

a
Q(st, a).

Q(st, a) is estimated from DNN;
4 Execute action at, i.e., offload the task to selected PM
5 Observe the new state st+1 and obtain the reward r according to Formula (10)
6 Collect the transition profiles < st, at, rt, st+1 > and Q(s, a) in experience memory M.
7 Update Q(s, a) according to Formula (5) and all related Q value is calculated through the DNN.
8 Update ω using random gradient descent
9 End For
10 Until the Q converges

5.2. Two-Layered Reinforcement Learning for Task Offloading

In this subsection, we propose a two-layered reinforcement learning (TLRL) algorithm for task
offloading to address above problem. First, we divide the PMs into K clusters according to the
bandwidth between PMs and devices using the k-NN algorithm where the kth cluster contains Pk PMs.
The structure diagram of proposed TLRL algorithm is shown as Figure 6.
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Our proposed two-layered reinforcement learning structure comprises of DRL and RL. Different
from DRL for task offloading, TLRL gives a current optimal cluster of PMs Cp

k according to the current
state first by using DRL first. Then the optimal PM PMp is obtained by using Q-Learning for the
cluster Cp

k . The detailed flow of task offloading algorithm based on TLRL is shown in Figure 7.
The first layer of TLRL is implemented by DRL, which is used to get an optimal cluster for

offloaded tasks. We define the waiting time of the kth cluster as:

Tk
cw = minpk∈{1,...,Pk}

(Tpk
w ) (11)

where Tpk
w is the waiting time of the pkth PM. The total number of VMs that run in the kth cluster is

Nk
cc at decision t. The state for clusters is denoted as follow:

state : Sc
t < T1

cw, N1
cc, T2

cw, N2
cc · · · TK

cw, NK
cc > (12)

and
action : Ac =

{
ac
∣∣∣ac ∈

{
Cp

1 , Cp
2 , Cp

3 . . . Cp
K

}}
(13)

where Sc
t represents the state of layer one and Ac is its action space. Then we define the reward value

when the action Cp
k is selected and the task is offloaded to the kth cluster:

Rc = β ∗UR + (1− β)TD = β(NCV/NTV ∗ 100%)

+(1− β)Normal(1/Tc + Tk
cw + S/BWk

c )
(14)
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where the bandwidth of the kth cluster is denoted as BWk
c , which is equal to the bandwidth of center

PM of cluster. The evaluation function corresponds to Rc is denoted as Qc(sc
t , ac), which can be updated

according to Formula (5).
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The second layer of TLRL is implemented by Q-learning, which is used to get an optimal PM
for offloaded tasks. We need to build a Q-learning model for each cluster separately. After the DRL
of TLRL selects the thk cluster, the RL of TLRL will select a PM for executing current offloaded task
further by using Q-learning in the thk cluster. In the thk cluster, we define the total number of VMs
that run in the pkth PM is Npk

c at episode t. The state for clusters is denoted as follow:

state : Sk
t < T1

w, N1
c , T2

w, N2
c · · · T

Pk
w , NPk

c > (15)
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and
action : Ak =

{
ak
∣∣∣ak ∈ {PMk

1, PMk
2, PMk

3 . . . PMk
Pk
}
}

(16)

where Sk
t represents the state of layer two and Ak is its action space. The reward is denoted as:

Rk = α ∗UR + (1− α)TD = α
(

NPk
c /Nk

c ∗ 100%
)
+ (1− α)(Tc + Tpk

w + S/BWpk
k ) (17)

where Nk
c is max number of VMs that run in the kth cluster. Similarly, the evaluation function

corresponds to Rk is denoted as Qk
(

sk
t , ak

)
which can be updated according to Formula (5). Besides,

we define the global Q-function for TLRL algorithm given by Formula (18), which indicates the
convergence of Algorithm 2.

Qg =
Qc(sc

t , ac) +
∑K

k=1 Qk(sk
t ,ak)

K
2

(18)

Algorithm 2. Task offloading algorithm based on two-layered reinforcement learning

1 Initialize the parameterω of DNN Q(s, a) and parameters α, ε, γ, β;
2 For each offloaded tasks do
3 With probability ε select a random action (cluster), with probability 1− ε select

ac
t = argmax

ac
Qc(sc

t , ac). Qc(sc
t , ac) is estimated from convolutional neural network (CNN).

4 Observe the new state sc
t+1 and obtain the reward Rc according to Formula (14)

5 Collect the transition profiles
〈
sc

t , ac
t , Rc, sc

t+1
〉

and Qc(sc
t , ac) in experience memory M

6 Update Qc(sc
t , ac

t ) according to Formula (5)
7 Update ω of DNN using random gradient descent and all related Q value is

calculated through the DNN.
8 For the selected cluster according to the DRL, using Q-learning do:
9 With probability ε select a random action (PM), with probability 1− ε select

ak
t = argmax

ak
Qk
(

sk
t , ak

)
.

10 Execute action ak
t , i.e., offload the task to selected PM

11 Observe the new state sk
t+1 and obtain the reward Rk according to Formula (17)

12 Update Qk
(

sk
t , ak

t

)
according to Formula (5)

13 End Q-Learning process
14 Calculate the global Q according to Formula (18)
15 End For
16 Until the global Q converges

6. Simulation Study

In this section, we evaluate the performance of proposed algorithms for offloading tasks through
simulations. First, we evaluate the utilization rate of physical machine and delay for 200 offloaded tasks
by using three different methods, TLRL algorithm, DRL algorithm and random algorithm. Moreover,
we compare our proposed TLRL algorithm with DRL algorithm and Q-learning for offloading tasks,
observe convergence times and discounted cumulative reward. Finally, we show the validity of trading
off between utilization rate of physical machine and delay for task offloading by using TLRL algorithm
and adjust the weight factor β.

In this simulation, we set the number of PMs in the remote cloud is 100. According to Section 5,
we know that the dimension of state in this simulation is 200 that is a high dimensional state space
problem for RL. The bandwidths between these PMs and mobile devices are generated randomly
among the interval (500 kbps, 10 Mbps). We suppose all PMs have almost the same hardware
configuration. Each PMs could run three VMs at most for executing offloaded tasks. We consider
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multiple devices in our paper where different devices may contain the same tasks. Therefore,
our proposed algorithm makes a decision according to the difference of tasks. In our experiments,
we take 6 different tasks and the corresponding parameters are displayed in Table 1. We set α = 0.3,
ε-greedy strategy ε = 0.6 and reward discount γ = 0.8 for our proposed algorithms.

Table 1. The parameters of offloaded tasks in following experiments.

Offloaded Tasks Amount of Data Time of Executing Task

Task1 1 MB 2 s
Task2 3 MB 5 s
Task3 5 MB 3 s
Task4 7 MB 4 s
Task5 9 MB 6 s
Task6 10 MB 5 s

In order to evaluate the TLRL algorithm, we divide the 100 PMs into 20 clusters using k-NN
algorithm where the k is equal to 20. Therefore, the dimension of state belonging to RL of TLRL is
decreased to 20 × 2 and the number of corresponding actions is 20 according to Section 5. Comparing
with DRL algorithm, both the dimension of state and the number of actions have a significant reduction.

Before these experiments, we construct two full-connected CNNs with an input layer, an output
layer, and two hidden layers. The details of the two full-connected CNNs are displayed in the Table 2.

Table 2. The setting of CNN in following experiments.

Algorithms Number of Input Number of Neurons in
First Hidden Layer

Number of Neurons in
Second Hidden Layer

Number of
Output

DRL 200 114 36 100
TLRL 40 18 4 20

According to the Table 2, we can see that our proposed TLRL contains less number of input
and output compared with DRL by classifying the PMs into 20 clusters via k-NN algorithm.
Correspondingly, the hidden layers also contain less number of neurons than DRL.

6.1. The Comparison of Different Algorithms

In this experiment, we compare our proposed TLRL algorithm and DRL algorithm with the random
policy for task offloading. The random algorithm arranges the offloaded tasks to the PM randomly and
ignores the utilization rate of PMs and delay. The beginning state is initialized randomly, and β = 0.5 is selected
for the weight factor of reward. We observe the change of utilization rate of PMs and delay through simulating
offloading tasks, where the number of offloaded tasks increases from 1 to 200. We will compare the obtained
optimal policy after learning process for DRL and TLRL with a random policy. We track the utilization rate of
PMs and delay for 200 offloaded tasks by following the learned optimal policy for task offloading.

These results are shown in Figure 8. It is shown that the random algorithm results in severe
fluctuation, in terms of the utilization rate of PMs and delay, compared to the cases of DRL and TLRL.
First, in Figure 8a, both the DRL and TLRL, the utilization rate of PMs is maintained at the level around
60%, whereas the random algorithm leads to an inferior level around 23% for the utilization rate of
PMs, which may lead to the waste of cloud resources. Second, in Figure 8b, it can be seen that based
on DRL and TLRL, a lower delay for each offloaded task can be obtained. It changes between 9 s and
15 s. However, frequent changes in the delay for the offloaded task by using the random algorithm,
where the max delay is around 27 s. This is because the random approach selects a PM to execute the
offloaded task randomly. According to the definition of delay in Formula (3), if TW is larger and BW is
smaller, it will lead to a higher delay TD correspondingly. On the contrary, if TW is smaller and BW is
larger, a lower delay TD is obtained. Therefore, this random selection approach for PMs can lead to a
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random delay in each decision step, which may cause the high jitter in the delay for offloaded tasks. We
can conclude that our proposed algorithms based on DRL can get a better performance for increasing
the utilization rate of PMs and decreasing the delay caused by task offloading than random policy.
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From the above results, one can observe that the policy learned by DRL can achieve better results
than the policy learned by TLRL. This is because we reduce both the dimension of state and action
for decreasing the computational complex by proposing the TLRL algorithm, where we assume the
PMs from the same cluster are similar. Then we assume the waiting time and bandwidth of PMs from
the same cluster are equal to the cluster according to Section 5, which may lead to a bias of learning
optimal policy. However, our proposed TLRL algorithm could find the optimal policy than other
methods when facing to high-dimension state space and action space.

To discuss above problem, we start from a randomly initialized state for DRL, TLRL, and Q-learning.
We compare convergence speed of the three algorithms for task offloading. The results are given in Figure 9.

Through observing the experimental results, it can be shown that both the DRL and TLRL can
converge through a period learning process that is represented by the number of offloaded tasks.
However, the traditional Q-learning algorithm does not converge. This indicates that the algorithms
based on DRL for task offloading are more suitable to the problem with high-dimension state space
and action space than traditional Q-learning. In addition, our proposed TLRL algorithm can converge
faster than DRL owing to dimension reduction for the input and output of DNN and less number of
needed neurons in hidden layers of DNN than DRL according to Table 2. Therefore, our proposed
TLRL could obtain a faster convergence speed than DRL.
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6.2. The Verification of Tradeoff

In this experiment, we will show the trading off between utilization rate of PMs and delay for task
offloading by using our proposed TLRL algorithm. We evaluate these two indicators by simulating
offloading tasks that are selected from Table 1 randomly. We record these two indicators after each
decision of TLRL for offloading tasks. We adjust the weight factor β from 0.1 to 0.9 to do experiments
separately and observe the change of the two indicators.

From these results, we can conclude that our proposed TLRL algorithm can trade off the utilization
rate of PMs and delay by adjusting the weight β in the reward effectively. According to Formula (10),
the weights for the utilization rate of PMs and delay are β and 1− β respectively. The experimental
results in Figure 10 show the process of online learning optimal policy when β takes different values
and track the changes of the utilization rate of PMs and delay during the learning process. We assume
that the number of needed offloaded tasks is more than 800 in a real MCC environment and our
proposed algorithm could converge. Therefore, our proposed algorithm will lean an optimal policy,
which make the utilization rate of PM and delay keep stable in an interval. In Figure 10a–e, we can
see that the utilization rate of PMs converges to a larger value when the weight factor β is set to a
larger value. Correspondingly, the weight of delay for current offloaded task 1− β becomes smaller,
which lead to a larger delay. Therefore, if the utilization rate of PM is preferred, then a larger β is
chosen and vice versa. Moreover, the TLRL algorithm can learn the optimal policy for task offloading
with the increase of offloading tasks. This is because the TLRL comprises with DRL in layer one and Q
learning in layer two, both of the two methods can converge according to Bellman Equation. We define
the global Q-function for TLRL algorithm given by Formula (18), which indicates the convergence
of TLRL algorithm. We can see that Qg is composed of the Q values from above two algorithms.
Therefore, TLRL algorithm can also converge which indicates that it can learn the optimal policy.
Therefore, the two indicators will become stable in a certain interval that is related to the value of β.
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Figure 10. (a–e) shows the change for the utilization rate of physical machines (PMs) with the weight
β increasing from 0.1 to 0.9. (f–j) shows the change of delay for the current offloaded task with the
weight 1− β decreasing from 0.9 to 0.1 correspondingly.

7. Conclusions

In this paper, we solve the problem of task offloading in order to decrease the delay for offloaded
tasks and increase the utilization rate of physical machine in the cloud. Different from the traditional
Q-learning algorithm, the DRL can be suited to the problem with high-dimension state space. Moreover,
in order to improve the speed of learning optimal policy, we propose a novel TLRL algorithm for task
offloading, where the k-NN algorithm is applied to divide the PMs into several clusters. With the
reduced dimension of state space and action space, the DRL layer aims at learning the optimal policy
to choose a cluster. Then, the Q-learning layer learns an optimal policy to select the optimal PM to
execute the current offloaded task. The experiments show that the TLRL algorithm is faster than the
DRL algorithm when learning the optimal policy for task offloading. By adjusting the weight factor β,
our proposed algorithms for task offloading can trade off between utilization rate of physical machine
and delay effectively.
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Our proposed algorithms intend to find the optimal PM for executing offloaded tasks by
considering utilization rate of PM and delay for task offloading simultaneously. We simulate 100 PMs
with different bandwidths and six different target applications to verify our proposed algorithms.
Moreover, this paper is mainly focused on developing novel RL-based algorithms to solve the
offloading problem. We verify the effectiveness of the proposed algorithms in theory, which can trade
off between utilization rate of PM and delay effectively by designing a weighted reward. In the future
study, we will verify our proposed algorithms in a real environment where the running environments of
offloaded tasks are deployed on PMs. Besides, simulated tasks will be replaced by the real applications
running on smartphones. Moreover, Different tasks have different attributes, which also cloud have
different delay requirement. However, we mainly focus on the effective tradeoff between the utilization
rate of PM and delay and try to decrease the delay as possible ignoring the delay requirement for
different tasks. Take task 1 for example, if it requires that the delay cannot exceed a given time t, then
the algorithm could choose a β that makes the utilization rate of PM larger before meeting its delay
requirement. Therefore, we can find the relation between the value of β and the delay requirement
for different tasks through analyzing the obtained real data. Therefore, we will research on choosing
the adaptive value β according to offloading tasks conditions by using the prediction model in our
future work.
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