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Gradient boosting decision tree 
becomes more reliable than logistic 
regression in predicting probability 
for diabetes with big data
Hiroe Seto1,2, Asuka Oyama1*, Shuji Kitora1, Hiroshi Toki1,3, Ryohei Yamamoto1,4,5, 
Jun’ichi Kotoku1,6, Akihiro Haga1,7, Maki Shinzawa4, Miyae Yamakawa8, Sakiko Fukui8,9 & 
Toshiki Moriyama1,4,5

We sought to verify the reliability of machine learning (ML) in developing diabetes prediction models 
by utilizing big data. To this end, we compared the reliability of gradient boosting decision tree (GBDT) 
and logistic regression (LR) models using data obtained from the Kokuho-database of the Osaka 
prefecture, Japan. To develop the models, we focused on 16 predictors from health checkup data from 
April 2013 to December 2014. A total of 277,651 eligible participants were studied. The prediction 
models were developed using a light gradient boosting machine (LightGBM), which is an effective 
GBDT implementation algorithm, and LR. Their reliabilities were measured based on expected 
calibration error (ECE), negative log-likelihood (Logloss), and reliability diagrams. Similarly, their 
classification accuracies were measured in the area under the curve (AUC). We further analyzed their 
reliabilities while changing the sample size for training. Among the 277,651 participants, 15,900 (7978 
males and 7922 females) were newly diagnosed with diabetes within 3 years. LightGBM (LR) achieved 
an ECE of 0.0018 ± 0.00033 (0.0048 ± 0.00058), a Logloss of 0.167 ± 0.00062 (0.172 ± 0.00090), and an 
AUC of 0.844 ± 0.0025 (0.826 ± 0.0035). From sample size analysis, the reliability of LightGBM became 
higher than LR when the sample size increased more than 104 . Thus, we confirmed that GBDT provides 
a more reliable model than that of LR in the development of diabetes prediction models using big 
data. ML could potentially produce a highly reliable diabetes prediction model, a helpful tool for 
improving lifestyle and preventing diabetes.

Diabetes is a very common disease. It is estimated that 536.6 million people in the world have diabetes, and 
worldwide diabetes-related health expenditure reached approximately USD 966 billion in  20211. Diabetes leads 
to severe diseases such as retinopathy, neuropathy, and nephropathy, which decrease the quality of life and can 
lead to  death2. Type 2 diabetes is caused by lifestyle habits and can be prevented by efforts made by individuals if 
they know the diabetes risks they are exposed to and change their lifestyles  accordingly3. To inform individuals 
about their risk for diabetes and promote preventive behaviors, it is necessary to predict the future risk of dia-
betes. When developing such risk prediction models, the estimated risk must be as accurate as  possible4. While 
several papers pointed out that many studies did not assess model  reliability4–6, the importance of reliability has 
increasingly been  recognized7. Here, reliability is the measure of the agreement between the predicted prob-
ability from the model and observed  outcomes8; for example, suppose a diabetes prediction model predicts a 
10% risk for 100 people, and 10 out of the 100 people develop diabetes in the future. In this case, we regard it as 
a highly reliable model.
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Various models have been developed to predict diabetes risk, and classical statistical models such as logistic 
regression (LR) are commonly  used4–6,9. At the moment, immense healthcare-related data are available—data 
on lifestyle-related diseases, such as diabetes, are actively  collected10–12. Therefore, efficient and scalable machine 
learning (ML) models are becoming popular in taking advantage of such big  data11–15. Among various ML 
models, the gradient boosting decision tree (GBDT)  model16 has been found to be highly effective in numerous 
 tasks17,18, as its efficient implementation has recently been  released19,20.

In recent years, however, several papers on clinical prediction models have reported that the performance 
of ML is rarely different from that of LR. Christodoulou et al. concluded that ML had no performance benefit 
over LR for clinical prediction models from the meta-analysis in his systematic  review21. Some studies on the 
development of diabetes prediction models also reported that ML was as good as  LR22,23. However, there are 
two problems with the studies comparing ML and LR. First, they have rarely reported the reliability of predic-
tion models. Silva et al. reported that many studies had evaluated these models for discrimination performance; 
however, very few studies had evaluated their  reliability24. Second, there is a possibility that the results of their 
studies were derived from a lack of sample size. Researchers have pointed out that ML algorithms require a large 
amount of data to perform better than  LR25; thus, it is also important to confirm the sample size at which the ML 
algorithms obtain more reliable predictions than LR.

Against this background, the primary objective of this study is to verify the reliability of ML in developing 
diabetes prediction models by utilizing big data. We used GBDT as the ML model and compared its reliability 
to LR models. Moreover, we monitored the data size used when GBDT is more reliable than the LR models. 
Specifically, we compared the reliability of GBDT and LR while changing the sample size for training. This study 
was possible due to the big data of health checkups that include 0.6 million individuals every year.

The rest of this paper is organized as follows: In section “Methods”, we describe the big data of health checkups 
and the cleaning method used to arrive at the effective sample data. We also describe the tendency of the sam-
ple data following the training dataset. Further, we describe the two models using the LR and GBDT methods, 
the reliability diagram, and the evaluation metrics. In section “Results”, we present the results of the reliability 
diagrams and evaluation metrics for the two methods when changing the sample size. In section “Discussion”, 
we summarize our findings and mention future perspectives for the study.

Methods
The Kokuho-database (KDB) consists of big data of the National Health Insurance (NHI) and Senior Elderly 
Insurance (SEI) in the Osaka prefecture, Japan. The prefecture has approximately 8 million inhabitants, of which 
approximately 2 million insured individuals are included in the KDB every year. The KDB includes health 
checkup data, medical receipt data, care receipt data, and their related details for six fiscal years 2012–2017. 
Our study protocol was approved by the Ethics Committee of Health and Counseling Center, Osaka University 
(IRB Approval Number 2018–9) and Osaka University Hospital (IRB Approval Number 19073). All procedures 
involving human participants were conducted per the 1964 Declaration of Helsinki and its later amendments 
or comparable ethical standards. Informed consent was not obtained from participants because all data were 
anonymized according to the Japanese Ethical Guidelines for Medical and Health Research Involving Human 
Subjects enacted by the Ministry of Health, Labor, and Welfare of Japan (https:// www. mhlw. go. jp/ file/ 06- Seisa 
kujou hou- 10600 000- Daiji nkanb oukou seika gakuka/ 00000 80278. pdf; https:// www. mhlw. go. jp/ file/ 06- Seisa kujou 
hou- 10600 000- Daiji nkanb oukou seika gakuka/ 00001 53339. pdf).

Participants. The subjects of this study are insured individuals in the Osaka KDB who received health check-
ups. We have approximately 0.6 million health checkup data (about 30% of the insured individuals included in 
KDB), which are recorded in the KDB database every year, for 6 years. We only considered health checkup data 
from April 2013 to December 2014; thus, we obtained data from 805,816 participants. Among these data, we 
excluded data of participants where there were inconsistencies in sex or birthday (N = 7). Given that we are 
using subsequent health checkup data for the outcome of diabetes, we removed those who did not receive health 
checkups within 3 years of the baseline health checkups—this resulted in clear data from 413,611 participants. 
We also removed those who had a medical history of diabetes (based on self-reports mentioning that they were 
receiving treatment for diabetes or were diagnosed with diabetes at a baseline health checkup), or who lacked 
this information (N = 94,209). As a result, we were left with data from 319,402 participants. The flowchart of the 
selection of participants is shown in Supplementary Fig. 1.

Data cleaning. We had to select the variables for developing diabetes prediction models. There were more 
than 100 items in the health checkup data—including body measurements, blood pressure tests, blood and urine 
tests, and questionnaires. Of these health indices, we selected items to be used in the analysis by considering the 
missing rates of the variables (Supplementary Fig. 2). We removed variables with missing rates exceeding 10% 
to keep the sample size as large as possible. Further, diastolic blood pressure (DBP), aspartate aminotransferase 
(AST), γ-glutamyl transpeptidase ( γ-GTP), and urinary glucose (UG) were removed to reduce the effect of mul-
ticollinearity. As a result, we decided to use body mass index (BMI) calculated from height and weight, systolic 
blood pressure (SBP), triglyceride cholesterol (TG), high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), glycated hemoglobin A1c (HbA1c), and age 
as continuous variables. Regarding the categorical variables; we used sex, smoking, ingestion of anti-hyperten-
sion (anti-HTN) drugs, ingestion of anti-dyslipidemia (anti-DLP) drugs, urinary protein (UP), medical history 
(MH) of heart disease, MH of stroke, and MH of renal failure. As for the UP, the measurements were assigned 
as −, ±, 1+, 2+, and 3+. In this study, we used UP in two classes–these are defined as “negative” for − and ± 
assignments, and “positive” for 1+, 2+, and 3+ assignments. In the final step, we excluded participants who had 

https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000153339.pdf
https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000153339.pdf
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missing values, abnormal values (e.g., 0, 999.9), and outliers, which are defined as the outer 0.05% at the base of 
all distributions at both ends. As a result, 277,651 participants who received health checkups were included in 
the analysis (Supplementary Fig. 1).

Outcome. The incidence of diabetes was ascertained using the data obtained from annual health checkups 
after the baseline health checkup within 3 years. The onset of diabetes was identified following the diagnos-
tic conditions determined by the Japan Diabetes  Society26—these include the fasting plasma glucose (FPG) of 
≥ 126 mg/dL, HbA1c of ≥ 6.5%, or the self-reported anti-diabetic drugs treatment in the health checkup data. 
Among the 277,651 participants, 15,900 were newly diagnosed with diabetes within 3 years.

Prediction models. This section explains the prediction models used in this study. We considered the prob-
lem of estimating the conditional probability to create models for predicting the risk of developing diabetes. Let 
the input space be X , and the output space be Y = {0, 1} . The number of input variables is d, which corresponds 
to the dimension of the input space X . We assume that the training data Dtrain = {(�xi , yi)}

N
i=1 are generated 

independently from the same (unknown) joint probability distribution p(�x, y) . We built models to estimate the 
conditional probability p(y = 1 | �x) using the training data. We used the LR and GBDT models as the predic-
tion models.

Logistic regression model. LR models are used often in the field of epidemiology. They use the following logistic 
function,

Here, the parameters of the LR model are the weight �w and the intercept b, which can be related as �θ = (�w, b) . 
We denote the input variable as �x , and the LR model fLR(�x; �θ) is expressed by the following formula:

The number of parameters in the logistic model is d + 1 , where d stands for the weight of �w and 1 for the intercept. 
We fit the parameters of the logistic regression �θ  by the maximum likelihood estimation. The output probability 
of the logistic model is pi = fLR(�xi; �θ) . The maximization of the likelihood corresponds to the minimization of 
the negative logarithm of the likelihood (NLL), defined as:

We refer to the NLL as the Logloss function used often in ML. In the use of LR, we first standardized the continu-
ous variables in the training data with a mean of zero and a standard deviation of one. Then, we used the same 
scaling parameters to standardize the test data.

Gradient Boosting Decision Tree. GBDT is an ML algorithm that is widely used due to its effectiveness. It is an 
ensemble learning algorithm because it learns while adding weak learners additively so that the loss function 
decreases gradually. The GBDT method uses the decision tree T(�x; �θ) as weak learners.

Here, J is the number of leaves, which are defined by the disjoint regions Rj numbered by j, and γj are the values 
in each region. �θ  denotes a set of parameters of the decision tree, �θ = ({γj}

J
j=1, {Rj}

J
j=1) . I(�x ∈ R) is the indicator 

function for the region R defined as:

The GBDT model consists of M decision trees with parameters �θ = (�θ1, . . . , �θM) . Hence, the GBDT model is 
written as:

We fit the GBDT parameters �θ  using the maximization of the likelihood, which corresponds to the minimization 
of the Logloss function (3). There are various algorithms that can optimize the parameters of the GBDT model. 
Originally, Friedman proposed the GBDT as a method using the gradient of the loss  function16. Later, extreme 
gradient boosting (XGBoost) was proposed using the gradient and  Hessian19. Ke et al. implemented the light 
gradient boosting machine (LightGBM), which is an improved version of XGBoost focused on computational 

(1)σ(x) =
1

1+ e−x
.

(2)fLR(�x; �θ) = σ(�w · �x + b).

(3)Logloss = −
1

N

N
∑

i=1

[yi log pi + (1− yi) log(1− pi)].

(4)T(�x; �θ) =

J
∑

j=1

γjI(�x ∈ Rj).

(5)I(�x ∈ R) =

{

1 (�x ∈ R)
0 (�x /∈ R)

.

(6)g(�x; �θ) =

M
∑

m=1

T(�x; �θm),

(7)fGBDT(�x; �θ) = σ(g(�x; �θ)).
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 efficiency20. We adopted LightGBM in our ML algorithm because of its fast training speed. The GBDT model can 
deal with complex data by increasing the number of parameters; however, this may cause an overfitting problem. 
Hence, there are various hyperparameters to avoid overfitting. We tuned the hyperparameters of LightGBM with 
 Optuna27. Optuna is a Bayesian optimization framework for efficient parameter tuning, and it offers a special-
ized module for the LightGBM package in Python. The Bayesian optimization approach determines the next 
parameters to explore based on the history of previously computed parameters. The following parameters were 
tuned with Optuna according to the default settings: max number of leaves, feature fraction, bagging fraction, 
bagging frequency, minimal amount of data in one leaf, and L1 and L2 regularization parameters. Further, to 
avoid overfitting, we performed early stopping when the Logloss of the validation set did not improve for 30 
iterations continuously during the training process. We performed hyperparameter optimization for LightGBM 
using the stratified k-fold cross-validation with k=5.

Reliability diagram. We introduced the reliability diagram to graphically estimate the goodness of the pre-
dicted  probabilities28,29. We use the test data Dtest = {(�xi , yi)}

N
i=1 for the evaluation and describe the quantities 

to be plotted in the reliability diagram. We first define the trained model as f : X → [0, 1] , and the predicted 
probability pi = f (�xi) with the input variable �xi (i = 1, . . . ,N) . We then divide the probability [0, 1] into M equal 
interval disjoint regions Bm , where m = 1, . . . ,M . Let Im be a set of subscripts with the predicted probability pi 
in the area Bm.

where N is a set of subscripts for all test data, which is N = {1, . . . ,N} . The number of data points in each area 
Bm is written as Nm . The average of the predicted probabilities of each bin is:

Given that Im fixes the samples in the area Bm , we can calculate the expectation value ȳm of yi in each region m,

In the reliability diagram, we plot p̄m in area Bm in the x-axis, and ȳm in the y-axis. The reliability of the model is 
observed graphically by determining how close the reliability diagram is to the diagonal line (45◦ line).

Evaluation metrics. Given that the reliability diagram is a graphical representation of the reliability of the 
model predictions, we needed to introduce some metrics for quantitative evaluation. To this end, we used the 
expected calibration error (ECE) to quantitatively evaluate the reliability of the probabilities of the model predic-
tion. ECE is the expectation value of the absolute value of the difference between the probabilities of the model 
prediction and the actual data for various regions.

Here, M is the number of regions in the predicted probabilities. We also used the Logloss function as the evalua-
tion metric, which is defined in Eq. (3). The area under the curve (AUC) of the receiver operating characteristic 
(ROC) was analyzed for discrimination ability.

Model performance. To evaluate the model performance, we adopted the k-fold cross-validation method 
for both methods with k = 5 . First, we divided the data into five groups; then, we picked one of these groups as 
the test data, with the remaining four groups being used as the training data in the first round. When splitting 
data into training and testing sets, we used stratified random sampling to preserve the proportion of positive 
cases. We constructed the prediction model using the training data. Then, we ran the prediction model with the 
test data to calculate ECE, Logloss, and AUC. We repeated this procedure five times to obtain five models and 
calculated the mean and standard deviation of the evaluation metrics.

Sample size analysis. We further evaluated the sample size effect of each model on the reliability of the 
predicted probabilities. To this end, we developed models with LR and LightGBM algorithms using the train-
ing data with various sample sizes. Then, we evaluated the reliability using the common test data. We used the 
reliability diagram and the Logloss and ECE metrics for reliability evaluation. We also calculated AUC for the 
evaluation of the discrimination. Specifically, we divided the original data into training and test datasets; 80% of 
the original data was used as training data, with the remaining 20% used as test data. We obtained training data 
of various sizes by performing random sampling without replacement on the entire training dataset. We varied 
the size of training data between 1000 and 100,000. Further, we sampled the training data 100 times to calculate 
the mean and standard deviation of the evaluation metrics.

(8)Im = {i ∈ N | pi ∈ Bm},

(9)p̄m =
1

Nm

∑

i∈Im

pi .

(10)ȳm =
1

Nm

∑

i∈Im

yi .

(11)ECE =

M
∑

m=1

Nm

N
|ȳm − p̄m|.
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Results
Participant characteristics. We used the checkup data of 277,651 participants. Among the participants, 
15,900 (7978 males and 7922 females) were diagnosed with diabetes in the follow-up checkups. Table 1 shows 
the characteristics of the variables of the checkup data, where those newly diagnosed with diabetes within 3 years 
are in the positive group, and those not diagnosed with diabetes are in the negative group. The proportion of 
females in the positive group was lower than that in the negative group, and age and BMI were higher in the 
positive group. Moreover, SBP, TG, ALT, and HbA1c were higher, and HDL-C and LDL-C were lower in the 
positive group. The proportions of those smoking, taking medicines, and with medical histories were higher in 
the positive group. The positive group also had a higher rate of positive UP. We also show the distributions of the 
continuous variables for positive and negative groups in Fig. 1.

Model performance. The prediction reliability of every model was measured by the reliability diagram, 
which is a visual representation of the model performance for predicted probability. Figure 2 shows the reli-
ability diagrams for the LR and LightGBM prediction models. As can be seen, the reliability curve of the LR 
model lies almost on the diagonal line except for the portion around 20–50%, where the calculated percentages 
slightly underestimated the rates of the test data. Meanwhile, when the prediction probability is less than 60%, 
the reliability curve of LightGBM lies on the diagonal line, and there is no underestimation as in LR. Their reli-
abilities were also measured based on ECE and Logloss. The LR model achieved an ECE of 0.0048 ± 0.00058 
(mean  ±  standard deviation), and a Logloss of 0.172  ±  0.00090. The LightGBM model achieved an ECE of 
0.0018 ± 0.00033 and a Logloss of 0.167 ± 0.00062. Their discrimination performances were measured in AUC, 
where LR achieved an AUC of 0.826 ± 0.0035, and LightGBM achieved an AUC of 0.844 ± 0.0025.

Sample size analysis. Now, to determine the effect of sample size on performance, we evaluated the reli-
abilities with various sample sizes by randomly compiling the data into small datasets. The reliability was meas-
ured by the ECE and Logloss metrics, and these values are shown in Fig. 3 for the LR and LightGBM methods. 
The corresponding table is presented in the Supplementary Table 1. As can be seen, the Logloss value of the LR 
model improves up to the sample size of approximately 104 , after which the value tends to be saturated as seen in 
Fig. 3. Meanwhile, the Logloss value for LightGBM continues to improve as the sample sizes increase. Similarly, 
the ECE indicated that the performance of the two models was similar up until approximately 4500 samples. 
Further, the ECE tended to be smaller for LightGBM at 104 samples or more. This finding indicates that Light-
GBM becomes better than the LR method as the sample size increases to more than 104.

The reliability curves for various sample sizes are shown in Fig. 4. There are 100 reliability curves in each 
figure. When the sample size for training is 1000, the reliability curves scatter largely and tend to distribute 
under the diagonal line. We note that LightGBM results scatter more largely than those of the LR method. As 
the sample size increases to 10,000, the reliability curves tend to lie on the diagonal line until the predicted 

Table 1.  Characteristics of variables for all subjects and those in the positive and negative groups. Values 
are presented as median [Q1, Q3] for continuous variables, and the number n and percentage in brackets for 
categorical variables. BMI body mass index, SBP systolic blood pressure, TG triglyceride cholesterol, HDL-C 
high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, ALT alanine aminotransferase, 
HbA1c glycated hemoglobin A1c, UP urinary protein, HTN hypertension, DLP dyslipidemia, MH medical 
history.

All (N = 277,651) Negative (N = 261,751) Positive (N = 15,900)

Age (years) 68.0 [63.0, 75.0] 68.0 [63.0, 74.0] 71.0 [66.0, 77.0]

BMI (kg/m2) 22.3 [20.4, 24.4] 22.3 [20.4, 24.3] 23.5 [21.4, 25.7]

SBP (mmHg) 128.0 [118.0, 139.0] 128.0 [117.0, 138.0] 132.0 [122.0, 142.0]

TG (mg/dL) 93.0 [69.0, 128.0] 92.0 [68.0, 127.0] 107.0 [79.0, 149.0]

HDL-C (mg/dL) 63.0 [52.0, 73.0] 63.0 [53.0, 74.0] 57.0 [48.0, 68.0]

LDL-C (mg/dL) 124.0 [105.0, 145.0] 125.0 [106.0, 145.0] 121.0 [102.0, 143.0]

ALT (IU/L) 17.0 [13.0, 22.0] 17.0 [13.0, 22.0] 19.0 [14.0, 26.0]

HbA1c (%) 5.5 [5.3, 5.8] 5.5 [5.3, 5.7] 6.0 [5.7, 6.2]

Female 169,779 (61.1) 161,857 (61.8) 7922 (49.8)

Smoking 29,998 (10.8) 28,010 (10.7) 1988 (12.5)

UP

  Negative 262,955 (94.7) 248,453 (94.9) 14,502 (91.4)

  Positive 14,696 (5.3) 13,298 (5.1) 1398 (8.8)

Anti-HTN drug 99,612 (35.9) 91,230 (34.9) 8382 (52.7)

Anti-DLP drug 67,923 (24.5) 62,747 (24.0) 5176 (32.6)

MH stroke 9605 (3.5) 8733 (3.3) 872 (5.5)

MH heart disease 16,462 (5.9) 14,972 (5.7) 1490 (9.4)

MH renal failure 1043 (0.4) 954 (0.4) 89 (0.6)
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probability is approximately 50%. At a sample size of 100,000, the reliability curves do not scatter largely up to 
approximately 60%. The reliability curves tend to lie on the diagonal line for the case of LightGBM. Meanwhile, 
the reliability curves tend to deviate to the upper side of the diagonal line in the probability range of 20–50% 
for the case of the LR method.

We also obtained AUC values for various sample sizes. The results are shown in Fig. 5. The AUC values for 
the LR and LightGBM methods are shown as functions of the sample size. When the sample size is 10,000 or 
more, LightGBM has better discrimination performance than LR, and the difference becomes larger as the 
sample size increases.

Discussion
We developed prediction models for predicting diabetes diagnosis using LR and LightGBM algorithms and 
compared their reliabilities to identify the algorithms that can utilize big data effectively. Previously, it had been 
noted that calibration evaluation tends to be omitted in the development of predictive models using ML, even 
though it is important for evaluating the predictive quality for  individuals5,21,30. In a systematic review of diabetes 
prediction models using ML, nine studies compared complex ML and  LR24; however, only Wang et al. referred 

Figure 1.  Distributions of all the continuous variables. The histograms of the negative group are denoted by a 
blue color, whereas those of the positive group are denoted by an orange color. The distributions are truncated at 
100 for ALT and 500 for TG for better presentation.

Figure 2.  Reliability diagrams for the LR model (left) and LightGBM (right). The horizontal and vertical axes 
are the predicted probabilities and fraction of positives. There are five curves owing to the 5-fold cross-validation 
method. The thick black line is the mean of five curves, and the gray area represents the standard deviation.
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to the calibration  ability31. Moreover, their study only performed the Hosmer–Lemeshow test and did not quan-
titatively compare the reliability of the models. Notably, the Hosmer–Lemeshow test has the shortcoming that 
it is nearly always statistically significant for large sample  sizes5. Indeed, Paul et al. do not recommend using 
the Hosmer–Lemeshow test when the sample size is greater than 25,00032. In these situations, when comparing 
the two algorithms with the total amount of data, we found that the reliability of LightGBM was better than 

Figure 3.  Model performances of the LR and LightGBM models with various sample sizes. The figure on the 
left shows the Logloss values as functions of the sample size, and the figure on the right shows the ECE values. 
The error bars are the standard deviation of 100 trials.

Figure 4.  Reliability diagrams for the LR (upper figures) and LightGBM (lower figures) methods with various 
sample sizes. The samples of N = 1000 , N = 10,000 , and N = 100,000 are shown in the left, middle, and right 
figures, respectively. There are 100 reliability curves in each figure.
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that of LR. Further, the reliability of the two models was evaluated with various training data sizes to determine 
the sample size at which complex ML models are effective for big data. When the sample size exceeded 10,000, 
LightGBM outperformed LR in the two quantitative metrics of reliability. We also observed that, at over 10,000 
participants, LightGBM showed a greater rate of improvement with sample size in Logloss compared to LR.

The difference between the LR and LightGBM algorithms arises from whether the function inserted into 
the sigmoid function is linear or nonlinear. In LR, this function can only assume a linear hyperplane in the 
input variable space. In LightGBM, the function can assume a high flexibility distribution. We can understand 
these results by analyzing Eq. (2), where the LR method has only “the number of input variables + 1” as the 
total number of parameters, and in the present case, only 17 parameters. Therefore, the LR model has a limited 
ability to adapt data to the model, and there is a possibility that this ability is limited to approximately 10,000 
participants. Meanwhile, the LightGBM method can increase the number of parameters without limit as long 
as it can learn, as explained in the GBDT method. Therefore, as the sample size increases, it is conceivable that 
the performance improves due to the flexibility of GBDT as it allows for an increased number of parameters. 
Although LightGBM tends to overfit as the number of parameters increases, we avoided overfitting by setting 
the appropriate hyperparameters, such as the number of trees, number of leaves, and regularization parameters. 
Thus, the calibration in our study was improved as the amount of data increased.

We also observed that LightGBM showed a better score and greater improvement in AUC than LR when the 
sample size exceeded 10,000. This result may imply that the results of some previous papers concluding that there 
is no difference in performance between modern ML algorithms and classical linear algorithms may be due to 
their small sample size. For example, to compare the linear regression model and LightGBM, Kopitar et al. cal-
culated AUC values for discrimination of  diabetes22. They reported that the linear regression model outperforms 
LightGBM in the AUC values in all datasets. In their study, the data used to construct the model was always less 
than 3000. Furthermore, Christodoulou et al. compared 13 articles with a low risk of bias and concluded that, 
on average, there are no significant differences in the AUC performances of LR and ML  models21. However, in 
the 13 articles, ML tended to outperform LR when the training data size was over 10,000.

In our study, the number of people diagnosed with diabetes within 3 years is only 5.7%. In our unbalanced 
data, the closer the prediction observation probability is to 1, the smaller is number of data. Therefore, the errors 
become large at higher observation probability areas. Further, the ECE value is weighted by the ratio of the 
amount of data in each bin to the total amount of data. Thus, the contribution of ECE from higher observation 
probability areas is small. Recognizing these problems, we will consider a more suitable reliability metric for the 
evaluation of unbalanced data in the future.

Other limitations of our study include the following: (1) the NHI and SEI datasets could be merged, and 
therefore, the participants who moved from NHI to SEI for the follow-up checks needed to be excluded from our 
study, which, in turn, led to the exclusion of many participants aged between 72 and 75 years from our datasets. 
(2) The ages at the baseline health checkups are not accurate. By anonymizing the personal information, our 
datasets only provided the date of the health checkup, and the year of birth. As the age was calculated from this 
information, the age values have an error of at most 1 year.

Conclusion
We confirmed that GBDT provides a more reliable model than LR when the training sample size exceeds 10,000 
in the development of diabetes prediction models using big data. This result indicates that ML may be an effective 
prediction model development tool in the era of big healthcare data. Specifically, ML could potentially produce 
a highly reliable diabetes prediction model, which is a helpful tool for improving lifestyle to prevent diabetes.

In this study, only the LightGBM method was used as the ML model. In the future, we will perform sample 
size analysis on many other ML models, such as artificial neural networks, and support vector machine. Moreover, 

Figure 5.  AUC values with various sample sizes for the LR and LightGBM methods.
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we will investigate the cause of diabetes by using the technologies, such as the partial dependence  plot16 and SHAP 
(SHapley Additive exPlanations)33, in ML. Furthermore, it is necessary to investigate the effects of predicting 
diabetes on individual risk perception and behavior. Considering the results obtained in this study, in the future, 
we will investigate these factors from the viewpoint of promoting appropriate behavior change according to risks.

Data availability
Data cannot be shared publicly because local governments own medical check-up data. Data are available from 
the Health and Counseling Center, Osaka University (contact via campuslifekenkou-syomu@hacc.osaka-u.ac.jp) 
for researchers who meet the criteria for access to confidential data.

Code availability
One of the GBDT-based diabetes prediction models used for evaluating the model performance is available 
on GitHub (https:// github. com/ Asuka Oyama/ GBDT- DM- Predi ction) and Zenodo (https:// doi. org/ 10. 5281/ 
zenodo. 70245 46).
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