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Abstract

In this paper, we define the LS-measure on Rd, (d ≥ 1) by pre-
scribing the complete system of axioms. Then we prove the existence
theorem of the LS-measure and we determine all the LS-measures. They
are the new results.
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Introduction

This paper is the part VII of the series of papers on the axiomatic method
of measure and integration on the Euclidean space. As for the details, we refer
to Ito [6], [14]. Further we refer to Ito [1] ∼ [5], [7] ∼ [13] and [15] ∼ [23].
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In this paper, we define the Lebesgue-Stieltjes measure on the d-dimensional
Euclidean space and prove its existence theorem. Further we study the fun-
damental properties of the d-dimensional Lebesgue-Stieltjes measurable sets.
Here we assume d ≥ 1.

For simplicity, we say that a d-dimensional Lebesgue-Stieltjes measure on
the d-dimensional Euclidean space is a d-dimensional LS-measure. Further, for
simplicity, we say that a d-dimensional Lebesgue-Stieltjes measurable set is a
d-dimensional LS-measurable set.

In this paper, in the sequel, we happen to omit the adjective “d-dimensional”.
A LS-measure is a completely additive real-valued measure and every com-

pletely additive real-valued measure on the Euclidean space is a certain LS-
measure.

Thereby the set of all completely additive real-valued measures on the Eu-
clidean space is determined. Namely this set is the set of all LS-measures on
the Euclidean space.

The most fundamental property of the considered measure is the additivity.
The Lebesgue measure is an additive set function defined on the σ-ring of all

Lebesgue measurable sets and it is the measure characterized by the conditions
such as the positivity, the complete additivity and the invariance with respect
to the congruent transformation.

Therefore the value of the Lebesgue measure is determined so that the unit
measure is the measure of the unit figure.

The LS-measure is an additive set function defined on the σ-ring of all LS-
measurable sets. It is the measure characterized by the two conditions such as
the real-valuedness and the complete additivity.

Further the Lebesgue measure is known to be the special example of the
LS-measure.

We can construct a LS-measure independent to the dimension of the Eu-
clidean space. Namely, except for the meaning of the symbol, we can obtain its
expression independent to the dimension in the framework of the formal cal-
culation of the symbols. When we consider the meaning of these symbols con-
cretely, we have the substantial meanings as for the differences of 1-dimension
or 2-dimension etc.

In order to understand the meaning of the calculation really in mathemat-
ics, it is really most important to understand the meaning of the symbols.
Therefore, the differences of 1-dimension and 2-dimension and so on have the
important meanings in the measure theory. The mathematics is not only the
problem of the formal calculation of the symbols.

Here I express my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.
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1 The definition of a d-dimensional LS-measure
and its existence theorem

In this section, we define the concept of a d-dimensional LS-measure and
prove its existence theorem. Here we assume d ≥ 1.

1.1 Intervals, blocks of intervals and Borel sets

In this paragraph, we prepare the terminology necessary for giving the sys-
tem of axioms of a d-dimensional LS-measure.

At first we study the intervals and the blocks of intervals which are the
fundamental subsets of the d-dimensional Euclidean space Rd.

We say that a subset E of Rd is an interval if E is a direct product set of
the form

E =
d∏

p=1

Ip.

Here I1, I2, · · · , Id are intervals of R and each one of them is the subset of
R of the form such as

(a, b) = {x; a < x < b}, [a, b) = {x; a ≤ x < b},

(a, b] = {x; a < x ≤ b}, [a, b] = {x; a ≤ x ≤ b}.
(1.1)

Here a and b are some real numbers or −∞ or ∞. Then −∞ or ∞ is not a
point of the interval Ip, (1 ≤ p ≤ d).

Here we denote the interior of E as the formula

E◦ =

d∏
p=1

I◦p . (1.2)

Here I◦p = (a, b), (1 ≤ p ≤ d) and the empty set ϕ is considered to be the
interval.

We say that a subset E of Rd is a block of intervals if there are mutually
disjoint finite intervals I1, I2, · · · , In such that E is expressed as the direct
sum

E =
n∪

p=1

Ip =
n∑

p=1

Ip = I1 + I2 + · · ·+ In. (1.3)

We say that the formula (1.3) is the division of E by using the intervals
I1, I2, · · · , In. In general, there are the infinitely many varieties of the
divisions of one block of intervals. Here we denote the family of all blocks of

3
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intervals in Rd as R. Then R is the smallest ring including all intervals in Rd.
Namely R is the ring of sets generated by the family of sets P. Here P denotes
the family of all intervals in Rd.

Then we have the theorem in the following.

Theorem 1.1 If R is the family of all blocks of intervals in Rd, we have
the statements (1) ∼ (3) in the following:

(1) ϕ ∈ R.

(2) If we have A ∈ R, we have

Ac = {x ∈ Rd; x ̸∈ A} ∈ R.

(3) If we have A, B ∈ R, we have A ∪B ∈ R.

Therefore, by virtue of Theorem 1.1, the family of sets R is known to be a
ring of sets.

Corollary 1.1 Assume that R is the same as in Theorem 1.1. Then we
have the statements (1) ∼ (3) in the following:

(1) Rd ∈ R.

(2) If we have A, B ∈ R, we have A−B ∈ R. Here the difference A−B =
A\B of the sets A and B is defined by the formula

A\B = A ∩Bc = {x ∈ Rd; x ∈ A, x ̸∈ B}.

(3) If we have Ap ∈ R, (p = 1, 2, · · · , n), we have the following:

(1)
n∪

p=1

Ap ∈ R, (2)
n∩

p=1

Ap ∈ R.

Therefore, because R satisfies the statement (1) in Corollary 1.1, the ring
of sets R is known to be an algebra of sets.

Here we give the definition in the following.

Definition 1.1 We say that a family B of subsets of Rd is a σ-ring if
we have the conditions (i) and (ii) in the following:

(i) If we have A, B ∈ B, we have A−B ∈ B.

(ii) If we have Ap ∈ B, (p = 1, 2, · · · ), we have

∞∪
p=1

Ap ∈ B.

4

Corollary 1.2 Assume that B is a σ-ring of subsets of Rd. Then, for
Ap ∈ B, (p = 1, 2, 3, · · · ), we also have the statements (1) ∼ (3) in the
following:

(1)

∞∩
p=1

Ap ∈ B. (2) lim
p→∞

Ap ∈ B. (3) lim
p→∞

Ap ∈ B.

Further, if lim
p→∞

Ap exists, we have

lim
p→∞

Ap ∈ B.

In Corollary 1.2, we define the superior limit lim Ap and the inferior
limit lim Ap of a sequence of subsets {Ap} by the relations

lim Ap = lim
p→∞

Ap =
∞∩

n=1

∞∪
p=n

Ap,

lim Ap = lim
p→∞

Ap =
∞∪

n=1

∞∩
p=n

Ap.

Especially if we have the condition

lim
p→∞

Ap = lim
p→∞

Ap,

we put
lim
p→∞

Ap = lim
p→∞

Ap = lim
p→∞

Ap.

We call it the limit of the sequence of subsets {Ap}.
Then we denote the smallest σ-ring including a family F of subsets of Rd

as σ(F) and we call it as the σ-ring generated by the family F of sets.
Now we assume that the family B of sets is a σ-ring generated by P or R.

Then we say that an element of B is a Borel set.

Corollary 1.3 Assume that B is the family of all Borel sets in Rd. Then
we have the statements (1) ∼ (4) in the following:

(1) P ⊂ R ⊂ B.

(2) B = σ(P) = σ(R).

(3) Rd ∈ B.

(4) If we have A ∈ B, we have Ac ∈ B.

5
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Therefore B is known to be a σ-algebra. Then we say that B is the Borel
algebra.

Proposition 1.1 An arbitrary element of the Borel algebra B is included
in a union of a countable number of certain elements of P.

Further an arbitrary element of B is included in a union of a countable
number of certain elements of R.

1.2 Definition of LS-measure

In this paragraph, we define a LS-measure space and a LS-measure. These
are given by Definition 1.2 in the following.

Here we prepare the terminology which is used in the definition of a LS-
measure.

In general, we consider a certain σ-finite completely additive measure space
(X, F , µ). Assume that the range of µ is a subset of R = [−∞, ∞]. Here we
assume that the range of µ does not contain ∞ and −∞ simultaneously.

Then, for A ∈ F , we put

|µ|(A) = sup
n∑

j=1

|µ(Aj)|.

Here sup is considered for all the choices of finite divisions of A such as

A = A1 +A2 + · · ·+An, {Aj ∈ F , (1 ≤ j ≤ n)}.

Then we say that a set function |µ| is the total variation of µ.
Further, for A ∈ F , we put

µ+(A) = sup
E⊂A

µ(E) ≥ µ(ϕ) = 0,

µ−(A) = − inf
E⊂A

µ(E) ≥ −µ(ϕ) = 0.

Here sup and inf are considered for all sets E ∈ F such as we have E ⊂ A.
Then we say that two set functions µ+ and µ− are the positive variation

and the negative variation of µ respectively.
As for these, we have the theorem in the following.

Theorem 1.2 We use the notation in the above. Then, |µ|, µ+ and µ−

are the completely additive positive measures on F and, for A ∈ F , we have the
equalities

µ(A) = µ+(A)− µ−(A),

|µ|(A) = µ+(A) + µ−(A).

6

Definition 1.2 (LS-measure) If a family M of sets on the d-dimension-
al Euclidean space Rd and a set function µ satisfy the system of axioms (I) ∼
(IV) in the following, we say that the triplet (Rd, M, µ) is a d-dimensional
LS-measure space.

Then we say that an element of M is a LS-measurable set and µ is the
d-dimensional LS-measure.

Here we assume that ν is the total variation of µ and we assume that µ+

and µ− are the positive variation and the negative variation of µ respectively.

(I) We have B ⊂ M. Here the family of sets B is the family of all Borel
sets.

(II) We have the axioms (i) and (ii) in the following:

(i) We have either one of the conditions (a) or (b) in the following:

(a) For an arbitrary set A ∈ M, we have ∞ < µ(A) ≤ ∞.

(b) For an arbitrary set A ∈ M, we have −∞ ≤ µ(A) < ∞.

(ii) If a countable number of elements A1, A2, · · · , An, · · · of M are
mutually disjoint, the direct sum

A =

∞∪
p=1

Ap =

∞∑
p=1

Ap

is also an element of M and we have the equality

µ(A) =

∞∑
p=1

µ(Ap).

(III) We have A ∈ M if and only if, for an arbitrary bounded set E ∈ B,
we have the equality

ν∗(A ∩ E) = ν∗(A ∩ E).

Here ν∗ and ν∗ denote the outer measure and the inner measure defined
by using the measure ν on B respectively. Then the measure ν on B is
the restriction of the total variation ν of µ to B.

Namely ν∗(A ∩ E) and ν∗(A ∩ E) are defined by the formulas

ν∗(A ∩ E) = inf{ν(B); B ⊃ A ∩ E, B ∈ B},

ν∗(A ∩ E) = sup{ν(B); A ∩ E ⊃ B, B ∈ B}.

(IV) For A ∈ M, we have the equalities

µ(A) = µ+(A)− µ−(A),

ν(A) = µ+(A) + µ−(A).
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Especially, we say that a LS-measure is a positive LS-measure if its range
is included in [0, ∞]. Then, ν, µ+ and µ− are the positive LS-measures.

For simplicity, we say that a d-dimensional LS-measure space and a d-
dimensional LS-measure are a LS-measure space and a LS-measure re-
spectively. Further we say that a LS-measurable set is a measurable set.

We assume that the series

µ(A) =
∞∑
p=1

µ(Ap)

converges absolutely or diverges to ±∞ in the axiom (II), (ii).
Each LS-measure only satisfies either one of the conditions (a) or (b) in the

axiom (II), (i) in Definition 1.2.
This condition means that the range of the LS-measure does not contain ∞

and −∞ simultaneously.
Therefore at least one of µ+ or µ− has the finite total measure. Then we

say that the measure of the finite total measure is a finite measure. The
condition (ii) of this axiom (II) means that a d-dimensional LS-measure is a
completely additive measure.

Corollary 1.4 We use the notation in Definition 1.2. Then, for A ∈ M,
we have the equality

ν(A) = ν∗(A) = sup{ν∗(A ∩ E); E ∈ B is bounded}

= ν∗(A) = sup{ν∗(A ∩ E); E ∈ B is bounded}.

Corollary 1.5 Assume that (Rd, M, µ) is a LS-measure space. Then
we have the statements (1) ∼ (3) in the following:

(1) If A1, · · · , An ∈ M are mutually disjoint, we have the equality

µ(
n∑

p=1

Ap) =
n∑

p=1

µ(Ap).

(Finite additivity).

(2) Assume that λ is either one of ν, µ+ and µ−. Then, if we have A, B ∈ M
and A ⊃ B, we have the inequality λ(A) ≥ λ(B). Especially, if we have
λ(B) < ∞, we have the equality λ(A\B) = λ(A)− λ(B).

(3) Assume that λ is the same as in (2). Then, if we have Ap ∈ M, (p ≥ 1),
we have the inequality

λ(
∞∪
p=1

Ap) ≤
∞∑
p=1

λ(Ap).

8

(Completely sub-additivity).

By virtue of (1) in Corollary 1.5, we know that this completely additive
measure µ is a finite additive measure.

1.3 Existence theorem of a LS-measure

In this paragraph, we prove the existence theorem of a d-dimensional LS-
measure defined in Definition 1.2.

For that purpose, we have only to determine the family M of the LS-
measurable sets and the LS-measure µ in Rd concretely.

At first, we assume that there exists a LS-measure space (Rd, M, µ)
satisfying the system of axioms in Definition 1.2. Then we must determine
the family M of sets in Rd and we must determine the value of µ(A) for an
arbitrary element A in M.

Then, by virtue of the axiom (III) of Definition 1.2, we have the completely
additive measure space (Rd, B, µ) if we restrict the LS-measure µ to the Borel
algebra B. We say that this measure space is the Borel-Stieltjes measure
space. By expressing this in the abbreviated form, we say that this is the BS-
measure space and the Borel-Stieltjes measure µ is the BS-measure.

1.3.1 Definition of a BS-measure. Here we give the definition of
the BS-measure space in the following.

Definition 1.3 (BS-measure) We define that a completely additive
measure space (Rd, B, µ) is a BS-measure space and µ is a BS-measure
if we have the axioms (i) ∼ (iii) in the following:
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A =
∞∪
p=1

Ap =

∞∑
p=1

Ap

is an element of B and we have the equality

µ(A) =
∞∑
p=1

µ(Ap).

9
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(iii) If ν is the total variation of µ and if µ+ and µ− are the positive variation
of µ and the negative variation of µ respectively, then, for A ∈ B, we
have the equalities in the following

µ(A) = µ+(A)− µ−(A),

ν(A) = µ+(A) + µ−(A).

Especially, when the range of a BS-measure µ is a subset of [0, ∞], we say
that µ is a positive BS-measure.

Then ν, µ+ and µ− in Theorem 1.3 are the positive BS-measures.

Corollary 1.6 Assume that (Rd, B, µ) is a BS-measure space. Then we
have the statements (1) ∼ (3) in the following:

(1) If A1, · · · , An ∈ B are mutually disjoint, we have the equality

µ(
n∑

p=1

Ap) =
n∑

p=1

µ(Ap).

(Finite additivity).

(2) Assume that λ is one of ν, µ+ and µ−. Then, if we have A, B ∈ B and
A ⊃ B, we have λ(A) ≥ λ(B). Especially, if we have ν(B) < ∞, we have
λ(A\B) = λ(A)− λ(B).

(3) Assume that λ is the same as in (2). Then, for Ap ∈ B, (p ≥ 1), we
have the inequality

λ(
∞∪
p=1

Ap) ≤
∞∑
p=1

λ(Ap).

(Complete sub-additivity)

Especially, for A1, A2, · · · , An ∈ B, we have the inequality

λ(
n∪

p=1

Ap) ≤
n∑

p=1

λ(Ap).

(Finite sub-additivity)

1.3.2 Existence theorem of a BS-measure. In this paragraph, we
prove the existence theorem of a BS-measure.

By virtue of the definition of a BS-measure, we have only to prove the
existence theorem of a positive BS-measure.

10

When (Rd, M, µ) is a positive LS-measure space, we have the positive
BS-measure space (Rd, B, µ) by restricting µ to B.

Then the BS-measure µ is characterized by the Theorem 1.3 in the following.

Theorem 1.3 Assume that µ is a positive LS-measure. Then, for an
arbitrary set A ∈ B, we have the equality

µ(A) = inf
∞∑
p=1

µ(Ep).

Here inf is taken for all countable sequences {Ep} of elements in R whose union
contains A.

1.3.3 Proof of the existence theorem of a LS-measure. By the
preparation in the above, we prove the existence theorem of a LS-measure.

Then, by virtue of the axiom (IV) of Definition 1.2, we have only to deter-
mine two positive LS-measures µ+ and µ− on M.

Therefore, in the sequel, we prove the existence theorem of a positive LS-
measure satisfying the system of axioms in Definition 1.2.

For that purpose, we prepare the notation.
We consider a function f(x) = f(x1, x2, · · · , xd) defined on Rd.
Here, for an interval

E =
d∏

p=1

Ip, Ip = [ap, bp), (p = 1, 2, · · · , d)

of Rd, we put

∆Ipf(x) = f(x1, · · · , xp−1, bp, xp+1, · · · , xd)

−f(x1, · · · , xp−1, ap, xp+1, · · · , xd),

∆Ef(x) = ∆I1∆I2 · · ·∆Idf(x) = ∆I1(∆I2 · · · (∆Ipf(x))).

Especially, when we have Ip = {ap}, we put

∆Ipf(x) = f(x1, · · · , xp−1, ap + 0, xp+1, · · · , xd)

−f(x1, · · · , xp−1, ap, xp+1, · · · , xd).

Here we happen to denote Ip = {ap} = [ap, ap+0).
Further, when either one of ap, bp, (1 ≤ p ≤ d) is equal to ∞ or−∞, we

consider the limit such as ap → −∞ or bp → ∞ in the symbols in the above.
Here we prove the two lemmas in the following.

11
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Lemma 1.1 We use the notation in the following. Assume that a real-
valued function f(x) = f(x1, x2, · · · , xd) defined onRd satisfies the conditions
(i) and (ii) in the following:

(i) f(x) is a variable-wise left continuous function.

(ii) For an arbitrary interval

E =
d∏

p=1

Ip, (1.4)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we denote

Ip = [xp, yp) or Ip = {xp} = [xp, xp + 0),

(xp, yp ∈ R, xp < yp, (1 ≤ p ≤ d)).

We assume that P is the family of all intervals in Rd. Then there exists one
and only one conditionally completely additive positive measure µ on P such
that we have the condition (1) in the following:

(1) For an interval E in the formula (1.4), we have the formula

µ(E) = ∆Ef(x).

Lemma 1.2 We use the notation in Lemma 1.1. Assume that R is the
ring of all blocks of intervals in Rd.

Then there exists one and only one conditionally completely additive positive
measure µ on R such that we have the conditions (1) and (2) in the following:

(1) For an interval E in the formula (1.4), we have the equality

µ(E) = ∆Ef(x).

(2) If E ∈ R has a division by using the finite number of mutually disjoint
intervals E1, · · · , En as follows:

E = E1 + E2 + · · ·+ En,

we have the equality

µ(E) = µ(E1) + µ(E2) + · · ·+ µ(En).

12

Further the value of µ(E) is determined uniquely and independently with
the choice of the divisions of E by using the intervals. Then, for E ∈ P, µ(E)
coincides with the value of the interval function defined in Lemma 1.1.

Theorem 1.4(Existence theorem of RS-measure) Assume that a
function f(x) is the same as in Lemma 1.1. Then there exists one and only
one positive RS-measure space (Rd, M0, µ) such that we have the condition
(1) in the following:

(1) For an interval E in the formula (1.4), we have the equality

µ(E) = ∆Ef(x).

Further the inverse is also true.

Here we extend the conditionally completely additive positive RS-measure
on R defined in Lemma 1.2 to the positive BS-measure µ on the family of all
Borel sets B.

Lemma 1.3 We assume that a positive RS-measure on R is µ. Then, for
an arbitrary set A ∈ B, we put

�µ(A) = inf
∞∑
p=1

µ(Ep).

Here inf is taken for all sequences {Ep} of countable elements inR whose unions
contain A. Then �µ is a positive BS-measure on B.

For the simplicity of the expression, we denote �µ in Lemma 1.3 as µ.
In Lemma 1.3, we prove the existence of the positive BS-measure space

(Rd, B, µ).
After the preparation in the above, we prove the existence theorem of the

positive LS-measure. Namely, by completing the positive BS-measure space
(Rd, B, µ) given in the above, we prove the existence theorem of the positive
LS-measure space (Rd, M, µ).

Theorem 1.5 (Existence theorem of a LS-measure) Assume that a
function f(x) is the same as in Lemma 1.1. Then there exists one and only
one positive LS-measure space (Rd, M, µ) such that we have the condition (1)
in the following:

(1) For an interval E in the formula (1.4), we have the equality

µ(E) = ∆Ef(x).

Further the inverse is also true.

13
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Lemma 1.1 We use the notation in the following. Assume that a real-
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(Rd, B, µ) given in the above, we prove the existence theorem of the positive
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Theorem 1.5 (Existence theorem of a LS-measure) Assume that a
function f(x) is the same as in Lemma 1.1. Then there exists one and only
one positive LS-measure space (Rd, M, µ) such that we have the condition (1)
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(1) For an interval E in the formula (1.4), we have the equality
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The positive LS-measure space (Rd, M, µ) in Theorem 1.5 is given in the
following.

If A is a subset of Rd, we put

µ∗(A) = inf{µ(B); B ⊃ A, B ∈ B},

µ∗(A) = sup{µ(B); A ⊃ B, B ∈ B}.

We say that they are the outer measure and the inner measure of A re-
spectively.

Then we say that an arbitrary subset A of Rd is a LS-measurable set if and
only if, for an arbitrary bounded set E ∈ B, we have the equality

µ∗(A ∩ E) = µ∗(A ∩ E).

Further we say that, for A ∈ M,

µ(A) = sup{µ∗(A ∩ E); E ∈ B is bounded}

is the positive LS-measure of A.
Then the triplet (Rd, M, µ) is the positive LS-measure space in Theorem

1.5.
We say that the function f(x) considered in Theorem 1.5 is the distribu-

tion function of the positive LS-measure µ.

Corollary 1.7 Assume that A is a subset of Rd. Then, for the outer
measure and the inner measure of A defined in the proof of Theorem 1.5, we
have the equalities (1) and (2) in the following:

(1) µ∗(A) = sup{µ∗(A ∩ E); E ∈ B is bounded}.

(2) µ∗(A) = sup{µ∗(A ∩ E); E ∈ B is bounded}.

Corollary 1.8 We use the notation in Corollary 1.7. Then, if a subset A
of Rd is a LS-measurable set, we have the equality

µ(A) = µ∗(A) = µ∗(A)

for the positive LS-measure µ.

Theorem 1.6 Assume that µ is a positive LS-measure on Rd and a func-
tion f(x) is the distribution function of µ. Then f(x) is continuous if and only
if, for each point xj ∈ R, we have µ({xj} × Ej) = 0, (1 ≤ j ≤ d).

Here we put x′ = (x1, · · · , xj−1, xj+1, · · · , xd) and Ex′ is an interval in

Rd−1
x′ .

14

In the same way as in Theorem 1.5, we can prove the following theorems.

Theorem 1.7 (Existence theorem of a LS-measure) Assume that a
real-valued function f(x) defined on Rd satisfies the conditions (i) and (ii) in
the following:

(i) f(x) is a variable-wise right continuous function.

(ii) For an arbitrary interval

E =
d∏

p=1

Ip, (1.5)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we put

Ip = (xp, yp] or Ip = {xp} = (xp − 0, xp],

(xp, yp ∈ R and xp < yp, (1 ≤ p ≤ d)}.

Then there exists one and only one positive LS-measure space (Rd, M, µ)
such that we have the condition (1) in the following:

(1) For an interval E in the formula (1.5), we have the equality

µ(E) = ∆Ef(x).

Further the inverse is also true.

For f(x) and µ which satisfy the conditions of Theorem 1.7, we have the
similar result as Theorem 1.6.

Theorem 1.8(Existence theorem of a LS-measure) Assume that a
function f(x) defined on Rd satisfies the conditions (i) and (ii) in the following :

(i) f(x) is a variable-wise left continuous function of locally bounded varia-
tion.

(ii) The two functions f+(x) and f−(x) are the positive variation and the
negative variation of f(x) respectively. We have the equality

f(x) = f+(x)− f−(x).

Then there exists one and only one LS-measure space (Rd, M, µ) such that
we have the condition (1) in the following:

15
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The positive LS-measure space (Rd, M, µ) in Theorem 1.5 is given in the
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(ii) For an arbitrary interval

E =
d∏

p=1

Ip, (1.5)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we put

Ip = (xp, yp] or Ip = {xp} = (xp − 0, xp],

(xp, yp ∈ R and xp < yp, (1 ≤ p ≤ d)}.

Then there exists one and only one positive LS-measure space (Rd, M, µ)
such that we have the condition (1) in the following:

(1) For an interval E in the formula (1.5), we have the equality

µ(E) = ∆Ef(x).

Further the inverse is also true.

For f(x) and µ which satisfy the conditions of Theorem 1.7, we have the
similar result as Theorem 1.6.

Theorem 1.8(Existence theorem of a LS-measure) Assume that a
function f(x) defined on Rd satisfies the conditions (i) and (ii) in the following :

(i) f(x) is a variable-wise left continuous function of locally bounded varia-
tion.

(ii) The two functions f+(x) and f−(x) are the positive variation and the
negative variation of f(x) respectively. We have the equality

f(x) = f+(x)− f−(x).

Then there exists one and only one LS-measure space (Rd, M, µ) such that
we have the condition (1) in the following:
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(1) For an interval E in the formula (1.4), we have the equality

µ(E) = ∆Ef(x).

The inverse is also true.

When we consider the positive variation f+(x) and the negative variation
f−(x) of f(x), they satisfy the conditions of Theorem 1.5. Therefore we de-
fine the positive LS-measures µ+ and µ− corresponding to f+(x) and f−(x)
respectively. Then, if we put

µ = µ+ − µ−,

we can define the LS-measure space (Rd, M, µ) and it is evident that this
satisfies the condition in Theorem 1.8.

The inverse can be proved similarly.
In the similar way as in Theorem 1.8, we can characterize the LS-measure

space by using a variable-wise right continuous function of locally bounded
variation.

Theorem 1.9 (Existence theorem of a LS-measure) Assume that
a real-valued function f(x) defined on Rd satisfies the following conditions (i)
and (ii):

(i) f(x) is a variable-wise right continuous function of locally bounded vari-
ation.

(ii) The two functions f+(x) and f−(x) are the positive variation and the
negative variation of f(x) respectively. We have the equality

f(x) = f+(x)− f−(x).

Then there exists one and only one LS-measure space (Rd, M, µ) such that
we have the condition (1) in the following:

(1) For an interval E in the formula (1.5), we have the equality

µ(E) = ∆Ef(x).

Further the inverse is also true.

Remark 1.1 We see that the positive LS-measure onRd corresponding to
the function f(x) = x1x2 · · ·xd is the d-dimensional Lebesgue measure. Further
the positive LS-measure on Rd corresponding to the function which is equal to
f(x) = x1x2 · · ·xd except in a multiplier by an arbitrary positive constant is
the d-dimensional Lebesgue-Haar measure.
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Theorem 1.10 Assume that µ is a LS-measure on Rd. Then there exist
two positive LS-measures µ+ and µ− on Rd such that we have the unique
expression

µ = µ+ − µ−.

We say that the result of Theorem 1.10 is the Jordan decomposition of
µ.

Theorem 1.11 Assume that µ is a LS-measure on Rd and λ is the
Lebesgue measure on Rd. Further assume that f(x) is a continuous func-
tion of locally bounded variation which defines the LS-measure µ. Then f(x) is
absolutely continuous if and only if µ is absolutely continuous with respect to λ

If f(x) is absolutely continuous, f(x) is continuous. Thus we assume that
f(x) is a continuous function of locally bounded variation as the precondition
in Theorem 1.11.

2 Fundamental properties of the d-dimensional
LS-measurable sets

In this section, we study the fundamental properties of the d-dimensional
Lebesgue-Stieltjes measurable sets in the Lebesgue-Stieltjes measure space de-
fined on the d-dimensional Euclidean space.

As the abbreviation of the expression, we say that the d-dimensional Lebesgue-
Stieltjes measure defined on the d-dimensional Euclidean space is the d-dimensional
LS-measure.

Further, as the abbreviation of the expression, we say that a d -dimensional
Lebesgue-Stierltjes measurable set is a d-dimensional LS-measurable set.

In the sequel in this section, we have often to omit the adjective “d-dimensional”.
Here, by characterizing the d-dimensional LS-measure defined in Definition

1.2, we prove that the family M of all LS-measurable sets is a σ-ring of sets
and we study its relation to the LS-measure µ.

By restricting the LS-measure µ in Definition 1.2 to the family R of all
blocks of intervals in Rd, we have the concept of the LS-measure of the blocks
of intervals in the following.

As the result, we see that the LS-measure of a block of intervals coincides
with the RS-measure of the block of intervals.

Definition 2.1 Assume that R is the ring of all blocks of intervals in
Rd. Then we define that a set function µ on R is a LS-measure of blocks of
intervals in Rd if we have the conditions (i) ∼ (iii) in the following:

17
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If f(x) is absolutely continuous, f(x) is continuous. Thus we assume that
f(x) is a continuous function of locally bounded variation as the precondition
in Theorem 1.11.

2 Fundamental properties of the d-dimensional
LS-measurable sets

In this section, we study the fundamental properties of the d-dimensional
Lebesgue-Stieltjes measurable sets in the Lebesgue-Stieltjes measure space de-
fined on the d-dimensional Euclidean space.

As the abbreviation of the expression, we say that the d-dimensional Lebesgue-
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intervals in Rd if we have the conditions (i) ∼ (iii) in the following:

17



28 Yoshifumi Ito

(i) We have either one of the conditions (a) or (b) in the following:

(a) For an arbitrary set A ∈ R, we have −∞ < µ(A) ≤ ∞.

(b) For an arbitrary set A ∈ R, we have −∞ ≤ µ(A) < ∞.

(ii) If at most countable number of elements A1, A2, · · · , Ap, · · · in R are
mutually disjoint and their direct sum

A =

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap

is an element of R, we have the equality

µ(A) =

(∞)∑
p=1

µ(Ap).

(iii) For A ∈ R, we have the equalities in the following:

µ(A) = µ+(A)− µ−(A),

ν(A) = µ+(A) + µ−(A).

Here we assume that ν is the total variation of µ, and µ+ and µ− are the
positive variation and the negative variation of µ respectively.

Then we say that the value µ(E) of E ∈ R is the LS-measure of the block
of intervals E.

Here we can see that this µ(E) coincides with the RS-measure of E

Corollary 2.1 For a LS-measure µ of the blocks of intervals in Rd, we
have the statements (1) ∼ (4) in the following:

(1) If the elements A1, A2, · · · , An of R are mutually disjoint, we have the
condition

A =
n∪

p=1

Ap =

n∑
p=1

Ap ∈ R

and we have the equality

µ(A) =

n∑
p=1

µ(Ap).

(2) If we have A, B ∈ R and A ⊃ B, we have µ±(A) ≥ µ±(B) and ν(A) ≥
ν(B). Especially, if we have ν(B) < ∞, we have µ(A\B) = µ(A)−µ(B).
Especially we have µ(∅) = 0.
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(3) If, for at most countable number of elements A1, A2, · · · , Ap, · · · of R,
we have the condition

A =

(∞)∪
p=1

Ap ∈ R,

we have the inequality

λ(A) ≤
(∞)∑
p=1

λ(Ap).

Here λ denotes one of the three measures ν, µ+ and µ−.

(4) If at most countable number of intervals I1, I2, · · · , Ip, · · · are mutually
disjoint and their direct sum

I =

(∞)∪
p=1

Ip =

(∞)∑
p=1

Ip

is also an interval, we have the equality

µ(I) =

(∞)∑
p=1

µ(Ip).

Proposition 2.1 Assume that µ is a LS-measure of a block of intervals
E in R. Then, for a division of E

E = I1 + I2 + · · ·+ In (2.4)

by virtue of the mutually disjoint intervals I1, I2, · · · , In, we have the equality

µ(E) = µ(I1) + µ(I2) + · · ·+ µ(In). (2.5)

Here the value of the formula (2.5) does not depend on the choice of a division
by virtue of intervals in E.

Inversely, we have the following theorem concerning the existence of a LS-
measure of the blocks of intervals.

We have only to prove the existence of µ defined in Definition 2.1.

Theorem 2.1 Assume that a real-valued function f(x) is defined on Rd

and it satisfies the conditions (i) and (ii) in the following:

(i) f(x) is a variable-wise left continuous function.
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(i) We have either one of the conditions (a) or (b) in the following:
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Here we can see that this µ(E) coincides with the RS-measure of E
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have the statements (1) ∼ (4) in the following:
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ν(B). Especially, if we have ν(B) < ∞, we have µ(A\B) = µ(A)−µ(B).
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(3) If, for at most countable number of elements A1, A2, · · · , Ap, · · · of R,
we have the condition

A =

(∞)∪
p=1

Ap ∈ R,

we have the inequality

λ(A) ≤
(∞)∑
p=1

λ(Ap).

Here λ denotes one of the three measures ν, µ+ and µ−.

(4) If at most countable number of intervals I1, I2, · · · , Ip, · · · are mutually
disjoint and their direct sum

I =

(∞)∪
p=1

Ip =

(∞)∑
p=1

Ip

is also an interval, we have the equality

µ(I) =

(∞)∑
p=1

µ(Ip).

Proposition 2.1 Assume that µ is a LS-measure of a block of intervals
E in R. Then, for a division of E

E = I1 + I2 + · · ·+ In (2.4)

by virtue of the mutually disjoint intervals I1, I2, · · · , In, we have the equality

µ(E) = µ(I1) + µ(I2) + · · ·+ µ(In). (2.5)

Here the value of the formula (2.5) does not depend on the choice of a division
by virtue of intervals in E.

Inversely, we have the following theorem concerning the existence of a LS-
measure of the blocks of intervals.

We have only to prove the existence of µ defined in Definition 2.1.

Theorem 2.1 Assume that a real-valued function f(x) is defined on Rd

and it satisfies the conditions (i) and (ii) in the following:

(i) f(x) is a variable-wise left continuous function.
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(ii) For an arbitrary interval

E =
d∏

p=1

Ip, (2.6)

the condition
∆Ef(x) ≥ 0

is satisfied. Here we denote

Ip = [xp, yp) or Ip = {xp} = [xp, xp + 0),

(xp, yp ∈ R, xp < yp, (1 ≤ p ≤ d)).

Then there exists one and only one positive LS-measure µ on R such that
it satisfies the conditions (1) ∼ (3) in the following:

(1) For an interval E of the formula (2.6), we have the equality

µ(E) = ∆Ef(x).

Here we use the same notation as in Lemma 1.2.

(2) For a division of a block of intervals E

E = E1 + E2 + · · ·+ En

by using the intervals E1, E2, · · · , En in E, we have the equality

µ(E) = µ(E1) + µ(E2) + · · ·+ µ(En).

Further, the value of µ(E) is determined uniquely and independent to the
choice of a division of E by virtue of intervals.

(3) If at most countable number of intervals E1, E2, · · · , En, · · · are mu-
tually disjoint and its direct sum

E =

(∞)∪
p=1

Ep =

(∞)∑
p=1

Ep

is also an interval, we have the equality

µ(E) =

(∞)∑
p=1

µ(Ep).

20

Then µ(A) is a positive LS-measure of a block of intervals A.

Next, as for the definition and the existence theorem of a d-dimensional
positive BS-measure, we refer to Definition 1.3 and Lemma 1.3.

At last, we determine the d-dimensional positive LS-measure µ concretely
and we prove the existence theorem of the d-dimensional positive LS-measure.

Here we prepare the necessary facts for that purpose.
By virtue of Definition 1.2, we have only to prove the existence of a d-

dimensional positive LS-measure. Therefore we assume that a BS-measure µ
on Rd is positive.

Definition 2.2 For an arbitrary subset A of Rd, we define that

µ∗(A) = inf{µ(B); B ⊃ A, B ∈ B},

µ∗(A) = sup{µ(B); A ⊃ B, B ∈ B}

are the outer measure and the inner measure of A respectively.

Corollary 2.2 For A ∈ B, we have the equality

µ∗(A) = µ∗(A) = µ(A).

Here the third side of this equality denotes the positive BS-measure.

By virtue of the definition of the outer measure and the inner measure, we
have the three propositions in the following.

In the sequel, we assume that A, A1 and A2 are three subsets of Rd.

Proposition 2.2 We have 0 ≤ µ∗(A) ≤ µ∗(A) ≤ +∞. Especially we have
µ∗(ϕ) = µ∗(ϕ) = 0.

Proposition 2.3 If we have A1 ⊂ A2, we have the results (1) and (2) in
the following:

(1) µ∗(A1) ≤ µ∗(A2). (2) µ∗(A1) ≤ µ∗(A2).

Proposition 2.4 We have the inequality in the following:

µ∗(A1 ∪A2) ≤ µ∗(A1) + µ∗(A2).

Proposition 2.5 If, for a countable number of subsetsA1, A2, · · · , Ap, · · ·
of Rd, we put

A =
∞∪
p=1

Ap,
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Here the third side of this equality denotes the positive BS-measure.
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µ∗(ϕ) = µ∗(ϕ) = 0.
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Proposition 2.4 We have the inequality in the following:
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we have the inequality

µ∗(A) ≤
∞∑
p=1

µ∗(Ap).

Proposition 2.6 If a countable number of subsets A1, A2, · · · , Ap, · · ·
of Rd are mutually disjoint and we put

A =
∞∑
p=1

Ap,

we have the inequality

µ∗(A) ≥
∞∑
p=1

µ∗(Ap).

Proposition 2.7 We assume that A is an arbitrary bounded set E ∈ B,
we have the equality

µ∗(A ∩ E) = µ(E)− µ∗(Ac ∩ E).

Here µ is a positive BS-measure.

Proposition 2.8 Assume that A is an arbitrary subset in Rd. Assume
that E1, E2, · · · is a sequence of bounded Borel sets in Rd and they satisfy the
conditions

E1 ⊂ E2 ⊂ · · · ,
∞∪

n=1

En = Rd.

Then we have the equalities

µ∗(A) = lim
n→∞

µ∗(A ∩ En), (2.13)

µ∗(A) = lim
n→∞

µ∗(A ∩ En). (2.14)

Definition 2.3 We use the notation in Definition 2.2. We define that
an arbitrary set A in Rd is LS-measurable if, for an arbitrary bounded set
E ∈ B, we have the equality

µ∗(A ∩ E) = µ∗(A ∩ E).

Then we say that

µ(A) = sup{µ∗(A ∩ E); E ∈ B is bounded}
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is the positive LS-measure of A.
We denote the family of all LS-measurable sets in Rd as M.

Remark 2.1 In Definition 2.3, a subset A in Rd is LS-measurable if and
only if the outer measure µ∗(A∩E) and the inner measure µ∗(A∩E) coincide
for any bounded set E ∈ B. Here, µ∗(A∩E) is the approximation of a bounded
part A ∩ E of A by using the measures of bounded Borel sets from the outer
side and µ∗(A∩E) is the approximation of a bounded part A∩E of A by using
the measures of bounded Borel sets from the inner side.

Corollary 2.3 We use the notation in Definition 2.3. Then, if A is an
arbitrary LS-measurable set in Rd, we have the equality

µ∗(A) = µ∗(A) = µ(A).

In the sequel, we prove that the set function µ defined in Definition 2.3
satisfies the conditions of the positive LS-measure in Definition 1.2. Namely
we prove that (Rd, M, µ) is a positive LS-measure space.

In Corollary 2.2, we can see that the LS-measure of a Borel set coincides
with the BS-measure of the Borel set.

Theorem 2.2 Assume that A is an arbitrary set in Rd. Then A is LS-
measurable if and only if, for an arbitrary set E ∈ B, we have the equality

µ∗(A ∩ E) + µ∗(Ac ∩ E) = µ(E).

Theorem 2.3 Assume that A is an arbitrary set in Rd. Then A is LS-
measurable if and only if, for an arbitrary set B in Rd, we have the equality

µ∗(A ∩B) + µ∗(Ac ∩B) = µ∗(B).

Theorem 2.4 Assume that A is an arbitrary set in Rd. Then A is LS-
measurable if and only if, for two arbitrary sets A1 and A2 such that we have
the conditions A1 ⊂ A and A2 ⊂ Ac, we have the equality

µ∗(A1 +A2) = µ∗(A1) + µ∗(A2).

Theorem 2.5 Assume that A is an arbitrary bounded set in Rd. Then
A is LS-measurable if and only if, for an arbitrary ε > 0, there exist two sets
A1, A2 ∈ B such that we have the conditions (1) and (2) in the following:

(1) We have A1 ⊂ A ⊂ A2.
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we have the inequality
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We denote the family of all LS-measurable sets in Rd as M.

Remark 2.1 In Definition 2.3, a subset A in Rd is LS-measurable if and
only if the outer measure µ∗(A∩E) and the inner measure µ∗(A∩E) coincide
for any bounded set E ∈ B. Here, µ∗(A∩E) is the approximation of a bounded
part A ∩ E of A by using the measures of bounded Borel sets from the outer
side and µ∗(A∩E) is the approximation of a bounded part A∩E of A by using
the measures of bounded Borel sets from the inner side.

Corollary 2.3 We use the notation in Definition 2.3. Then, if A is an
arbitrary LS-measurable set in Rd, we have the equality

µ∗(A) = µ∗(A) = µ(A).

In the sequel, we prove that the set function µ defined in Definition 2.3
satisfies the conditions of the positive LS-measure in Definition 1.2. Namely
we prove that (Rd, M, µ) is a positive LS-measure space.

In Corollary 2.2, we can see that the LS-measure of a Borel set coincides
with the BS-measure of the Borel set.

Theorem 2.2 Assume that A is an arbitrary set in Rd. Then A is LS-
measurable if and only if, for an arbitrary set E ∈ B, we have the equality

µ∗(A ∩ E) + µ∗(Ac ∩ E) = µ(E).

Theorem 2.3 Assume that A is an arbitrary set in Rd. Then A is LS-
measurable if and only if, for an arbitrary set B in Rd, we have the equality

µ∗(A ∩B) + µ∗(Ac ∩B) = µ∗(B).

Theorem 2.4 Assume that A is an arbitrary set in Rd. Then A is LS-
measurable if and only if, for two arbitrary sets A1 and A2 such that we have
the conditions A1 ⊂ A and A2 ⊂ Ac, we have the equality

µ∗(A1 +A2) = µ∗(A1) + µ∗(A2).

Theorem 2.5 Assume that A is an arbitrary bounded set in Rd. Then
A is LS-measurable if and only if, for an arbitrary ε > 0, there exist two sets
A1, A2 ∈ B such that we have the conditions (1) and (2) in the following:

(1) We have A1 ⊂ A ⊂ A2.
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(2) We have µ(A2\A1) < ε.

Here µ is assumed to be the positive BS-measure on B.

Theorem 2.6 We assume that O is the family of all open sets in Rd, C
is the family of all closed sets in Rd and M is the family of all LS-measurable
sets in Rd. Then we have the statements (1) ∼ (3) in the following:

(1) We have O ∪ C ⊂ B ⊂ M. Especially we have ϕ ∈ M.

(2) If we have A ∈ M, we have Ac ∈ M.

(3) If we have A, B ∈ M, we have A ∪B ∈ M.

Corollary 2.4 Assume that M is the same as in Theorem 2.6. Then we
have the following:

(1) We have Rd ∈ M.

(2) If we have A, B ∈ M, we have A−B ∈ M.

(3) For Ap ∈ M, (p = 1, 2, · · · , n), we have the following

n∪
p=1

Ap ∈ M,
n∩

p=1

Ap ∈ M.

Therefore M is an algebra of sets in Rd.

Theorem 2.7 If we have A, B ∈ M and A∩B = ϕ, we have the equality

µ(A ∪B) = µ(A) + µ(B).

Theorem 2.8 If a countable number of sets A1, A2, · · · , An, · · · in M
are mutually disjoint, we have the condition

A =
∞∪
p=1

Ap =
∞∑
p=1

Ap ∈ M

and we have the equality

µ(A) =
∞∑
p=1

µ(Ap).

Corollary 2.5 For Ap ∈ M, (p ≥ 1), we have the condition in the fol-
lowing:

∞∩
p=1

Ap ∈ M.

24

Therefore we have the theorem in the following.

Theorem 2.9 The measure space (Rd, M, µ) is the d-dimensional pos-
itive LS-measure space where M is the σ-algebra of all LS-measurable sets de-
fined in Definition 2.3 and the set function µ is the d-dimensional positive
LS-measure．

Since we prove that the measure space (Rd, M, µ) in Theorem 2.9 sat-
isfies the system of axioms of the d-dimensional positive LS-measure space in
Definition 1.2, we prove the existence theorem of the d-dimensional positive
LS-measure space.

Simultaneously we prove the existence theorem of a general d-dimensional
LS-measure space. Namely we have the theorem in the following.

Theorem 2.10 There exists a d-dimensional LS-measure space (Rd, M, µ).

By virtue of the definition of the LS-measure, we see that a RS-measurable
set is a LS-measurable set and the value of the RS-measure and the value of
the LS-measure for a RS-measurable set are identical.

We assume that (Rd, M, µ) is a general LS-measure space and ν is the
total variation of µ.

Then we define that a subset e of Rd is a null set if we have the outer
measure ν∗(e) = 0. The empty set ϕ is a null set. Inversely an arbitrary null
set need not be the empty set.

Proposition 2.9 A null set e is LS-measurable and we have µ(e) = 0.

The null sets have the following properties.

Proposition 2.10 We have the statements (1) and (2) in the following:

(1) A subset of a null set is a null set.

(2) The union of at most countable number of null sets e1, e2, · · ·

e =

(∞)∪
p=1

ep

is also a null set.

Next, when (Rd, M, µ) is a general LS-measure space, we study the fun-
damental properties of the LS-measurable sets and the LS-measure. Especially
the relation of a limit set and its measure is important. Since the LS-measure
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is completely additive, it is characteristic that we can very well calculate the
measure of a limit set.

Then the study of the inequality of the measures is fundamental. Therefore,
in the sequel in this chapter, we study the case of a positive LS-measure space
(Rd, M, µ).

In the case of a general LS-measure space (Rd, M, µ), the results of those
studies on the total variation ν, the positive variation µ+ and the negative
variation µ− of µ are meaningful.

Then, because the family of all LS-measurable sets M is a σ-algebra, we
have the proposition in the following.

Proposition 2.11 We have the statements (1) and (2) in the following:

(1) If we have A1, A2, · · · ∈ M, we have lim
p→∞

Ap, lim
p→∞

Ap ∈ M.

(2) If we have lim
p→∞

Ap, we have lim
p→∞

Ap ∈ M.

Theorem 2.11 Assume that (Rd, M, µ) is a positive LS-measure space.
Then, if we have the condition A1, A2, · · · ∈ M, we have the statements (1)
∼ (4) in the following:

(1) If we have either one of the conditions (i) and (ii) in the following:

(i) we have A1 ⊂ A2 ⊂ · · · ,
(ii) We have A1 ⊃ A2 ⊃ · · · and µ(A1) < ∞,

we have the equality

µ( lim
p→∞

Ap) = lim
p→∞

µ(Ap).

(2) We have the inequality

µ( lim
p→∞

Ap) ≤ lim
p→∞

µ(Ap).

(3) If we have the condition

µ(

∞∪
p=1

Ap) < ∞,

we have the inequality

µ( lim
p→∞

Ap) ≥ lim
p→∞

µ(Ap).
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(4) If we have the condition

µ(
∞∪
p=1

Ap) < ∞

and we have
lim
p→∞

Ap,

we have the equality

µ( lim
p→∞

Ap) = lim
p→∞

µ(Ap).

Theorem 2.12 Assume that (Rd, M, µ) is a positive LS-measure space.
Assume that A is an arbitrary bounded set in Rd and it is not necessarily
measurable. Then, for an arbitrary ε > 0, there exist an open set G and a
closed set F such that we have the following:

A ⊂ G and µ(G) < µ∗(A) + ε,

F ⊂ A and µ(F ) > µ∗(A)− ε.

Theorem 2.13 Assume that (Rd, M, µ) is a positive LS-measure space.
If A is a LS-measurable set in Rd, then, for an arbitrary ε > 0, there exist an
open set G and a closed set F such that we have the conditions in the following:

F ⊂ A ⊂ G, µ(G\A) < ε, µ(A\F ) < ε.

Especially, if we have µ(A) < ∞, we can obtain F as a bounded closed set.

Corollary 2.6 We use the notation in Theorem 2.13. If A is a LS-
measurable set, then there exists a Borel set B such that we have the conditions
in the following:

A ⊂ B, µ(B\A) = 0.

Corollary 2.7 We use the notation in Theorem 2.13. If A is a LS-
measurable set, then there exists a Borel set B such that we have the conditions
in the following:

B ⊂ A, µ(A\B) = 0.

By virtue of these Corollaries, a LS-measurable set is expressed as a differ-
ence set or a union of a Borel set and a null set.
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We assume that (Rd, M, µ) is a positive LS-measure space.
Now, for two sets A and B, we put

A∆B = (A\B) + (B\A).

Then, we say that a sequence of sets {An} converges to A in measure if we
have the condition

µ∗(An∆A) → 0, (n → ∞).

Theorem 2.14 Assume that (Rd, M, µ) is a positive LS-measure space.
Then a bounded set A is LS-measurable if and only if there exists a sequence of
bounded Borel sets {An} such that we have the condition

µ∗(An∆A) →, (n → ∞).

Then we have the equality

lim
n→∞

µ(An) = µ(A).

Theorem 2.15 Assume that (Rd, M, µ) is a positive LS-measure space.
Assume that A is a bounded set in Rd and {An} is a sequence of bounded
LS-measurable sets. Then, if we have the condition

µ∗(An∆A) → 0, (n → ∞),

A is LS-measurable.
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Abstract

In this paper, we define the LS-integral of the LS-measurable func-
tions on Rd, (d ≥ 1).

Then we study the fundamental properties of the LS-integral. These
facts are the new results.
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Introduction

This paper is the part VIII of the series of the papers on the axiomatic
method of measure and integration on the Euclidean space. As for the details,
we refer to Ito [6], [14]. Further we refer to Ito [1] ∼ [5], [7] ∼ [13] and [15] ∼
[24].
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