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Abstract

In this paper, we define the LS-integral of the LS-measurable func-
tions on Rd, (d ≥ 1).

Then we study the fundamental properties of the LS-integral. These
facts are the new results.
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Introduction

This paper is the part VIII of the series of the papers on the axiomatic
method of measure and integration on the Euclidean space. As for the details,
we refer to Ito [6], [14]. Further we refer to Ito [1] ∼ [5], [7] ∼ [13] and [15] ∼
[24].
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In this paper, we study the definition of the d-dimensional LS-integral on the
d-dimensional Euclidean space Rd and their fundamental properties. Here we
assume d ≥ 1. In the sequel, we happen to omit the adjective “d-dimensional”.

We assume that the d-dimensional Euclidean space Rd is the d-dimensional
LS-measure space (Rd, M, µ). Then we define the class of LS-measurable
functions adapting to this LS-measure and we define the LS-integral for these
LS-measurable functions.

Then we can define that a function f(x) is LS-measurable if the level set
{x; f(x) < α} is a LS-measurable set for an arbitrary real number α similarly
to the theory of Lebesgue integral.

Nevertheless, in my theory of Riemann integral, we define that f(x) is
Jordan measurable if it is the limit of a direct family of simple functions in
the sense of uniform convergence in the wider sense outside the set of singular
points of f(x).

Similarly to this, in this paper, we define that f(x) is LS-measurable if it is
the limit of a sequence of simple functions in the sense of pointwise convergence
outside the set of singular points of f(x).

The LS-integral is defined for a LS-measurable function. Therefore, in order
to study the relations between the LS-integral and the operations of functions,
we must prepare the properties with proofs that the LS-measurability of func-
tions is preserved as relating to the operations of four fundamental rules of
calculation, the supremum, the infimum, and the limit.

We give these results as the theorems of the properties of LS-measurable
functions.

We define the LS-integral for such a LS-measurable function.
Then the concept of the pointwise convergence outside the set of singular

points conforms well with the class of the LS-measurable functions and the class
of the LS-integrable functions. Namely the limit function f(x) of a sequence of
functions in one of these classes in the sense of pointwise convergence outside
the set of singular points of f(x) belongs to the same class.

By using the similar expressions as above, it is reasonable that, in the theory
of the RS-integral, the convergence of a sequence of functions is defined by using
the uniform convergence in the wider sense outside the set of singular points.
Similarly it is resonable that, in the theory of the LS-integral, the convergence
of a sequence of functions is defined by using the pointwise convergence outside
the set of singular points.

In the following, we can clarify that an integral domain E should be a LS-
measurable set in the theory of the LS-integral. If we assume that a considered
subset E of Rd is not a LS-measurable set, even a constant function defined
on E is not a LS-measurable function. After all, it is meaningless that we
consider a LS-measurable function defined on such a set E in itself. There-
fore the definition of a LS-integral on a LS-nonmeasurable set E becomes also
meaningless.

Therefore, it is meaningless that we consider a LS-nonmeasurable set and
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a LS-nonmeasurable function in the theory of the LS-integral. The study on
them is not a subject of the theory of the LS-integral.

Further, because a LS-measure is a complete measure, we cannot define a
wider theory of measure including the LS-nonmeasurable sets by the extension
of the theory of LS-measure.

By virtue of this point, it is also meaningless to consider the LS-nonmeasur-
able sets.

Here I express my heartfelt gratitude to my wife Mutuko for her help of
typesetting of the TEX-file of this manuscript.

1 d-dimensional LS-measurable functions

In this section, we define the concept of the LS-measurable functions and
we study their fundamental properties.

Assume that a d-dimensional LS-measure space (Rd, M, µ) is defined in
a d-dimensional Euclidean space Rd.

We assume that a subset E of Rd is a LS-measurable set. In the sequel,
for the simplicity, we say that E is measurable.

Now we consider a measurable function defined on a measurable set E.
We denote the family of all LS-measurable sets included in E as ME and

we denote the restricted measure on ME of the LS-measure µ on Rd as the
same symbol µ. Then we say that the measure space (E, ME , µ) is a d-
dimensional LS-measure space on E.

In the sequel, we consider this LS-measure space (E, ME , µ) when we
study the LS-integral of a LS-measurable function f(x) on E.

Further, we denote ME as M as the abbreviation.
In the sequel, we assume that a considered function f(x) is an extended real-

valued function defined on E. Then, when we denote E(∞) = {x ∈ E; |f(x)| =
∞}, we say that a point of E(∞) is a singular point of f(x).

At first, we define a simple function.

Definition 1.1 We say that an extended real-valued function f(x) defined
on a measurable set E in Rd is a simple function if, for a countable division
∆ of E such as

(∆) : E =
∞∑
p=1

Ep = E1 + E2 + · · · , (Ep ∈ ME , (p ≥ 1)), (1.1)

we have the expression

f(x) =
∞∑
p=1

αpχEp(x). (1.2)
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Here αp is equal to a real number or ±∞ and they need not be different each
other. χEp(x) denotes the defining function of a set Ep．Then we denote the
simple function f(x) as f∆(x).

Here we assume that we have E(∞) ∈ M and µ(E(∞)) = 0. 　
Here we assume that all the subsets E1, E2, · · · of E are the LS-measurable

sets and they are mutually disjoint.

In Definition 1.1, the defining function χA(x) of a set A is defined in the
following:

χA(x) =

{
1, (x ∈ A),

0, (x ̸∈ A).

Since a simple function f(x) is a function, its range is determined. Namely
the range of a simple function is at most countable set in the extended real
number space R = [−∞, ∞].

Especially, if the range of a simple function is a finite set in R, we say that
this simple function is a step function

Nevertheless, there are the infinitely many varieties of the choices of the
expressions in the forms of the formula (1.2) for a simple function f(x) because
the forms of the divisions ∆ of E in the formulas (1.1) have the infinitely many
varieties.

Thus, even if a simple function f(x) has a fixed range, we use the symbol
f∆(x) in order to distinguish the simple functions whose expressions in the
formula (1.2) are different.

Then we define the concept of a LS-measurable function in the following.

Definition 1.2 We say that an extended real-valued function f(x) defined
on a measurable set E in Rd is a LS-measurable function if we have the
conditions (i) and (ii) in the following:

(i) We have E(∞) ∈ M and µ(E(∞)) = 0.

(ii) There exists a sequence of simple functions {fn(x); n ≥ 1} such that we
have the limit

lim
n→∞

fn(x) = f(x) (1.3)

in the sense of pointwise convergence on E\E(∞).

Here, if we put En(∞) = {x ∈ E; |fn(x)| = ∞} for n ≥ 1, we assume that
we have the relations

En(∞) ⊂ E(∞), (n ≥ 1).

The condition (ii) in Definition 1.2 means that we have the condition (iii)
in the following.

4

(iii) At each point x in E\E(∞) and for an arbitrary ε > 0, there exists a
certain natural number n0 such that, for an arbitrary natural number n
so that n ≥ n0 holds, we have the inequality

|fn(x)− f(x)| < ε. (1.4)

When, in the set E excluding a null set e, we have a certain property (P)
for a measurable function f(x) or a sequence of measurable functions {fn(x)},
we say that this property (P) holds almost everywhere for the function f(x)
or the sequence of functions {fn(x)}.

For example, if we have the equality

f(x) = 0, (x ∈ E\e, µ(e) = 0),

we say that f(x) is equal to 0 almost everywhere in E.
We denote this as

f(x) = 0, (a.e. x ∈ E).

Further, if we have the limit

lim
n→∞

fn(x) = f(x), (x ∈ E\e, µ(e) = 0),

we say that fn(x) converges to f(x) almost everywhere in E.
We denote this as

lim
n→∞

fn(x) = f(x), (a.e. x ∈ E).

Then the values of the limit function f(x) happen to be undetermined on the
null set e.

But we determine one value of f(x) at each point in such a null set e and
we fix it.

By virtue of this fact, we determine the domain of this function in the fixed
manner. Namely, when the domains of functions are different from each other,
it is meaningless that we state somewhat proposition for these functions.

In this case, even if we give f(x) any value on the null set e, it does not
influence the value of the LS-integral of f(x). This is the idea that we express
the proposition clearly.

Remark 1.1 We use the expression in the above. Then the condition (iii)
in the above may be rephrased in the following (iii)′:

(iii)′ At almost every point x in E and for arbitrary ε > 0, there exists a
certain natural number n0 such that, for an arbitrary natural number n such
as n ≥ n0, we have the inequality

|fn(x)− f(x)| < ε.

5
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For simplicity, we happen to say that a LS-measurable function f(x) is a
measurable function or measurable.

Example 1.1 Assume that E is a measurable set in Rd. Then a simple
function f(x) and a continuous function f(x) defined on E are measurable.

Theorem 1.1 Assume that E is a measurable set on Rd and assume that
two functions f and g defined on E are the measurable functions. Then the
functions (1) ∼ (10) in the following are the measurable functions defined on
E:

(1) f + g. (2) f − g. (3) fg.

(4) f/g. Here we assume that we have g(x) ̸= 0, (x ∈ E).

(5) αf . Here we assume that α is a real constant.

(6) |f |p. Here we assume that p ̸= 0 is a real number.

(7) sup(f, g). (8) inf(f, g).

(9) f+ = sup(f, 0). (10) f− = − inf(f, 0).

We define the functions sup (f, g) and inf(f, g) in Theorem 1.1 in the
following:

sup(f, g)(x) = sup(f(x), g(x)), (x ∈ E),

inf(f, g)(x) = inf(f(x), g(x)), (x ∈ E).

Further we have the formulas

f = f+ − f−, |f | = f+ + f−.

Theorem 1.2 If a function f(x) is measurable on E and we have F ∈
ME , the restriction fF (x) = f(x)|F of f(x) to F is measurable on F .

Now we use the notation in the following. Assume that α and β are two
arbitrary real numbers or ±∞.

6

Then we put

E(f > α) = {x ∈ E; f(x) > α},

E(f ≤ α) = {x ∈ E; f(x) ≤ α},

E(f = α) = {x ∈ E; f(x) = α},

E(α < f ≤ β) = {x ∈ E; α < f(x) ≤ β}, (α < β).

Theorem 1.3 Assume that f(x) is a function defined on E. Then the
four statements in the following are equivalent:

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary real number α, we have E(f ≤ α) ∈ ME .

(3) For an arbitrary real number α, we have E(f ≥ α) ∈ ME .

(4) For an arbitrary real number α, we have E(f < α) ∈ ME .

Corollary 1.1 For a function f(x) defined on E, the statements (1) and
(2) in the following are equivalent:

(1) For an arbitrary real number α, we have E(f > α) ∈ ME .

(2) For an arbitrary rational number r, we have E(f > r) ∈ ME .

Corollary 1.2 Assume that a function f(x) defined on E satisfies the
conditions in Theorem 1.3. Then every set in the following belongs to ME :

(1) E(f = α). Here α is an arbitrary real number. (2) E(f < ∞).

(3) E(f = ∞). (4) E(f > −∞). (5) E(f = −∞).

Theorem 1.4 For a function f(x) defined on E, the following two asser-
tions (1) and (2) are equivalent:

(1) f(x) is measurable in E. Namely, there exists a sequence of simple func-
tions which converges to f(x) at every point on E\E(∞).

(2) For an arbitrary real number α,we have E(f > α) ∈ ME .

7
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If a function f(x) is measurable on E, there exists a sequence of simple
functions which converges to f(x) at each point outside the set of all singular
points of f(x), by virtue of the definition.

Nevertheless, this theorem means that we have a method of constructing
such a sequence of simple functions concretely.

We give this results as the Corollary 1.3 in the following.

Corollary 1.3 Assume that a function f(x) is measurable on E.
Then, for each natural number n ≥ 1, we put

Ep
n = E(

p

n
≤ f <

p+ 1

n
), (p = 0, ±1, ±2, · · · )

and we denote the defining function of Ep
n as

Cp
n(x) = χEp

n
(x).

Then, if we define the simple function fn(x) by the formula

fn(x) =
∞∑

p=−∞

p

n
Cp

n(x), (x ∈ E),

the sequence of simple functions {fn(x)} converges to f(x) at each point in
E\E(∞).

Theorem 1.5 If a function f(x) is measurable on E and we have f(x) ≥
0, we can choose a sequence of simple functions {fn(x)} such that we have
fn(x) ≥ 0, (n ≥ 1) and it converges to f(x) at each point in E\E(∞).

Theorem 1.6 If the functions fn(x), (n ≥ 1) are measurable on E, the
functions (1)∼(5) in the following are also measurable on E:

(1) sup
n≥1

fn(x). (2) inf
n≥1

fn(x). (3) lim
n→∞

fn(x). (4) lim
n→∞

fn(x).

(5) If there exists f(x) = lim
n→∞

fn(x), f(x) is also measurable on E.

Theorem 1.7 (Egorov’s Theorem) Assume that (Rd, M, µ) is a pos-
itive LS-measure space. Assume that E is a measurable set in Rd and we
have µ(E) < ∞. Assume that fn(x), (n ≥ 1) are the finite valued measurable
functions almost everywhere in E.

Further assume that we have the finite limit f(x) = limn→∞ fn(x) almost
everywhere on E. Then, for an arbitrary ε > 0, there exists a set F ∈ ME

such that we have the results (1) and (2) in the following:

(1) We have F ⊂ E and µ(E\F ) < ε.
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(2) fn(x) converges to f(x) uniformly on F .

Corollary 1.4 In Theorem 1.7, we can obtain a subset F so that it is a
closed set.

By using Egorov’s Theorem and Corollary 1.4, we have the following theo-
rem.

Theorem 1.8 (Luzin’s Theorem) We assume that we have three con-
ditions (i) ∼ (iii) in the following:

(i) (Rd, M, µ) is a positive LS-measurable space.

(ii) E is a measurable set in Rd.

(iii) f(x) is a finite valued measurable function almost everywhere in E.

Then, for an arbitrary ε > 0, there exists a certain closed set F ⊂ E such that
we have the following:

(1) We have µ(E\F ) < ε. (2) f(x) is continuous on F .

2 Definition of the d-dimensional LS-integral

In this section, we define the concept of the LS-integral of a LS-measurable
function.

Assume that the d-dimensional Euclidean space Rd is a LS-measure space
(Rd, M, µ).

Assume that a subset E of Rd is a LS-measurable set. Then, by restricting
(Rd, M, µ) to E, we have the d-dimensional LS-measurable space (E, M, µ)
on E.

Here we define the LS-integral of a LS-measurable function f(x) on E and
we denote this by the symbol

∫

E

f(x)dµ.

In the sequel, we define the LS-integral of f(x) in the two steps in the following.

9
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(1) In the case where f(x) is a simple function
Assume that f(x) is expressed as follows:

f(x) =
∞∑
p=1

αpχEp(x), (x ∈ E, αp ∈ R, (p ≥ 1)), (2.1)

E = E1 + E2 + · · · , (Ep ∈ M, (p ≥ 1)). (2.2)

Then we define the LS-integral of f(x) as the sum of the series in the right
hand side of the equality

∫

E

f(x)dµ =

∞∑
p=1

αpµ(Ep). (2.3)

Here we consider only the case where the series in the right hand side converges
absolutely.

Then the sum of the absolutely convergent series in the right hand side of
the formula has the fixed value independent of the choice of the expression in
the formula (2.1) of a function f(x).

Then we say that f(x) is LS-integrable on E. We also say that f(x) is
LS-sommable.

Then, when we denote the total variation of µ as ν, f(x) is LS-integrable
on E with respect to µ if and only if |f(x)| is LS-integrable on E with respect
to ν. Here we can understand this equivalence as follows.

The absolute function of a function f(x) in the formula (2.1) is expressed
by the formula

|f(x)| =
∞∑
p=1

|αp|χEp(x). (2.4)

Therefore we have the equality

∫

E

|f(x)|dν =
∞∑
p=1

|αp|ν(Ep)

=

∞∑
p=1

|αp|µ+(Ep) +
∞∑
p=1

|αp|µ−(Ep). (2.5)

Here µ+ and µ− are the positive variation and the negative variation of µ
respectively.

Then the series in the right hand side of the formula (2.3) converges ab-
solutely if and only if the series in the right hand side of the formula (2.5)
converges.

Therefore we have the equalities
∫

E

f(x)dµ =

∫

E

f(x)dµ+ −
∫

E

f(x)dµ−,
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∫

E

f(x)dν =

∫

E

f(x)dµ+ +

∫

E

f(x)dµ−.

Remark 2.1 As for the convergence and the divergence of the series in
the right hand side of the formula (2.3), we can consider the cases in the table
2.1.

Table 2.1 The convergence and the divergence
of the series in the formula (2.3)

(1) the convergence.

(1-i) the absolute convergence.

(1-ii) the conditional convergence.

(2) the divergence.

(2-i) the divergence to either one of ±∞.

(2-ii) the case where it oscillates and it does not converges to a fixed
value.

In the table 2.1, the case (1-i) is the case of the definition of the LS-integral
and the case (1-ii) is the case of the conditional convergence of the LS-integral.

Here, the case of a LS-integrable simple function f(x) is only the case (1-i)
in the Table 2.1.

In general, as for the details of the convergence and the divergence of the
LS-integral, we study it in the calculus of the LS-integral afterward.

(2) Case where f(x) is a general measurable function
Here there exists a sequence of simple functions {fn(x)} such that it con-

verges to f(x) at each point on E\E(∞).
Here, if each function fn(x) is LS-integrable and we have the limit

lim
n→∞

∫

E

fn(x)dµ, (2.6)

we say that this limit is the LS-integral of f(x) on E and we denote it by the
symbol ∫

E

f(x)dµ = lim
n→∞

∫

E

fn(x)dµ. (2.7)

Then we say that the LS-integral (2.7) converges absolutely if the limit
(2.6) has the fined value independent of choice of a sequence of LS-integrable
simple functions {fn(x)} which converges to f(x) at each point in E\E(∞).

11
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Then we say that f(x) is LS-integral on E or LS-sommable on E.
The usual LS-integral is the LS-integral in this case.
A function f(x) is LS-integrable on E with respect to µ if and only if the

absolute function |f(x)| is LS-integrable with respect to ν.
Then we have the following theorem.

Theorem 2.1 If f(x) is LS-integrable on E, we choose a sequence of
simple functions {fn(x)} in such a way as Corollary 1.3. Then the LS-integral
of f(x) on E is equal to the LS-integral

∫

E

f(x)dµ = lim
n→∞

1

n

∞∑
p=−∞

pµ
(
E

( p

n
≤ f <

p+ 1

n

))
.

Theorem 2.2 Assume that f(x) is LS-integrable on E. When we put

f+(x) = max{f(x), 0} ≥ 0, f−(x) = −min{f(x), 0} ≥ 0,

we have the formulas

f(x) = f+(x)− f−(x), |f(x)| = f+(x) + f−(x).

Then f+(x) and f−(x) are LS-integrable on E and we have the equality

∫

E

f(x)dµ =

∫

E

f+(x)dµ−
∫

E

f−(x)dµ

=

∫

E

f+(x)dµ+ −
∫

E

f+(x)dµ−

−
∫

E

f−(x)dµ+ +

∫

E

f−(x)dµ−.

Further we have the equality

∫

E

|f(x)|dν =

∫

E

f+(x)dν +

∫

E

f−(x)dν

=

∫

E

f+(x)dµ+ +

∫

E

f+(x)dµ−

+

∫

E

f−(x)dµ+ +

∫

E

f−(x)dµ−.

Corollary 2.1 Assume that f(x) is LS-integrable on E and g(x) is LS-
measurable on E. Then, if we have the inequality |g(x)| ≤ |f(x)| on E, g(x) is
LS-integrable on E.
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Further we say that the LS-integral (2.7) is conditionally convergent if
the limit (2.6) has a a various value depending on the choice of a sequence of
LS-integrable simple functions {fn(x)} which converges to f(x) at each point
on E\E(∞).

We say that the LS-integral (2.7) converges if it converges absolutely or
it converges conditionally. Then we say that LS-integral of f(x) exists.

We say that the LS-integral of f(x) diverges if the limit (2.6) does not
exist. Then we say that the LS-integral of f(x) does not exist.

Remark 2.2 In the case of the conditional convergence in the formula
(2.7), we consider that the integral of a simple function is a LS-integral.

In general, as for the details of the conditions of the convergence and the
divergence of a LS-integral, we study these in the section of the calculation of
the LS-integrals afterward.

3 Fundamental properties of the d-dimensional
LS-integral

In this section, we study the fundamental properties of the LS-integrals.
Assume that a subset E of Rd is a LS-measurable set and we have the

d-dimensional LS-measure space (E, M, µ) on E. Here assume that d ≥ 1
holds. We consider a general LS-measure space without any special permission.

We denote the total variation of µ as ν and we denote the positive variation
and the negative variation of µ as µ+ and µ− respectively.

3.1 Fundamental properties of the d-dimensional LS-integ-

ral

In this subsection, we assume that a subset E of Rd is a LS-measurable set
and we have the d-dimensional LS-measure space (E, M, µ) on E. Here we
assume that d ≥ 1 holds.

As for the several formulas in the several theorems in this section, we can
easily prove them for the LS-integrable simple functions.

For the general LS-integrable functions, we can prove them by the limits of
these several formulas corresponding to the LS-integrable simple functions by
virtue of the definition of the LS-integral.

Therefore we omit the details of the proofs here.

13
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Theorem 3.1.1 Assume that (E, M, µ) is a LS-measure space. Assume
that a function f(x) is LS-integrable on E. Then, if we have µ(E) = 0, we have
the equality ∫

E

f(x)dµ = 0.

Theorem 3.1.2 Assume that a function f(x) is LS-integrable on E and
a subset F ⊂ E is a measurable subset. Then the restriction fF (x) = f(x)|F of
f(x) to F is LS-integrable on F and we have the equality

∫

F

fF (x)dµ =

∫

F

f(x)dµ.

Namely the function f(x) is LS-integrable on F .

Theorem 3.1.3 Assume that E is a LS-measurable set in Rd and a func-
tion f(x) is LS-integrable on E. Assume that E = E1 + E2 is a division of E
and E1 and E2 are LS-measurable. Then we have the equality

∫

E

f(x)dµ =

∫

E1

f(x)dµ+

∫

E2

f(x)dµ.

Corollary 3.1.1 Assume that two functions f(x) and g(x) are LS-measur-
able on E and they are equal almost everywhere on E. Then, if f(x) is LS-
integrable on E, g(x) is LS-integrable on E and we have the equality

∫

E

f(x)dµ =

∫

E

g(x)dµ.

By virtue of this Corollary 3.1.1, if two LS-integrable functions are equal
almost everywhere, we need not distinguish their LS-integrals.

Theorem 3.1.4 Assume that two functions f(x) and g(x) are LS-integrable
on E. Then we have the results (1) and (2) in the following:

(1) f(x) + g(x) is LS-integrable on E and we have the equality

∫

E

{f(x) + g(x)}dµ =

∫

E

f(x)dµ+

∫

E

g(x)dµ.

(2) For an arbitrary real constant α, αf(x) is also LS-integrable on E and
we have the equality

∫

E

{αf(x)}dµ = α

∫

E

f(x)dµ.
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Corollary 3.1.2 We use the same notation as in Theorem 3.1.3. Assume
that two functions f(x) and g(x) are LS-integrable on E. Then, for two arbitrary
real constants α and β, αf(x) + βg(x) is also LS-integrable on E and we have
the equality

∫

E

{αf(x) + βg(x)}dµ = α

∫

E

f(x)dµ+ β

∫

E

g(x)dµ.

Theorem 3.1.5 Assume that (E, M, µ) is a positive LS-measure space.
If two functions f(x) and g(x) are LS-integrable on E, we have the results (1)
∼ (3) in the following:

(1) If we have f(x) ≥ 0, (x ∈ E), we have the inequality

∫

E

f(x)dµ ≥ 0.

(2) If we have the inequality f(x) ≥ g(x), (x ∈ E), we have the inequality

∫

E

f(x)dµ ≥
∫

E

g(x)dµ.

(3) We have the inequality

|
∫

E

f(x)dµ| ≤
∫

E

|f(x)|dµ.

Corollary 3.1.3 Assume that (E, M, µ) is a LS-measure space. If f(x)
is LS-integrable on E, we have the inequality

|
∫

E

f(x)dµ| ≤
∫

E

|f(x)|dν.

Theorem 3.1.6 Assume that (E, M, µ) is a positive LS-measure space.
Then, if a function f(x) is LS-integrable on E, we have the equalities

µ(E(f = ∞)) = µ(E(f = −∞)) = 0.

Theorem 3.1.7 If a function f(x) is LS-integrable on E, E(f ̸= 0) is
expressed as the sum of at most countable number of sets of the finite LS-
measure.
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and E1 and E2 are LS-measurable. Then we have the equality

∫

E

f(x)dµ =

∫

E1

f(x)dµ+

∫

E2

f(x)dµ.

Corollary 3.1.1 Assume that two functions f(x) and g(x) are LS-measur-
able on E and they are equal almost everywhere on E. Then, if f(x) is LS-
integrable on E, g(x) is LS-integrable on E and we have the equality

∫

E

f(x)dµ =

∫

E

g(x)dµ.

By virtue of this Corollary 3.1.1, if two LS-integrable functions are equal
almost everywhere, we need not distinguish their LS-integrals.

Theorem 3.1.4 Assume that two functions f(x) and g(x) are LS-integrable
on E. Then we have the results (1) and (2) in the following:

(1) f(x) + g(x) is LS-integrable on E and we have the equality

∫

E

{f(x) + g(x)}dµ =

∫

E

f(x)dµ+

∫

E

g(x)dµ.

(2) For an arbitrary real constant α, αf(x) is also LS-integrable on E and
we have the equality

∫

E

{αf(x)}dµ = α

∫

E

f(x)dµ.
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Corollary 3.1.2 We use the same notation as in Theorem 3.1.3. Assume
that two functions f(x) and g(x) are LS-integrable on E. Then, for two arbitrary
real constants α and β, αf(x) + βg(x) is also LS-integrable on E and we have
the equality

∫

E

{αf(x) + βg(x)}dµ = α

∫

E

f(x)dµ+ β

∫

E

g(x)dµ.

Theorem 3.1.5 Assume that (E, M, µ) is a positive LS-measure space.
If two functions f(x) and g(x) are LS-integrable on E, we have the results (1)
∼ (3) in the following:

(1) If we have f(x) ≥ 0, (x ∈ E), we have the inequality

∫

E

f(x)dµ ≥ 0.

(2) If we have the inequality f(x) ≥ g(x), (x ∈ E), we have the inequality

∫

E

f(x)dµ ≥
∫

E

g(x)dµ.

(3) We have the inequality

|
∫

E

f(x)dµ| ≤
∫

E

|f(x)|dµ.

Corollary 3.1.3 Assume that (E, M, µ) is a LS-measure space. If f(x)
is LS-integrable on E, we have the inequality

|
∫

E

f(x)dµ| ≤
∫

E

|f(x)|dν.

Theorem 3.1.6 Assume that (E, M, µ) is a positive LS-measure space.
Then, if a function f(x) is LS-integrable on E, we have the equalities

µ(E(f = ∞)) = µ(E(f = −∞)) = 0.

Theorem 3.1.7 If a function f(x) is LS-integrable on E, E(f ̸= 0) is
expressed as the sum of at most countable number of sets of the finite LS-
measure.

15
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Theorem 3.1.8 (The first mean value Theorem of the integration)
Assume that (E, M, µ) is a positive LS-measure space. Assume that a function
f(x) is a bounded measurable function on E and g(x) is LS-integrable on E.
Then, if we put

m = inf
x∈E

f(x), M = sup
x∈E

f(x),

we have the following (1) and (2):
(1) f(x)g(x) is LS-integrable on E.
(2) There exists a real constant α such that we have m ≤ α ≤ M and we

have the equality ∫

E

f(x)|g(x)|dµ = α

∫

E

|g(x)|dµ.

Corollary 3.1.4 Assume that E is a bounded closed domain and (E, M, µ)
is a positive LS-measure space. Assume that a function f(x) is continuous on E
and g(x) is LS-integrable on E. Further we have the inequality g(x) ≥ 0, (x ∈
E). Then there exists a certain point x0 ∈ E such that we have the equality

∫

E

f(x)g(x)dµ = f(x0)

∫

E

g(x)dµ.

Theorem 3.1.9 Assume that E is a LS-measurable set in Rd and a func-
tion f(x) is LS-integrable on E. Then, for an arbitrary ε > 0, there exists a
continuous function fε(x) on Rd which is identically equal to 0 outside a certain
LS-measurable bounded closed set such that we have the inequality

|
∫

E

f(x)dµ−
∫

E

fε(x)dµ| ≤
∫

E

|f(x)− fε(x)|dν < ε.

3.2 d-dimensional LS-integral and limit

In this subsection, we study the d-dimensional LS-integral and its relations
to limit.

In this section, we assume that a subset E of Rd is a LS-measurable set
and E is a d-dimensional LS-measure space (E, M, µ).

Theorem 3.2.1 Assume that E is a LS-measurable set in Rd and we have
a division of E

E = E1 + E2 + · · ·

16

by using a countable number of mutually disjoint LS-measurable sets En, (n ≥
1). Then, if a function f(x) is LS-integrable on E, we have the equality

∫

E

f(x)dµ =

∫

E1

f(x)dµ+

∫

E2

f(x)dµ+ · · · .

Further, if a function f(x) is LS-integrable on each En and we have the
condition

∞∑
n=1

∫

En

|f(x)|dν < ∞,

we have the equality in the above.
Here ν is the total variation of µ.

Corollary 3.2.1 Assume that E is a LS-measurable set inRd and {En; n ≥
1} is a monotone increasing sequence of LS-measurable sets and we have the
condition

E =
∞∪

n=1

En.

Further assume that a function f(x) is LS-integrable on E. Then, for an ar-
bitrary ε > 0, there exists a certain natural number n0 such that we have the
condition ∫

E\En

|f(x)|dν < ε

for n ≥ n0. Especially we have the equality

lim
n→∞

∫

En

f(x)dµ =

∫

E

f(x)dµ.

Remark 3.2.1 When the LS-integral

∫

E

f(x)dµ

of a function f(x) converges conditionally, we have the limit such as Corol-
lary 3.2.1 if we choose a special sequence of LS-measurable sets {En} such as
Corollary 3.2.1 in the above.

Corollary 3.2.2 Assume that E is a LS-measurable set in Rd and a func-
tion f(x) is LS-integrable on E.

Now we put
En = E(|f | < n), (n ≥ 1).

17
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Then, for an arbitrary ε > 0, there exists a certain natural number n0 such that
we have the inequality ∫

E\En

|f(x)|dν < ε

for n ≥ n0.
Especially we have the equality

lim
n→∞

∫

En

f(x)dµ =

∫

E

f(x)dµ.

Theorem 3.2.2 in the following shows the absolute continuity of the indefi-
nite integral.

This is the application of Theorem 3.2.1 and Corollary 3.2.2.

Theorem 3.2.2 Assume that E is a LS-measurable set of Rd and a func-
tion f(x) is LS-integrable on E. Then, for an arbitrary ε > 0, there exists a
certain δ > 0 such that we have the inequality

|
∫

e

f(x)dµ| < ε

if we have ν(e) < δ for a LS-measurable set e ⊂ E.

Theorem 3.2.3 (Bounded convergence theorem) Assume that E is
a bounded measurable set of Rd. If a sequence {fn(x); n ≥ 1} of uniformly
bounded LS-measurable functions converges to f(x) almost everywhere on E,
we have the equality

lim
n→∞

∫

E

fn(x)dµ =

∫

E

f(x)dµ.

Theorem 3.2.4 (Lebesgue’s convergence theorem) Assume that E
is a LS-measurable set of Rd and a sequence {fn(x); n ≥ 1} of LS-measurable
functions on E converges to a finite limit f(x) almost everywhere on E. Further,
if there exists a LS-integrable function Φ(x), (≥ 0) on E such that we have the
inequality

|fn(x)| ≤ Φ(x), (x ∈ E, n ≥ 1),

we have the equality

lim
n→∞

∫

E

fn(x)dµ =

∫

E

f(x)dµ.

By virtue of Lebesgue’s convergence theorem, we have the termwise inte-
gration theorem.

18

Theorem 3.2.5(Termwise integration theorem) Assume that E is a
LS-measurable set of Rd and {fn(x); n ≥ 1} is a sequence of LS-measurable
functions on E. Now we put

f(x) = f1(x) + f2(x) + · · · .

Then, if the series in the right hand side converges almost everywhere on E
and, further if there exists a LS-integrable function Φ(x), (≥ 0) on E such that
we have the inequalities

|
n∑

p=1

fp(x)| ≤ Φ(x), (x ∈ E)

for an arbitrary n ≥ 1, we can integrate f(x) termwise. Namely we have the
equality ∫

E

f(x)dµ =

∫

E

f1(x)dµ+

∫

E

f2(x)dµ+ · · · .

Corollary 3.2.3 Let E, {fn(x)} and f(x) be the same as in Theorem
3.2.5. Then we assume that we have either one of the conditions (i) and (ii) in
the following:

(i) There exists a LS-integrable function Φ(x), (≥ 0) on E such that we have
the inequalities

n∑
p=1

|fp(x)| ≤ Φ(x), (x ∈ E, n ≥ 1).

(ii) We have the condition

∞∑
p=1

∫

E

|fp(x)|dν < ∞.

Then we have the termwise integration theorem.

Theorem 3.2.6 (Beppo Levi’s Theorem) Assume that E is a LS-
measurable set of Rd and (E, M, µ) is a positive LS-measure space. Assume
that {fn(x); n ≥ 1} is a monotone increasing sequence of LS-integrable func-
tions on E. Further assume that the monotone increasing sequence of numbers

{
∫

E

fn(x)dµ}

is bounded from the above.

19
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Then, if we put
lim

n→∞
fn(x) = f(x), (x ∈ E),

the function f(x) has a finite value almost everywhere on E and it is LS-
integrable on E and we have the equality

lim
n→∞

∫

E

fn(x)dµ =

∫

E

f(x)dµ.

We give Corollary in the following for the fact used in the proof of Theorem
3.2.6 in the above.

Corollary 3.2.4 We use the notation of Theorem 3.2.6. Assume that E is
a LS-measurable set of Rd and {En; n ≥ 1} is a monotone increasing sequence
of LS-measurable sets on Rd so that we have the equality

E =
∞∪

n=1

En.

Further, if a LS-measurable function f(x) on E is LS-integrable on each En

and we have the inequality

lim
n→∞

∫

En

|f(x)|dµ < ∞,

f(x) is LS-integrable on E and we have the equality

lim
n→∞

∫

En

f(x)dµ =

∫

E

f(x)dµ.

Corollary 3.2.5 We use the notation of Theorem 3.2.6. Assume that E
is a LS-measurable set of Rd and {fn(x); n ≥ 1} is a monotone increasing
sequence of LS-integrable functions on E. Then, if the limit function

lim
n→∞

fn(x) = f(x), (x ∈ E)

has a finite value almost everywhere on E and it is LS-integrable on E, we have
the equality

lim
n→∞

∫

E

fn(x)dµ =

∫

E

f(x)dµ.

,

Next we prove Fatou’s Lemma as the Corollary of Beppo Levi’s Theorem.

20

At first, we remark that Fatou’s Lemma is used many times in the following
form.

Assume that E is a LS-measurable set of Rd and (E, M, µ) is a positive
LS-measurable space. Assume that, for the LS-integrable nonnegative functions
fn(x), (n ≥ 1) on E, we have

lim
n→∞

fn(x) = f(x), (x ∈ E).

If we have the inequality

lim
n→∞

∫

E

fn(x)dµ < ∞,

f(x) is also LS-integrable on E and we have the inequality

∫

E

f(x)dµ ≤ lim
n→∞

∫

E

fn(x)dµ.

Here we prove Fatou’s Lemma in the fairly more generalized form.

Theorem 3.2.7 (Fatou’s Lemma) Assume that E is a LS-measurable
set ofRd and (E, M, µ) is a positive LS-measure space. Assume that {fn(x); n ≥
1} is a sequence of LS-integrable nonnegative functions on E and we have the
condition

lim
n→∞

∫

E

fn(x)dµ < ∞.

Then the function
f(x) = lim

n→∞
fn(x), (x ∈ E)

is LS-integrable on E and we have the inequality

∫

E

f(x)dµ =

∫

E

(
lim

n→∞
fn(x)

)
dµ ≤ lim

n→∞

∫

E

fn(x)dµ.

The Theorem 3.2.8 in the following is the result concerning the differentia-
tion under the integral symbol.

Theorem 3.2.8 Assume that E is a LS-measurable set of Rd and (a, b)
is an interval of R. Assume that a function f(x, t) is defined on the set
E × (a, b) = {(x, t); x ∈ E, t ∈ (a, b)} and we have the conditions (i) ∼ (iii)
in the following:

(i) If we choose t ∈ (a, b) arbitrarily and fix it, f(x, t) is LS-integrable on
E.
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Then, if we put
lim
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(ii) Assume that, for almost every x on E, f(x, t) is differentiable with
respect to t. Then we denote its partial derivative with respect to t as
ft(x, t).

(iii) Assume that there exists a LS-integrable function Φ(x), (≥ 0) on E such
that we have the inequality

|ft(x, t)| ≤ Φ(x), (x ∈ E, t ∈ (a, b)).

Then, if we put

F (t) =

∫

E

f(x, t)dµ,

F (t) is differentiable on (a, b) and we have the equality

F ′(t) =

∫

E

ft(x, t)dµ.

3.3 Method of calculation of the d-dimensional LS-integral

In this subsection, we study the one method of calculation of the d-dimensional
LS-integral.

This method is the calculation of the LS-integral of a LS-measurable func-
tion f(x) on E by approximating the integration domain E by an approximat-
ing direct family {Eα} of bounded closed sets in E\E(∞). We assume that
the integration domain E is a LS-measurable set of Rd and (E, M, µ) is a
LS-measure space. Here ν is the total variation of µ and µ+ and µ− are the
positive variation and the negative variation of µ respectively.

The integrand f(x) is LS-measurable on E.
Assume that A is a direct set and {Eα; α ∈ A} is a direct family of bounded

closed sets included in E.
Now we say that the direct family {Eα} converges to E if, for an arbitrary

bounded closed set K included in E, there exists a certain α0 ∈ A such that
we have K ⊂ Eα for an arbitrary α such as α ≥ α0.

Then the direct family {Eα} is an approximating direct family of E.
Especially, if we have A = {1, 2, 3, · · · } and E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · ·

holds, the sequence {En} converges monotone to E. In general, if a sequence
{En} converges to E and we put

E1 ∪ E2 ∪ · · · ∪ En = Hn, (n = 1, 2, 3, · · · ),

the sequence {Hn} converges monotone to E.
Assume that the set E(∞) of the singular points of f(x) has the LS-measure

0. Then E\E(∞) is also a LS-measurable set.
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Further we assume that f(x) is LS-integrable on an arbitrary bounded
closed set included in E\E(∞). In oder to be so, a bounded closed set in-
cluded in E\E(∞) and the set E(∞) of the singular points are away from each
other with a positive distance.

By virtue of this, we can construct an approximating direct family {Eα; α ∈
A} of E\E(∞) by using the bounded closed sets Eα.

Now we assume that a direct family {Eα} of the bounded closed sets is
an approximating direct family of E\E(∞). Thus this direct family {Eα}
converges to E\E(∞).

Then, if, for one approximating direct family {Eα} of E\E(∞),

I(Eα) =

∫

Eα

f(x)dµ (3.3.1)

converges in the sense of Moore-Smith limit, the limit

I = lim
α

I(Eα)

is equal to the LS-integral

I =

∫

E

f(x)dµ.

Here this LS-integral converges absolutely if and only if the value I of
this LS-integral does not depend on the choice of a approximating direct family
{Eα} of E\E(∞).

Further this LS-integral converges conditionally if and only if the value
I depends on the choice of the approximating direct family {Eα} of E\E(∞).

Further, if the LS-integral exists, we say that

∫

E

f(x)dµ converges.

On other hand, if the LS-integral does not exist, we say that

∫

E

f(x)dµ

diverges.

Remark 3.3.1 Assume that E is a LS-measurable set of Rd and f(x) is
an extended real-valued LS-measurable function defined on E.

Then there exists a sequence of simple functions {fn(x)} which converges to
f(x) at each point in E\E(∞) and there exists an approximating direct family
{Eα} of bounded closed sets in E\E(∞) such that we have the limits of (I)
and (II) in the following:

(I)

∫

E

f(x)dµ = lim
n→∞

∫

E

fn(x)dµ.

(II)

∫

E

f(x)dµ = lim
α

∫

Eα

f(x)dµ.
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(ii) Assume that, for almost every x on E, f(x, t) is differentiable with
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E
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E
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Here the limit of (II) denotes the Moore-Smidt limit.
Then, the LS-integral of (I) converges or diverges if and only if the LS-

integral of (II) converges or diverges respectively.
Further, in the case of convergence, (I) converges absolutely or converges

conditionally if and only if (II) converges absolutely or converges conditionally
respectively.

The LS-integral of (I) is the calculation by the method of approximation of
a function f(x) by the sequence of simple functions. The LS-integral of (II) is
the calculation by the method of approximation of the integration domain E
by using the approximating direct family of bounded closed sets in E\E(∞).

Thus, as for the calculation of the LS-integral, we have two methods such
as the method of calculation by the approximation by virtue of functions and
the method of calculation by the approximation of the integration domain.

Here, for a function f(x), we put

f+(x) = sup(f(x), 0), f−(x) = − inf(f(x), 0). (3.3.3)

Then we have the relations

|f(x)| ≥ f+(x) ≥ 0, |f(x)| ≥ f−(x) ≥ 0, (3.3.4)

f(x) = f+(x)− f−(x), (3.3.5)

Table 3.3.1　Convergence and divergence of the LS-integral

(µ(f) =
∫

E

f(x)dµ, AC=absolute convergence,

C=convergence, D=divergence)

µ(f) ν(|f |) µ+(f+) µ−(f−) µ+(f−) µ−(f+)

AC C C C C C

D D C C C D

D D C C D C

D D C C D D

D D C D C C

D D D C C C

D D D D C C

24

|f(x)| = f+(x) + f−(x). (3.3.6)

Then we have the relations as in Table 3.3.1 in the above as for the conver-
gence and divergence of the LS-integral of f(x).

In the other cases than Table 3.3.1, ν(|f |) diverges always and µ(f) con-
verges conditionally or diverges according to the choices of the approximating
sequences.

Remark 3.3.2 In the case where the LS-integral

∫

E

f(x)dµ in Table 3.3.1

converges absolutely, the value of this LS-integral is determined as the fixed
value independent of the choice of the approximating direct family {Eα; α ∈ A}
of E.

The LS-integral has the determined meaning only in the case of the absolute
convergence.

In the case where the LS-integral

∫

E

f(x)µ diverges in Table 3.3.1, the

LS-integral does not exist.
Nevertheless, in this case, for a LS-measurable set A included in E, the set

function m(A) on ME is defined by the equality

m(A) =

∫

A

f(x)dµ.

Here ME is the family of all LS-measurable sets included in E.
Thereby the LS-measure space (E, ME , m) on E is defined. In these cases,

the total mass is equal to m(E) = −∞ or m(E) = ∞.
This measure space has the determined meaning as a σ-finite measure space.
Then, even though the LS-integral of f(x) on E does not exist in itself, the

indefinite integral of f(x) on a LS-measurable set A included in E is defined
by the formula

m(A) =

∫

A

f(x)dµ

and its value is determined as a finite real value or −∞ or ∞.

On the other hand, in the case where the LS-integral

∫

E

f(x)dµ converges

conditionally or diverges in Table 3.3.1, this LS-integral converges or diverges
according to the choice of an approximating direct family {Eα; α ∈ A} of E.

Then, in the case where the LS-integral diverges, we cannot give this LS-
integral any meaning.
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