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Abstract

In this note, we prove a lemma for a strong comparison principle
of nonlinear parabolic equations. We shall prove a function which is a
viscosity subsolution minus a viscosity supersolution of the equation be-
comes a viscosity subsolution of a parabolic equation which may not co-
incide with the original equation. Thanks to a strong maximum principle
of nonlinear parabolic equations we have a strong comparison principle.
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Introduction

We consider nonlinear parabolic equations of the form

(1) ut + F (Du,D2u) = 0 in QT := (0, T )× Ω,

where u : QT → R is an unknown function, F = F (q,X) is a given function,
T > 0 and Ω is a domain in RN . Here ut = ∂u/∂t, Du and D2u denote,
respectively, the time derivative of u, the gradient of u and the Hessian of u in
space variables.
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Our goal is that when u and v are, respectively, a subsolution and superso-
lution of (1), u − v becomes a subsolution of a parabolic equation which may
not coincide with (1). For uniformly parabolic equations we know that a strong
maximum principle holds to (1). If u − v ≤ 0 in QT and there exists a point
in QT that satisfies u − v = 0, then a strong maximum principle yields u ≡ v
in QT . This means a strong comparison principle holds to (1). So our goal
is important to prove a strong comparison principle. For nonlinear parabolic
equations we may not expect existence of classical solutions. So we deal with
this problem using viscosity solutions (cf. [2], [6]).

In the study of a strong comparison principle with viscosity solutions, there
are a few papers. Trudinger [9] proved a strong comparison principle for Lip-
schitz continuous viscosity solutions of uniformly elliptic equations. Ishii and
Yoshimura [5] proved a strong comparison principle for semicontinuous viscosity
solutions to uniformly elliptic equations. At the same time Giga and the second
author [4] studied a strong comparison principle. Their proof [4, Proof of 3.1,
p175-177] works for uniformly elliptic equations of the form F (D2u) = 0 but it
does not work for non-uniformly elliptic equations of the form F (Du,D2u) = 0.
As a special case the second author and Sakaguchi [8] proved a strong com-
parison principle for semicontinuous viscosity solutions to the prescribed mean
curvature equation.

For parabolic problems there is a result by the second author [7]. Since
the proof [7, Proof of Lemma 3.4, p159-162] is based on that of [4], it works
for uniformly parabolic equations of the form ut + F (D2u) = 0 but it does
not work for (1). To nonlinear parabolic equations Da Lio [3] proved a strong
maximum principle for semicontinuous viscosity solutions. Once our goal is
proved, thanks to the strong maximum principle we can show that a strong
comparison principle holds to (1).

1 Proof of Lemma

We shall study nonlinear parabolic equations of form

(1.1) ut + F (Du,D2u) = 0 in QT .

We list assumptions on F = F (p,X).
(F1) F is lower semicontinuous in RN × SN .
(F2) F is degenerate elliptic, i.e.,

if X ≥ Y then F (p,X) ≤ F (p, Y ) for all p ∈ RN .

We introduce F0 as follows

(1.2) F0(p,X) := inf{F (p+ q,X + Y )− F (q, Y ); (q, Y ) ∈ RN × SN}.

This function F0 is introduced in [5], [6]. To consider our problem we will
assume lower boundedness of F0.

(F3) F0(p,X) > −∞ for all p ∈ RN and X ∈ SN .

We easily see a following property about F0.

Proposition 1.1. If F satisfies (F1), then F0 is lower semicontinuous.

Proof. We fix (p̂, X̂) ∈ RN ×SN . Since F is lower semicontinuous, we see that
for all ε > 0 there exists δ > 0 that satisfies

if (p,X) ∈ Bδ(p̂, X̂) then − ε+ F (p̂, X̂) < F (p,X).

Here

Bδ(p̂, X̂) = {(p,X) ∈ RN × SN ; {|p− p̂|2 + ||X − X̂||2}1/2 < δ},

where ||X|| := max{|Xξ|; ξ ∈ RN , |ξ| = 1} for X ∈ SN . By the definition of
F0 we have that for (r, Z) ∈ RN × SN

F0(p̂, X̂)− F0(r, Z) = inf{F (p̂+ q, X̂ + Y )− F (q, Y ); (q, Y ) ∈ RN × SN}
−inf{F (r + q, Z + Y )− F (q, Y ); (q, Y ) ∈ RN × SN}.

Since F0 is bounded from below, there exists (q̂, Ŷ ) ∈ RN × SN that satisfies

F0(r, Z) = F (r + q̂, Z + Ŷ )− F (q̂, Ŷ ).

Then we observe that

F0(p̂, X̂)− F0(r, Z) ≤ F (p̂+ q̂, X̂ + Ŷ )− F (q̂, Ŷ )− F (r + q̂, Z + Ŷ ) + F (q̂, Ŷ )

≤ F (p̂+ q̂, X̂ + Ŷ )− F (r + q̂, Z + Ŷ ).

Now we have that if (r, Z) ∈ Bδ(p̂, X̂) then F0(p̂, X̂)− F0(r, Z) < ε.

Now we are in a position to state our main result.

Lemma 1.2. Assume that (F1), (F2) and (F3) hold. Let u ∈ USC([0,∞) ×
RN ) and v ∈ LSC([0,∞) × RN ) be, respectively, a viscosity subsolution and
a vicosity supersolution of (1.1). We set w = u − v. Then w is a viscosity
subsoluton of

(1.3) ut + F0(Du,D2u) = 0 in QT .

Proof. Let ϕ ∈ C2((0,∞) × RN ) and (t̂, x̂) ∈ QT satisfy (w − ϕ)(t̂, x̂) ≥
(w − ϕ)(s, y) for all (s, y) ∈ Br(t̂, x̂) for some r > 0, where Br(t̂, x̂) denotes
an open ball in RN+1 centered at (t̂, x̂) with a radius r. We may assume that
w − ϕ takes its locally strict maximum at (t̂, x̂). For ε > 0 we set

Φ(t, x, s, y) := u(t, x)− v(s, y)− ϕ(t, x)− 1

2ε
(|x− y|2 + |t− s|2).
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Since Φ is an upper semicontinuous function, Φ takes its maximum on Br(t̂, x̂)×
Br(t̂, x̂) for some r > 0. Let (tε, xε, sε, yε) be a maximizer of Φ on Br(t̂, x̂) ×
Br(t̂, x̂).

Step 1. We shall show (tε, xε, sε, yε) converges to (t̂, x̂, t̂, x̂) as ε → 0.

Since Φ takes its maximum on Br(t̂, x̂) × Br(t̂, x̂) at (tε, xε, sε, yε), we see
that

Φ(tε, xε, sε, yε) ≥ Φ(t̂, x̂, t̂, x̂) = (w − ϕ)(t̂, x̂).

As usual we may assume that (w − ϕ)(t̂, x̂) = 0. Since u,−v ∈ USC([0,∞) ×
RN ) and ϕ ∈ C2((0,∞)×RN ), there exists a constant C that satisfies

(1.4)
1

2ε

(
|xε − yε|2 + |tε − sε|2

)
≤ u(tε, xε)− v(sε, yε)− ϕ(tε, xε) ≤ C

Then we see that

(1.5) lim
ε→0

(xε − yε) = 0, lim
ε→0

(tε − sε) = 0.

Note that (tε, xε) ∈ Br(t̂, x̂), the Bolzano-Weierstrass theorem yields that there

exists a sequence {εk} which decreases to 0 as k → ∞ and (t0, x0) ∈ Br(t̂, x̂)
satisfying

(tεk , xεk) → (t0, x0) as k → ∞.

By (1.5) we observe that

lim
k→∞

(yεk − x0) = lim
k→∞

(yεk − xεk) + lim
k→∞

(xεk − x0) = 0.

So we have limk→∞ xεk = limk→∞ yεk = x0. By a similar way we have
limk→∞ tεk = limk→∞ sεk = t0. Concerning (1.4) we know that u ∈ USC([0,∞)×
RN ) and v ∈ LSC([0,∞)×RN ). Then we observe that

0 ≤ lim inf
k→∞

|xεk − yεk |2 + |tεk − sεk |2

2εk
≤ lim sup

k→∞

|xεk − yεk |2 + |tεk − sεk |2

2εk

≤ u(t0, x0)− v(t0, x0)− ϕ(t0, x0)

≤ (w − ϕ)(t̂, x̂) = 0.

These inequalities yield

lim
k→∞

|xεk − yεk |2

εk
= 0, lim

k→∞

|tεk − sεk |2

εk
= 0.

Recall that w − ϕ takes its locally strict maximum at (t̂, x̂) we see that

lim
k→∞

xεk = lim
k→∞

yεk = x̂, lim
k→∞

tεk = lim
k→∞

sεk = t̂.

Recall again that w − ϕ takes its locally strict maximum at (t̂, x̂) we observe
that these convergences are independent of taking a subsequence. Finally we
have that

lim
ε→0

xε = lim
ε→0

yε = x̂, lim
ε→0

tε = lim
ε→0

sε = t̂,

lim
ε→0

|xε − yε|2

ε
= 0, lim

ε→0

|tε − sε|2

ε
= 0.

Step 2. We shall show w = u− v is a viscosity subsolution of (1.3).
We set

Ψ(t, x, s, y) :=
1

2ε
(|x− y|2 + |t− s|2).

Since Φ takes its maximum at (tε, xε, sε, yε), (u−ϕ)(t, x)−v(s, y)−Ψ(t, x, s, y)
takes its maximum at the same point. By step 1 we may assume that

(tε, xε, sε, yε) ∈ Br(t̂, x̂)×Br(t̂, x̂).

Applying Crandall-Ishii’s Lemma [1] we see that for each α > 1 there exist
X,Y ∈ SN that satisfy

(Ψt(tε, xε, sε, yε), DxΨ(tε, xε, sε, yε), X) ∈ P2,+
(u− ϕ)(tε, xε),

(Ψs(tε, xε, sε, yε), DyΨ(tε, xε, sε, yε), Y ) ∈ P2,+
(−v)(sε, yε),(

⇔ (−Ψs(tε, xε, sε, yε),−DyΨ(tε, xε, sε, yε),−Y ) ∈ P2,−
v(sε, yε)

)
,

− (α+ ||A||) I2N ≤
(

X O
O Y

)
≤ A+

1

α
A2.(1.6)

Here

A = D2Ψ(tε, xε, sε, yε) =

(
D2

xx(tε, xε, sε, yε) D2
xy(tε, xε, sε, yε)

D2
yx(tε, xε, sε, yε) D2

yy(tε, xε, sε, yε)

)
,

P2,+
and P2,−

, respectively, denote closure of a set of parabolic super 2-jets
P2,+ and a set of parabolic sub 2-jets P2,− (cf. [2],[6]). By calculations we
have

Ψt(tε, xε, sε, yε) =
tε − sε

ε
, Ψs(tε, xε, sε, yε) = − tε − sε

ε
,

DxΨ(tε, xε, sε, yε) =
xε − yε

ε
, DyΨ(tε, xε, sε, yε) = −xε − yε

ε
,

A =
1

ε

(
I −I
−I I

)
.(1.7)
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By the definition of P2,+
and P2,−

we observe that

(
tε − sε

ε
+ ϕt(tε, xε),

xε − yε
ε

+Dϕ(tε, xε), X +D2ϕ(tε, xε)

)
∈ P2,+

u(tε, xε),

(
tε − sε

ε
,
xε − yε

ε
,−Y

)
∈ P2,−

v(sε, yε).

Hereafter we may suppress a point (tε, xε) of ϕt and ϕ. Since u and v are,
respectively, a viscosity subsolution and a viscosity supersolution of (1.1), we
see that

(1.8) ϕt +
tε − sε

ε
+ F

(
Dϕ+

xε − yε
ε

,D2ϕ+X

)
≤ 0,

(1.9)
tε − sε

ε
+ F

(
xε − yε

ε
,−Y

)
≥ 0.

Subtracting (1.9.) from (1.8), we get

(1.10) ϕt + F

(
Dϕ+

xε − yε
ε

,D2ϕ+X

)
− F

(
xε − yε

ε
,−Y

)
≤ 0.

From (1.6) and (1.7) we have X + Y ≤ O. By (F2) and the definiton of F0

(1.2) we observe that

F

(
Dϕ+

xε − yε
ε

,D2ϕ+X

)
− F

(
xε − yε

ε
,−Y

)

= F

(
Dϕ+

xε − yε
ε

,D2ϕ+X

)
− F

(
xε − yε

ε
,X

)

+F

(
xε − yε

ε
,X

)
− F

(
xε − yε

ε
,−Y

)

≥ F

(
Dϕ+

xε − yε
ε

,D2ϕ+X

)
− F

(
xε − yε

ε
,X

)

≥ inf{F (Dϕ+ q,D2ϕ+ Z)− F (q, Z); (q, Z) ∈ RN × SN}
= F0(Dϕ(tε, xε), D

2ϕ(tε, xε))

Combining (1.10) and the lower semicontinuity of F0 we see that

0 ≥ ϕt(tε, xε) + F0(Dϕ(tε, xε), D
2ϕ(tε, xε))

≥ lim inf
ε→0

{ϕt(tε, xε) + F0(Dϕ(tε, xε), D
2ϕ(tε, xε))}

≥ ϕt(t̂, x̂) + F0(Dϕ(t̂, x̂), D2ϕ(t̂, x̂))

This means w is a viscosity subsolution of ut + F0(Du,D2u) = 0.
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By the definition of P2,+
and P2,−
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(
tε − sε

ε
+ ϕt(tε, xε),

xε − yε
ε

+Dϕ(tε, xε), X +D2ϕ(tε, xε)

)
∈ P2,+
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tε − sε

ε
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xε − yε

ε
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xε − yε
ε
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)
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tε − sε

ε
+ F

(
xε − yε

ε
,−Y

)
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Dϕ+

xε − yε
ε

,D2ϕ+X

)
− F

(
xε − yε

ε
,−Y

)
≤ 0.
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F

(
Dϕ+

xε − yε
ε
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)
− F

(
xε − yε

ε
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Dϕ+

xε − yε
ε
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− F

(
xε − yε
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xε − yε
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xε − yε

ε
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xε − yε
ε
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xε − yε

ε
,X

)

≥ inf{F (Dϕ+ q,D2ϕ+ Z)− F (q, Z); (q, Z) ∈ RN × SN}
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≥ lim inf
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2ϕ(tε, xε))}

≥ ϕt(t̂, x̂) + F0(Dϕ(t̂, x̂), D2ϕ(t̂, x̂))

This means w is a viscosity subsolution of ut + F0(Du,D2u) = 0.
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