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Abstract

In this note, we prove a lemma for a strong comparison principle
of nonlinear parabolic equations. We shall prove a function which is a
viscosity subsolution minus a viscosity supersolution of the equation be-
comes a viscosity subsolution of a parabolic equation which may not co-
incide with the original equation. Thanks to a strong maximum principle
of nonlinear parabolic equations we have a strong comparison principle.

2010 Mathematics Subject Classification. 35K55, 35D40, 35B51.

Introduction
We consider nonlinear parabolic equations of the form
(1) u; + F(Du,D*u) =0 in Qr:=(0,T) x Q,

where u : Qr — R is an unknown function, F' = F(q, X) is a given function,
T > 0 and Q is a domain in RY. Here u; = du/0t, Du and D?u denote,
respectively, the time derivative of u, the gradient of u and the Hessian of u in
space variables.
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Our goal is that when u and v are, respectively, a subsolution and superso-
lution of (1), u — v becomes a subsolution of a parabolic equation which may
not coincide with (1). For uniformly parabolic equations we know that a strong
maximum principle holds to (1). If u — v < 0 in Q7 and there exists a point
in Q7 that satisfies u — v = 0, then a strong maximum principle yields u = v
in Q7. This means a strong comparison principle holds to (1). So our goal
is important to prove a strong comparison principle. For nonlinear parabolic
equations we may not expect existence of classical solutions. So we deal with
this problem using viscosity solutions (cf. [2], [6]).

In the study of a strong comparison principle with viscosity solutions, there
are a few papers. Trudinger [9] proved a strong comparison principle for Lip-
schitz continuous viscosity solutions of uniformly elliptic equations. Ishii and
Yoshimura [5] proved a strong comparison principle for semicontinuous viscosity
solutions to uniformly elliptic equations. At the same time Giga and the second
author [4] studied a strong comparison principle. Their proof [4, Proof of 3.1,
p175-177] works for uniformly elliptic equations of the form F(D?u) = 0 but it
does not work for non-uniformly elliptic equations of the form F(Du, D?u) = 0.
As a special case the second author and Sakaguchi [8] proved a strong com-
parison principle for semicontinuous viscosity solutions to the prescribed mean
curvature equation.

For parabolic problems there is a result by the second author [7]. Since
the proof [7, Proof of Lemma 3.4, p159-162] is based on that of [4], it works
for uniformly parabolic equations of the form wu; + F(D?u) = 0 but it does
not work for (1). To nonlinear parabolic equations Da Lio [3] proved a strong
maximum principle for semicontinuous viscosity solutions. Once our goal is
proved, thanks to the strong maximum principle we can show that a strong
comparison principle holds to (1).

1 Proof of Lemma

We shall study nonlinear parabolic equations of form
(1.1) u; + F(Du,D*u) =0 in Q.

We list assumptions on F' = F(p, X).
(F1) F is lower semicontinuous in RY x S¥.
(F2) F is degenerate elliptic, i.e.,

if X>Y then F(p,X)<F(p,Y) forall peR".
We introduce Fj as follows
(1.2)  Fy(p,X):=inf{F(p+q¢X+Y)—F(q,Y);(¢,Y) e RV x SV}

This function Fy is introduced in [5], [6]. To consider our problem we will
assume lower boundedness of Fj.
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(F3) Fy(p, X) > —oo for all p€ RY and X € SV.
We easily see a following property about Fjy.
Proposition 1.1. If F satisfies (F'1), then Fy is lower semicontinuous.

Proof. We fix (p, X) € RN x SN. Since F is lower semicontinuous, we see that
for all € > 0 there exists § > 0 that satisfies

if (p,X)e Bs(p,X) then —e+ F(p,X)< F(p,X).
Here
Bs(p, X) = {(p,X) € RN x SV; {|]p — p|* + ||X — X|[*}'/* < 5},

where || X|| := max{|X¢[;¢€ € RV, |¢] = 1} for X € SY. By the definition of
Fy we have that for (r, Z) € RV x SN

—inf{F(r +4q, Z+ Y) - F(Qv Y)7 (qa Y) € RN X SN}
Since Fy is bounded from below, there exists (§,Y) € RN x SV that satisfies
Fo(r,Z)=F(r+¢,Z+Y) - F(gY).

Then we observe that

Fo(p. X) = Fo(r,2) < F(p+4¢,X+Y)=F@Y)-F(r+¢Z+Y)+F(GY)
< Fp+§¢X+Y)—F(r+§¢2Z+Y).
Now we have that if (r, Z) € Bs(p, X) then Fy(p,X) — Fo(r, Z) < e. O

Now we are in a position to state our main result.

Lemma 1.2. Assume that (F1), (F2) and (F3) hold. Let u € USC([0,00) X
RY) and v € LSC([0,00) x RYN) be, respectively, a viscosity subsolution and
a vicosity supersolution of (1.1). We set w = uw —v. Then w is a viscosity
subsoluton of

(1.3) ug + Fo(Du, D*u) =0 in  Qr.

Proof. Let ¢ € C2?((0,00) x RYN) and ({,2) € Qr satisfy (w — ¢)({,2) >
(w — ¢)(s,y) for all (s,y) € B,(f,#) for some r > 0, where B,(f,4) denotes
an open ball in RV*! centered at (f,2) with a radius 7. We may assume that
w — ¢ takes its locally strict maximum at (£, #). For ¢ > 0 we set

(I’(tvx757y) = u(t,x) - U(S’y) - ¢(t,$) - QLEUZ‘ - y‘Q + ‘t - 5|2)
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Since @ is an upper semicontinuous function, ® takes its maximum on B,.(t, &) x
B,.(t,%) for some r > 0. Let (t.,.,s.,y.) be a maximizer of ® on B, (f,#) x
B, (t,%).

Step 1. We shall show (tc,xc, Sc, ye) converges to ) as e — 0.

( aj:a 7i‘
i Z) at (te, e, Se,Ye), We see

Since ® takes its maximum on B,(f,2) x B,(
that
D(te, Te, Se,ye) > O(t,2,t,8) = (w — ¢)(t, 2).
As usual we may assume that (w — ¢)({,#) = 0. Since u, —v € USC(]0,00) x
RY) and ¢ € C?((0,00) x RY), there exists a constant C that satisfies

1
(1.4) % (‘xa - ye|2 + |te - 35‘2) < u(ts’xg) - U(Smye> - ¢(t€7x€) <C
Then we see that

(1.5) lim(z: —y.) =0, lim(t. —s.) =0.
e—0 e—0
Note that (., z.) € B,(, %), the Bolzano-Weierstrass theorem yields that there
exists a sequence {e} which decreases to 0 as k — oo and (tg, o) € B,(f, )
satisfying
(tey,c,) — (to,z0) as k — oo.

By (1.5) we observe that

lim (y., —xo) = lim (ye, — z,) + lim (x., — ) = 0.
k—o0 k—o0 k—r o0

So we have limg_ oo -, = limg00yYe, = 2o. By a similar way we have

limg o0 te, = limg 00 Se,, = to. Concerning (1.4) we know that u € USC/([0, 0o) x

RY) and v € LSC(]0,00) x RY). Then we observe that

|x5k — y5k|2 + |t5k — Sey, |2 |I5k — y5k|2 + |t5k — Sey |2

0 < liminf

IN

lim sup

k—o00 2¢ey, k—o0 2¢ey,
< u(to, o) — v(to, o) — ¢(to, o)
< (w—9)(t ) =
These inequalities yield
lim |z, — y€k|2 =0, lim lte, — 85k|2 0.
k—00 €k k—o00 €k

Recall that w — ¢ takes its locally strict maximum at (£, 2) we see that

lim z., = lim y., =2, lim ¢, = lim s, =t.
k—o0 k—o0 k—o0 k—o0
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Recall again that w — ¢ takes its locally strict maximum at (£, #) we observe
that these convergences are independent of taking a subsequence. Finally we
have that

limz, =limy. =2, limt¢. = lims. =1t
e—0 e—0 e—0 e—0
2 2
. Te — Y . te — s
hmgzo, hmgzo.
e—0 £ e—0 £

Step 2. We shall show w = u — v is a viscosity subsolution of (1.3).
We set

1
V(ta,s.y) = 5 (o =y + 1t - sP).

Since ® takes its maximum at (¢, zc, Sc, Ye ), (u—@)(t, ) —v(s,y) —¥(t, z, s, y)
takes its maximum at the same point. By step 1 we may assume that

(tama)Sana) € Br(:a?) X BT(fy i‘)

Applying Crandall-Tshii’s Lemma [1] we see that for each o > 1 there exist
X,Y € SN that satisfy

(\I/t(taa Le, SE??JE))DI\IJ(tE)xE; Seaya)vx) € 52’+(u - ¢)(taa 335),
(\I]s(tsvl'sass;ys)aqul(tsaxsvss,ys) (7’0)(857345),
)5 _Y) € f2’7U($an€)) ’
X
G+l < (

(<:> (_\Ils(tavx87 Se, ya)v _Dy\I’(tEaan Ses Ye

(1.6)

<O

>§A+1£.
«
Here

2
A= DQ‘Il(tsaxsasevye) = ( Drr(ts?x&ss,ys)

Dgy(tsaxsv SeyYe)
Dix(tmxsvssaye) DZy(tsamevsavys) ’

7" and 52’7, respectively, denote closure of a set of parabolic super 2-jets
P2+ and a set of parabolic sub 2-jets P?~ (cf. [2],[6])
have

. By calculations we

te — s
\Ijt(tsaxtfa887y£) ===

te — s
) lI/S(tE7x£aSE7yE) - !,
€ €
Te — Y Te — Y
qul(taaxeassvya) == 67 quj(tsvxsvsaaye) =-= c 57
(1.7)

171 —I
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By the definition of 52’+ and ﬁ277 we observe that

t _ - Py k]
( — % 4 hulte, me), = - Yo L Dotz 2.), X +D2¢(te,aza>> e P u(te, x.),

t _ — 9 _
(ESE,M,_Y) € P u(sery.).
13 13

Hereafter we may suppress a point (te,z.) of ¢; and ¢. Since u and v are,
respectively, a viscosity subsolution and a viscosity supersolution of (1.1), we
see that

te

(1.8) ¢t+55+F<D¢+M,D2¢+X) <0,
13 13

ts_ £ e Ye
(1.9) S+F<H,—Y> > 0.
3 g

Subtracting (1.9.) from (1.8), we get

(1.10) ¢t+F(D¢—|— M,DQgi)—i—X) —F(M,—Y> <0.
€ g

From (1.6) and (1.7) we have X +Y < O. By (F2) and the definiton of Fy
(1.2) we observe that

F(Dqs_’_xa_ya’DQ(b_'_X)_F(xa_ye’_y)
e 3

:F<D¢+x€;y5,D2¢+X> —F(wegyix)

+F <5Es_ys’X> _F(xs_ysv_y)
g e
ZF<D¢+xE€y67D2¢+X>_F(xEEyE7X)
> inf{F(D¢ +q,D*¢ + Z) — F(q,2); (¢, Z) € RY x 8"}
:FO(D¢<t57x€)7D2¢(t€7x€))

Combining (1.10) and the lower semicontinuity of Fy we see that

¢t(t67 936) + FO(DQb(tsa Ie); D2¢(t57 xs))
lim inf{¢y(te, zc) + Fo(D(te, xe), D> (te, z2))}

d)t(fa ‘i) + FO(D¢(£’ j:)v D2¢(£7 i))

This means w is a viscosity subsolution of u; + Fy(Du, D?*u) = 0. O
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