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Abstract

Under the assumption that the initial data belong to suitable
Sobolev spaces, we derive the better decay estimate of the second
order derivatives for the initial boundary value problem for degen-
erate dissipative wave equations of Kirchhoff type.
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1 Introduction

In this paper, we study on the decay rates of solutions to the initial bound-
ary value problem for the following degenerate dissipative wave equations of
Kirchhoff type :




ρu′′ + ∥A1/2u(t)∥2γAu+ u′ = 0 in Ω× [0,∞) ,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω ,

u(x, t) = 0 on ∂Ω× [0,∞) ,

(1.1)

where u = u(x, t) is an unknown real value function, Ω is a bounded domain

in RN with smooth boundary ∂Ω, ′ = ∂/∂t, A = −∆ = −
∑N

j=1 ∂
2/∂x2

j is the

Laplace operator with the domain D(A) = H2(Ω)∩H1
0 (Ω), ∥ · ∥ is the norm of

L2(Ω), and ρ > 0 and γ > 0 are positive constants.
It is well known that Equation (1.1) describes the damped small ampli-

tude vibrations of an elastic, stretched string when the dimension N is one or
membrane when the dimension N is two (see Kirchhoff [7] and Carrier [3]).

The unique global solvability has been considered for the initial data [u0, u1]
belonging to D(A) × D(A1/2) and ∥A1/2u0∥ ̸= 0 (cf. [1], [2], [13] for local
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solvability). When γ ≥ 1, under the assumption that the initial data [u0, u1]
are small Nishihara and Yamada [12] have shown global existence theorems
and they derived some decay estimates such that

∥A1/2u(t)∥2 ≤ C(1 + t)−
1
γ , ∥A1/2u′(t)∥2 ≤ C(1 + t)−1 , (1.2)

∥u′(t)∥2 + ∥u′′(t)∥2 ≤ C(1 + t)−1− 1
γ for t ≥ 0 . (1.3)

When γ = 1, in the previous paper [13], we improved the decay rates (1.2)–(1.3)
as in the upper estimates (1.4)–(1.6) for γ = 1. (see Nishihara [11], Mizumachi
[8], Ono [14] for lower decay estimates). When γ > 0, under the assumption
that the coefficient ρ > 0 is small, Ghisi and Gobbino [5] have derived some
decay estimates such that

C ′(1 + t)−
1
γ ≤ ∥Am/2u(t)∥2 ≤ C(1 + t)−

1
γ for m = 1, 2 .

Finally, when γ > 0, in previous paper [15], under the assumption that the
coefficient ρ > 0 or the initial data [u0, u1] ∈ D(A) × D(A1/2) are small, we
have derived the decay estimates such that

C ′(1 + t)−
1
γ ≤ ∥Ak/2u(t)∥2 ≤ C(1 + t)−

1
γ for k = 0, 1, 2 , (1.4)

∥Aj/2u′(t)∥2 ≤ C(1 + t)−2− 1
γ for j = 0, 1 , (1.5)

∥u′′(t)∥2 ≤ C(1 + t)−3− 1
γ for t ≥ 0 (1.6)

(see [14] for γ = 1). However the decay rate of the estimate (1.6) is not optimal.
In this paper, we discuss to derive the better decay rate of the norm ∥u′′(t)∥2

under an additional assumption on the initial data [u0, u1] (see Ghisi [4] for the
similar decay rate together with a different analisys).

Our main result is as follows.

Theorem 1.1 Let the initial data [u0, u1] belong to D(A)×D(A1/2) and
∥A1/2u0∥ ̸= 0. Suppose that the coefficient ρ > 0 or the initial energy E(0) is
small in the sense of (2.5). Then, the problem (1.1) admits a unique global solu-
tion u(t) in the class C0([0,∞);D(A))∩C1([0,∞);D(A1/2))∩C2([0,∞);L2(Ω))
and this solution u(t) has the decay properties (1.4)–(1.6).

Moreover, if the initial data [u0, u1] ∈ D(A3/2)×D(A), then it holds that

C ′(1 + t)−
1
γ ≤ ∥Ak/2u(t)∥2 ≤ C(1 + t)−

1
γ for k = 0, 1, 2, 3 , (1.7)

∥Aj/2u′(t)∥2 ≤ C(1 + t)−2− 1
γ for j = 0, 1, 2 , (1.8)

∥u′′(t)∥2 ≤ C(1 + t)−4− 1
γ for t ≥ 0 , (1.9)

where C and C ′ are some positive constants.

2

Theorem 1.1 follows from Theorem 2.1 and Propositions 3.1 – 3.3 and The-
orem 3.4 in the continuing sections. The notations we use in this paper are
standard. The symbol (·, ·) means the inner product in L2(Ω) or sometimes du-
ality between the space X and its dual X ′. Positive constants will be denoted
by C and will change from line to line.

2 Preliminaries

We introduce an energy E(t) as

E(t) ≡ ρ∥u′(t)∥2 + 1

γ + 1
M(t)γ+1 with M(t) ≡ ∥A1/2u(t)∥2 . (2.1)

By simple calculation, we see that the energy E(t) has the so-called energy
identity such that

d

dt
E(t) + 2∥u′(t)∥2 = 0 (2.2)

or

E(t) + 2

∫ t

0

∥u′(s)∥2 ds = E(0) . (2.3)

Moreover, we will use the function H(t) (a second order energy) as

H(t) ≡ ρ
∥A1/2u′(t)∥2

M(t)γ
+ ∥Au(t)∥2 . (2.4)

In previous paper [16], we have proved the following global existence theo-
rem and obtained some decay properties.

Theorem 2.1 Let the initial data [u0, u1] belong to D(A)×D(A1/2) and M(0) >
0. Suppose that

2(γ + 1)
2γ+1
γ+1 G(0)

1
2B(0)

1
2 ρE(0)

γ
γ+1 < 1 (2.5)

Then, the problem (1.1) admits a unique global solution u(t) in the class

C0([0,∞);D(A)) ∩ C1([0,∞);D(A1/2)) ∩ C2([0,∞);L2(Ω)) ,

and this solution u(t) satisfies

ρ
|M ′(t)|
M(t)

<
1

γ + 1
and H(t) ≤ H(0) , (2.6)

∥Au(t)∥2

M(t)
≤ G(0) and

∥u′(t)∥2

M(t)2γ+1
≤ B(0) , (2.7)

C ′(1 + t)−
1
γ ≤ M(t) ≤ ((γ + 1)E(0))

1
γ+1 for t ≥ 0 , (2.8)
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where

E(0) ≡ ρ∥u1∥2 +
1

γ + 1
∥A1/2u0∥2 , (2.9)

H(0) ≡ ρ
∥A1/2u1∥2

∥A1/2u0∥2γ
+ ∥Au0∥2 , (2.10)

G(0) ≡ ∥Au0∥2

∥A1/2u0∥2
+ ρ

(
∥A1/2u1∥2

∥Au0∥2γ
− (A1/2u1, A

1/2u0)

2∥A1/2u0|2γ+2

)
, (2.11)

B(0) ≡ max

{
∥u1∥2

∥A1/2u0∥4γ+2
, (2(γ + 1))2G(0)

}
, (2.12)

and C ′ is some positive constant.

In order to derive decay estimates of the solution u(t) of (1.1), the following
generalized Nakao type inequality is useful (see [6] and [15] for the proof and
also see [9], [10], [17]).

Lemma 2.2 Let ϕ(t) be a non-negative function and satisfy

sup
t≤s≤t+1

ϕ(s)1+α ≤ (k0ϕ(t)
α + k1(1 + t)−β)(ϕ(t)− ϕ(t+ 1)) + k2(1 + t)−γ

with certain constants k0, k1, k2 ≥ 0, α > 0, β ≥ 0, and γ > 0. Then, the
function ϕ(t) satisfies

ϕ(t) ≤ C0(1 + t)−θ , θ = min

{
1 + β

α
,

γ

1 + α

}

for t ≥ 0 with some constant C0 depending on ϕ(0).

3 Decay Estimetes

By the same analysis as in previous paper [15], using the estimates (2.6)–
(2.8), we can obtain the following decay estimates (or (1.4) and (1.5)). We
omit the proof here (see [15]).

Proposition 3.1 Under the assumption of Theorem 2.1, it holds that

C ′(1 + t)−
1
γ ≤ ∥Ak/2u(t)∥2 ≤ C(1 + t)−

1
γ for k = 0, 1, 2 , (3.1)

∥u′(t)∥2 ≤ C(1 + t)−2− 1
γ for t ≥ 0 , (3.2)

where C and C ′ are some positive constants.

4

Proposition 3.2 Under the assumption of Theorem 2.1, if the initial data
[u0, u1] belong to D(A3/2)×D(A), then it holds that

F (t) ≡ ρ
∥A1/2u′′(t)∥2

M(t)γ
+ ∥Au′(t)∥2 ≤ C(1 + t)−2− 1

γ (3.3)

and

∥A1/2u′′(t)∥2 ≤ C(1 + t)−3− 1
γ for t ≥ 0 . (3.4)

Proof. Differentiating Equation (1.1) once with respect to t, we have

ρu′′′ +M(t)γAu′ + γ
M ′(t)

M(t)
M(t)γAu+ u′′ = 0 . (3.5)

Multiplying (3.5) by 2M(t)−γAu′′ over Ω and integrating it over Ω, we have
from Equation (1.1) that

d

dt
F (t) + 2

(
1 +

γ

2
ρ
M ′(t)

M(t)

)
∥A1/2u′′(t)∥2

M(t)γ
= 2γ

M ′(t)

M(t)

(A1/2u′(t), A1/2u′′(t))

M(t)γ

(3.6)

≤ 4γ
∥A1/2u′(t)∥2∥A1/2u′′(t)∥

M(t)γ+
1
2

.

Since it follows from (2.6) that

1 +
γ

2
ρ
M ′(t)

M(t)
≥ γ + 2

2(γ + 1)
>

1

2
,

the Young inequality yields

d

dt
F (t) +

∥A1/2u′′(t)∥2

M(t)γ
≤ Cf(t)2 with f(t)2 ≡ ∥A1/2u′(t)∥4

M(t)γ+1
. (3.7)

Integrating (3.7) over [t, t+ 1], we have

∫ t+1

t

∥A1/2u′′(s)∥2

M(s)γ
ds ≤ F (t)− F (t+ 1) + C sup

t≤s≤t+1
f(s)2

(
≡ D(t)2

)
.

(3.8)

Then, there exist two numbers t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥A1/2u′′(tj)∥2

M(tj)γ
≤ 4D(t)2 for j = 1, 2 . (3.9)
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Multiplying (3.5) by M(t)−γAu′ and integrating it over Ω, we have from
Equation (1.1) that

∥Au′(t)∥2 = ρ
∥A1/2u′′(t)∥2

M(t)γ
− ρ

d

dt

(A1/2u′′(t), A1/2u′(t))

M(t)γ
(3.10)

− (A1/2u′′(t), A1/2u′(t))

M(t)γ
+ γ

M ′(t)

M(t)

∥A1/2u′(t)∥2

M(t)γ
.

Integrating (3.10) over [t1, t2], we observe

∫ t2

t1

∥Au′(s)∥2 ds ≤ ρ

∫ t+1

t

∥A1/2u′′(s)∥2

M(s)γ
ds+ ρ

2∑
j=1

∥A1/2u′′(tj)∥∥A1/2u′(tj)∥
M(tj)γ

+

∫ t+1

t

∥A1/2u′′(s)∥∥A1/2u′(s)∥
M(s)γ

ds+ 2γ

∫ t+1

t

∥A1/2u′(s)∥3

M(s)γ+
1
2

ds

≤ D(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

h(s)2

with

g(t)2 ≡ ∥A1/2u′(t)∥2

M(t)γ
and h(t)2 ≡ ∥A1/2u′(t)∥3

M(t)γ+
1
2

, (3.11)

and moreover,

∫ t2

t1

F (s) ds = ρ

∫ t2

t1

∥A1/2u′′(s)∥2

M(s)γ
ds+

∫ t2

t1

∥Au′(s)∥2 ds

≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

h(s)2 . (3.12)

There exists t∗ ∈ [t1, t2] such that

F (t∗) ≤ 2

∫ t2

t1

F (s) ds . (3.13)

For τ ∈ [t, t + 1], integrating (3.6) over [τ, t∗] (or [t∗, τ ]), we have from the
Young inequality that

F (τ) = F (t∗)−
∫ τ

t∗

(
2− γρ

M ′(s)

M(s)

)
∥A1/2u′′(s)∥2

M(s)γ
ds

+ 2γ

∫ τ

t∗

M ′(s)

M(s)

(A1/2u′(s), A1/2u′′(s))

M(s)γ
ds

≤ F (t∗) + C

∫ t+1

t

∥A1/2u′′(s)∥2

M(s)γ
ds+ C

∫ t+1

t

∥A1/2u′(s)∥3

M(s)γ+
1
2

ds ,

6

and from (3.8), (3.11), (3.12), and (3.13) that

sup
t≤s≤t+1

F (s) ≤ CD(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

h(s)2

or

sup
t≤s≤t+1

F (s)2 ≤ C

(
D(t)2 + sup

t≤s≤t+1
g(s)2

)
D(t)2 + C sup

t≤s≤t+1
h(s)4 .

From (3.8) and the Young inequality, we observe

sup
t≤s≤t+1

F (s)2 ≤ C

(
F (t) + sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
(F (t)− F (t+ 1))

+ C

(
sup

t≤s≤t+1
f(s)2 + sup

t≤s≤t+1
g(s)2

)
sup

t≤s≤t+1
f(s)2 + C sup

t≤s≤t+1
h(s)4 .

Since it follows from (2.8), (3.2), (3.7), and (3.11) that

f(t)2 ≡ ∥A1/2u′(t)∥4

M(t)γ+1
≤ C(1 + t)−3− 1

γ ,

g(t)2 ≡ ∥A1/2u′(t)∥2

M(t)γ
≤ C(1 + t)−1− 1

γ ,

h(t)2 ≡ ∥A1/2u′(t)∥3

M(t)γ+
1
2

≤ C(1 + t)−2− 1
γ ,

we have

sup
t≤s≤t+1

F (s)2 ≤ C
(
F (t) + (1 + t)−1− 1

γ

)
(F (t)− F (t+ 1)) + C(1 + t)−4− 2

γ ,

(3.14)

and moreover, applying Lemma 2.2 to (3.14) we obtain the desired estimate
(3.3). (3.4) follows from (3.3) and (3.1) with k = 1. □

Proposition 3.3 Under the assumption of Proposition 3.2, it holds that

∥u′′(t)∥2 ≤ C(1 + t)−4− 1
γ , (3.15)

∥Au(t)∥2H1 ≤ C(1 + t)−
1
γ for t ≥ 0 . (3.16)

Proof. Multiplying (3.5) by 2u′′ and integrating it over Ω, we have

ρ
d

dt
∥u′′(t)∥2 + 2∥u′′(t)∥2

= −2M(t)γ(Au′(t), u′′(t))− 2γ
M ′(t)

M(t)
M(t)γ(Au(t), u′′(t))

≤ CM(t)γ∥Au′(t)∥∥u′′(t)∥+ C∥A1/2u′(t)∥M(t)γ
∥Au(t)∥
M(t)

1
2

∥u′′(t)∥ ,
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Multiplying (3.5) by M(t)−γAu′ and integrating it over Ω, we have from
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∥Au′(t)∥2 = ρ
∥A1/2u′′(t)∥2

M(t)γ
− ρ

d

dt

(A1/2u′′(t), A1/2u′(t))

M(t)γ
(3.10)

− (A1/2u′′(t), A1/2u′(t))

M(t)γ
+ γ

M ′(t)

M(t)

∥A1/2u′(t)∥2

M(t)γ
.

Integrating (3.10) over [t1, t2], we observe

∫ t2

t1

∥Au′(s)∥2 ds ≤ ρ

∫ t+1

t

∥A1/2u′′(s)∥2

M(s)γ
ds+ ρ

2∑
j=1

∥A1/2u′′(tj)∥∥A1/2u′(tj)∥
M(tj)γ

+

∫ t+1

t

∥A1/2u′′(s)∥∥A1/2u′(s)∥
M(s)γ

ds+ 2γ

∫ t+1

t

∥A1/2u′(s)∥3

M(s)γ+
1
2

ds

≤ D(t)2 + CD(t) sup
t≤s≤t+1

g(s) + C sup
t≤s≤t+1

h(s)2
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g(t)2 ≡ ∥A1/2u′(t)∥2

M(t)γ
and h(t)2 ≡ ∥A1/2u′(t)∥3

M(t)γ+
1
2

, (3.11)
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t1
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t1
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M(s)γ
ds+
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t1
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t≤s≤t+1

g(s) + C sup
t≤s≤t+1
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F (t∗) ≤ 2

∫ t2

t1

F (s) ds . (3.13)
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F (τ) = F (t∗)−
∫ τ

t∗

(
2− γρ

M ′(s)

M(s)

)
∥A1/2u′′(s)∥2

M(s)γ
ds

+ 2γ

∫ τ

t∗

M ′(s)

M(s)

(A1/2u′(s), A1/2u′′(s))

M(s)γ
ds

≤ F (t∗) + C

∫ t+1

t

∥A1/2u′′(s)∥2

M(s)γ
ds+ C

∫ t+1

t

∥A1/2u′(s)∥3

M(s)γ+
1
2

ds ,

6
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(3.14)

and moreover, applying Lemma 2.2 to (3.14) we obtain the desired estimate
(3.3). (3.4) follows from (3.3) and (3.1) with k = 1. □
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and the Young inequality yields

ρ
d

dt
∥u′′(t)∥2 + 2∥u′′(t)∥2 ≤ CM(t)2γ

(
∥Au′(t)∥2 + ∥A1/2u′(t)∥2 ∥Au(t)∥2

M(t)

)

≤ C(1 + t)−4− 1
γ

where we used the estimates (2.7), (3.2), and (3.3) at the last inequality. There-
fore, we conclude the desired estimate (3.15).

Moreover, from Equation (1.1) we observe

M(t)γ∥Au(t)∥H1 ≤ ρ∥u′′(t)∥H1 + ∥u′(t)∥H1 ,

and from (2.8), (3.3), and (3.4) that

∥Au(t)∥2H1 ≤ C
(
∥u′′(t)∥2H1 + ∥u′(t)∥2H1

)
M(t)−2γ ≤ C(1 + t)−

1
γ

which implies the desired estimate (3.16). □

Gathering Proposition 3.1, Proposition 3.2, and Proposition 3.3, we arrive
at the following theorem.

Theorem 3.4 In addition to the assumption of Theorem 2.1, suppose that the
initial data [u0, u1] belong to D(A3/2)×D(A). Then, the solution u(t) of (1.1)
satisfies

C ′(1 + t)−
1
γ ≤ ∥Ak/2u(t)∥2 ≤ C(1 + t)−

1
γ for k = 0, 1, 2, 3 , (3.17)

∥u′(t)∥2H2 ≤ C(1 + t)−2− 1
γ , (3.18)

∥u′′(t)∥2 ≤ C(1 + t)−4− 1
γ for t ≥ 0 , (3.19)

where C and C ′ are some positive constants.

Proof. (3.17) follows from (3.1) and (3.16). (3.18) follows from (3.3). (3.19)
follows from (3.15). □
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