Effect of A-site deficiency on perovskite-type Mn⁴⁺-activated La_{5/3}MgTaO₆ red phosphor and green luminescence of the Mn²⁺ occupied six-coordinate site in Mg₂LaTaO₆

Akihiro Nakanishi^a, Tomoya Onoe^b, Ryoto Morii^b, Kei-ichiro Murai^{a,b}, Toshihiro Moriga^{a,b,*}, Yutaka Kobayashi^c, Atsushi Sakaki^c and Shao-Ju Shih^d

^a Department of Chemical Science and Technology, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan

^b Department of Applied Chemistry, Graduate School of Science and Technology for Innovation, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan ^c R&D Division, NICHIA Corporation, 491 Oka, Kaminaka, Anan, Tokushima 774-8601, Japan

^d Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43 Sec. 4 Keelung Rd, Taipei 10607, Taiwan * Corresponding Author, (moriga@tokushima-u.ac.jp)

Abstract

White light LEDs have a long life and high energy efficiency; however, their application is limited owing to the lack of red components. Herein, we use the solid-state reaction method to fabricate a new Mn-activated perovskite-type La_{5/3}MgTaO₆ phosphor that exhibits red emission under UV excitation at 365 nm. A-site deficiency in the perovskite-type structure plays a crucial role in Mn⁴⁺ emission in La_{5/3}MgTaO₆ because Mn⁴⁺—which is located in the non-inversion symmetry site—is activated for such an emission. In addition, the new Mn-activated pyrochlore-type Mg₂LaTaO₆ phosphor exhibited green emission under UV excitation at 254 nm owing to the oxide ion deficiency of Mg₂LaTaO₆. Based on the features of the oxide-deficient pyrochlore-type structure, we infer that Mn²⁺ may be present in the six-coordinate octahedral site with high distortion in pyrochlore-type Mg₂LaTaO₆.

Keywords: Mn-activated phosphor, perovskite, pyrochlore, octahedral distortion

1. Introduction

White LEDs are used worldwide owing to their energy efficiency, high luminous intensity, and long operational life [1-3]. These comprise blue LEDs [4] with yellow phosphors (Y₃Al₅O₁₂:Ce³⁺) [5]. These colors are complementary and thus produce white light; however, white LEDs also exhibit low color rendering owing to the lack of a red component, which limits their applications [6]. Red phosphors excited by ultraviolet (UV) and blue light have been developed to solve this problem [7], and the resulting high-color-rendering white LEDs enable control of the color tone of lighting and are expected to have a wide range of applications.

Some Eu-activated red phosphors, including CaAlSiN₃: Eu^{2+} and M₂Si₅N₈: Eu^{2+} (M = Ca, Sr, Ba), have been synthesized for practical use [8,9]; however, Eu is expensive, and such devices are not widely available because their production is unevenly distributed around the world.

Herein, we develop Mn-activated phosphors as an alternative to Eu-activated red phosphors. Mn^{4+} -activated phosphors are known to absorb near-UV light and emit red light. Moreover, Mn is considerably cheaper than Eu [10–13]. Mn-activated phosphors have recently attracted considerable attention as promising red phosphor candidates for use in high-color-rendering white LEDs such as NaLaMgWO₆:Mn⁴⁺ [10], Sr₂Ca_{1-\delta}Ln_{\delta}WO₆:Mn⁴⁺ [11], Sr₃LiSbO₆:Mn⁴⁺ [12], Sr₂ScO₃F:Mn⁴⁺ [13].

Despite their potential as red phosphors, the absorption and emission of Mn⁴⁺ are typically assigned to forbidden transitions. Mn⁴⁺ preferentially occupies six-coordinate octahedral sites with a center of inversion [14]; however, a high luminescence efficiency is not achieved from the octahedral Mn⁴⁺ owing to its selectivity as per the Laporte rule [15]. To solve this problem, we chose $La_{5/3}MgTaO_6$ as a host material for Mn^{4+} activators. The crystal structure of La_{5/3}MgTaO₆ is characterized by a double perovskite-type structure with a regular deficiency of La³⁺ along the c-axis [16] (Fig. 1). La_{5/3}MgTaO₆ contains [TaO₆] octahedra, which facilitates entry of Mn⁴⁺ ions into the six-coordinate octahedral sites. The Mn⁴⁺ in the B-site of the perovskite-type structure is thus displaced, thereby removing the center of inversion from La5/3MgTaO6. For example, in the defectperovskite structures of lithium-containing lanthanum metaniobates and metatantalates, the cation at the B site is displaced toward the deficient A-site as the amount of lithium is reduced [17]. Based on these observations, we predict that the Mn⁴⁺-activated La_{5/3}MgTaO₆ phosphor will exhibit high-intensity red emission owing to the loss of the inversion symmetry center. A Mn⁴⁺-activated SrLa₂Mg₂W₂O₁₂ red phosphor with A-site deficiency in the structure and high luminescence was recently reported by Shi et al [18];

however, the relationship between A-site deficiency and luminescence in the perovskite-type structure has not yet been reported. Zhou et al. synthesized the perovskite-type BaLaMgTaO₆:Mn⁴⁺ red phosphor via a high-temperature solid-state procedure [19], the final calcination temperature (1500 °C) and reaction time (6 h) of which are identical to those used in the synthesis of La_{5/3}MgTaO₆ [16]. In addition, the ionic radius of Ba²⁺ (1.42 Å (eight-coordination)) is similar to that of La³⁺ (1.160 Å (eight-coordination)), making Ba²⁺ a suitable dopant for La³⁺ sites [20]. In this study, we synthesized the Mn⁴⁺-activated phosphors, La_{5/3}-(2/3)_xBa_xMgTa_{0.99}O₆:0.01Mn⁴⁺ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) at 1500 °C for 6 h. By substituting Ba²⁺ into the A site of La_{5/3}MgTaO₆, we investigated the relationship between the A-site deficiency and the luminescence properties of the material.

We also synthesized the Mn-activated phosphors, $La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}O_6:0.01Mn$ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1), and investigated the effect of increasing y on their crystal structure evolution and luminescence properties. With a y value of 1, the chemical composition of this phosphor is represented as Mg₂LaTaO₆, which has an oxide ion-deficient pyrochlore-type structure [21]. Mn⁴⁺-activated pyrochlore-type RE₂Sn₂O₇ (RE³⁺ = Y³⁺, Lu³⁺ or Gd³⁺) phosphors were previously shown to exhibit red luminescence [22]. To the best of our knowledge, all Mn-activated pyrochlore-type phosphors emit red light. Inspired by this, we synthesized the first Mn-activated pyrochlore-type Mg₂LaTaO₆ phosphor.

2. Materials and methods

2.1 Sample synthesis

La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) and La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}Mn_{0.01}O₆ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors were synthesized by a solid-state reaction. The Mn doping level was fixed at 1% of Ta. Stoichiometric amounts of La₂O₃ (99.9%, Kojundo Chemical, Japan), 4MgCO₃·Mg(OH)₂·5H₂O (485.65 g/mol, Kishida Chemical, Japan), Ta₂O₅ (99.95%, Kanto Chemical, Japan), MnCO₃ (99.9%, Kojundo Chemical, Japan), and BaCO₃ (99.9%, Kanto Chemical, Japan) were ground and mixed in an agate mortar for 40 min. After calcination at 1200 °C for 4 h, the mixture was cooled to room temperature and thereafter mixed for a further 20 min. Finally, the mixture was calcined at 1500 °C for 6 h to obtain the desired products.

2.2 Characterization

The crystalline structures of the phosphors were investigated at room temperature

using powder X-ray diffraction (XRD, SmartLab X-ray Diffractometer, Rigaku, Japan) with Cu-K α radiation at 45 kV, 200 mA, and 2 θ in the range of 10–60°. The particle shape and size were determined by scanning electron microscopy (SEM, JSM-6510A, JEOL, Japan). The luminescence properties of all the phosphors were measured by fluorescence spectrometry (FP-8300 Spectrofluorometer, JASCO, Japan). The same amounts of phosphors (weighted 0.150 g) were used to compare with the same holder. The X-ray absorption near edge structure (XANES) spectrum of the Mn-K edge in fluorescent mode was measured using the BI16B2 beamline at SPring-8, Japan. X-ray energy selection was achieved using a silicon (111) double crystal monochromator. A 25-element solid-state detector (25-element SSD) was used owing to the low concentration of Mn. A Cr metal foil was set in front of the SSD for band-pass filter. The XANES spectra were measured at a rate of 45 (*x*, *y* = 1 samples) and 54 (*x* = 0 sample) seconds per point, respectively. After the XANES measurement, the background process was conducted by REX2000 software.

3. Results and Discussion

3.1 La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors

The XRD patterns of La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors calcined at 1500 °C for 6 h are shown in Fig. 2. The diffraction patterns of the samples with x = 0 and 1 are consistent with the Joint Committee on Powder Diffraction Standards (JCPDS) card peak patterns of La_{5/3}MgTaO₆ [16] and BaLaMgTaO₆ [23], respectively, confirming the formation of single phase phosphors. The patterns of samples with x = 0.2–0.8 did not exhibit any peaks corresponding to other phases. The peak at ~32° continuously shifted to a lower angle with increasing *x*, indicating that Ba was successfully doped into the perovskite-type structure (Fig. 2, right hand side).

SEM images of Mn^{4+} -activated La_{5/3}MgTaO₆ (x = 0) and BaLaMgTaO₆ (x = 1) phosphors are shown in Fig. 3(a) and (b), respectively. We observed coarse particles measuring ~10–20 micrometers and fine particles measuring several micrometers.

The excitation and emission spectra of $La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O_6$ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors are shown in Fig. 4(a) and Fig. 4(b), respectively. The excitation spectra showed an absorption maximum at ~365 nm, while the fluorescence spectra showed red emission with a maximum at ~706 nm. The sample with x = 0 exhibited the strongest absorption of UV light and emission of red light at ~365 and 706 nm, respectively, demonstrating its potential as a phosphor for high-color-rendering

white LEDs by applying near-UV light excitation. As the amount of Ba²⁺ substitution increased, both the absorption and emission intensities tended to decrease.

Images of La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors under UV excitation of 365 nm (Fig. 5) show that the red luminescence tends to be quenched with increasing x. The sample with x = 0 exhibited the strongest red emission. We hypothesize that the center of inversion in La_{5/3}MgTaO₆, was lost owing to the displacement of Mn⁴⁺ occupying the B-site toward the deficient A-site to avoid electrostatic repulsion. Accordingly, the forbidden transition was relaxed in the x = 0sample. In addition, the luminescence tended to be increasingly quenched with increasing x, indicating that reducing the A-site deficiency by the substitution of Ba²⁺ revives the center of inversion (Fig. 6).

XANES is an effective technique to probe the local coordination environment at a particular location in the structure. Yamamoto introduced the importance of the intensity of the pre-edge peak in terms of the d-p hybridization, which is dominated by the orbital symmetry and can be explained by group theory. The formation of the d-p hybridized orbital results in an intense pre-edge peak owing to the mixing of s-p electric dipole transitions [24]. Farges reported that the intensity of the pre-edge peak at ~6540 eV in the Mn K-edge XANES spectrum increased as the symmetry around the Mn²⁺ center was reduced [25].

The Mn K-edge XANES spectra of $La_{5/3}MgTa_{0.99}Mn_{0.01}O_6$ (x = 0) and BaLaMgTa_{0.99}Mn_{0.01}O_6 (x = 1) phosphors are shown in Fig. 7. A low-intensity pre-edge peak was observed at approximately 6540–6545 eV in A-site deficient perovskite-type structure. Therefore, this result provides evidence that Mn⁴⁺ occupies the non-inversion center and explains the strong red emission of the A-site deficient perovskite-type structure.

3.2 $La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}Mn_{0.01}O_6$ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors

The XRD patterns of the La_{5/3-(2/3)} $Mg_{1+y}Ta_{0.99}Mn_{0.01}O_6$ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors calcined at 1500 °C for 6 h are shown in Fig. 8. The pattern of the sample with y = 0 matched the peak pattern of La_{5/3}MgTaO₆, confirming the single phase phosphor. In contrast, a new diffraction peak appeared at ~29° as y increased. These star-shaped peaks are derived from the oxide ion-deficient pyrochlore-type structure of Mg₂LaTaO₆ [21]. A small amount of MgO was also detected as a byproduct in samples with y = 0.2-1. Magnification of the strongest diffraction peaks at ~27°-33° shows that the peak shift was not significant, with an increase in y, the intensity of the peaks derived from La_{5/3}MgTaO₆ decreased and that derived from Mg₂LaTaO₆ increased.

This result demonstrates that the addition of Mg to La does not form a solid solution in the perovskite-type La_{5/3}MgTaO₆ structure.

The perovskite-type structure was retained in La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) regardless of the *x* value; however, La_{5/3}. (2/3)yMg_{1+y}Ta_{0.99}Mn_{0.01}O₆ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) formed a pyrochlore-type structure as *y* increased. This result was attributed to the difference in the ionic radii of Mg²⁺ and Ba²⁺ used as dopants. Because the ionic radius of Ba²⁺ (1.42 Å (eight-coordination)) is larger than that of Mg²⁺ (0.89 Å (eight-coordination)) [20], the perovskite-type structure, wherein the A-site cation prefers a greater coordination number, is stabilized in the La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) system.

An SEM image of the Mn-activated Mg₂LaTaO₆ (y = 1) phosphor is shown in Fig. 9. The particle size of this phosphor was several micrometers, and the particles were smoother and more uniform than those of the Mn⁴⁺-activated perovskite-type phosphors.

The emission spectra of $La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}Mn_{0.01}O_6$ (y = 0, 0.2, 0.4, 0.6, and 0.8) phosphors excited at 365 nm are shown in Fig. 10. As *y* increased, the emission intensity tended to decrease.

Images of La_{5/3}-(2/3)_yMg_{1+y}Ta_{0.99}Mn_{0.01}O₆ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors under UV excitation at 365 nm are shown in Fig. 11. The quenching of red luminescence tends to increase with increasing y. The XRD patterns revealed that the extent of the La_{5/3}MgTaO₆ phase decreased with increasing y value (Fig. 8); therefore, the decreasing trend in the emission intensity is caused by a reduction in the amount of the La_{5/3}MgTaO₆ phase that emits red light.

The excitation spectra of $La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}Mn_{0.01}O_6$ (y = 0.2, 0.4, 0.6, 0.8, and 1) phosphors at 540 nm showed absorption maxima at ~254 nm (Fig. 12(a)), while the fluorescence emission spectrum showed green emission with a maximum at ~540 nm (Fig. 12(b)). The intensity of this green emission increased as y increased, suggesting that the amount of the pyrochlore-type Mg₂LaTaO₆ phase, which emits green light, increases with increasing y, whereas the amount of the perovskite-type La_{5/3}MgTaO₆ phase, which emits red light, decreases.

Images of La_{5/3}-(2/3)_yMg_{1+y}Ta_{0.99}Mn_{0.01}O₆ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors under UV 254 nm are shown in Fig. 13. The sample with y = 0 consisted of a single phase of La_{5/3}MgTaO₆: thus, the red luminescence must be derived from the perovskitetype La_{5/3}MgTaO₆. In contrast, the sample with y = 1 primarily contained the Mg₂LaTaO₆ phase, demonstrating that the green luminescence was derived from the pyrochlore-type Mg₂LaTaO₆. Orange/yellow emissions were observed from samples with y = 0.4 and 0.6 owing to the mixture of the perovskite-type red phosphor and pyrochlore-type green phosphor in the samples with y = 0.2 to 0.8.

The local coordination environment of pyrochlore-type Mg₂LaTaO₆ was explored, and a schematic of its structure was produced (Fig. 14). The composition of the ideal pyrochlore-type structure is expressed as A₂B₂X₇, in which the A-cation occupies the 16d site (eight-coordinate site), and the B-cation occupies the 16c site (six-coordinate site) [26]. The X anions occupy the 48f and 8b sites, while the 8a site is unoccupied. Kumar et al. [21] found that Mg and La were randomly distributed across the 16d sites (A-site) in oxide-ion deficient pyrochlore-type Mg₂LaTaO₆, while Mg and Ta were randomly distributed across the 16c sites (B-site). The sum of the bond strengths of the 48f sites and 8b sites in Mg₂LaTaO₆ is calculated by Pauling's second law [27], as shown in Fig. 15. The sum of the bond strengths of the 48f position is closer to -2 than that of the 8b position, suggesting that oxide ions are preferentially lost from the 8b. Accordingly, this deficient pyrochlore-type Mg₂LaTaO₆ structure consists of AO₆ and BO₆ octahedra owing to the empty 8b sites. Both AO₆ and BO₆ octahedra have a center of inversion identical to that of the nominal pyrochlore-type structure. Ramesha et al. reported an oxygen ion-deficient pyrochlore-type Pb₂MnReO₆ [28]. Their refinement demonstrated that Mn²⁺ and Re⁶⁺ are disordered at 16c sites, while the O²⁻ anions occupied the 48f sites and the 8b site was unoccupied. The crystal structure of Pb₂MnReO₆ is shown in Fig. 16. The BO₆ polyhedra in Pb₂MnReO₆ were highly distorted in a similar way to the highly distorted BO6 octahedron found in Mg2LaTaO6 [21].

The coordination environment in the vicinity of Mn was evaluated using XANES. The Mn K-edge XANES spectrum of Mg₂LaTa_{0.99}Mn_{0.01}O₆ (y = 1) phosphor is shown in Fig. 17. The pre-edge peak was not identified in the spectrum of the pyrochlore-type Mg₂LaTaO₆ phosphor, leading us to conclude that Mn occupied the site with a center of inversion.

 Mn^{4+} phosphors emit red light regardless of the parent material [10–13]; however, the emission wavelength of Mn^{2+} -activated phosphors is dependent on the crystal field. As the crystal field becomes stronger, the emission wavelength shifts toward longer wavelengths. For example, in the case of the oxide phosphor, Mn^{2+} in a four-coordinate site without a center of inversion exhibits green emission owing to the relatively weak crystal field, while that in a six-coordinate site emits orange/red light as a result of the stronger crystal field [30–33].

Table 1 shows the emission wavelengths and coordination numbers of the Mn²⁺ oxide

phosphors [30–40]. The Mn-activated Mg₂LaTaO₆ phosphors in which six-coordinate sites are occupied exhibited an emission peak at an intermediate wavelength (540 nm), suggesting that the highly distorted BO₆ octahedron may weaken the crystal field, thus resulting in green emission from Mn^{2+} .

4. Conclusion

Cost-effective red-emitting phosphors with structures of La_{5/3-(2/3)x}Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) and $La_{5/3-(2/3)\nu}Mg_{1+\nu}Ta_{0.99}Mn_{0.01}O_6$ (y = 0, 0.2, 0.4, 0.6, 0.6) 0.8, and 1) were synthesized by solid-state reaction for use in high-color-rendering white LEDs. An investigation of the luminescence properties of Mn-activated La_{5/3-} $_{(2/3)x}$ Ba_xMgTa_{0.99}Mn_{0.01}O₆ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) phosphors suggests that the absorption and emission of Mn⁴⁺ in perovskite-type La_{5/3}MgTaO₆ is related to the A-site deficiency of the structure. The deficiency of La³⁺ in La_{5/3}MgTaO₆ causes Mn⁴⁺ to occupy distorted six-coordinate octahedral sites, thereby relaxing the forbidden transition. The XANES spectra showed evidence that Mn⁴⁺ was located at the noninversion center in the A-site deficient perovskite-type structure. The Mn⁴⁺-activated La_{5/3}MgTaO₆ phosphor exhibits red emission under UV excitation at 365 nm, and thus has potential applications as a red phosphor in high-color-rendering white LEDs. Similarly, the pyrochlore-type Mg₂LaTaO₆ phosphor exhibited green emission at ~540 nm under UV excitation at 254 nm. In conjunction with the crystallographic data of Mg_2LaTaO_6 , this result suggests that Mn^{2+} is present in the six-coordinated octahedral sites with a center of inversion in Mg₂LaTaO₆. Our results suggest that the highly distorted BO₆ octahedron may weaken the crystal field, thereby resulting in green emission, and explaining the fact that Mn-activated Mg₂LaTaO₆ phosphor exhibited green emission despite the occupation of the six-coordinate sites.

Acknowledgements

This research was partially supported by the Ministry of Education, Science, Sports, and Culture, Grant-in Aid for Scientific Research (B), 2018–2022 (18H02059, Toshihiro Moriga). The Mn-K XANES measurements were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2022A5380).

Declaration of competing interest

We declare that we do not have persons with conflict of interest.

References

[1] E.F. Schubert, J.K. Kim, Solid-state light sources getting smart, Science 308 (2005) 1274–1278. DOI: 10.1126/science.1108712.

[2] C.J. Humphreys, Solid-state lighting, MRS Bull. 33 (2008) 459–470. DOI:
 10.1557/mrs2008.91.

[3] C.C. Lin, R.S. Liu, Advances in phosphors for light-emitting diodes, J. Phys. Chem. Lett. 2 (2011) 1268–1277. DOI: 10.1021/jz2002452.

[4] S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness
 InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Appl. Phys. Lett. 64
 (1994) 1687–1689. DOI: 10.1063/1.111832.

[5] Z. Xia, A. Meijerink, Ce³⁺-Doped garnet phosphors: composition modification, luminescence properties and applications, Chem. Soc. Rev. 46 (2017) 275–299. DOI: 10.1039/c6cs00551a.

 [6] Z. Xia, Q. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs, Prog. Mater. Sci. 84 (2016) 59–117.
 DOI:10.1016/j.pmatsci.2016.09.007

[7] Y. Zhang, L. Luo, Guantong Chen, Y. Liu, R. Liu, X. Chen, Green and red phosphor for LED backlight in wide color gamut LCD, J. Rare Earths 38 (2020) 1–12. DOI: 10.1016/j.jre.2019.10.005.

[8] K. Uheda, N. Hirosaki, H. Yamamoto, Host lattice materials in the system Ca₃
 N₂ -AlN-Si₃N₄ for white light emitting diode, Phys. Stat. Sol. (A) 203 (2006) 2712–
 2717. DOI: 10.1002/pssa.200669576.

[9] Y.Q. Li, J.E.J. van Steen, J.W.H. van Krevel, G. Botty, A.C.A. Delsing, F.J. DiSalvo, G. de With, H.T. Hintzen, Luminescence properties of red-emitting $M_2Si_5N_8:Eu^{2+}$ (M = Ca, Sr, Ba) LED conversion phosphors, J. Alloys Compd. 417 (2006) 273–279. DOI: 10.1016/j.jallcom.2005.09.041.

[10] X. Huang, J. Liang, B. Li, L. Sun, J. Lin, High-efficiency and thermally stable far-red-emitting NaLaMgWO₆:Mn⁴⁺ phosphors for indoor plant growth light-emitting diodes, Opt. Lett. 43 (2018) 3305–3308. DOI: 10.1364/OL.43.003305.

[11] K. Li, J. Du, D. Poelman, H. Vrielinck, D. Mara, R. Van Deun, Achieving efficient red-emitting $Sr_2Ca_{1-\delta}Ln\delta WO_6:Mn^{4+}$ (Ln = La, Gd, Y, Lu, $\delta = 0.10$) Phosphors with extraordinary luminescence thermal stability for potential UV-LEDs application

via facile ion substitution in luminescence-ignorable $Sr_2CaWO_6:Mn^{4+}$, ACS Mater. Lett. 2 (2020) 771–778. DOI: 10.1021/acsmaterialslett.0c00212.

[12] L. Fu, Y. Yang, Y. Zhang, X. Ren, Y. Zhu, J. Zhu, Y. Wu, J. Wang, X. Feng, The novel Sr₃LiSbO₆:Mn⁴⁺, Ca²⁺ far-red-emitting phosphors with over 95% internal quantum efficiency for indoor plant growth LEDs, J. Lumin. 237 (2021) 118165.

[13] H. Kato, Y. Takeda, M. Kobayashi, H. Kobayashi, M. Kakihana,
 Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn⁴⁺, Front. Chem. 6 (2018) 467. DOI: 10.3389/fchem.2018.00467.

[14] D. Chen, Y. Zhou, Jiasong Zhong, A review on Mn⁴⁺ activators in solids for warm white light-emitting diodes, RSC Adv. 6 (2016) 86285–86296. DOI: 10.1039/C6RA19584A.

[15] O. Laporte, W.F. Meggers, Some rules of spectral structure, J. Opt. Soc. Am. 11 (1925) 459–463. DOI: 10.1364/JOSA.11.000459.

[16] D.D. Khalyavin, A.M.R. Senos, P.Q. Mantas, D.N. Argyriou, I. Tarroso Gomes,
 L.G. Vieira, J.L. Ribeiro, Structure and dielectric characterization of a new A-site
 deficient La_{5/3}MgTaO₆ perovskite, J. Solid State Chem. 180 (2007) 41–48. DOI:
 10.1016/j.jssc.2006.09.016.

[17] A. Belous, E. Pashkova, O. Gavrilenko, O. V'yunov, L. Kovalenko, Solid electrolytes based on lithium-containing lanthanum metaniobates and metatantalates with defect-perovskite structure, Ionics 9 (2003) 21–27. DOI: 10.1007/BF02376532.

[18] L. Shi, Y. Han, S. Wang, J. Jiao, S. Chang, Z. Mu, Z. Mao, D. Wang, Z. Zhang, X. Lu, Synthesis and photoluminescence properties of high thermal stability Mn⁴⁺ in orthorhombic SrLa₂Mg₂W₂O₁₂ red phosphor for warm w-LEDs, J. Mater. Sci.: Mater. Electron. 31 (2020) 4677–4686. DOI: 10.1007/s10854-020-03022-5

 [19] C. Zhou, Y. Zhang, J. Zhu, X. Ren, Y. Zhu, P. Yin, L. Zhao, J. Wang, X. Feng, Enhanced luminescence performances of BaLaMgTaO₆:Mn⁴⁺ red phosphor by Bi³⁺, Ca²⁺ doping for indoor plant lighting supplementary LED, Spectrochim. Acta, Part A 268 (2022) 120655. DOI:<u>10.1016/j.saa.2021.120655</u>

 [20] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (1976) 751–767.
 DOI: 10.1107/S0567739476001551.

[21] S. Senthil Kumar, K.V.O. Nair, J. James, Mg_2MTaO_6 (M = Nd or La): a group of new pyrochlore oxides, J. Solid State Chem. 177 (2004) 3873–3878. DOI: 10.1016/j.jssc.2004.07.033.

[22] T. Senden, F. T.H. Broers, A. Meijerink, Comparative study of the $Mn^{4+2}E \rightarrow$

 ${}^{4}A_{2}$ luminescence in isostructural RE₂Sn₂O₇:Mn⁴⁺ pyrochlores (RE³⁺ = Y³⁺, Lu³⁺ or Gd³⁺), Opt. Mater. 60 (2016) 431-437. DOI: 10.1016/j.optmat.2016.08.024

Y.-I. Kim, P.M. Woodward, Crystal structures and dielectric properties of ordered double perovskites containing Mg²⁺ and Ta⁵⁺, J. Solid State Chem. 180 (2007) 2798–2807. DOI: 10.1016/j.jssc.2007.08.003.

[24] T. Yamamoto, Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?, X-ray Spectrom. 37 (2008) 572-584. DOI: 10.1002/xrs.1103

[25] F. Farges, Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials, Phys. Rev. B. 71 (2005) 155109. DOI: 10.1103/PhysRevB.71.155109

[26] A. Jerez, M.L. Lopez, S. Garcia-Martin, M.L. Veiga, C. Pico, Defect pyrochlore structure A₂B₂X₆: A general approach to the coordination polyhedra around the metal ions, J. Mater. Sci. 26 (1991) 5163–5166. DOI: 10.1007/BF01143208.

[27] L. Pauling, The principles determining the structure of complex ionic crystals,J. Am. Chem. Soc. 51 (1929) 1010–1026. DOI: 10.1021/ja01379a006.

[28] K. Ramesha, L. Sebastian, B. Eichhorn, J. Gopalakrishnan, Perovskite and pyrochlore modifications of Pb₂MnReO₆: synthesis, structure, and electronic properties, Chem. Mater. 15 (2003) 668–674. DOI: 10.1021/cm0207494.

[29] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276. DOI: 10.1107/S0021889811038970.

 $[30] K.W. Park, H.S. Lim, S.W. Park, G. Deressa, J.S. Kim, Strong blue absorption of green Zn_2SiO_4:Mn^{2+} phosphor by doping heavy Mn^{2+} concentrations, Chem. Phys. Lett. 636 (2015) 141–145. DOI: 10.1016/j.cplett.2015.07.032.$

[31] Y. Wei, X. Han, E. Song, Q. Zhang, Photoluminescence and phosphorescence of Mn²⁺ ion activated green phosphor Na₂ZnSiO₄:Mn²⁺ synthesized by self-reduction, Mater. Res. Bull. 113 (2019) 90–96. DOI: 10.1016/j.materresbull.2019.01.022.

[32] L. Wu, B. Wang, Y. Zhang, L. Li, H.R. Wang, H. Yi, Y.F. Kong, J.J. Xu,
Structure and photoluminescence properties of a rare-earth free red-emitting Mn⁽²⁺⁾-activated KMgBO₃, Dalton Trans. 43 (2014) 13845–13851. DOI: 10.1039/c4dt01524j.
[33] L.T.T. Vien, N. Tu, D.X. Viet, D.D. Anh, D.H. Nguyen, P.T. Huy, Mn²⁺- doped Zn₂SnO₄ green phosphor for WLED applications, J. Lumin. 227 (2020) 117522. DOI:

10.1016/j.jlumin.2020.117522

[34] W. Ran, L. Wang, Q. Liu, G. Liu, D. Qu, X. Pan, J. Shi, Mn²⁺ doped CdAl₂O₄ phosphors with new structure and special fluorescence properties: experimental and

theoretical analysis, RSC Adv. (2017) 17612–17619. https://doi.org/10.1039/C7RA01623A

[35] L. Hu, Q. Wang, X. Wang, Y. Li, Y. Wang, X. Peng, Photoluminescence and cathodoluminescence properties of Na₂MgGeO₄:Mn²⁺ green phosphors, RSC Adv. 5 (2015) 104708–104714. DOI: 10.1039/c5ra18558k.

[36] X. Ding, G. Zhu, Q. Wang, Y. Wang, Rare-earth free narrow-band greenemitting KAlSi₂O₆:Mn²⁺ phosphor excited by blue light for LED-phosphor material, the RSC Adv. 5 (2015) 30001–30004. DOI: 10.1039/c5ra03323c.

[37] B. Lei, Y. Liu, Z. Ye, C. Shi, Luminescence properties of CdSiO₃:Mn²⁺ phosphor, J. Lumin. 109 (2004) 215–219. DOI: 10.1016/S0022-2313(04)00147-4.

[38] G. Doke, A. Antuzevics, G. Krieke, A. Kalnina, M. Springis, A. Sarakovskis, UV and X-ray excited red persistent luminescence in Mn²⁺ doped MgGeO₃ material synthesized in air and reducing atmosphere, J. Lumin. 234 (2021) 117995. DOI: 10.1016/j.jlumin.2021.117995.

[39] W. Gong, J. Luo, W. Zhou, J. Fan, Z. Sun, S. Zeng, H. Pan, Z. Zhu, X. Yang, Z. Yu, X. Zhang, Thermal-stable blue-red dual-emitting Na₂Mg₂Si₆O₁₅: Eu²⁺, Mn²⁺ phosphor for plant growth lighting, J. Lumin. 239 (2021) 118372. DOI: 10.1016/j.jlumin.2021.118372.

[40] B. Wang, Y. Kong, Z. Chen, X. Li, S. Wang, Q. Zeng, Thermal stability and photoluminescence of Mn^{2+} activated green-emitting feldspar phosphor $SrAl_2Si_2O_8$: Mn^{2+} for wide gamut w-LED backlight, Opt. Mater. 99 (2020) 109535. DOI: 10.1016/j.optmat.2019.109535.

Figure and Table Captions

- Fig. 1 Crystal structure of La_{5/3}MgTaO₆. La³⁺ in the center is missing. Mg²⁺ and Ta⁵⁺ ions may be shifted along the respective arrows.
- Fig. 2 XRD patterns of $La_{5/3-(2/3)x}Ba_xMgTa_{0.99}O_6:0.01Mn^{4+}$ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1).
- Fig. 3 SEM images of Mn⁴⁺-activated (a) La_{5/3}MgTaO₆ (x = 0) and (b) BaLaMgTaO₆ (x = 1) phosphors.
- Fig. 4 (a) Excitation and (b) emission spectra of $La_{5/3-(2/3)x}Ba_xMgTa_{0.99}O_6:0.01Mn^{4+}$ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1).
- Fig. 5 Photographs of $La_{5/3-(2/3)x}Ba_xMgTa_{0.99}O_6:0.01Mn^{4+}$ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) under UV excitation at 365 nm.
- Fig. 6 Crystal structure of $La_{5/3}MgTaO_6$ (left) and $BaLaMgTaO_6$ (right). The A-site cation deficiency in $La_{5/3}MgTaO_6$ decreases with increasing *x*. The B-site cation is displaced in the direction of A-site deficiency to avoid electrostatic repulsion with the A-site cation La^{3+} .
- Fig. 7 Mn K edge normalized XANES spectra of La_{5/3}MgTa_{0.99}Mn_{0.01}O₆ and BaLaMgTa_{0.99}Mn_{0.01}O₆ phosphors.
- Fig. 8 XRD patterns of $L_{3/3-(2/3)y}Mg_{1+y}Ta_{0.99}O_6:0.01Mn$ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1).
- Fig. 9 SEM image of Mn-activated Mg₂LaTaO₆ (y = 1) phosphor.
- Fig. 10 Emission spectra of $La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}O_6:0.01Mn$ (y = 0, 0.2, 0.4, 0.6, and 0.8).
- Fig. 11 Photos of $La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}O_6:0.01Mn$ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) under UV excitation at 365 nm.
- Fig. 12 (a) Excitation and (b) emission spectra of $La_{5/3-(2/3)x}Mg_{1+y}Ta_{0.99}O_6:0.01Mn^{2+}$ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1).
- Fig. 13 Photos of $La_{5/3-(2/3)y}Mg_{1+y}Ta_{0.99}O_6:0.01Mn$ (y = 0, 0.2, 0.4, 0.6, 0.8, and 1) under UV excitation at 254 nm.
- Fig. 14 Schematic of pyrochlore-type structure. A and B cations occupy the 16d site (eight-coordinate site) and 16c site (six-coordinate site), respectively. X anions occupy the 48f and 8b sites, while the 8a site is unoccupied.
- Fig. 15 Sum of the bond strengths of 48f and 8b site in Mg₂LaTaO₆. It is defined by the following equation: $-\sum_{i} \frac{V_i}{n_i}$, where V_i and n_i are the valence and coordination number of cation, respectively.
- Fig. 16 Crystal structure of Pb₂MnReO₆ drawn using VESTA [29]. The BO₆ octahedron is highly distorted. The purple, black, and red spheres represent Mn/Re, Pb, and

O, respectively. Mn^{2+} and Re^{6+} are disordered at 16c sites (purple polyhedral site).

- Fig. 17 Mn K edge normalized XANES spectra of Mg₂LaTa_{0.99}Mn_{0.01}O₆ phosphors.
- Table 1 Emission wavelength and coordination number of Mn²⁺-activated oxide phosphors.

Abstract

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Host	Coordination number	Emission wavelength (nm)	Ref.
CdAl ₂ O ₄	4	495	[34]
KAlSi ₂ O ₆	4	513	[36]
Na ₂ ZnSiO ₄	4	515	[31]
$SrAl_2Si_2O_8$	4	517	[40]
Na ₂ MgGeO ₄	4	521	[35]
Zn_2SnO_4	4	523	[33]
Zn_2SiO_4	4	530	[30]
Mg ₂ LaTaO ₆	6	540	This study
CdSiO ₃	6	575	[37]
$Na_2Mg_2Si_6O_{15}$	6	630	[39]
KMgBO ₃	6	636	[32]
MgGeO ₃	6	680	[38]
Tetrahedron This study Octahedron			ron
500	550 Wavelen	600 gth (nm)	650

Table 1