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Preface 

Image Understanding is the process to understand the content of images in order 

to automate visual tasks by computers. A visual task is some activity which relies 

on vision. Usually the "input" to this activity is a single image (picture) or video 

sequence, and usually the "output" is some decision, description, action, or report. 

Why do these tasks need to be automated? 

Because there is something to be gained from having a computer do the tasks 

rather than a human. There are several reasons that computers are more suitable 

than humans for visual tasks. The reasons cited below cover many applications, 

perhaps not all, and often there is more than one reason in an application. 

Dangerous situation Tasks which is too dangerous for human. 

Examples are: robots in nuclear power stations, robotic planetary exploration. 

Sensitive situation Tasks which suffer if the human fatigues, and which are prone to 

this problem. 

Examples are: industrial inspection, video-based security systems. 

Economical situation Tasks which require specialized training, resulting in human 

resources that are rare and costly. 

Example are: Medical screening for tumors, intelligence gathering from satellite 

imagery. 

Strict situation Tasks which humans do poorly because visual items need to be mea

sured accurately. 

Example are: progress of disease, efficacy of medication, growth of cracks in 

weldments, number of specific cells in a microscope slide. 

Humanly impossible situation Tasks which have too much data for effective applica-
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xvi Preface 

tion of humans. 

Examples are: counting the potholes in highways, inspection of every bottle in 

a bottling plant, keeping up with intelligence data during wartime. 

Image Understanding systems start by processing images to remove noise and ir

relevant information and to enhance the relevant information, then they analyze the 

image with feature extraction techniques. The technical challenge is to make the 

computer understand the contents of the images. In other words, the most difficult 

problem is to automatically produce a reasonable description from an image. It is 

clear that the nature of images and descriptions have a big distance. In the fields of 

Artificial Intelligence, Scene Analysis, Image Analysis, Image Processing, and Com

puter Vision, the many researchers work on reducing this distance in the last twenty 

years. 

However, there are few Image Understanding systems which are suitable for prac

tical use. The reason is that it is difficult to extract the relevant information to 

represent the object stability, supporting real-world. The object has complex changes 

by various causes. New object detection and information extraction approach, which 

can be applied to thes€ various changes, is necessary for Image Understanding. 

This dissertation is structured into five parts. The first, Chapters 1 and 2, deal with 

the introduction of this dissertation and theoretical background. Chapter 1 states the 

problems about object detection and extraction of information to represent the ob

ject. Chapter 2 shows important theoretical background for this study; color space, 

geometric transformation group and Genetic Algorithm. The second part ( Chapter 3) 

is very important, and describes a basis technique for the following chapters. These 

techniques are a proposed genetic object detection and the information extraction 

system. The third part (Chapters 4 and 5) deals with three-dimensional object detec

tion and an information extraction. The fourth part ( Chapters 6 and 7) is the main 

part of this work. This part overcomes a trade-off between the speed and the accu

racy. This trade-off is the problem in the previous chapters. Chapter 6 introduces the 

downsized GA to overcome the trade-off for a single image processing. In Chapter 7, 



the evolutionary video processing for Image Understanding is proposed. The last part 

is Chapters 8 and 9. Chapter 8 outlines future work and research projects. These 

works are working in real time, three-dimensional image understanding, and robotics. 

A final summary of this work is in Chapter 9. 
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Chapter 1 

Introduction 

1.1 Purpose 

The purpose of this work is object detection in an active scene for Image Under

standing. As part of the objectives, we also try to acquire numerical information to 

represent the object. In this dissertation, the object to be treated is lips region of a 

talking person. The camera is free to move and independent with the human. There 

are two reasons of this active situation. The first, the lips have various deformations 

by speech, and an appearance of lips changes by free camera motion. The second, the 

lips are very useful for many important applications, as described hereinbelow. 

Speech recognition is one of the most useful interfaces that uses little space and 

without physical contact between the device and the human. However, for the mobile 

devices and the ubiquitous computing interface, it has some problems: performance 

limitation and background noise by various situations, such as public spaces, stores, 

offices, and home. In order to overcome these problems, the lips information should 

be effectively used. Because, in human speech perception, audio-visual integration 

is very useful [1, 2, 3]. Therefore, using the lips image is very important for many 

applications, such as interface in mobile devices, and many studies of audio-visual 

speech recognition by lips image have been reported [4, 5, 6, 7, 8, 9]. 

On the other hand, an image-based surveillance system with mobile robots, such 

as wheeled robot [10] and micro aerial robot [11, 12], has been proposed. Moreover, 

speaker identification by using lips information is performed in [13, 14]. If these 

two technologies are collaborated, a human surveillance system with an mobile robot 

1 



2 Chapter 1 Introduction 

Template matching 

I ► 

(b) 
(c) 

(a) 

Figure 1.1 Examples of image: a) target ; b) template ; c) detected lips as steady-state. 

will be achieved, as mentioned in [15]. Robots such as a pet and a humanoid robot 

are expected to be peers of human. For a nonverbal communication between these 

robots and human, a function of tracking speakers is important because the robots 

must locate people, activate for their voice and look at them to identify visually, and 

associate voice and visual images. Therefore the lips is very important for interfaces 

of the personal mobile device. 

Moreover, the lips.redness is common to the entire human race. The reason is that 

the redness is called the "vermillion border'' and composed of nonkeratinized sq_tra

mous epithelium that covers numerous capillaries, which give the lips characteristic 

color [16, 17, 18, 19]. For these reasons, we focus on the lips redness as main feature 

during detection. 

In this dissertation, we describe the lips detection and lips information acquisition 

as the image-based front-end of audio-visual speech recognition and speaker identifi

cation with a personal mobile device, as exemplified above. In order to make these 

speech recognition and speaker identification process simple and easy, it is preferred 

that lips used in the process is steady-state (see Figure 1.1). Considering the mo

bile devices, a camera and human move independently. Therefore, geometric change, 

such as parallel translation, scaling, and rotation, must be corrected. For a real-time 

application, the system should process both detection of lips and acquisition of lips 

information at the same time. 

In our previous report [20], we used a single template matching with a GA(Genetic 



1.2 Statement of the Problem 

Algorithm) [21] for one frame obtained from a video sequence. GA's chromosome in 

our system specified geometric information of lips. Therefore it can detect lips region 

even in case that lips region has some significant geometric changes by free camera 

motion. 

The Genetic and Evolutionary Computation ( GEC) is the generic name for GA, 

Genetic programming (GP) that is the extension of GA, Evolutionary Strategy (ES), 

and Evolutionary Programming (EP) [22]. Recently, GECs have gained a growing 

popularity and a fairly great number of attempts to use GECs to solve complex 

problems in various application fields [22]. Therefore, GECs can be applied to complex 

problem as mentioned above, which are object detection into an active scene for Image 

Understanding. 

However, there is a trade-off between accuracy and a processing time in the previous 

system, which cannot be come closer to the real-time processing. Consequently, we 

describe a new method, search domain control (SD-Control) and evolutionary video 

processing, which can make the system apply to a real-time processing. This is the 

main subject in this paper. 

1.2 Statement of the Problem 

In this section, in order to clarify the problem which is treated in this study, some 

related works and images, which is input in the proposed system, are described. 

The purpose of our study is detection of a lips region, extraction of lips information, 

as an interface and front-end of the audio-visual speech recognition on personal mobile 

devices. Hence a camera and human move independently, and the lips region can have 

some significant geometric changes, such as parallel translation, scaling, and rotation. 

Moreover, the lips shape changes by speech. In this paper, we address three issues 

for lips detection as follows. 

1. Active scene by free camera motion 

2. High accuracy in detection of lips region and extraction of lips geometric infor

mation 

3 



4 Chapter 1 Introduction 

3. High speed processing 

1.2.1 Related Work 

Many studies of audio-visual speech recognition by lips image have been reported [4, 

5, 6, 7, 8, 9]. As far as we know, the most of these studies set a precondition for lips 

image. For example, in [4] the subject wears a helmet with camera, and in (5, 6, 7], 

extracted lips images in a database are used from the start. Moreover, in [8, 9], 

the lips information is acquired through the lips detection after detection for static 

face. For the real-time process, lips detection and lips information acquisition must 

be performed in only one phase. 

Major methods of image processing for face images are divided into three, an image

based approach, a model-based approach, a both image- and model-based approach. 

In the image-based approach, eigenlips methods [7, 9] have been proposed. In these 

methods, a set of training lips images is generated by the principal component analysis. 

The training data must be chosen carefully to include all possible lips configurations. 

Other proposed image-based approaches are rule-based approaches by features of 

a face [23], pixel-based approaches by red exclusion [~], optical-flow approaches t'o 

measure lips movement [24], etc. These approaches cannot adapt to considerable 

geometric changes in every frame of lips. In the model-based approach, Active Shape 

Model [6], and Genetic Snakes [8, 25] which is an improved version of Snakes [26] 

have been proposed. The optical flow is used to track facial expression as motion of 

the craniofacial muscle [27, 28], however, these approaches cannot be applicable for 

the free camera motion. These approaches have some constraints, such that a target 

image is only a face region, human pose is fixed, and a subject wears a camera to 

obtain a mouth image, and so on. Because, the initial setting of problems is needed 

and the number of nodes and parameters should be skillfully determined. Therefore, 

these approaches are difficult to be applied to our purpose. As for both image- and 

model-based approaches, a high speed face tracking method [29] was proposed. In 

this method, many facial feature patch templates must be prepared as a training 



1.2 Statement of the Problem 

set. These templates are regions surrounding the feature, such as eye and mouth, 

then the information of object cannot be acquired at the detection. Therefore, after 

the detection, the information is acquired by another step. From this reason, these 

methods by using whole face are also difficult to be applied to our purpose, the real

time processing. 

On the other hand, the lips has not only the shape feature but also the anatomical 

color feature, which is described in Section 1. 1. Hence, the lips vermilion color must 

be used as [5]. 

In order to solve three problems, which are listed above, we use the single template 

matching with a genetic algorithm as a matching process. 

1.2-.2 Input Images 

)I 

(a) (b) 

Figure 1.2 Template acquisition: a) source of template image (240 x 180 
pixels) ; b) template image (20 x 11 pixels). 

At first, input images, a template image and target images, are prepared. Creating 

the template, the changes of subjects, scene, and lips must be considered. However, 

in this study, only the lips changes are focused, because this system will be applied 

to personal devices. 

Generally speaking, it is difficult and time-consuming to create many templates of 

the various changes of lips. Therefore, only one template is created in this system. An 

example of the template is illustrated in Figure 1.2. The template image is acquired 

from a captured face image just before video sequence capturing for target images. In 

5 



6 Chapter 1 Introduction 

(a) (b) 

Figure 1.3 Target image: a) source video sequence ; b) target image 

this proposed system, the basic shape of the template is a square so that both of the 

skin and the lips are contained, as shown in Figure 1.2. Because, a color difference 

between skin and lips is a very important feature from an anatomical viewpoint [16, 

17, 18, 19], moreover this shape makes it easy to calculate. The template image is 

a closed mouth of the same subject as target images, because the application of this 

system is for personal devices. 

Next, the source video sequence is captured with speech of a subject and the free 

camera motion, and target images are acquired from the source video sequence (refer 

to Figure 1.3). The lips in the target image has various changes as shown in Figure 1.3. 

Types of these changes are described in Section 3.2. 



Chapter 2 

Theoretical Background 

In this chapter, theoretical background of this study, color space, feature of lips 

color, geometry, and genetic algorithm, are described. 

2.1 Color Space 

In this section, color spaces for the color data that is used in the proposed method 

are described. In our study, a modified Yxy color space that is based upon Yxy color 

space is used. 

2.1.1 Device-Independent Color Spaces 

Some color spaces can express color in a device-independent way. Whereas RGB col

ors vary with display, scanner and digital camera characteristics, device-independent 

colors are not dependent on any particular device and are meant to be true represen

tations of colors as perceived by the human eye. These color representations, called 

device-independent color spaces, result from work carried out by the Commission In

ternationale de l'Eclairage (CIE) established in 1931. and for that reason are also 

called CIE-based color spaces [30]. 

The most common method of identifying color within a color space is a three

dimensional geometry. The three color attributes, hue, value, and chroma, are mea

sured, assigned numeric values, and plotted within the color space. 

For example, conversion from an RGB color space to a CMYK color space involves 

a number of variables. The type of printer or printing press, the paper stock, and 

the inks used all influence the balance between cyan, magenta, yellow, and black. In 

7 



8 Chapter 2 Theoretical Background 

addition, different devices have different gamuts, or ranges of colors that they can 

produce. Because the colors produced by RGB and CMYK specifications are specific 

to a device, they're called device-dependent color spaces. Device color spaces enable 

the specification of color values that are directly related to their representation on a 

particular device. 

Device-independent color spaces can be used as interchange color spaces to convert 

color data from the native color space of one device to the native color space of another 

device. 

The CIE created a set of color spaces that specify color in terms of human percep

tion. It then developed algorithms to derive three imaginary primary constituents of 

color-X, Y, and Z-that can be combined at different levels to produce all the color 

the human eye can perceive. The resulting color model, CIE XYZ, and other CIE 

color models form the basis for all color management systems. Although the RGB 

and CMYK values differ from device to device, human perception of color remains 

consistent across devices. Colors can be specified in the CIE-based color spaces in a 

way that is independent of the characteristics of any particular display or reproduc

tion device. The goal of this standard is for a given CIE-based color specification to 

produce consistent results on different devices, up to the limitations of each device. 

2.1.2 XYZ Color Space 

There are several CIE-based color spaces, but all are derived from the fundamental 

XYZ space. In 1931 CIE defined a human "Standard Observer'', based on measure

ments of the color-matching abilities of the average human eye. The XYZ space allows 

colors to be expressed as a mixture of the three tristimulus values X, Y, and Z. The 

term tristimulus comes from the fact that color perception results from the retina 

of the eye responding to three types of stimuli. After experimentation, the CIE set 

up a hypothetical set of primaries, XYZ, that correspond to the way the eye's retina 

behaves. 

The Y primary is identical to Luminance, X and Z give color (chroma) information. 

This forms the basis of the CIE 1931 XYZ color space, which is fundamental to all 



2.1 Color Space 

colorimetry. Values are normally assumed to lie in the range [O, l]. Colors are rarely 

specified in XYZ terms, it is far more common to use "chromaticity coordinates" 

which are independent of the Luminance (Y). Other device-independent color spaces 

based on XYZ space are used primarily to relate some particular aspect of color or 

some perceptual color difference to XYZ values [30, 31]. 

2.1.3 Yxy Color Space 

Yxy space expresses the XYZ values in terms of x and y chromaticity coordinates, 

somewhat analogous to the hue and saturation coordinates of RSV space. The coor

dinates are shown in the following formulas, used to convert XYZ into Yxy [30, 31]: 

Y = Y (2.1) 
X 

(2.2) x= X+Y+Z 
y 

(2.3) y= X+Y+Z 
z 

(2.4) Z= X+Y+Z 

Note that the Z tristimulus value is incorporated into the new coordinates and does 

not appear by itself. Since Y still correlates to the lightness of a color, the other 

aspects of the color are found in a combination of three axes: x, y, and z, with, 

0.8 

0.6 

y 0.4 

0.2 

0.0 0.2 0.4 0.6 0.8 
X 

Figure 2.1 The chromaticity diagram 
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10 Chapter 2 Theoretical Background 

in broad terms, x representing the amount of redness in a color, y the amount of 

greenness and lightness (bright-to-dark), and z the amount of blueness. And this x 

and y is the chromaticity coordinates. This allows color variation in Y xy space to be 

plotted on a two-dimensional diagram. Figure 2.1 shows the layout of colors in the x 

and y plane of Y xy space. 

2.1.4 Gamma Correction 

In image processing, computer graphics, digital video and photography, the symbol 

'Y represents a numerical parameter which describes the nonlinearity of the intensity 

reproduction. The cathode-ray tube (CRT) employed in modern computing system 

is nonlinear in the sense that the intensity of light reproduced at the screen of a CRT 

monitor is a nonlinear function of the voltage input. A CRT has a power law response 

to applied voltage. The light intensity produced on the display is proportional to the 

applied voltage raised to a power denoted by 'Y. Thus, the produced intensity by the 

CRT and the voltage applied on the CRT have the following relationship: 

(2.5) 

The actual value of 'Y for a particular CRT may range from about 2.3 to 2.6 although 

most practitioners frequency claim values lower than 2.2 for video monitors [31). 

The process of pre-computing for the nonlinearity by computing a voltage signal 

from an intensity value is called gamma correction. The function required is approx

imately a 0.45 power function. In image processing application, gamma correction is 

accomplished by analog circuits at the camera. In computer graphics, gamma correc

tion is usually accomplished by incorporating the function into a frame buffer lookup 

table. Although in image processing systems gamma was originally used to refer to 

the nonlinearity of the CRT, it is generalized to refer to the nonlinearity of an entire 

image processing system. The 'Y value of an image or an image processing system 

can be calculated by multiplying the ,y's of its individual components from the image 

capture stage to the display. 

To compensate for the nonlinearity of the display (CRT), gamma correction with a 
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power of ( ~) can be used so that the overall system 'Y is approximately 1. 

In a video system, the gamma correction is applied to the camera for pre-computing 

the nonlinearity of the display. The gamma correction perform the following transfer 

function: 
I ( 1 valtage = valtage) ::Y (2.6) 

where voltage is the voltage generated by the camera sensors. 

For color images, the linear values R, G and B values should be converted into 

nonlinear voltages R', G' and B' through the application of the gamma correction 

process. The color CRT will then convert R', G' and B' into linear red, green, blue 

light to reproduce the original color. 

Gamma correction is usually performed in cameras, and thus, pixel values are in 

most cases nonlinear voltage. Thus, intensity values stored in the frame buffer of 

the computing device are gamma corrected on-the-fly by hardware look up tables on 

their way to the computer monitor display. Modern image processing systems utilize 

a wide variety of sources of color images, such as images captured by digital cameras, 

scanned images, digitized video frames and computer generated images. Digitized 

video frames usually have a gamma correction value between 0.5 and 0.45. Digital 

scanners assume an out put gamma in the range of 1.4 to 2.2 and they perform their 

gamma correction accordingly. For computer generated images the gamma correction 

value is usually unknown. In the absence of the actual gamma value the recommended 

gamma correction is 0.45 [31). 

In summary, pixel values alone cannot specify the actual color. The gamma cor

rection value used for capturing or generating the color image is needed. Thus, two 

images which have been captured with two cameras operating under different gamma 

correction values will represent colors differently even if the same primaries and the 

same white reference point are used. 

11 
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2.1.5 Linear and Non-linear RGB Color Space 

The image processing literature rarely discriminates between linear RGB and non

linear (R'G'B') gamma corrected values. For example, in the JPEG and MPEG 

standards and in image filtering, non-linear RGB(R'G'B') color values are implicit. 

Unacceptable results are obtained when JPEG or MPEG schemes are applied to linear 

RGB image data. On the other hand, in computer graphics, linear RGB values are 

implicitly used. Therefore, it is very important to understand the difference between 

linear and non-linear RGB values and be aware of which values are used in an image 

processing application. Hereafter, the notation R'G'B' will be used for non-linear 

RGB values so that they can be clearly distinguished from the linear RGB values. 

2.1.6 Linear RGB Color Space 

As mentioned earlier, intensity is a measure, over some interval of the electromag

netic spectrum of the flow of power that is radiated from an object. Intensity is often 

called a linear light measure. The linear R value is proportional to the intensity of 

the physical power that is radiated from an object around the 700 (nm] band of the 

visible spectrum. Similarly, a linear G value corresponds to the 546.1 (mn] band and 

a linear B value corresponds to the 435.8 (nm] band. As a result the linear RGB 

space is device independent and used in some color management system to achieve 

color consistency across diverse devices. 

The linear RGB values in the range (0, l] can be converted to the corresponding 

CIE XYZ value in the range (0, l] using the following matrix transformation (31]: 

[

X] [0.4125 0.3576 0.1804] [R] 
Y = 0.2127 0.7152 0.0722 G 
Z 0.0193 0.1192 0.9502 B 

(2.7) 

The transformation from CIE XYZ values in the range (0, l] to RGB values in the 

range [0.1] is defined by (31]: 

[
R] [ 3.2405 
G = -0.9693 
B 0.0556 

-1.5372 
1.8760 

-0.2040 

-0.4985] [X] 
0.0416 Y 
1.0573 Z 

(2.8) 
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Alternatively, tristimulus XYZ values can be obtained from the linear RGB values 

through the following matrix [31]: 

[
X] [0.490 
Y = 0.117 
Z 0.000 

0.310 0.200] [R] 
0.812 0.011 G 
0.010 0.990 B 

(2.9) 

The linear RGB values are a physical representation of the chromatic light radiated 

from an object. However, the perceptual response of the human visual system to 

radiate red, green, and blue intensities is non-linear and more complex. The linear 

RGB space is, perceptually, highly non-uniform and not suitable for numerical analysis 

of the perceptual attributes. Thus, the linear RGB values are very rarely used to 

represent an image. On the ~ntrary, non-linear R'G'B' values are traditionally used 

in image processing applications such as filtering. 

2.1.7 Non-linear RGB Color Space 

When an image acquisition system, e.g. a video camera, is used to capture the 

image of an object, the cam.era is exposed to the linear light radiated from the object. 

The linear RGB intensities incident on the camera are transformed to non-linear RGB 

signals using gamma correction. The transformation to non-linear R'G'B'values in 

the range [O, 1] from linear RGB values in the range [01 1] is defined by [31]: 

I(-{4.5R, if Rs 0.018 
(2.10) 

- l.099R-r1, otherwise 

G' = {4.5G, , if Rs 0.018 
(2.11) 

l.099G-r0 , otherwise 

B' = {4.5B, , if Rs 0.018 
(2.12) 

l.099B-=rcr, otherwise 

where 70 is known as the gamma factor of the camera or the acquisition device. The 

above transformation is commonly used in video cameras with ,C = 0 _~5 (~ 2.22). 

The linear segment near low intensities minimizes the effect of sensor noise in practical 

cameras and scanners. 

Thus, the digital values of the image pixel acquired from the object and stored 

within a camera or a scanner are the R'G'B' values usually converted to the range of 

13 
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0 to 255. Three bytes are then required to represent the three components,R', G'and 

B' values that are stored as image components. It is these non-linear R'G'B' values 

that are stored as image data files in computers and are used in image processing 

application. The RGB symbols used in image processing literature usually refers to 

the R'G'B' values and, therefore, care must be taken in color or space conversions 

and other relevant calculations. 

Suppose the acquired image of an object needs to be displayed in a display device 

such as a computer monitor. Ideally, a user would like to see (perceive) the exact 

reproduction of the object. As pointed out, the image data is in R'G'B' values. 

Signals ( usually voltage) proportional to the R' G'B' values will be applied to the red, 

green, and blue guns of the CRT ( Cathode Ray Tube) respectively. The intensity of 

the red, green, and blue lights generated by the CRT is a non-linear function of the 

applied signal. The non-linearity of the CRT is a function of the electrostatics of the 

cathode and the grid of the electron gun. In order to achieve correct reproduction of 

intensities, an ideal monitor should invert the transformation at the acquisition device 

(camera) so that the intensities generated are identical to the linear RGB intensities 

that were radiated from the object and incident in the acquisition device. Only then 

will the perception of the displayed image be identical to the perceived object. 

A power-law response, which inverts the non-linear (R'G'B'} values in the range 

[O, 1] back to linear RGB values in the range [O, 1], is defined by the following power 

function [31]: 

4.5' if R'::;; 0.018 
{ 

R' 

R = (R'+0.099)"YD 
. 1,ogg , otherwise 

if G' ~ 0.018 4.5' { 
G' 

G = ( 0 '±0·099 )"YD, otherwise 
1.099 

4.5' {

B' 

B = (B'+0.099)"YD 
1.099 

if B' :-:; 0.018 

otherwise 

(2.13) 

(2.14) 

(2.15) 

The value of the power function, "YD, is known as the gamma factor of the display 

device or CRT. Normal display devices have ,yD in the range of 2.2 to 2.45. For exact 
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reproduction of the intensities, gamma factor of the display device must be equal to 

the gamma factor of the acquisition device ("IC = 'YD). Therefore, a CRT with a 

gamma factor of 2.2 should correctly reproduce the intensities. 

The transformations that tale place throughout the process of image acquisition to 

image display and perception are illustrated in Figure 2.2 . 

. , 

RGB Digital R'G'B' RG!2 Image 
object ) Input ) Storage - Process-

Devices ing(Yxy) 

. Figure 2.2 Transformation of intensities from image capture to image processing 

In it obvious from the above discussion that the R'G'B' space is a device depen

dent space. Suppose a color image, represented in the R' G'B' space, is displayed on 

two computer monitors having different gamma factors. The red, green, and blue 

intensities produced by the monitors will not be identical and the displayed images 

might have different appearances. Device dependent spaces cannot be used if color 

consistency across various devices, such as display devices, printers, etc., is of primary 

concern. However. similar devices (e.g. two computer monitors) usually have similar 

gamma factors and in such cases device dependency might not be an important issue. 

As mentioned before, the human visual system has a non-linear perceptual response 

to intensity, which is roughly logarithmic and is, approximately,the inverse of a con

ventional CRT's non-linearity. In other words, the perceived red, green, and blue 

intensities are approximately related to the R'G'B' values. Due to this fact, com

putations involving R'G'B' values have an approximate relation to the human color 

perception and the R'G'B' space is less perceptually non-uniform relative to the CIE 

XYZ and linear RGB spaces. Hence, distance measures defined between the R'G'B' 

values of two color vectors provide a computationally simple estimation of the error 

between them. This is very useful for real-time applications and systems in which 

computational resources are at premium. 

15 
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However, the R'G'B' space is not adequately uniform, and it cannot be used for ac

curate perceptual computations. In such instances, perceptually uniform color spaces 

(e.g. Yxy, L*u*v*, and L*a*b*) that are derived based on the attributes of human 

color perception are more desirable than the R' G'B' space. 

2.1.8 The modified Yxy Color Space 

In our proposed method, we used a modified Y xy color space based on the x compo

nent of the Yxy color space. In a preliminary examination, we compared our methods 

using Gray scale and color data. Gray scale is easier to calculate and treat than color 

data. However, this comparison indicated that the use of color data yielded a better 

result. The color data we used is a modified Yxy color space based on the x compo

nent of Yxy color space. As mentioned earlier, Yxy color space is derived based on 

the attributes of human color perception, and the component x of Y xy color space 

represents the amount of redness in a color. Thus, the component xis suitable for lips 

extraction. Furthermore, for lips extraction, the blueness has little effect. Hence, we 

modify the transformation from linear RGB to CIE XYZ to eliminate blue component. 

In practice, the result was better in some auxiliary experiment. 

The x component of the modified Yxy color space is' obtained as described below. 

Image data which are captured by a digital video camera are sRGB values. These 

sRGB values are quantized in the range {0, 255]. Thus, at first, to obtain non-linear 

R'G'B' values in the range [0, 1], sRGB values are normalized. Next, the non-linear 

R'G'B' values are transformed to linear RGB values by using formulas (2.10), {2.11) 

and (2.12). Then, our new XYZ values are obtained by transformation from the linear 

RGB values using the following our distinctive matrix transformation: 

[X] [0.4125 0.3576 0.0000] [R] 
Y = 0.2127 0.7152 0.0000 G 
Z 0.0193 0.1192 0.0000 B 

(2.16) 

This matrix transformation is based on formula 2.7. Finally, the component x value is 

obtained from these X, Y, Z. In the simulation, the component x value is multiplied 

by 1,000, because it is a small value (the range is [0,0.714] [32]). 



2.2 Feature of Lips Color 

2.2 Feature of Lips Color 

(a) (b) 

(c) (b) 

Figure 2.3 Example of conversion to the x component: a) and c) source data, 
b) and d) the x component 

The lips redness is common to the entire human race. The reason is that the redness 

is called the ''vermillion border" and composed of nonkeratinized squamous epithelium 

that covers numerous capillaries, which give the lips characteristic color [16, 17, 18, 19]. 

For these reasons, we focus on the lips redness as main feature during detection. 

Therefore, the source color data (non-linear RGB data) is converted into the x com

ponent. This x component is one of the CIE-Yxy color space [31], and illustrates the 

chromaticity diagram (see Figure 2.1) with y component. The x component repre

sents redness as shown in Figure 2.1. Moreover, lightness does not greatly influence 

on the x component, because it is independent of lightness [31]. For these merits, the 

x component is used in this study. 

This Yxy color data is converted from the source data in the following order (refer 

to [31]): from non-linear RGB color space, linear RGB color space, XYZ color space, 

and finally the modified Yxy color space (refer to Section 2.1.8). Figure 2.3 shows the 

conversion from the source data to the x component data. The x component which 

is multiplied by 1000, is used as image data in our study. Comparing the modified x 

17 
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component with other color space values in our preliminary experiment, it achieves 

the relatively good result. 

2.3 Geometry 

The proposed method uses homogeneous coordinates. In this section, due to their 

importance, the advantages of using homogeneous coordinates is described. 

2.3.1 Geometric Congruence 

Two geometric figures are said to exhibit geometric congruence ( or "be geometri

cally congruent") if and only if one can be transformed into the other by an isometry. 

2.3.2 Similarity 

A similarity is a transformation that preserves angles and changes all distances in 

the same ratio, called the ratio of magnification. A similarity can also be defined 

as a transformation that preserves ratios of distances. A similarity therefore trans

forms figures into similar figures. When written explicitly in terms of transformation 

matrices in three dimensions, similarities are commonly referred to as similarity trans

formations. Examples of similarities include the follows. 

1. Central dilation: a transformation of lines to parallel lines that is not merely a 

translation. 

2. Geometric Contraction: a transformation in which the scale is reduced. 

3. Dilation: a transformation taking each line to a parallel line whose length is a 

fixed multiple of the length of the original line. 

4. Expansion: a transformation in which the scale is increased. 

5. Isometry: a transformation that preserves distances. 

6. Reflection: a transformation in which all points are exchanged with their cor

responding reflections in an infinite plane mirror. 

7. Rotation: a transformation that preserves angles and distances. 

8. Rotoinversion: reflection through the origin combined with a rotation. 
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9. Translation: a transformation consisting of a constant offset with no rotation 

or distortion. 

2.3.3 Affine Transformation 

An Affine Transformation is any transformation preserving collinearity (i.e., all 

points lying on a line initially still lie on a line after transformation) and ratios of 

distances (e.g., the midpoint of a line segment remains the midpoint after transforma

tion). An affine transformation may also be thought of as a shearing transformation. 

An affine transformation is also called an affinity. Some exa~ples of these transfor

mations are illustrated in Figure 2.4. An example of linear non-affine is perspective 

projection. 

parallel translation rotation 

.. A 
scaling shear 

reflection 

Figure 2.4 Examples of transformation 
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An affine transformation of Rn is a map F : Rn --+ Rn of the form 

p* = F(p) 

F(p) = Ap+q 

{
x* = ax + by + tx 

y* = ex + dy + ty 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

for all p E Rn 1 where A is a linear transformation of Rn . If det(A) = 1, 

the transformation is orientation-preserving; if det(A) = -1, it is orientation

reversing. The elements a, b, c, d, tx and ty define a linear transformation 

(more on this later). 

Any transformation such as Figure 2.4 can be written as formula (2.20). Examples 

of the formulas which represent affine transformations are described below. 

■Rotation To rotate a point counterclockwise by some angle 0: 

{
x* = (cos0)x-(sin0)y 

y* = (sin0)x + (cos0)y 

[;:J = [~~~; ~~~~0] [:l 
(2.21) 

(2.22) 

■Scaling Set b = c = 0, and let a and d take on any value. This gives us some 

matrix: 

■Shear Set a= d = 1, and let band c take on any value as follows: 

This is called a shear. 

{
x* = x + (shx)Y 
y* = (shy)x+y 

[x*] = [ 1 ahx] [x] 
y* xhy 1 y 

(2.23) 

(2.24) 

(2.25) 

(2.26) 
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■Reflection Still fix b = c = 0, and let a and d take on -1 values: 

{
x* = -x 

y* = -y 
(2.27) 

(2.28) 

This is reflection with respect to the origin. 

■Parallel Translation Set a = d = l, b = c = 0 and let tx and ty in formula (2.19) 

and (2.20) take on any value as follows: 

{
x* = x+tx 
y* = y +ty 

(2.29) 

(2.30) 

Geometric contraction, expansion, dilation, reflection, similarity transformations, 

spiral similarities, rotation, and parallel translation are all affine transformations and 

can be combined by matrix multiplication as follow: 

(2.31) 

2.3.4 Homogeneous Coordinates 

In graphics systems, points are usually represented using homogeneous coordi

nates [33]. For example, a point (x,y) in 2 dimensional space is represented by the 

triple (x, y, 1); a point (x, y, z) in 3-dimensional space is represented by the quadruple 

(x, y, z, 1). 

Linear transformations of a vector space can be represented by matrices (refer to 

above Section 2.3.3). A linear transformation can be applied to a point by multiplying 

the point (viewed as a column vector) by the matrix which represents the linear 

transformation. We would like to apply this to basic types of transformation such 

as translation, rotation, scaling, shearing, and reflection. However there's a problem. 

Linear transformations of a vector space always map the origin to the origin. We 
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can see this easily by seeing what happens when we multiply a 2 x 2 matrix by 

the (0,0) column vector. However, a translation by the vector (dx,dy) maps the 

origin to the point ( dx, dy). Therefore, translation cannot be a linear transformation, 

and cannot be represented by the simple 2 x 2 matrix multiplication. Another non

linear transformations is projective transformation. Other transformations are linear 

transformations. 

To solve this problem, homogeneous coordinates are used. Suppose we have a point 

(x, y) in the Euclidean plane. To represent this same point in the projective plane, 

we simply add a third coordinate of 1 at the end: ( x, y, l). In general, a point in 

an n-dimensional Euclidean space is represented as a point in an ( n + l )-dimensional 

projective space. Overall scaling is unimportant, so the point (x, y, 1) is the same as 

the point, (ax, ay, a) for any non-zero a. In other words, 

[X, Y, wf = [aX, aY, awf (2.32) 

for any a#, 0 (Thus the point (0, 0, 0) is disallowed). Because scaling is unimportant, 

the coordinates [ X, Y, w] T are called the homogeneous coordinates of the point. If 

w # 0, ( wx, wy, w) corresponds to the point ( x / w, y / w) in the original Euclidean 

plane; (x, y, 0) corresponds to the point at infinity corresponding to the direction of 

the line passing through (0,0) and (x,y) (see Figure 2.5). 

w 
{wx,wy,w) 

( 

plane: w= 1 
(Euclidean plane} 

Figure 2.5 Image of homogeneous coordinates 
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The affine transformation formula (2.20) is simplified by homogeneous coordinates 

as follow: 

(2.33) 

where 

{
X* = w*x* 

Y* = w*y* 
(2.34) 

or, this formula is generalize as follow: 

[t:] ~ 
b ;; ] [t] d (2.35) 
q 

where 

{X=wx 
Y=wy 

(2.36) 

The elements a, b, c, d, p, q, s, tx and ty define a homogeneous transformation. 

Any transformation such as Figure 2.4 can be written as formula (2.33) and (2.35). 

Examples of the formulas which represent homogeneous transformations are de

scribed below. 

■Rotation To rotate a point counterclockwise by some angle 0: 

[x*] [c?s 0 - sin 0 Ol [xl y* = sm 0 cos 0 0 y 
1 0 0 1 1 

(2.37) 

■Scaling Set b = c = p = q = tx = ty = 0, and let a and d take on any value. This 

gives us some matrix: 

(2.38) 

■Shear Set p = q = tx = ty = 0, a = d = 1, and let band c take on any value as 

following: 

This is called a shear. 

shx 
1 
0 

{2.39) 
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■Reflection Still fix b = c = p = q = tx = ty = 0, and let a and d take on -1 values: 

(2.40) 

This is reflection with respect to the origin. 

■Parallel Translation Set a = d = 1, b = c = p = q = 0 and let tx and ty m 

formula (2.33) and (2.35) take on any value as following: 

(2.41) 

Transformations can be combined by matrix multiplication. 

(2.42) 

Matrices are a convenient and efficient way to represent a sequence of transformations. 

Any affine transformation can be expressed as a combination of these. We can 

combine homogeneous transforms by multiplication. Now any sequence of translate, 

scale, rotate and etc. operations can be collapsed into a single homogeneous matrix. 

For this example the matrix multiplication as follow: 

0 tx] [cosO 
1 ty sinO 
0 1 0 

2.3.5 Topology 

-sinO 
cosO 

0 
(2.43) 

The proposed method uses homeomorphism for varying lips shapes at the moment of 

speech. In this section, topology and homeomorphism which is a property of topology 

are described. 

■The Basis of Topology Topology is the mathematical study of properties of objects 

which are preserved through deformations, twistings, and stretchings. (Tearing, how

ever, is not allowed.) A circle is topologically equivalent to an ellipse (into which it 

can be deformed by stretching) and a sphere is equivalent to an ellipsoid. Continuing 
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along these lines, the space of all positions of the minute hand on a clock is topo

logically equivalent to a circle ( where space of all positions means "the collection of 

all positions"). Similarly, the space of all positions of the minute and hour hands 

is equivalent to a torus. The space of all positions of the hour, minute and second 

hands form a four-dimensional object that cannot be visualized quite as simply as the 

former objects since it cannot be placed in our three-dimensional world, although it 

can be visualized by other means. 

There is more to topology, though. Topology began with the study of curves, 

surfaces, and other objects in the plane and three-space. One of the central ideas in 

topology is that spatial objects like circles and spheres can be treated as objects in 

their own right, and knowledge of objects is independent of how they are "represented" 

or '~embedded" in space. For example, the statement "if you remove a point from 

a circle, you get a line segment" applies just as well to the circle as to an ellipse, 

and even to tangled or knotted circles, since the statement involves only topological 

properties. 

Topology has to do with the study of spatial objects such as curves, surfaces, the 

space we call our universe, the space-time of general relativity, fractals, knots, mani

folds (objects with some of the same basic spatial properties as our universe), phase 

spaces that are encountered in physics (such as the space of hand-positions of a clock), 

symmetry groups like the collection of ways of rotating a top, etc. 

Topology can be used to abstract the inherent connectivity of objects while ignoring 

their detailed form. For example, the figures in Figure 2.6 illustrate the connectivity 

of a number of topologically distinct surfaces. In these figures, parallel edges drawn in 

solid join one another with the orientation indicated with arrows, so corners labeled 

with the same letter correspond to the same point, and dashed lines show edges 

that remain free. The above figures correspond to the disk (plane), Klein bottle, 

Mobius strip, real projective plane, sphere, torus, and tube. The labels are often 

omitted in such diagrams since they are implied by connection of parallel lines with 

the orientations indicated by the arrows. 
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A A A B 

A klein bottle A mobius strip 

A B A A 

C sphere A A torus A 

Figure 2.6 Examples of the inherent connectivity of objects 

The "objects" of topology are often formally defined as topological spaces. If two 

objects have the same topological properties, they are said to be homeomorphic (al

though, strictly speaking, properties that are not destroyed by stretching and distort

ing an object are really properties preserved by isotopy, not homeomorphism; isotopy 

has to do with distorting embedded objects, while homeomorphism is intrinsic). 

Topology is divided into algebraic topology (also called combinatorial topology), 

differential topology, and low-dimensional topology. 
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■Homeomorphism Homeomorphism is an equivalence relation and one-to-one cor

respondence between points in two geometric figures or topological spaces which is 

continuous in both directions, also called a continuous transformation. A homeomor

phism which also preserves distances is called an isometry. Affine transformations 

are another type of common geometric homeomorphism. Properties preserved by 

transformations are listed below: 

Euclidean shape and size, e.g., translation 

Similarity shape but not necessarily size, e.g., scaling 

Affine affine properties such as parallelism but not necessarily angles or scale, e.g., 

rotations 

Projective projective properties such as line relationships 

Topological topological properties such as connectivity 

The similarity in meaning and form of the words "homomorphism" and "homeo

morphism" is unfortunate and a common source of confusion. 

■Homeomorphic There are two possible definitions: 

1. Possessing similarity of form, 

2. Continuous, one-to-one, onto, and having a continuous inverse. 

The most common meaning is possessing intrinsic topological equivalence. Two 

objects are homeomorphic if they can be deformed into each other by a continuous, 

invertible mapping. Such a homeomorphism ignores the space in which surfaces are 

embedded, so the deformation can be completed in a higher dimensional space than 

the surface was originally embedded. Mirror images are homeomorphic, as are Mobius 

strip with an even number of half-twists, and Mobius strip with an odd number of 

half-twists. 

2.3.6 Geometric Transformation Group 

In this part, we would like to make certain of geometric transformation group [34]. 

Hierarchy structure of transformation group [34] is illustrated in Figure 2.7. In this 
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Figure 2.7 Hierarchy structure of transformation group: a) base; b) rotation 
and translation (Euclidean transformation group) ; c) scaling (similarity) ; d) 
reflection and shearing (affine) ; e) connectivity (topological) . 

Figure 2.7, "G" and "L" are considered as graphic symbols. The base shape is Fig

ure 2.7(a) . The most inside group is Euclidean transformation. Figure 2.7(b) is a 

result of rotation. The second is similarity transformation group. Figure 2.7(c) is a 

result of scaling. The third is affine transformation group. Figure 2.7(d) is a res~t 

of shear and reflection. The most outside is topological transformation group. A 

connectivity of all "G" and "L" are same, therefore these relation is homeomorphic. 

2.4 Genetic Algorithm 

2.4.1 Overview of Evolutionary Computation 

Evolutionary algorithm is an umbrella term used to describe computer-based prob

lem solving systems which use computational models of some of the known mecha

nisms of evolution as key elements in their design and implementation. A variety of 

evolutionary algorithms have been proposed. The major ones are: genetic algorithms, 

evolutionary programming, evolution strategies, classifier systems, and genetic pro

gramming. They all share a common conceptual base of simulating the evolution 

of individual structures via processes of selection, mutation, and reproduction. The 
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processes depend on the perceived performance of the individual structures as defined 

by an environment. 

More precisely, evolutionary algorithms maintain a population of structures, that 

evolve according to rules of selection and other operators, that are referred to as 

"search operators" , ( or genetic operators), such as recombination and mutation. Each 

individual in the population receives a measure of its fitness in the environment. Re

production focuses attention on high fitness individuals, thus exploiting ( cf. exploita

tion) the available fitness information. Recombination and mutation perturb those 

individuals, providing general heuristics for exploration. Although simplistic from a 

biologist's viewpoint, these algorithms are sufficiently complex to provide robust and 

rowerful adaptive search mechanisms [35]. 

2.4.2 Basis of a Genetic Algorithm 

start 

initialization 

evaluation 

selection,reproduction 

crossover 

mutation 

evaluation 

no 

Figure 2.8 Flow chart of a simple genetic algorithm 

The genetic algorithm is a type of evolutionary computation devised by John Hol

land [36]. The genetic algorithm is a model of machine learning which derives its 

behavior from a metaphor of some of the mechanisms of evolution in nature. This is 

done by the creation within a machine of a population of individuals represented by 
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chromosomes, in essence a set of character strings that are analogous to the base-4 

chromosomes that we see in our own DNA. The individuals in the population then 

go through a process of simulated "evolution" . 

Genetic algorithms are used for a number of different application areas. An example 

of this would be multidimensional optimization problems in which the character string 

of the chromosome can be used to encode the values for the different parameters being 

optimized. 

In practice, therefore, we can implement this genetic model of computation by 

having arrays of bits or characters to represent the chromosomes. Simple bit manip

ulation operations allow the implementation of crossover, mutation and other oper

ations. Although a substantial amount of research has been performed on variable

length strings and other structures, the majority of work with genetic algorithms 

is focussed on fixed-length character strings. We should focus on both this aspect 

of fixed-lengthness and the need to encode the representation of the solution being 

sought as a character string, since these are crucial aspects that distinguish genetic 

programming, which does not have a fixed length representation and there is typically 

no encoding of the problem. 

When the genetic algorithm is implemented it is usually done in a manner that 

involves the following cycle: Evaluate the fitness of all of the individuals in the popu

lation. Create a new population by performing operations such as crossover, fitness

proportionate reproduction and mutation on the individuals whose fitness has just 

been measured. Discard the old population and iterate using the new population. A 

simple genetic algorithm which is mentioned above can be seen in Figure 2.8. 

One iteration of this loop is referred to as a generation. There is no theoretical 

reason for this as an implementation model. Indeed, we do not see this punctuated 

behavior in populations in nature as a whole, but it is a convenient implementation 

model. 

The first generation (generation 0) of this process operates on a population of 

randomly generated individuals. From there on, the genetic operations, in concert 

with the fitness measure, operate to improve the population. 
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2.4.3 Techniques of a Genetic Algorithm 

■optimal solution 
D local optimum =.,,,.,,+-,[ 

good exploration 

Figure 2.9 Image of exploration 

The most important thing of the optimization method such as the genetic algorithms 

is "to arrive quickly at a better solution" . On the contrary, unless this is satisfied, 

an exploration result in failure. A main cause of this failure is "to finish the process 

with arrival at a wrong solution". This wrong solution is called "local optimum". 

When we try to maximize a function with multiple local maximums (such as a sine

based function, and a example is illustrated in Figure 2.9), then we run into problems. 

What happens is that the GA starts to explore a few of the local maximums and 

converges on the solution too early-rather than finding the absolute maximum, one 

or two of the strings perform so well initially that they reproduce numerous times 

and the genetic diversity of the population is limited. Thus the GA may come to 

the conclusion that one of the hills it is exploring is the maximum value when in fact 

it is not because the population does not contain enough diversity to perform well 

relatively on the other peaks. This is called "premature convergence". These example 

are illustrated in Figure 2.9. To aim towards solving this problem, many methods is 

proposed. The principal methods are the fitness scaling, rules of selection, the genetic 

operations. 
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■ Fitness Scaling Selection is the process of choosing individuals for reproduction 

in an evolutionary algorithm. One popular form of selection is called proportional 

selection. As the name implies, this approach involves creating a number of offspring 

in proportion to an individual's fitness. This approach was proposed and analyzed 

by Holland [36] and has been used widely in many implementations of evolutionary 

algorithms. Besides having some interesting mathematical properties, proportional 

selection provides a natural counterpart in artificial evolutionary systems to the usual 

practice in population genetics of defining an individual's fitness in terms of its number 

of offspring. For clarity of discussion, it is convenient to decompose the selection 

process into distinct steps, namely: 

1. map the objective function to fitness, 

ii. create a probability distribution proportional to fitness, and 

iii. draw samples from this distribution. 

These steps are discussed below. 

The evaluation process of individuals in an evolutionary algorithm begins with the 

user-defined objective function, 
(2.44) 

where Ax is the object variable space. 

The objective function typically measures some cost to be minimized or some reward 

to be maximized. The definition of the objective function is, of course, application 

dependent. The characterization of how well evolutionary algorithms perform on 

different classes of objective functions is a topic of continuing research. However, a 

few general design principles are clear when using an evolutionary algorithm. 

i. The objective function must reflect the relevant measures to be optimized. 

Evolutionary algorithms are notoriously opportunistic, and there are several 

known instances of an algorithm optimizing the stated objective function, only 

to have the user realize that the objective function did not actually represent 

the intended measure. 
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ii. The objective function should exhibit some regularities over the space defined 

by the selected representation. 

iii. The objective function should provide enough information to drive the selective 

pressure of the evolutionary algorithm. For example, "needle-in-a-haystack" 

functions, i.e. functions that assign nearly equal value to every candidate solu

tion except the optimum, should be avoided. 

The fitness function 
(2.45) 

maps the raw scores of the objective function to a non-negative interval. The fitness 

function is often a composition of the objective function and a scaling function g: 

(2.46) 

Such a mapping is necessary if the goal is to minimize the objective function, since 

higher fitness values correspond to lower objective values in this case. For example, 

one fitness function that might be used when the goal is to minimize the objective 

function is 
(2.47) 

where f max is the maximum value of the objective function. 

If the global maximum value of the objective function is unknown, an alternative is 

(2.48) 

where fma;x(t) is the maximum observed value of the objective function up to 

time t. 

There are many other plausible alternatives, such as 

(2.49) 

where fmin(t) is the minimum observed value of the objective function up to 

time t. 
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For maximization problems, this becomes 

(2.50) 

Note that the latter two fitness functions yield a range of (0, 1]. 

As an evolutionary algorithm progresses, the population often becomes dominated 

by high-performance individuals with a narrow range of objective values. In this 

case, the fitness functions described above tend to assign similar fitness values to 

all members of the population, leading to a loss in the selective pressure toward the 

better individuals. To address this problem, fitness scaling methods that accentuate 

small differences in objective values are often used in order to maintain a productive 

level of selective pressure. The representative fitness scaling are such as following [37]: 

1. Linear Scaling 

2. Sigma Scaling 

3. Power Law Scaling 

■Linear Scaling One approach to fitness scaling is to define the fitness function as a 

time-varying linear transformation of the objective value, for example 

(2.51) 

where o:- is + 1 for maximization problems and + 1 for minimization problems, 

and {J(t) represents the worst value seen in the last few generations. 

Since {J(t) generally improves over time, this scaling method provides greater selection 

pressure later in the search. This method is sensitive, however, to "lethals", poorly 

performing individuals that may occasionally arise through crossover or mutation. 

Smoother scaling can be achieved by defining {J(t) as a recency-weighted running 

average of the worst observed objective values, for example 

fJ(t) = of] (t- l) + (1 - o) Uworst(t)) (2.52) 

where o is an update rate of, say, 0.1, and fworst(t) is the worst objective value 

in the population at time t. 
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■Sigma Scaling Sigma scaling is based on the distribution of objective values within 

the current population. It is defined as follows: 

if f (ai(t)) > (f(t) - CO'j(t)) 
otherwise 

(2.53) 

where J(t) is the mean objective value of the current population, a-1(t) is the 

(sample) standard deviation of the objective values in the current population, 

and c is a constant, say c = 2. 

The idea is that l(t) - co-1(t) represents the least acceptable objective value for 

any reproducing individual. As the population improves, this statistic tracks the 

improvement, yielding a level of selective pressure that is sensitive to the spread of 

performance values in the population. 

■Power Law Scaling Fitness scaling methods based on power laws have also been 

proposed. A fixed transformation of the form 

(2.54) 

where k is a problem-dependent parameter. 

■ Rules of Selection Selection is one of the main operators used in evolutionary algo

rithms. The primary objective of the selection operator is to emphasize better solu

tions in a population. This operator does not create any new solution, instead it selects 

relatively good solutions from a population and deletes the remaining, not-so-good, 

solutions. Thus, the selection operator is a mix of two different concepts-reproduction 

and selection. When one or more copies of a good solution are reproduced, this oper

ation is called reproduction. Multiple copies of a solution are placed in a population 

by deleting some inferior solutions. This concept is known as selection. Although 

some evolutionary computation studies use both these concepts simultaneously, some 

studies use them separately. 

The identification of good or bad solutions in a population is usually accomplished 

according to a solution's fitness. The essential idea is that a solution having a bet

ter fitness must have a higher probability of selection. However, selection operators 
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differ in the way the copies are assigned to better solutions. Some operators sort the 

population according to fitness and deterministically choose the best few solutions, 

whereas some operators assign a probability of selection to each solution according 

to fitness and make a copy using that probability distribution. In the probabilistic 

selection operator, there is some finite, albeit small, probability of rejecting a good 

solution and choosing a bad solution. However, a selection operator is usually de

signed in a way so that the above is a low-probability event. There is, of course, an 

advantage of allowing this stochasticity (or flexibility) in the evolutionary algorithms. 

Due to a small initial population or an improper parameter choice or in solving a 

complex nonlinear fitness function, the best few individuals in a finite population 

may sometimes represent a suboptimal region. If a deterministic selection operator is 

used, these seemingly good individuals in the population will be emphasized and the 

population may finally converge to a wrong solution. However, if a stochastic selec

tion operator is used, diversity in the population will be maintained by occasionally 

choosing not-so-good solutions. This event may prevent evolutionary computation 

algorithms from making a hasty decision in converging to a wrong solution. 

In the following some of the popular selection operators are described. 

■Roulette Wheel Selection The simplest selection scheme is roulette-wheel selection, 

also called stochastic sampling with replacement. This is a stochastic algorithm and 

involves the following technique: 

The individuals are mapped to contiguous segments of a line, such that each indi

vidual's segment is equal in size to its fitness. A random number is generated and 

the individual whose segment spans the random number is selected. The process is 

repeated until the desired number of individuals is obtained (called mating popula

tion). This technique is analogous to a roulette wheel with each slice proportional in 

size to the fitness, see Figure 2.10. 

Table 2.1 shows the selection probability for 11 individuals, linear ranking and 

selective pressure of 2 together with the fitness value. Individual 1 is the most fit 

individual and occupies the largest interval, whereas individual 10 as the second least 
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fit individual has the smallest interval on the line (see Figure 2.10). Individual 11, 

the least fit interval, has a fitness value of 0 and get no chance for reproduction. 

Table. 2.1 Selection probability and fitness value 

Number of II 
individual 

1 2 9 10 11 

fitness value 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 
selection 

0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0 probability 

For selecting the mating population the appropriate number of uniformly dis

tributed random numbers ( uniform distributed between 0.0 and 1.0) is independently . 
generated. 

sample of 6 random numbers: 0.81, 0.32, 0.96, 0.01, 0.65, 0.42 · 

Figure 2.10 shows the selection process of the individuals for the example in Table 2.1 

together with the above sample trials. 

after selection the mating population consists of the individuals: 1, 2, 3, 5, 6, 9 

The roulette-wheel selection algorithm provides a zero bias but does not guarantee 

minimum spread. 

trial 4 

individucll Ii 
0.0 

1 
I 

0.18 

trial 2 

2 i I 
0.34 

trial 6 trial 5 trial 1 trial 3 

3 i I 4 Ii s I e ~ 7 I 8 l~I ~o 
0.49 0.62 0.73 0.82 0.95 1.0 

Figure 2.10 Image of the roulette wheel selection 

■Rank-based Fitness Assignment Selection is the process of choosing individuals for 

reproduction or survival in an evolutionary algorithm. Rank-based selection or rank

ing means that only the rank ordering of the fitness of the individuals within the cur-
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rent population determines the probability of selection. As discussed in Section 2.4.3, 

the selection process may be decomposed into distinct steps: 

i. Map the objective function to fitness. 

ii. Create a probability distribution based on fitness. 

m. Draw samples from this distribution. 

Ranking simplifies step i, the mapping from the objective function f to the fitness 

function <Ii. All that is needed is 

(2.55) 

where J is + 1 for maximization problems and -1 for minimization problems. 

Ranking also eliminates the need for fitness scaling, since selection pressure is main

tained even if the objective function values within the population converge to a very 

narrow range, as often happens as the population evolves. 

Step ii discussed here, the creation of the selection probability distribution based on 

fitness. The final step iii is independent of the selection method, and the stochastic 

universal sampling algorithm is an appropriate sampli1:g procedure. 

Besides its simplicity, other motivations for using rank-based selection include: 

i. Under proportional selection, a "super" individual, i.e. an individual with 

vastly superior objective value, might completely take over the population in a 

single generation unless an artificial limit is placed on the maximum number of 

offspring for any individual. Ranking helps prevent premature convergence due 

to "super" individuals, since the best individual is always assigned the same 

selection probability, regardless of its objective value. 

ii. Ranking may be a natural choice for problems in which it is difficult to precisely 

specify an objective function, e.g. if the objective function involves a person's 

subjective preference for alternative solutions. For such problems it may make 

little sense to pay too much attention to the exact values of the objective 

function, if exact values exist at all. 
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The various forms of linear and nonlinear ranking algorithms are mentioned below. 

■Linear Ranking Linear ranking assigns a selection probability to each individual 

that is proportional to the individual's rank (where the rank of the least fit is defined 

to be zero and the rank of the most fit is defined to be µ - l, given a population of size 

µ). For a generational algorithm, linear ranking can be implemented by specifying a 

single parameter, f3rank, the expected number of offspring to be allocated to the best 

individual during each generation. The selection probability for individual i is then 

defined as follows: 

P ( ") CTtrank + [rank( i) / (µ - 1)] (/3rank - CTrank) 
rlin...rank Z = 

µ 

where arank is the number of offspring allocated to the worst individual. 

The sum of the selection probabilities is then 

E CTtrank + [rank(i)/ (µ - 1)] (/3rank - CTrank) 

i=O µ 
µ,-1 _ + f3rank - CTrank ~ . 

- CTtrank ( _ l) ~ Z 
µ µ i=O 

1 
= CTrank + 2 (f3rank - arank) 

1 
= 2 (f3rank + CTrank) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

It follows that C¥rank = 2 - /3rank, and 1 :S: f3rank :S: 2. That is, the expected number 

of offspring of the best individual is no more than twice that of the population av

erage. This shows how ranking can avoid premature convergence caused by "super" 

individuals. 

■Nonlinear Ranking Nonlinear ranking assigns selection probabilities that are based 

on each individual's rank, but are not proportional to the rank. For example, the 

selection probabilities might be proportional to the square of the rank: 

. a+ [rank(i)2 / (µ - 1)2] (/3 - a) 
Prsq_rank ( i) = -----''----------''---

C 
(2.60) 
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where c = ((3 a)µ (2µ - 1) /6 (µ - 1) + µa is a normalization factor. This 

version has two parameters, a and (3, where O < a < (3, such that the selection 

probabilities range from a/ c to (3 / c. 

Even more aggressive forms of ranking are possible. For example, one could assign 

selection probabilities based on a geometric distribution: 

P _ (l )µ-1-rank(i) 
rgeom_rank - a - a (2.61) 

This distribution arises if selection occurs as a result of independent Bernoulli trials 

over the individuals in rank order, with the probability of selecting the next individual 

equal to a and was introduced in the GENITOR system [38, 39]. 

Another variation that provides exponential probabilities based on rank is 

1 _ e-rank(i) 
Prexp_rank(i) = ----

C 

for a suitable normalization factor c. 

(2.62) 

Both of the latter methods strongly bias the selection toward the best few individuals 

in the population, perhaps at the cost of premature convergence. 

■Tournament Selection In tournament selection a group of q individuals is randomly 

chosen from the population. They may be drawn from the population with or without 

replacement. This group takes part in a tournament; that is, a winning individual 

is determined depending on its fitness value. The best individual having the highest 

fitness value is usually chosen deterministically though occasionally a stochastic selec

tion may be made. In both cases only the winner is inserted into the next population 

and the process is repeated .>- times to obtain a new population. Often, tournaments 

are held between two individuals (binary tournament). However, this can be gener

alized to an arbitrary group size q called tournament size. 

The following description assumes that the individuals are drawn with replacement 

and the winning individual is deterministically selected. 

input: Population P(t) EI\ tournament size q E {1, 2, • • • , .>-} 
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Output: Population after selection P(t)' 

1. tournament(q,a1,··· ,a.\): 

2. for i +- 1 to .\ do 

3. a~+- best fit individual from q randomly chosen 

individuals from { a1, · · · , a.\}; 

od 

Tournament selection can be implemented very efficiently and has the time com

plexity 0(.\) as no sorting of the population is required. However, the above algorithm 

leads to high variance in the expected number of offspring as .\ independent trials are 

carried out. 

Tournament selection is translation and scaling invariant. This means that a scaling 

or translation of the fitness value does not affect the behavior of the selection method. 

Therefore, scaling techniques as used for proportional selection are not necessary, 

simplifying the application of the selection method. 

Furthermore, tournament selection is well suited for parallel evolutionary algo

rithms. In most selection schemes global calculations are necessary to compute the 

reproduction rates of the individuals. For example, in proportional selection the mean 

of the fitness values in the population is required, and in ranking selection and trunca

tion selection a sorting of the whole population is necessary. However, in tournament 

selection the tournaments can be performed independently of each other such that 

only groups of q individuals need to communicate. 

2.4.4 Genetic Operations 

In this part, other genetic operations such as crossover, elitism and Gray codes, are 

described. 

41 



42 Chapter 2 Theoretical Background 

■Single-point Crossover The single-point crossover has one crossover position. A 

number of variables of an individual are selected uniformly at random and the vari

ables exchanged between the individuals about this point, then two new offspring are 

produced. Figure 2.11 illustrates this process. 

parent 1 child 1 

11• 1111111111 
parent 2 child 2 

1111111111• e 1111111111 
~ crossover point 

Figure 2.11 Single-point Crossover 

■Multi-point Crossover The multi-point crossover has several crossover positions. 

Number of variables of an individual are chosen at random with no duplicates and 

sorted in ascending order. Then, the variables between successive crossover points 

are exchanged between the two parents to produce two new offspring. The sectiop_ 

between the first variable and the first crossover poiht is not exchanged between 

individuals. Figure 2.12 illustrates this process. 

parent 1 child 1 

111111 • 1111111111 
parent 2 

1111111111 • 1111111111 
~ crossover point 

Figure 2.12 Multi-point Crossover 

The idea behind multi-point, and indeed many of the variations on the crossover 

operator, is that parts of the chromosome representation that contribute to the most 

to the performance of a particular individual may not necessarily be contained in 
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adjacent substrings. Further, the disruptive nature of multi-point crossover appears to 

encourage the exploration of the search space, rather than favouring the convergence 

to highly fit individuals early in the search, thus making the search more robust. 

■Uniform Crossover Single and multi-point crossover define cross points as places 

between loci where a individual can be split. Uniform crossover generalizes this scheme 

to make every locus a potential crossover point. A crossover mask, the same length as 

the individual structure is created at random and the parity of the bits in the mask 

indicate which parent will supply the offspring with which bits. Figure 2.13 illustrates 

this process. 

mask 

0000000000 ojojojojrnjoojojo 
child 1 

• 
1111111111• 

+- crossover pom 
Figure 2.13 Uniform Crossover 

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias 

associated with the length of the binary representation used and the particular coding 

for a given parameter set. This helps to overcome the bias in single-point crossover 

towards short substrings without requiring precise understanding of the significance 

of the individual bits in the individuals representation. 

2.4.5 Elitism 

Every time a new population is made, the chance occurs that we might lose the 

string with the best evaluation. This could result in an unstable algorithm and a 
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slower convergence. To overcome this problem, we could simply copy the best member 

of each generation a number of times into the succeeding generation. This technique 

is called elitism. This may increase the speed of domination of a population by a super 

individual, but on balance it appears to improve genetic algorithm performance. 

Elitism is not a selection mechanism but rather it is a possible feature of most, if not 

all, selection mechanisms. Elitism is simply the guarantee that the most fit solution 

found to date will remain within the population. This is of course very different from 

saying that the most fit solution will be remembered. At first glance one might wonder 

why anyone would want a search algorithm that did not have elitism? Why should the 

active part of the algorithm be allowed to forget the best solution found so far? The 

perspective of genetic algorithms being heavily inspired by nature allows the simple 

answer that elitism does not occur in nature. Every living thing dies and a degree 

of mutation pervades every reproduction event that occurs. Hence no DNA lineage 

can remain pure. A big debate is whether or not this feature of natural evolution has 

been selected for or is simply unavoidable. 

In the computer realm it is clearly avoidable, so why might we choose it? The 

main reason is that the elite individual can behave like a nail through the heart of the . 
population trapping it uselessly on an unfit local optimum. With the elite individual 

stuck at the top, the dynamics of a given genetic algorithm will only allow the rest 

of the population to wonder away from the elite by a certain distance ( on average) 

if this distance is not enough to allow the discovery of more fertile lands than the 

current local optimum the population will be stuck there indefinitely. Switching off 

elitism will allow the population of the same algorithm slightly more scope to wander 

around. This will give it a slightly better chance of moving off the local optimwn (see 

Figure 2.9). 

As always in the theory of search, there is an alternate view on elitism which sees 

it as a feature which enables the use of higher mutation rates precisely because it will 

keep hold of the best so far even when the mutation rate is high. One of the problems 

with higher mutation rates is that the higher they go the harder it is for the genetic 

algorithm to home in on the exact optimum of a hill on the landscape. Elitism will 
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act like a ratchet mechanism in this quest for the top of the hill, allowing the genetic 

algorithm to use a mutation rate that does not pussy foot around. This is what will 

allow a genetic algorithm with elitism to escape local optima that a genetic algorithm 

without elitism would get stuck on. 

2.4.6 Gray codes 

Gray codes are named after the Frank Gray who patented their use for shaft en

coders in 1953 (40]. Gray codes actually have a longer history, and the inquisitive 

reader may want to look up the August, 1972, issue of Scientific American, which 

contains two articles of interest: one on the origin of binary codes, and another by 

Martin Gardner on some entertaining aspects of Gray codes. 

A Gray code represents each number in the sequence of integers { 0, • • • , 2N-1 } as 

a binary string of length N in an order such that adjacent integers have Gray code 

representations that differ in only one bit position. Marching through the integer 

sequence therefore requires flipping just one bit at a time. Some call this defining 

property of Gray codes the "adjacency property". 

Example (N = 3): The binary coding of {0 ... 7} is {000, 001, 010, 011, 100,101, 

110,111}, while one Gray coding is {000, 001, 011, 010, 110,111,101,100}. In essence, 

a Gray code takes a binary sequence and shufiles it to form some new sequence with 

the adjacency property. There exist, therefore, multiple Gray codings for any given 

N. The example shown here belongs to a class of Gray codes that goes by the fancy 

name "binary-reflected Gray codes". These are the most commonly seen Gray codes, 

and one simple scheme for generating such a Gray code sequence says, "start with all 

bits zero and successively flip the right-most bit that produces a new string." 

Hollstien [41] investigated the use of genetic algorithms for optimizing functions of 

two variables and claimed that a Gray code representation worked slightly better than 

the binary representation. He attributed this difference to the adjacency property of 

Gray codes. Notice in the above example that the step from three to four requires the 

flipping of all the bits in the binary representation. In general, adjacent integers in 

the binary representation often lie many bit flips apart. This fact makes it less likely 
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that a mutation operator can effect small changes for a binary-coded individual. 

A Gray code representation seems to improve a mutation operator's chances of 

making incremental improvements, and a close examination suggests why. In a binary

coded string of length N, a single mutation in the most significant bit (MSB) alters 

the number by 2N-l _ In a Gray-coded string, fewer mutations lead to a change this 

large. The user of Gray codes does, however, pay a price for this feature: those 

"fewer mutations" lead to much larger changes. In the Gray code illustrated above, 

for example, a single mutation of the left-most bit changes a zero to a seven and 

vice-versa, while the largest change a single mutation can make to a corresponding 

binary-coded individual is always four. One might still view this aspect of Gray codes 

with some favor: most mutations will make only small changes, while the occasional 

mutation that effects a truly big change may initiate exploration of an entirely new 

region in the space of chromosomes. 



Chapter 3 

Genetic Lips Region Detection and 

Information Extraction 

3.1 Introduction 

Lately, mobile devices such as a PDA or a cellular phone have spread throughout. 

Internet population that used cellular phones increased by 65.1% for the half year, 

from October 2000 to March 2001. Furthermore, the number of persons with cellular 

phones that can connect to the Internet increased by 55.1%. On the other hand, 

Internet population that used a personal computer showed signs of leveling off for 

four months from December 2000 [42]. 

There is an issue, when one inputs text to write something like an email using the 

cellular phone. At the present time, the most common way to input text to cellular 

phone is by pushing number keys several times. This method is less efficient than 

using the notebook computer which has a keyboard. 

In the field of speech recognition, there is a limit to recognize a paragraph, including 

a person name and a proper name [43]. To improve the recognition rate, a technique is 

proposed which uses not only speech data but also other information such as gesture, 

face image and a motion of lips. 

Recently almost all cellular phones contains a small digital camera and can send 

email with a picture. In addition, the new generation of cellular phone can record a 

movie data. 

There are demands for the input of data by speech when using, the cellular phone 
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with the digital camera and demands for the speech recognition by both speech data 

and other data. In light of these facts, we propose a speech recognition system which 

uses not only speech data but also lips images for mobile devices. The main objective 

of our study is the extraction of a lips region as a preprocessing of that system. 

In this chapter, a lips detection and the information extraction method that uses 

only one template per one user for personal mobile devices is proposed. Our method 

has invariance to two points that are very important to extract lips region for mobile 

devices. The first point is lips geometric changes, that is parallel translation, scaling 

and rotation due to slope of a face or by a non-stable camera. The second point is 

varying lips shapes, that is, an opened or closed mouth and showing or not showing 

any teeth, at the moment of speech. In addition, taking into consideration that our 

method is used with movie data, we hope to extract the lips region with high speed 

and high accuracy. Therefore this chapter considers that point. We use a single 

template matching using a GA during the matching process. Simulations in this 

chapter compare three different fitness functions, and decide the best fitness function 

for this system. 

3.2 Lips Information and Template Shape 

This section describes the lips information which must be acquired, and the tem

plate shape. At first, the changes of lips are classified according to their causes. Next, 

the relation between the classification and geometry are described. Taking into ac

count this relation, a new template shape is introduced, which seems appropriate for 

the lips detection. 

3.2.1 Change of Lips and Transformation Group 

Changes of lips are divided into two types by the causes. One is changes of the lips 

region by the independent motion of a camera and a human. In this case, the lips 

region has changes, such as parallel translation, scaling, and rotation. The other is 

lips shape deformation by speech. 

In this part, the relation between the lips changes and geometry are described with 
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the hierarchy structure of transformation group [34] is illustrated in Figure 2.7. 

The lips region change by motion of the camera and the human can be represented 

by inside group from affine transformation group, because this lips region change has 

geometric changes, such as parallel translation, scaling, and rotation. 

Considering the change of lips shape by speech, in most cases, the mouth is open 

during speech. Assuming that the lips is a elastic band, the lips during speech can be 

considered as expand and contract band. In other word, its connectivity is constantly 

same. Therefore, this change can be represented by topological transformation group. 

It follows from these that the change of lips can be represented with transformation 

group. 

3.2.2 Shape of Template 

w w' 

(a) (b) 

Figure 3.1 Template shape: a) source square; b) new template shape is called 
"square annulus.,' 

In general, a typical template shape is a complete square. This shape is suitable 

for geometric changes, such as parallel translation, scaling, and rotation. However, 

considering an application of the template matching to the change of lips shapes 

during speech, the complete square shape of template is unsuitable. This is because, 

at the moment of speech, the lips region has intense variations such as an opened or 

closed mouth and showing or not showing any teeth. In other words, changes in oral 

cavity, such as showing some teeth, and a tongue, cause low extraction accuracy of 

lips region. For this reason, we use new template shape which considers topological 

transformation group in the relation between change of lips and transformation group 

as mentioned above. The new template shape illustrated in Figure 3.1 to cope with 
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the ever-changing lips shape. This template shape is called "square annulus." 

In Figure 3.1, w and h are the source square template's width and height, re

spectively. w' and h' are the new "square annulus" template's width and height, 

respectively. In simulations, w' and h' are decided experientially. In our prelimi

nary examination, by using"square annulus" extraction accuracy rises up consider

ably, comparing with the normal template. Furthermore, there are advantages of the 

"square annulus" that the ignored w' x h' region reduces the amount of calculation 

and makes the lips region extraction high speed. In this paper, in order to simplify 

the system, we fix the rate of interior area, the interior height w' is 80 % of the 

exterior w, h' is 50 % of h. In our future work, we hope to acquire the relation 

between the exterior and interior lips contour by non-fixed rate of interior area for 

many applications. 

3.3 Genetic Lips Detection 

In this section, the details of our proposed lips detection and lips information acqui

sition system is described as follow: a structure of chromosome in GA, and a fitness 

function, a dynamic search domain control (dynamic SD-Control), and a flow chart 

of the proposed system. In particular, the dynamic SD-Control is a main technique 

in this proposed system. 

3.3.1 Structure of Chromosome 

In GA, an individual is a solution candidate to be optimized. The individual has 

a chromosome to be a source of the solution. In our optimization problem, this 

solution represents a transformation matrix, which transforms the template on the 

40bit 

( tx J ty I mx I my J angle ) 

• )I 

8bit 

Figure 3.2 A structure of chromosome 
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target image. In fact, the template is transformed by the matrix in homogeneous 

coordinates, then, the template matching is performed. 

The structure of chromosome is shown in Figure 3.2, where t:z: and ty are coordinates 

after parallel translation, ma: and my are scaling rates, and angle is rotation angle of 

lips region. These parameters are called phenotype, and these are encoded in some bit

string, which is called genotype in GA. We use the binary genotype. For this encode, 

from the phenotype to genotype, we do not use binary-coding but Gray-coding, since 

Gray-coding is generally superior [44J. 

The proposed system can detect the lips and also acquire the lips information 

directly by this optimized chromosome. The template's width and height should 

be changed separately, because of shape deformation of lips by speech is not only 

similarity change. Consequently, we use two-dimensional scaling by ma: and my. 

3.3.2 Transformation by Chromosome 

In this part, geometric transformation is explained. This transformation solves ge

ometric changes of lips, such as parallel translation, scaling, and three-dimensional 

rotation, as mentioned in Section 3.3.1. All individuals in GA have a unique chro

mosome. In this proposed system, coordinate transformation of the template is per

formed on the target image by this chromosome. 

The transformation is represented by a simple combination of matrix multiplica

tions, because homogeneous coordinate [45} are used. The matrix is obtained from 

the chromosome of the genetic algorithm described in Section 3.3.1. 

Let A be a point on the template image, and A* is a point, which corresponds to a 

transformed point A on the target image. A and A* are represented by homogeneous 

coordinates as follow: 

A= [X,Y, 1], 
A* = [X*, Y*, 1). 

(3.1) 
(3.2) 

The template image is transformed for geometric changes. As below, some matrices 

are specified by chromosome of the genetic algorithm (refer to Section 3.3.1). M 
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represents the scaling, R is the rotation on y-axis, and T is the parallel translation. 

[m• o o] M= O my O, (3.3) 
0 0 1 

[ cos (angle) sin (angle) 

~]' R = - sin ~angle) cos (angle) (3.4) 
0 

T= [~ 
0 

~]-1 (3.5) 
t:i; ty 

The point A* is given by the following simple equation. 

A*=AMRPT. (3.6) 

3.3.3 Pixel Difference 

The template image is transformed on the target image by the chromosome as 

mentioned above. After the transformation the pixel difference between the template 

and target image is calculated for every point of template image as follow: 

(Pti E target image) 

(Pti ff; target image) ' 
(3.7) 

where P max: is the maximum value of pixel, p is a pixel value of a point P on coordinate 

(i,j) in the template image, p* is a pixel value of a point P* on coordinate (i,j) in 

the target image. In other words, P is a point on the template image, and P* is the 

point on the target image that corresponds to a point transformed from the point P. 

Dii is a value of the pixel difference between p and p*, however, in case that a point 

P* is out of region in the template image, Dij is the worst Pmax• 

In our system, the pixel value is the x component value as described in Section 2.2. 

3.3.4 Objective Function 

An object in GA exploration of this system is to locate lips (the template) on the 

target image. Therefore, An objective function is a summation of the pixel differ

ence DiJ between the template and the target image. This objective function is a 
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minimization problem, and defined by equation (3.8). 

h w 

0 = ~~Dij, (3.8) 
j=li=l 

where O is the objective value, which is a summation of pixel differences Dii. 

In the next section, some different variations on the fitness function are shown, 

which change the minimization problem to a maximization problem. 

3.3.5 Flow Chart 

Start 
(initialization) 

Deform 
template shape 

Matching 
by fitness function 

generation + 1 
----.generation 

Generate 
new population 

End 

Figure 3.3 Flow charts. 

Flow charts of our system are illustrated in Figure 3.3. 

At first, an initial population is generated, then GA is started. In GA processing, 

the template shape is deformed to an unique "square annuls'' from a normal square, as 

explained in Section 3.2.2. Then, matching process is executed between the template 

and a target image using a fitness function by the objective function. This fitness 
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function is described in Section 3.4. The generation is increased, until a termination 

condition of GA is satisfied. In this paper, GA is terminated by the number of 

generations. If the termination criterion is not satisfied, a new population of the 

next generation is generated according to the fitness of each individual. After GA 

process is completed, the result is obtained as numerical data. This numerical data 

represents the lips information which can be used for the applications as exemplified 

in Section 3.1. 

3.4 Fitness Function 

As mentioned above, the objective function is regarded as a minimization problem. 

Typically, the fitness function is a maximization problem in GA. In this section, two 

different static fitness functions and one dynamic fitness function are described. Three 

fitness functions are evaluated by comparison of these fitness functions in Section 3.5. 

3.4.1 Static Fitness Function 1 

At first valuation of static fitness function is the most basic, which uses normaliza

tion and penalization. 

After the objective function O is calculated, the fitness function is calculated as 

follows: 
0 

fitness= 1.0 - (w X h) (Pmax), (3.9) 

where fitness is the fitness value, the template size is w and h, Amax is the maximum 

value of pixel, and O is a value of the objective function (refer to Section 3.3.4). In 

this fitness function, the objective function is normalized. Therefore, the fitness 

allows us to a good exploration that the fitness approaches to 1. 

After many experiments we found out that the exploration of codomain near 

fitness = l is important. Moreover, the search efficiency is not good and the 

result is unstable by using the above fitness function as mentioned in (46], because, 

there is less reflection of the fitness change to the result. The reason why such 

imbalance occurred is that the small pixel difference between a and a* is ignored by 

the normalization, and the individual difference is very small. Thus, the small pixel 
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difference should not be ignored and the individual difference should be emphasized 

by introducing penalty in the fitness function. Therefore we propose the following 

penalized method. 

Before the objective fitness function (refer to Section 3.3.4) is calculated, the pixel 

difference Dij is checked whether penalize or not. If a pixel difference satisfies equa,

tion (3.10), Dij is the worst maximum value Amax• 

if 

(3.10) 

then 

(3.11) 

where TH is the threshold value to penalize. This value is calculated by the following 

equation: 

(3.12) 

where S is the similarity per pixel and decided experientially and the unit is [%]. The 

more S increases, the stricter a condition becomes. In simulations, S is 90. Because, 

a probability to 100[%] match is very low. After this penalization, equation (3.9) is 

calculated. 

3.4.2 Static Fitness Function 2 

The Second static fitness function is the simplest fitness function. In the static 

fitness function 1, the fitness function is normalized in range [0, 1], because of reducing 

a dispersion of pixel differences whose pixel values are real values, x component of 

Yxy colour space. Moreover, this normalization changes genetic algorithm process 

into a simple maximization problem. However, after many experiments we found out 

that the exploration in near fitness= 1 is important. In other words, the matching 

result is not affected very well by the :fitness function. In static fitness function 2, 

the objective function is changed to minimization problem without normalization as 

follow: 
fitness= (w X h) (Pmax) - 0, (3.13) 
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where w x his the template size, Pmax is a maximum value of pixel, 0 is value of the 

objective function. Oij allows us to achieve a good exploration where the value of 

the objective function approaches 0. In other words, fitness allows us to do a good 

exploration where the fitness value becomes large. 

3.4.3 Dynamic Fitness Function 

It is important to control the selection pressure, because the selection pressure and 

population diversity are inversely related [47]. In other words, as the selection pressure 

is increased, the population diversity is lost, moreover this can cause a premature 

convergence. Against that, the lack of selection pressure can cause a evolutionary 

retardation. 

A major approach to avoid this problem is "ranking" [48]. However this search 

speed is slow except appropriate cases [4 7], hence we used other technique in a fitness 

function. 

The dynamic fitness function is shown in equation (3.14), 

fitness= max {Wt, Wt-1, ... , Wt-n} - 0, (3.14) 

where fitness is a fitness value, Wis the worst objective value, tis a current index 

of generation. This fitness function is a difference between the objective value and 

the worst objective value for last n + l generations. This technique is called "scaling 

window" [47, 49], which is used for controlling selection pressure of GA. 

To use this scaling window, a scaling window size n must be decided, then we use 

n = 5 in the experiment which decided experientially. Generally, if the size is too 

large, GA exploration depends on a longstanding worst individual, hence GA search 

becomes slow. Against that, if the size is too small, GA exploration is sensitive to 

a noise and incidental good individual, hence GA exploration becomes easy to trap 

into a local optimum. We have not decided the size conclusively, and there has been 

no report about the decision, as far as we know. 
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3.5 Computer Simulation Results and Considerations 

3.5.1 Input Images and Output image 

The template images are illustrated in Figure 3.4. Template image size of subject 

1 and subject 2 is 18 x 8 [pixels], and subject 3 is 20 x 9 [pixels]. 

Figure 3.5 below shows examples (pronounce the vowel /e/) of target images. The 

images captured using a video camera include a face and background while each 

of three objects pronounces the vowels. The target images are then cut from the 

video streams. In consideration of the use by mobile devices, the target images have 

geometric changes based on the template image. The geometric changes mean parallel 

translation, scaling, rotation. The size of all target images is 240 x 180 [pixels]. These 

input images are used in the following experiments. 

Figure 3.6 shows examples of lips region extraction results in case of successful 

cases. Almost the same results are obtained by any fitness function mentioned above. 

The rectangle region is the extracted lips region. The shape deformations of lips by 

speech are extracted exactly as shown in Figure 3.6. 

Table 3.1 shows the true solution obtained manually for /e/ of subject 2 in Figure 3.5 

and the solution obtained by the proposed method. It is found that these both 

solutions are similar. 

Table. 3.1 Example of solution of result (subject 2 /e/) 

coordinate scaling [rate] rotation 
X y X y [deg] 

true solution 82 128 1.39 2.00 19.20 
experimental result 81 131 1.68 2.51 17.33 

3.5.2 GA Settings 

We choose uniform crossover, because of its many advantages [50]. The parameters 

of genetic algorithms are: population size is 70, probability of crossover is 0. 7, and 

probability of mutation is 0.05. 

If the same elite fitness value continues for over some generations, the solution 
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subject 1 subject 2 subject 3 

Figure 3.4 Template images 

subject 1 subject 2 subject 3 

Figure 3.5 Target images 

Figure 3.6 Resulting images 

is regarded as having converged and the GA is terminated. The number of these 

generations is a termination criterion. The more this value becomes large, the mor~ 

the termination criterion becomes fair. The reason is that if this value is small, the 

GA cannot evaluate for a long time. 

3.5.3 Static Fitness Function 1 VS. Static Fitness Function 2 

In this part, Static Fitness Function 1 is compared with Static Fitness Function 

2. The effectiveness of our method is demonstrated using 20 times simulations for 

each person ( total is 60 times simulations per one vowel) being tested as shown in 

Tables 3.2, 3.3 and 3.4. In case of Table 3.2, the termination criterion value is 50. 

This means that the termination criterion in Table 3.2 is fair. Against that, in case 

of Tables 3.3 and 3.4, their termination criterion value is 30. This means that the 

termination criterions in Tables 3.3 and 3.4 are tough. 

In Table 3.3, processing time is faster than others. However, the extraction accuracy 

is not good. 



3.5 Computer Simulation Results and Considerations 

Comparing Table 3.2 with Table 3.3, they indicate that the Static Fitness Function 1 

obtains high extraction accuracies on the fair criterion, however on the tough criterion, 

it obtains low extraction accuracies. Against that, the Static Fitness Function 2 works 

on the tough criterion in Table 3.4. 

Now, see Figures 3.7(a) and 3.7(b). They illustrate a typical transition of the elite 

fitness and objective value with the Static Fitness Function 1 and the Static Fitness 

Function 2. Good results such as Figure 3.6 are obtained by these simulations. In 

Figure 3.7(a), the elite fitness changes with very small value and narrow range as 

opposed to Figure 3.7(b). This indicated that Figure 3.7(b) performed more efficient 

exploration. The reason is that the Static Fitness Function 1 normalizes the objective 

value and reduces individual 'differences, while the Static Fitness Function 2 does not 

normalize. 

3.5.4 Effectiveness of Dynamic Fitness Function 

The effectiveness of our method is demonstrated using 20 times simulations for 

each person (total is 60 times simulations per one vowel) being tested as shown in 

Table. 3.2 Results of simulation (Static Fitness Function 1, fair criterion) 

/a/ /i/ /u/ /e/ /o/ total 

extraction accuracy [%] 98.33 96.67 91.67 93.33 91.67 94.33 
processing time [msec] 0.323 0.318 0.332 0.299 0.329 0.320 

generation 140.67 139.93 147.13 130.77 144.20 140.54 

Table. 3.3 Results of simulation (Static Fitness Function 1, tough criterion) 

/a/ Ii/ /u/ /e/ /o/ total 

extraction accuracy [%] 25.00 21.67 26.67 21.67 26.67 24.33 
processing time [msec] 0.088 0.089 0.110 0.105 0.101 0.099 

generation 61.80 62.69 76.06 75.69 72.81 69.81 

Table. 3.4 Results of simulation (Static Fitness Function 2, tough criterion) 

/a/ /i/ /u/ /e/ /o/ total 

extraction accuracy [%] 96.67 91.67 96.67 85.00 91.67 92.33 
processing time [msec] 0.206 0.187 0.177 0.206 0.211 0.198 

generation 87.81 78.16 74.07 86.20 88.53 82.95 
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Figure 3. 7 Transition of GA evolution: a) elite fitness (Static Fitness Func
tion 1) ; b) elite objective value (Static Fitness Function 2) 

Tables 3.2, 3.3, 3.4 and 3.5. 

In case of Table 3.2, the termination criterion is 50 generations. Against that, in 

case of Tables 3.3, 3.4 and 3.5, their termination criterion value is 25 generations. In 

other words, Table 3.2 criterion is fairer than that in Tables 3.3, 3.4 and 3.5. 

In Table 3.3, a processing time is faster than others. However, the extraction 

accuracy is not good. Comparing Table 3.5 with Table 3.4, they indicate that the 



3.6 Conclusion 

Dynamic Fitness Function obtain higher extraction accuracy than the Static Fitness 

Function 2, and the processing time is almost same in both methods. 

Figures 3.8 illustrates a typical transition of the objective value with the Dynamic 

Fitness Function. Comparing Figure 3.8 with Figure 3.7(b), as you can see, the 

Dynamic Fitness Function converge faster than the Static Fitness Function 2. This 

indicated that Figure 3.8 performed more efficient exploration. The reason is that 

the Dynamic Fitness Function method controls the selection pressure dynamically by 

equation (3.14). 

Table. 3.5 Results of simulation (Dynamic Fitness Function, tough criterion) 

extraction accuracy [%] 
processing time [sec] 

gene 

1100 

Q) 
1000 l :::J 

<ti 900 > 
Q) 
> 800 
ti 
Q) 

:c 700 
0 

600 

500 
0 20 

/a/ /i/ /u/ /e/ /o/ 
95.00 93.33 95.00 91.67 98.33 
0.198 0.203 0.199 0.197 0.199 
78.48 81.15 80.06 77.25 76.50 

Change of Objective Value 

Elite - -

40 60 80 100 120 140 

Generation 

total 

94.67 
0.199 
78.69 

Figure 3.8 Transition of GA evolution: elite objective value {Dynamic Fitness Function) 

3.6 Conclusion 

In this chapter, a lips extraction method that uses only one template per one user 

for mobile devices is proposed. Our method has invariance to two points that are very 

important to detect lips region for mobile devices. The first point is lips geometric 

61 



62 Chapter 3 Genetic Lips Region Detection and Information Extraction 

changes, that is parallel translation, scaling and rotation due to slope of a face or by 

a non-stable camera. The second point is varying lips shapes, that is, an opened or 

closed mouth and showing or not showing any teeth, at the moment of speech. In 

addition, taking into consideration that our method is used with movie data, we hope 

to detect the lips region with high speed and high accuracy. Therefore this paper 

considers that point. 

We use a single template matching using a GA during the matching process. Three 

variations of fitness function are proposed and compared in simulations. The results 

shows that the best :fitness function for this system is the Dynamic Fitness Function. 

The following chapters use this Dynamic Fitness Function. 

This system has some problems, such that the processing time is long. More

over, this system is unsuitable for practical use, because this system deals with two

dimensional changes only. In order to support the real-world, we must develop the 

system to three-dimensional space. In the next chapter, this development is described. 



Chapter 4 

Invariant Detection for Horizontal 

Direction 

4.1 Introduction 

In ubiquitous and pervasive computing environments, such as intelligent buildings, 

mobile devices, a mobile robot, a mobile phone, one of the most useful interface is 

a speech recognition. This speech recognition roust overcome the background noise 

and exceed the limit of recognition accuracy. To solve these problems, a number of 

researches had presented audio-visual speech recognition [5, 6, 7, 8, 9]. It is well known 

that audio-visual integration is very useful for human speech perception [1, 3, 2]. 

The purpose of our study is lips region extraction as a new visual front end of 

audio-visual speech recognition on the mobile devices. Several related work [5, 6, 8, 

9, 7] has carried out and demonstrated that the audio-visual speech recognition is 

effective. However, in most cases, the condition are restricted, which the camera and 

the human is stationary and an input image is only a face region. On the mobile 

devices, the camera and the human head run around separately. Therefore, this lips 

region extraction must be robust for some considerable geometric changes in three

dimensional space, as well as varying lips shapes by speech. 

In the previous Chapter 3, introduced a system which deals with rotation in two

dimensional space--lips region rotates in parallel to the camera. In this chapter, 

development of this system toward a three-dimensional space is carried out. A pro

posed system in this chapter is based on Chapter 3. The shape of template is the same 
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as "square annulus" with Chapter 3. In experiments, we try to extract lips region 

from a face image with background, varying shape by speech, geometric changes, and 

face horizontal direction change. 

4.2 Input images 

The template images are illustrated in Figure 4.1. Template image size of subject 

1 is 18 x 8 pixels, subject 2 is 21 x 11 pixels, and subject 3 is 23 x 9 pixels. 

Figure 4.2 below shows examples (pronounce the vowel / a/ ) of target images. The 

images captured using a video camera include a face and background while each of 

three subjects pronounces the vowels. Target images are then cut from the video 

streams. In consideration of the use by personal mobile devices, the lips region on 

the target images has some considerable geometric changes based on the template 

image. These geometric changes in this paper mean parallel translation, scaling, and 

three-dimensional rotation by change of face horizontal direction. Parameters which 

represent these geometric changes can be regarded as the solutions of GA (refer to 

Section 4.4.1). The size of all target images is 240 x 180 pixels. 

subject 1 subject 2 su~ject 3 

Figure 4.1 Template images 

subject 1 subject 2 subject 3 

Figure 4.2 Target images 
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4.3 Lips Information and Template Shape 

4.3.1 Change of Lips and Transformation Group 

Projective 
Affine 

Similarity 

Figure 4.3 Hierarchy structure of transformation group: a) base ; b) rotation 
and translation (Euclidean transformation group) ; c) scaling (similarity) ; d) 
reflection and shearing (affine) ; e) projection ; £) connectivity (topological). 

Changes of lips are divided into two types by the causes. One is changes of the lips 

region by the independent motion of a camera and a human. In this case, the lips 

region has changes, such as parallel translation, scaling, and rotation. The other is 

lips shape deformation by speech. 

Before description of the relation between the lips changes and geometry, we would 

like to make certain of geometric transformation group [34]. Hierarchy structure of 

transformation group [34] is illustrated in Figure 4.3. This hierarchy structure is not 

same with Figure 2.7. In this Figure 4.3, "G" and "L" are considered as graphic sym

bols. The base shape is Figure 4.3(a). The most inside group is Euclidean transfor

mation. Figure 4.3(b) is a result of rotation. The second is similarity transformation 

group. Figure 4.3(c) is a result of scaling. The third is affine transformation group. 

Figure 4.3( d) is a result of shear and reflection. The fourth is projective transforma-
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tion group. Figure 4.3(e) is a result of projection. The most outside is topological 

transformation group. A connectivity of all "G" and "L" are same, therefore these 

relation is homeomorphic. 

The lips region change by motion of the camera and the human can be represented 

by inside group from affine transformation group, because this lips region change has 

geometric changes, such as parallel translation, scaling, and rotation. 

Considering the change of lips shape by speech, in most cases, the mouth is open 

during speech. Assuming that the lips is a elastic band, the lips during speech can be 

considered as expand and contract band. In other word, its connectivity is constantly 

same. Therefore, this change can be represented by topological transformation group. 

It follows from these that the change of lips can be represented with transformation 

group. 

4.4 Genetic Lips Detection: Horizontal Direction Invariance 

4.4.1 Structure of Chromosome 

A chromosome is an optimised solution. In other words, chromosomes are parame

ters which represent coordinates, scaling and rotation o,f an object to be explored on 

the target image. Figure 4.4 shows the structure of a chromosome. In Figure 4.4, tx 

and ty are coordinates after parallel translation, mx and my are scaling rates, and 

angle is rotation angle on y~axis (horizontal direction) of lips shape. Each gene length 

is 8 bits and therefore, the total chromosome length is 40 bits. 

The template's width and height should be changed separately, because of varying 

shape of lips by speech which is not only similarity change. Thus, we use 2-dimensional 

40bit 

( tx J ty J mx I my J angle J 
• • 8bit 

Figure 4.4 A structure of chromosome 
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scaling by mx and my. 

4.4.2 Projective Transformation 

In this part, geometric transformation is explained. This transformation solves 

geometric changes of lips, such as parallel translation, scaling, and three-dimensional 

rotation, as mentioned in Section 4.4.1. 

We must perform perspective projection for the template by projective transforma

tion. This transformation is represented by a simple combination of matrix multipli

cations, because homogeneous coordinate [45] are used. The matrix is obtained from 

the chromosome of the genetic algorithm described in Section 4.4.1. 

The position on the projection plan of a point in the template image is given by 

the intersection on the projection plane of a line that passes from the center of the 

projection to the point on the template image. Let A be a point on the template 

image, and A* is called perspective drawing. A* is the point that corresponds to a 

transformed point A on the target image. A and A* are represented by homogeneous 

coordinates as follows: 

A= [X,Y,Z,1], 

A*= [X*, Y*,Z*, 1]. 
(4.1) 

(4.2) 

In this chapter, the center of the projection is a point C (xc, Ye, Zc), the projection 

plane is xy-plane (z = 0), and a center of the template image locates at the origin. 

Therefore, the horizontal rotation of face direction means a rotation on y-axis. The 

line through the point A (X, Y, Z) on the template and the point C is shown by a 

parameter t as follows: 

(4.3) 

The intersection on the projection plane of a line that passes from the center of 

the projection to the point on the template image is represented as follows, by t = 
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-ze/ (Z - Ze), because z = O. 

x· = Xe - Ze (X - Xe) 
Z-ze 

Y + _ Ze (Y - Ye) 
-Ye-

Z-ze 
(4.4) 

Z* =0 

Therefore, A· is shown by the homogeneous coordinates as follows. P is a matrix of 

the projective transformation. Relation~ represents the equivalence relation [45]. 

A*= [Xze-ZXe 1 Yze-ZYe,O,l] 
Zc-Z Zc-Z 

(4.5) 

~ [Xze - Zxe, Yze -Zye,O,ze - Z] (4.6) 

[~ 0 0 

~1] =A 0 Zc 0 (4.7) 
-Xe -Ye 0 

0 0 0 Ze 

=AP. (4.8) 

Before the projective transformation, the template image must be transformed for 

other geometric changes. As below, some matrices are specified by chromosome of the 

genetic algorithm (refer to Section 4.4.1). M represents the scaling, R is the rotation 

on y-axis, and T is the parallel translation. 

M=[~$ :y ~ ~] 
0 0 1 0 ' 
0 0 0 1 

[

cos (angle) 0 

R- 0 1 
- sin (angle) 0 

0 0 

T - [~ ~ ~ ~] - 0 0 1 0 . 
t$ ty O 1 

- sin (angle) 
0 

cos (angle) 
0 

As mentioned above, the point A* is given by the following simple equation. 

A*=AMRPT. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 



4.5 Computer Simulation Results and Considerations 

4.4.3 Fitness Function 

In this proposed system, the Dynamic Fitness Function, which is described in Sec

tion 3.4, is used as fitness function. This fitness function has an objective function 

and a dynamic fitness function. The objective function is regarded as a minimisation 

problem and the dynamic fitness function is regarded as a maximisation problem. 

4.5 Computer Simulation Results and Considerations 

4.5.1 Configurations of System 

The parameters of the genetic algorithm are: population size is 100, probability of 

crossover is 0.7, and probability of mutation is 0.05. Parameters of the ignored region 

of the square annulus (refer to Figure 3.1 in Section 3.2.2) are decided by trial and 

error every subject, because the template and lips size of each subject are not the 

same as shown in Figure 4.1. In subject 1, w' /w = 0.8 and h' /h = 0.3. In subject 2, 

w' /w = 0.7 and h' /h = 0.2. In subject 3, w' /w = 0.6 and h' /h = 0.2. We use n = 2 in 

equation (3.14) of the Dynamic Fitness Function. If the same fitness value continues 

for some generations, the solution is regarded as having converged and extraction is 

terminated. We use this number of generations as termination criterion of the genetic 

algorithm. The more this value becomes large, the more the termination criterion 

becomes fair. The machine speck which we use for simulation is Pentium4: 2GHz. 

4.5.2 Result image 

Figure 4.5 shows examples of results obtained from the computer simulation. The 

rectangle region is the extracted lips region. The shape deformations of lips by speech 

are extracted exactly as shown in Figure 4.5. 

4.5.3 Evaluation 

Table 4.1 shows the true solution obtained manually and the experimental result 

obtained by the proposed method for /a/ of subject 1 in Figure 4.2. This result shows 

a exact lips region extraction and both these solutions are similar. 
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subject 1 subject 2 subject 3 

Figure 4.5 Result images 

Table. 4.1 Example of solution of result (subject 1 / a/ ) 

coordinate scaling rate rotation 
X y X y [deg] 

true solution 175 100 1.48 2.17 -30.0 
experimental result 177 100 1.53 2.26 -30.33 

The solution obtained by a manual operation, is called a true solution. Our method 

results are judged to be good or not good by comparison with the true solution. The 

comparison is performed by the following equations. 

{
C-3:::;c:::;0+3 
M<m< 1.3 xM 
ANGLE - 5° :::; angle :::; ANGLE+ 5° 

(4.13) 

where capital letters are the solution obtained manually, and small letters are a solu

tion by the proposed method. c represents the x or y-coordinate, m is a scaling rate 

and angle is a rotation angle. If a result satisfies these conditions, a good result for 

the speech recognition is obtained. 

The effectiveness of our method is demonstrated using 20 times simulations per one 

vowel for every subject, therefore, the total is 300 times simulations being tested as 

shown in Tables 4.2, and 4.3. 

Table. 4.2 Results of simulation {fair criterion) 

/ a/ / i/ / u/ / e/ /of total 

extraction accuracy [%] 98.3 98.3 95.0 96.7 98.3 97.3 
processing time [sec] 0.75 0.71 0.78 0.64 0.75 0.73 

generation 320.2 302.5 346.2 281.0 324.2 314.8 



4.5 Computer Simulation Results and Considerations 

Table. 4.3 Results of simulation (tough criterion) 

/a/ /i/ /u/ /e/ /o/ total 

extraction accuracy [%] 71.7 83.3 71.7 70.0 80.0 75.3 
processing time [sec] 0.20 0.21 0.19 0.16 0.17 0.19 

generation 81.0 88.8 81.2 68.3 71.3 78.1 

The configuration of the simulations in Tables 4.2 and 4.3 are described in Sec

tion 4.5.1. In these tables, results are shown by vowel to examine the relationship 

between the ignored region of the square annulus (refer to Section 3.2.2) and the lips 

shape by pronunciation. 

The difference between Tables 4.2 and 4.3 is the termination criterion of the genetic 
' 

algorithm. As mentioned above (refer to Section 4.5.1), the termination criterion 

is the number of generations, until which the same fitness value continues. If the 

termination criterion value is too small, exploration of the genetic algorithm will 

be defective. Against that, if this value is too large, the exploration will be waste. 

Table 4.2 is obtained by the fair termination criterion value which is 100. Table 4.3 

is obtained by the tough termination criterion value which is 25. In other words, 

Table 4.2 criterion is fairer than that in Table 4.3. 

In Table 4.2, we obtain a good result which total extraction accuracy is 97.3%. 

However, about vowel /u/ the extraction accuracy is lower than other vowels, and 

the processing time is longer than the others. This is due to the relationship between 

the inside ignored region of the square annulus and the lips shape of pronunciation. 

This ignored region is decided by two parameters as described in Section 4.5.1, whose 

width is longer than height. Against that, the interior lips contour of pronunciation 

/ u/ is not in consistency with this completely. 

Comparing Table 4.2 with Table 4.3, all extraction accuracy of Table 4.2 is better 

than that of Table 4.3, against that all processing time of Table 4.2 is fewer than that 

of Table 4.3. These indicate the tough termination criterion has a possibility to reduce 

the processing time, however, probably genetic algorithm exploration is defective. 
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4.6 Conclusion 

In this chapter, a simple method for lips region extraction is proposed, which 

has robustness for varying shape and horizontal direction (rotation on y-axis) three

dimensional geometric changes by using only one image template. From simulation 

results in Section 4.5, it is shown that the proposed method has invariance to the 

varying lips shape and the oral cavity by speech, some geometric changes, such as 

parallel translation, scaling, and three-dimensional rotation. Furthermore, out of 

consideration of the processing time, this results indicate that high extraction accu

racy can be obtained in the extraction processing of all the vowels. In this chapter, 

as the development of the system as described in Chapter 3, the object detection 

system using projective geometry which has invariance for the horizontal direction 

is proposed. This system can be applied to three-dimensional geometric change-

rotation on y-axis. However, in a real world, rotation on all axes must be considered. 

In the next chapter, this system is improved to deal with every geometric change in 

three-dimensional space. 



Chapter 5 

Information Extraction of Lips Region 

in 3D space 

5.1 Introduction 

In Chapter 3, the genetic object detection and numerical parameters extraction 

system is described. The object can cause complex changes, such as shape defor

mations and two-dimensional geometric changes. This system is applicable only in 

two-dimensional space---rotation on z-axis. As the development of this system, object 

detection using projective geometry which has invariance for the horizontal direction 

is proposed. This system can be applied to three-dimensional geometric change-

rotation on y-axis. The system should be applied to rotation on x, y, z-axis in more 

natural scene. In this chapter, a genetic lips extraction with rotational invariance 

on all axes is proposed. This system can deal with every geometric change, which is 

derived from a relation between a camera and an object. This proposed system is 

based on Chapters 3 and 4, and projective geometry [45] are used to take into account 

three-dimensional change of lips. 

For mobile devices, some problems must be solved, which are listed below. 

1. Three-dimensional geometric change 

2. Changes of whole scene by free camera motion 

3. Acquisition of numerical information of lips information 

4. Real-time processing with keeping high accuracy 
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The lips geometric change information is used for correction of lips region. This 

correction is important, because a lips region normalized by this correction will make 

speech recognition easy. 

The chapter is organized as follows: input images are shown in Section 5.2. Our 

approach is explained in the next Section 5.3. Section 5.4 shows an evaluation of the 

approach and discussion of simulation results. Finally, Section 5.5 gives a conclusion. 

5.2 Input images 

5.2.1 Input Images 

At first, we input only one closed mouth template and a target image in that 

order. The template image is illustrated in Figure 5.l(b), which is acquired from 

Figure 5.l(a). The template image size is 28 x 13 pixels. 

Acquisition 

► 

(a) (b) 

Figure 5.1 Template acquisition: a) source of template image (240 x 180 
pixels) ; b) template image (28 x 13 pixels). 

The target images are presented in Figure 5.2. These are trimmed from a video 

sequence, which is taken by a digital video camera. Some red color objects are in

cluded in the background. The subject makes the Japanese vowel sound iteratively. 

Moreover, on the assumption that the camera moves and joggles by free hand, the 

shaking of scene is caused artificially by hand. Therefore, the lips region has some 

geometric changes. All target image size are 240 x 180 pixels. 



5.3 Three-dimensional Genetic Lips Detection 

(a) (b) (c) 

(d) (e) 

Figure 5.2 Target images: Subject makes the Japanese vowel sound: starting 
from a) toe) ; / a / , / i/ , / u / , / e/, and / o/ . 

5.3 Three-dimensional Genetic Lips Detection 

5.3.1 Structure of Chromosome 

A chromosome of GA is a solution candidate of the problem which must be solved. 

In other words, chromosomes are parameters which represent coordinates, scaling 

and rotation of an object to be explored on the target image. Figure 5.3 shows the 

structure of a chromosome. tx and ty are coordinates after parallel translation, mx 

and my are scaling rates, and anglex, angley, and anglez is rotation angle on x-, y- , and 

z-axis of lips shape. Each gene length is 8 bits and therefore, the total chromosome 

length is 56 bits. 

56bit 

( tx I fy I mx I my JanglexJangleyJanglez) .. . 
8bit 

Figure 5.3 A structure of chromosome 

The template's width and height should be changed separately, because of shape 
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deformation of lips by speech is not only similarity change. Thus, we use 2-dimensional 

scaling by mx and my. The template is transformed by homogeneous coordinates with 

these parameters. 

5.3.2 Projective Transformation 

In this part, geometric transformation is explained. This transformation solves 

geometric changes of lips, such as parallel translation, scaling, and three-dimensional 

rotation, as mentioned in Section 5.3.L 

We must perform perspective projection for the template by projective transforma

tion. This transformation is represented by a simple combination of matrix multipli

cations, because homogeneous coordinate [45] is used. The matrix is obtained from 

the chromosome of the GA described in Section 5.3.1. 

The position on the projection plane of a point in the template image is given by 

the intersection on the projection plane of a line that passes from the center of the 

projection to the point on the template image. Let A be a point on the template 

image, and A* is called perspective drawing. A* is the point that corresponds to a 

transformed point A on the target image. A and A* are represented by homogeneous 

coordinates as follows: 

A= [X, Y,Z, 11, 
A* = [X*, Y*, Z*, 1] . 

(5.1) 

(5.2) 

In this paper, the center of the projection is a point C (xc, Ye, zc), the projection 

plane is xy-plane (z = 0), and a center of the template image locates at the origin. 

The point A* is given by the following simple equation. 

(5.3) 

where M represents the scaling, Rx is the rotation on x-axis, Ry is the rotation on 

y-axis, Rz is the rotation on z-axis, Tis the parallel translation, and Pis a matrix 



5.4 Computer Simulation Results and Considerations 

of the projective transformation. These matrbces are shown as follows: 

[T 
0 0 

~]' A1= 
my 0 
0 1 
0 0 

(5.4) 

~= [~ 

0 0 

~] · cos ( anglex) sin ( anglex) 
-sin ( anglex) cos ( anglex) 

0 0 

(5.5) 

r• (a;gle•) 0 - sin ( angley) 

~] · Ry= 
1 0 

s1h ( angley) 0 cos ( angley) 
0 0 0 

(5.6) 

[ cos ( angle,) sin ( angle z) 0 

~] ' 
R, = - sin (rgle,) cos ( angle z) 0 

0 1 
0 0 

(5.7) 

T= [~ 

0 0 

~] · 1 0 
0 1 

tx ty 0 

(5.8) 

[ z, 
0 0 JJ P= 0 Ze 0 

-Xe -ye 0 
0 0 0 Zc 

(5.9) 

5.3.3 Fitness Function 

The matching process of the template matching is evaluated by a fitness function. 

A fitness function is calculated by the objective function and changes dynamically. 

This fitness function is described in Section 3.4 as "Dynamic Fitness Function". 

77 



78 Chapter 5 Information Extraction of Lips Region in 3D space 

5.4 Computer Simulation Results and Considerations 

All simulations are performed on the same computer: CPU is Pentium4 2.0GHz. 

As GA parameters, we use 150 population size, 70 % crossover probability, 20 % 

mutation probability, and the system is terminated at 200 generations. 

The best results for the target images in Figure 5.4 by the template image in 

Figure 5.l(b), are illustrated in Figure 5.4. The numerical parameters, that represent 

the lips are shown in Table 5.1. These parameters are optimized and extracted by GA. 

These numerical results make it possible that the detected lips region is corrected, 

then normalized lips region can be acquired. Figure 5.5 shows the collected lips 

region by the extracted numerical parameters. These collected lips has little affection 

(a) (b) (c) 

(d) (e) 

Figure 5.4 Examples of best resulting image for Figure 5.2 images. 

Table. 5.1 Examples of acquired lips information. 

result Coordinate Scaling Rotation ( deg) 
(Figure 5.4) X y X y X y z 

(a) 85 62 1.06 1.58 -12. 76 -15.78 -1.23 
(b) 72 100 0.88 1.52 -32.80 -7.27 -4.53 
(c) 106 78 1.25 1.40 2.33 -11.67 -6.18 
(d) 116 49 1.03 1.22 8.37 21.00 13.04 
(e) 52 86 0.98 1.22 -17.16 32.53 -11.39 
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of geometric changes, such as parallel translation, scaling, and rotation. 

To evaluate the proposed system, we simulate 30 times for each target in Figure 5.2, 

therefore the total is 150 times. The detection accuracy is shown in Table 5.2. In 

this table, "Failed" is the case of failure to detect the lips region, and "Successful" is 

success to detect it. Moreover, the total of "Best" and "Detected" is the row labeled 

"Successful". This "Best" case is that all parameters are good as shown in Figure 5.4, 

and "Detected" case is that the location is good but the rotation parameters are not 

good in three-dimension as Figure 5.6. As you can see the Table 5.2, accuracy to 

locate the lips region is good 90 %, however, to acquire the exact rotation value in 

three-dimensional space is not good 30 %. This is due to GA feature which a local 

search is not good in GA. Moreover, the average processing time is 0.94 second, this 

(a) (b) (c) 

(d) (e) 

Figure 5.5 Examples of best extracted lips region for Figure 5.2 images. 

(b) 

(a) 

Figure 5.6 Example of not good result: a) a detection result ; b) a corrected lips 

Table. 5.2 Detection accuracy (%). 

/a/ /i/ Ju/ /e/ Jo/ average 
Failed 3.33 13.33 0.00 16.67 16.67 10.00 

Successful 96.67 86.67 100.00 83.33 83.33 90.00 
Best 26.67 30.00 46.67 10.00 36.67 30.00 

Detected 70.00 56.67 53.33 73.33 46.67 60.00 
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is very slow. This reason is a trade-off between search speed and accuracy. In other 

words, to obtain high accuracy GA population size must be large, however this causes 

the increase of the computation. To avoid these problem, search efficiency of the GA 

must be raised. 

5.5 Conclusion 

In this chapter, the lips detection system in three-dimensional space was proposed. 

This development toward three-dimensional space gives estimation of the face direc

tion by the posture angle of lips. However the seMch speed is very slow, and it 

indicates that this system cannot apply to obtain the exact rotation angle in three

dimension in real-time. The reason is that a trade-off between exploration accuracy 

and speed. In the next chapter, we will improve this trade-off by 11downsized GA" . 



Chapter 6 

High Speed and Accuracy Lips 

Region Detection by Downsized GA 

6.1 Introduction 

Genetic Algorithms (GAs) have been applied successfully to optimise solutions in 

image processing [8, 25, 51, 52]. In Chapter 3, the genetic object detection and 

numerical parameters extraction system was described. The object is lips, and has 

complex changes, such as shape deformations and two-dimensional geometric changes. 

Human speech causes the lips shape deformations, and free camera motion causes the 

geometric changes. Moreover, the genetic object detection and numerical parameters 

extraction system in three-dimensional space was described in Chapters 4 and 5. 

In this chapter, high-speed object detection, tracking, and information extraction 

of the object, is proposed. Our approach is based on a template matching with GA. 

GA is a probabilistic search technique which is suitable for the exploration of large 

and complex search spaces. Typically, the GA has a trade-off between exploration 

accuracy and speed. In other words, to obtain high accuracy, the size of the population 

and the number of generations must be increased. Therefore, high-speed exploration 

with keeping high accuracy-downsizing of GA is necessary. 

In the proposed system, the object is lips region, because of the following reasons. 

A speech recognition is one of the major non-contact interface, and useful for mobile 

devices. Many studies of audio-visual speech recognition [3, 5, 6, 7, 8, 9, 53] have 

been reported, in order to overcome a performance limitation and background noise 
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by various situations. For mobile devices, some problems must be solved, which are 

listed below. 

1. Complex target image (not only face region) 

2. Drastic change of whole scene by a camera motion 

3. Acquisition of numerical information of lips geometric changes 

4. Real-time processing with keeping high accuracy 

The lips geometric change information is used for correction of lips region. This 

correction is important, because a normalised lips region by this correction will make 

speech recognition easy. 

As examples of approach for lips image, eigenlip methods [9, 7] have been proposed. 

In these methods, the training data must be chosen carefully to include all possible 

lips configurations. Active Shape Model [6], and Genetic Snakes [8, 25] which is an 

improved version of Snakes [26] have been proposed. These approaches have some 

constraints, such that a target image is only a face region and a subject wears a 

helmet with a camera to obtain a mouth image, because of the initial setting problem. 

Therefore, these approaches are difficult to be applied to our purpose. On the one 

hand, high speed face tracking method [29] was propos~d. In this method, the many 

facial feature patch templates must be prepared as training set. These templates are 

regions surrounding the feature, such as eye and mouth. Therefore, the geometric 

information of lips region cannot be extracted at the detection. These methods by 

using a whole face are difficult to be applied to our purpose. Because, it is hoped 

that the lips region is detected and its geometric information is extracted directly for 

the real-time processing. 

To overcome the problems which are listed above, we use simple template matching 

with downsized GA. This downsizing means speed up searching with keeping the 

accuracy. The downsizing GA is carried out by control of a search domain with a 

very small population. The search domain is controlled automatically. The chapter 

is organised as follows: at first, basic parts of GA are mentioned in Section 6.2. Our 

approach is explained in the next Section 6.3. Section 6.4 shows an evaluation of the 



6.2 Basic Parts of Genetic Algorithm 

approach. Finally, Section 6.5 gives a conclusion. 

6.2 Basic Parts of Genetic Algorithm 

6.2.1 Structure of Chromosome 

A chromosome is a solution candidate to be optimized. , In other words, chromo

somes specify parameters which represent coordinates, scaling and rotation of an 

object to be explored on the target image. The same chromosome as Section 3.3 is 

used in this proposed method. 

6.2.2 Fitness Function 
. 

. The matching process of the template matching is evaluated by an objective func-

tion. A fitness function is calculated by the objective function and changes dynami

cally. This fitness function is described in Section 3.4 as "Dynamic Fitness Function". 

6.3 Downsized GA with Search Domain Control 

Typically, the GA has a trade-off between exploration accuracy and speed. In 

other words, to obtain high accuracy, the size of the population and the number 

of generations must be increased. This part describes the method to overcome this 

trade-off. This method is called "Search Domain Control {SD-Control)". 

6.3.1 Why to Do It 

The method described in Chapters 3-5 may be unsuitable for the motion image 

sequence, because of slow performance. The slow performance is due to the trade-off 

between exploration accuracy and speed. In other words, to obtain high accuracy, the 

size of the population and the number of generations must be increased. This means 

that the search speed of the GA is reduced. From earlier experiences, when the size 

of the population and the number of generations are decreased, GA individuals can 

be stuck in local optima, as shown in Figure 6.1. This is attributed to the fact that 

the distribution of the redness {refer to Section 2.2) is similar to lips region. This 

indicates that the GA is a global optimization algorithm and is not good for local 
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optimization [21]. 

As a search efficiency improvement, we can use a technique, in which after the 

domain including the optimal solution is specified, its neighborhood is searched in 

detail. 

In GAs, the search starts from a population of many points, rather than starting 

from just a single point. This parallelism means that the search will not become 

trapped in local optima. GA tries to escape from the local optimum and to find the 

global optimum by crossover and mutation operators. If the population is too small, 

GA converge prematurely and is trapped into a local optimum. As a search efficiency 

improvement, we can use a technique, in which after the domain including the optimal 

solution is specified, its neighbourhood in the target image is searched in detail. 

Generally speaking, this is a risky method, because it is not guaranteed that the 

domain where that optimal solution is included clearly, can be specified. In other 

words, this method cannot find the optimal solution because of premature convergence 

to local optima. However, this is not a critical problem for our system, because in 

our simulations, typical local optima is a part of the face (see Figure 6.1). This 

reason is that skin area is included in the template image and redness data (refer to 

Section 2.2) is used. This means that it is highly possible that the optimal solution 

is in the neighborhood of local optima. 

With controlling the search domain of GA, we expect that the GA became easier to 

escape from the local optimum, and the GA can work as not only global optimization 

but also local optimization. We therefore hope that, by decreasing the population 

and controlling the search domain, high accuracy and high speed exploration can be 

achieved. 

., ,,. 
• Iii!, . ,. : 

' ~ .,, .· 
t • .. . .,,_ . 

~ .;;,•,, ~-
. 

Figure 6.1 Examples of the local optimum: GA individuals can be stuck in 
local optima, optimization is failed. 
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6.3.2 What to Do and How to Do It 

The location and the size of the search domain are controlled. The search domain 

is controlled depending on both an elite individual and the number of generations. 

The elite individual can be found out by comparison of the objective value of all 

individuals. The location of the search domain is decided by a coordinate of the elite 

individual. In other words, the location of the search domain and the elite individual 

is same, and these locations change together. This coordinate is obtained from tx and 

ty of the elite chromosome (see Figure 3.2). The search domain center is set to this 

coordinate. 

Next, the size of the search domain is decided by the number of generations. The 

search domain is renewed as follows: 

[width*] [width] 
height* = a height (6.1) 

In equation (6.1), width and height are transformed to width* and height* respec

tively by a which is a scale factor. This a is changed by the number of generations 

because the search of GA keeps getting near to the global optimum gradually ac

cording to the number of generations. In this paper, simply, we use the following 

equations for decision of a. 

1 (generation< 10) 

0.5 (10::; generation< 50) 
(6.2) a= 

0.375 (50::; generation < 75) 

0.25 (75 ::; generation) 

where generation is the number of generations. In equation (6.2), the search domain 

is reduced in multi-step as evolution progresses. 

6.3.3 What is Going on Outside? 

You may wonder what is going on outside of the search domain. Figure 6.2 illus

trates the process of the object detection by GA to explain this problem. In Figure 6.2, 

the small filled rectangle region is the detected lips region. The not-filled rectangle 
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c:::::J 

(a) (b) (c) 

Figure 6.2 What is going on outside of the search domain?: a) early stage of 
GA evolution; b) the search domain move to the elite individual; c) re-coding 
of other individual 

regions are other individuals. The larger square frame represents the search domain 

by the SD-Control method. 

Figure 6.2(a) shows the early stage of the exploration, and the search domain is the 

whole target image. Some individuals can be located outside of the search domain 

during the search domain change using the SD-Control, as illustrated in Figure 6.2(b). 

The easiest way is to eliminate these outside individuals and create new individuals. 

However, this is not a best solution because all genes may evolve into good direction 

except genes that represent the position. Therefore, whenever the search domain is 

changed, only tx and ty in the chromosome is re-coded for all individuals by a ne~ 

search domain, as illustrated in Figure 6.2(c) . This re-coding is calculated by the 

following equation. 

l t . _ _ locationreal - Smin (2bit l) 
oca ionmt - S _ S _ X - , 

max min 
(6.3) 

where locationint and locationreal are integer value and real value of a re-coded gene, 

Smin and Bmax are the minimum and the maximum coordinate of the search domain, 

respectively. 

Using this process, other genes are inherited to the next generation. This means 

that the GA optimization is controlled. 

6.3.4 Flow Chart 

Flow charts of our system are illustrated in Figure 6.3. 

At first, an initial population is generated and after that the GA process is started. 
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Start 
(initialization) 

Deform 
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Matching 
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Generate 
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Generate 
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SD-Control 

GA operations 

Return 

(b) 

Figure 6.3 Flow charts: a) main GA process ; b) generate a new population. 

In GA processing, the template shape is deformed to an unique "square annulus" 

from a normal square, as explained in Section 3.2. Then, the matching process is 

executed between the template and a target image using the fitness function. The 

generation is increased, until a termination condition of GA is satisfied. In this study, 

the GA is terminated by the number of generations. If the termination criterion is not 

satisfied, a new population of the next generation is generated according to the fitness 

of each individual (Figure 6.3(b)). In this processi the search domain is controlled 

dynamically, as described in Section 6.3. This technique is the main part of this 

proposed system, and achieves high speed and the high accuracy lips detection. After 

GA process is completed, the result is obtained as numerical data. This numerical 

data represents the lips information and can be used in many applications as described 

in Section l. 
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6.4 Computer Simulation Results and Considerations 

In this section, simulations to evaluate the proposed system and considerations of 

the results are described. We estimate the effectiveness of our proposed system by 

comparison between it and the system without the SD-Control (hereinafter referred 

to as "the no SD-Control"). All simulations are performed on the same computer: 

CPU is Pentium4 2.0GHz. 

6.4.1 Input Images 

subject 1 subject 2 subject 3 

Figure 6.4 Template images 

Figure 6.5 Target images: : first row is subject 1, second is subject 2, and 
third is subject 3. Subjects make the Japanese vowel sound: starting from the 
left; /a/, /i/, /u/, /e/, and /o/. 

The template images are illustrated in Figure 6.4. Template image size of subject 

1 is 20 x 11 pixels, subject 2 is 24 x 10 pixels, and subject 3 is 22 x 11 pixels. 

Figure 6.5 shows target images. The images captured using a shaking video cam-
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era include a face and background with some red color while each of three subjects 

pronounces the vowels. Target images are cut from the motion image sequence. In 

consideration of the use by mobile devices, the lips region on the target images has 

some considerable geometric changes based on the template image. These geomet

ric changes in this chapter mean parallel translation, scaling, and two-dimensional 

rotation. Parameters represented these geometric changes can be regarded as the 

solutions of GA (See Figure 3.2). All target images size are 240 x 180 pixels. 

6.4.2 GA Configurations 

Other GA settings are explained in this part. As mentioned in Section 3.3, we 

use the binary genotype. We choose uniform crossover, because of its many advan

tages [50]. In this system, five parameters must be prepared as follows. 

• Population size 

• Crossover probability 

• Mutation probability 

• Scaling window size 

• Termination criterion 

These parameters affect the efficiency of GA exploration. The relation between 

the population size and search speed is described in Section 6.3. The crossover and 

mutation probabilities are decided after many trials. The scaling window is explained 

in Section 3.4. For the GA termination, a variety of termination criterion has been 

used, such as the change of fitness value and the number of generation. In this 

system, we use the number of generations as described in Section 6.3.4, because of 

its simplicity and low computational cost. Final values of these parameters used in 

simulations are shown in Table 6.1. 

Table. 6.1 Parameters in the simulation of estimate the proposed system 

Population 
Size 
10 

Crossover 
probability 
0.7 

Mutation 
probability 
0.15 

Scaling window 
size 
1 

Termination 
criterion 
200 
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The parameters of the genetic algorithm are: population size is very small 10, 

probability of crossover is 0.7, and probability of mutation is 0.15. Parameters of 

the ignored region of the "square annulus" (refer to Figure 3.1) are set w' /w = 0.8 

and h' /h = 0.5. We use n = 1 in equation (3.14) of the Dynamic Fitness Function 

method. The GA is terminated at 200 generations. We demonstrate the effectiveness 

of the SD-Control method in the next part. 

6.4.3 Effectiveness of Search Domain Control 

This part shows the effectiveness of SD-Control by the transition of an actual GA 

search. 

The location of the search domain and the elite individual change together, and 

the size of the search domain changes by equations (6.1) and (6.2), as explained in 

Section 6.3. 

The transition of GA exploration by the objective value (Section 3.4) on the pro

posed system is plotted in Figure 6.6. The solid line and the dashed line show the 

objective value of the elite individual. and the average objective value of the popula

tion. A visual transition are shown in Figure 6. 7 to lead the reader to understand. In 

both figures, alphabets from "a" to "o", where the generation is 0, 5, 10, 15, 20, 25, 

50, 75, 125, 130, 135, 140, 145, 150, and 199, are correspondent with each other. In 

Figure 6.7, the small filled rectangle region is the detected lips region. The not-filled 

rectangle regions are other individuals. The larger square frame represents the search 

domain by the SD-Control method. These cases are the most typical examples. 

The effectiveness of the SD-Control method is described with linking Figures 6.6 

and 6.7. The objective value is worst in early stage of GA evolution, and a part of 

wall and a human in the poster are detected as lips region. The SD-Control is started 

in "c" ( the number of generation is 10). The search domain moves to a local optimum 

and the size is reduced. However, in "d" the search domain moves to a face region. 

This reason is that the search domain includes a part of face, and the template image 

includes a part of skin (see Figure 6.5). 

The population is changing in region "A", which includes "e" to "i", however the 
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Figure 6.6 Relation between generations and objective values: "A" is the 
region where GA is trapped in a local optimum, and from "a" to "o" are 
points where the generation is 0, 5, 10, 15, 20, 23, 50, 75, 125, 130, 135, 140, 
150, and 199. These alphabets are correspondent with alphabets in Figure 6. 7 

objective value of the elite individual and the elite individual does not change in the 

visual translation. The GA exploration converges into a part of jaw in this "A" region. 

This is attributed to the fact that the distribution of the redness (refer to Section 2.2) 

is similar to lips region. This shows that GA individuals stuck in a local optimum. In 

this region, the size of the search domain is reduced at "g" and "h", as described in 

equations (6.1) and (6.2). The elite individual cannot escape from the local optimum 

by the SD-Control in "g". Although the search domain size becomes minimum in 

"h", the elite individual does not change. 

At "j", the elite individual evolves near the lips region, and the search domain 

moves. This indicates that the GA evolution of the proposed system can escape from 

the local optimum. The reason for this is that a search domain is reduced by the SD

Control and the GA can explore the reduced search domain with meticulous detail 
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) (1) (m) (n) (o) 

Figure 6. 7 Visual transition: these alphabets are correspondent with alpha
bets in Figure 6.6 

from "h" to "j". The GA evolution gradually closes to the optimal solution from "j" 

and finally the lips region is detected and lips information is extracted as illustratec;i 

in "o". 

In other words, the GA in the proposed system performs not only global optimiza

tion but also local optimization. The result of our demonstration clearly shows that 

a trade-off between exploration accuracy and speed is overcome by the SD-Control 

method. 

6.4.4 Resulting Images 

Figure 6.8 shows examples of results obtained from the computer simulation. The 

filled rectangle region is the extracted lips region, and the rectangular frame which 

contains that is the final search domain. The shape deformations of lips by speech 

are extracted exactly as shown in Figure 6.8. 
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Figure 6.8 Examples of successful result image for Figure 6.5 images 

6.4.5 Demonstration of Search Domain Control 

The solution obtained by a manual operation, is called a true solution. Our method 

results are judged to be good or not good by comparison with the true solution. The 

comparison is performed by the following equations. 

{
T - 3 ::; t ::; T + 3 

M<m < 1.3 x M 

ANGLE - 5° ::; angle ::; ANGLE+ 5° 

(6.4) 

These capital letters are the solution obtained manually, and small letters are a so

lution obtained by the proposed method. t represents the x or y-coordinate, m is a 

scaling rate and angle is a rotation angle. If a result satisfies these conditions, the 

results is acceptable for many applications described in Chapter 1. 

Table. 6.2 Examples of acquired numerical lips information by manual and 
the proposed system 

type of solution tx my angle [deg] 
manual 164 100 1.776 2.260 5.70 

GAs 165 99 2.160 2.327 3.98 

Table 6.2 shows lips data for Japanese vowel /a/ of subject 1 in Figure 6.8. All 

system solutions of Table 6.2 satisfy the conditional equation (6.4). These results 
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indicate that the proposed system can robustly and accurately detect lips region in 

images taken by free camera motion and deformed by speech. 

The effectiveness of the SD-Control method is demonstrated using 20 times simula

tions per one vowel for every subject. Therefore, the total of 300 times simulations is 

tested as shown in Tables 6.3 and 6.4. Table 6.3 shows the result of our method with 

the SD-Control method, and Table 6.4 the is normal method without that. From these 

tables, by using the flexible search domain control, we obtain a better result than the 

normal method. In both cases, the processing time is very high speed, because of 

the population size is 10. About the extraction accuracy, our proposed method is 

96.67 %, and the normal method is lower 74.00 %. At the final stage of search, search 

efficiency is improved. In the normal method, the solution of the failure is the local 

optimum by premature convergence, because the population size is too small. In the 

proposed method, the search domain is reduced and close to the optimal solution, and 

GA can search in more detail by the re-coded chromosome, at the multiple stages. In 

other words, the present GA acts as not only global search but also local search. 

Table. 6.3 Results of simulation obtain using the proposed method (until 200 
generations) 

II /a/ I /i/ I /u/ I' /e/ I /of total 

accuracy[%] 98.33 95.00 91.67 98.33 100.00 96.67 
processing time [msec] 35.44 35.09 34.29 34.03 37.83 35.34 

Table. 6.4 Results of simulation obtain using the normal method (until 200 generations) 

/a/ I /i/ I /u/ /e/ /o/ I total 

accuracy [%] 71.67 75.00 68.33 85.00 70.00 74.00 
processing time [msec] 36.40 35.65 36.75 34.71 37.41 36.18 

6.5 Conclusion 

This chapter presents high-speed object detection, tracking, and information extrac

tion of the object, as improvement of proposed methods, which described in previous 

chapters. Our approach is based on a template matching with GA. The GA is a 

probabilistic search technique which is suitable for the exploration of large and com-
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plex search spaces. However, the GA has a trade-off between exploration accuracy 

and speed. In other words, to obtain high accuracy, the size of the population and 

the number of generations must be increased. In order to avoid this trade-off this 

chapter presented a new lips extraction method by GAs, which has a simple algo

rithm, a high speed and a high accuracy is achieved. This proposed method controls 

the search domain. We demonstrated the effectiveness of this method and compared 

the proposed method with the previous normal method by small population. The 

results of simulations show our proposed method is more effective than other ones. 

By the the SD-Control method, the GA can act as not only global search but also 

local search. The downsized GA is achieved because of high accuracy and high speed 

- using small population. ' 

In the next chapter, the evolutionary video processing, the main part of this dis

sertation, is described. The SD-Control method is basis of the evolutionary video 

processing. 
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Chapter 7 

Real-Time Lips Region Detection by 
Evolutionary Video Processing 

7.1 Introduction 

Image Understanding is the process to understand the content of images in order to 

automate visual tasks by computers. The technical challenge is to make the computer 

understand the contents of the images. In other words, the most difficult problem 

is to automatically produce a reasonable description from an image. It is clear that 

the nature of images and descriptions have a bug distance. In the fields of Artificial 

Intelligence, Scene Analysis, Image Analysis, Image Processing, and Computer Vision, 

the many researchers work on reducing of this distance in the last twenty years. 

However, there is few Image Understanding systems which are suitable for practical 

use. The reasons is that it is difficult to extract the relevant information to represent 

the object stably, supporting real-world. The object has complex changes by various 

causes. A new object detection and information extraction approach, which can be 

applied to these various changes, is necessary for Image Understanding. 

Previous chapters dealt with a single image, and described the genetic object detec

tion and extraction of the information, which represents the object. These approach 

has a trade-off between the processing speed and the accuracy, then the previous 

system cannot be applied to the real-time processing. 

Chapter 6 introduced the downsized GA to overcome the trade-off for a single image 

processing. The processing time comes a step closer to the real-time processing. 
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In this chapter, we describe a new video processing which can be applied to a 

real-time processing, by a flexible control of search domain and inheritance of genetic 

information between video frames. The detection object is a lips region of a talking 

person as previous chapters. 

It is very important to accurately detect and track lips region in real-time from 

natural video scenes for many applications, such as audio-visual speech recognition, 

video compression, and robot perception. 

In order to make recognition processing simple and easy, it is preferred that a 

detected the lips region is normalized geometrically in relation to position, scaling, and 

rotation. For a real-time application, the system should detect lips region and extract 

this normalization information at the same time. In this chapter, these geometric 

change information to be treated is parallel translation, scaling, and rotation, by free 

camera work in natural scenes. 

In this chapter, we address three issues for lips detection and tracking as follows. 

1. Active scene by free camera motion. 

2. High accuracy in detection of lips region and extraction of lips geometric infor

mation. 

3. High processing speed. 

The chapter is organized as follows: at first, basic parts of GA are mentioned in 

Section 7.2. Section 7.3 presents our technique. Section 7.4 shows an evaluation of 

the system, and Section 7.5 gives a conclusion. 

7 .2 Basic Parts of Genetic Algorithm 

7 .2.1 Structure of Chromosome 

A chromosome is a solution candidate to be optimized. In other words, chromo

somes specify parameters which represent coordinates, scaling and rotation of an 

object to be explored on the target image. The same chromosome as Section 3.3 is 

used in this proposed method. 
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7.2.2 Fitness Function 

The matching process of the template matching is evaluated by an objective func

tion. A fitness function is calculated by the objective function and changes dynami

cally. This fitness function is described in Section 3.4 as "Dynamic Fitness Function". 

7.3 Evolutionary Video Processing 

7 .3.1 Flexible Search Domain Control 

The methods which we have proposed may be unsuitable for the motion image 

sequence. When it tries to obtain high accuracy, increase of a population and the 

number of generations occurs. From our experience, when the population and the 

number of generations are decreased, GA individuals can be stuck at local optima as 

in Figure 6.1. This is because the GA is a global optimization algorithm. The search 

starts from a population of many points, rather than starting from just a single point. 

This parallelism means that the search will not become trapped on local maxima. GA 

tries to escape from the local maximum and to find the global optimum by crossover 

and mutation operators. If the population is too small, GA converge prematurely 

and is trapped into a local optimum. As a search efficiency improvement, we can use 

a technique, in which after the domain including the optimal solution is specified, 

the neighbourhood of that is searched in detail. However, generally speaking, this is 

a risky method. Because the domain where the optimal solution is included clearly, 

cannot be specified. Against that, in our many past experiments, we find that a part 

of a face is extracted as lips region, in case of the failure ( see Figure 7 .1). This reason 

is that we use x component (redness) in the Yxy color space [31] which is used in this 

image data. Therefore, we hope that, even by decreasing the population, by control 

of the search domain, high accuracy extraction becomes possible and also extraction 

speed becomes high. 

The search domain is controlled depending on both an elite individual and the 

number of generations. The elite individual can be found out by comparison of the 
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Figure 7.1 An example of the local optimum 

objective value of all individuals. The location of the search domain is decided by 

a coordinate (tx and ty, see Figure 3.2) of the elite individual. The search domain 

center is set to this coordinate. 

Next, the size of the search domain is decided by the number of generations. The 

search domain is renewed as follows: 

[width*] [width] 
height* = a height . (7.1) 

In equation (7.1), width and height are the target vi~eo frame's width and height, 

and transformed to width* and height* respectively by a which is a scale factor. 

The a is controlled by the number of video frames, the coordinate of elite individual, 

and the number of generations. In particular, the detection in the first frame is very 

important. Because, if this lips region detection is failure, there is a probability to fail 

in the next one, so that the detection information is herited to the next one. If this lips 

region detection is failure at the first frame, the probability of failure become strong 

in the next one. Because, the genetic information in the last frame is recycled for 

high speed and high accuracy detection and tracking. Therefore, the search domain 

is full range in case of the first frame and generation< 10. The value of a can be 

defined as follow: 

11 (generation < 10) 

0.5 (10::;; generation< 50) 
a= 0.375 (50::;; generation< 75) ' 

0.25 (75 ::;; generation) 

(7.2) 
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where generation is the number of generations. In case that it is not the first frame, 

the value of a: can be defined as: 

{
0.5 

a= 0.375 

0.25 

(generation < 50) 

(50::; generation< 75) . 

(75 ::; generation) 

(7.3) 

In both equations (7.2) and {7.3), the search domain is reduced in multistep as evo

lution goes on. An important point is that equations (7.2) and (7.3) show that the 

o: can be reset from 0.25 to 0.5. Because, two functions are necessary; the first is a 

self-repairing function in case of failure in the last frame, and the second is a fail-safe 

function in case of the considerable parallel translation of lips region. 

Some individuals can be located on outside of the search domain by the control of 

search domain. All genes may evolve for good direction except genes which represent 

the position. For this reason, these individuals cannot be eliminated. As a solution, 

whenever the search domain is changed, only tx and ty in the chromosome is re-coded 

for all individuals by a new search domain. By this process, other genes are inherited 

to the next generation. This means that the GA optimization is controlled. 

7.3.2 Inheritance of genetic information between video frames 

In case of video processing, it is very difficult to use information of between video 

frames. Generally, in order to detect a moving object, an inter-frame difference picture 

is used as the information of between video frames. However, it is difficult to use the 

difference picture in our system, because the camera moves intensively. 

Therefore, we use genetic information as a relation between video frames. In fact, 

without making a new population, lips detection for a next frame is proceeded with a 

population used in last frame. This method is very important in our proposed system, 

because initial exploration is reduced in GA by this method. 

7 .3.3 Flow Chart 

Flow charts of our system are illustrated in Figure 7.2. Figure 7.2a represents the 

main part of our system. In Figure 7.2b, GA process is represented. New population 
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Figure 7.2 Flow charts: a) main process; b) GA process; c) generate a new population. 

is made in In Figure 7.2c. In Fig 7.2, "frame" and "generation" are variables, which 

count the number of frames in video sequence and the number of generations in GA. 

Our approach consists of dual-loop; the outside loop is for video sequence (see 

Figure 7.2a), and the inside loop is for GA (see Figure 7.2b). At first only one 
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subject 1 subject 2 subject 3 --
~ 

Figure 7.3 Template images 

template is prepared, which is a closed mouth (see Figure 7.3). Image data put into 

the system is expressed with the x component (redness) in the Yxy color space [31]. 

After an initial population is generated, GA is started. In GA processing, the tem

plate shape is deformed to an unique "square annuls" (see Figure 3.1) from a normal 

square in Figure 7.2b. Then matching process is executed between the template im

age and a target frame. Th~ generation is increased, till a termination condition of 

GA is satisfied. In this paper, GA is terminated if generaion > 200. If the termi

nation criterion is not satisfied, a new population of the next generation is generated 

according to the fitness of each individual (Figure 7.2c). 

In this process, the search domain is controlled dynamically by the number of 

generations. This method is described in Section 7.3.1. After GA process is completed, 

the results are obtained as an image and numerical data. Then, a new process begins 

for the next frame. At this time, some genetic information of the last GA are inherited 

to the new GA process. This method is described in Section 7.3. By the flexible 

search domain control and the inheritance of genetic information, we can detect the 

lips region and extract its geometric information with high accuracy in real-time. 

The above process is continued to the end of the video sequence. 

7.4 Computer Simulation Results and Considerations 

7.4.1 Input Images and Video Sequence 

At first, we input one template image, after that, target video frames are read 

sequentially. The template images are illustrated in Figure 7.3, which are prepared 

for subjects and situations. The template image size of subject 1 is 20 x 11 pixels, 

subject 2 is 24 x 10 pixels, and subject 3 is 22 x 11 pixels. 

The target video frame examples are presented in Figures 7.4-7.6. These examples 
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are trimmed from a video sequence, which is taken by a digital video camera. Some 

red color objects are included in the background, such as people in a poster, some 

flowers, and bicycles. The subjects repeat pronunciation of the vowels. Moreover, 

on the assumption that the camera moves and joggles by free hand, the shaking of 

scene is caused artificially by hand. Therefore, the lips region has some geometric 

changes. All target video frame size are 240 x 180 pixels. For the simulations, we use 

five seconds video sequence (150 frames) with 30 frames per second. 
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Figure 7.4 Target video frame examples (subject 1): see from top left to bottom right. 
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Figure 7.5 Target video frame examples (subject 2): see from top left to bottom right . 
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Figure 7.6 Target video frame examples (subject 3): see from top left to bottom right. 
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7.4.2 GA Configurations 

Other GA settings are explained in this part. As mentioned in Section 3.3, we 

use the binary genotype. We choose the uniform crossover, because of its many 

advantages [50]. In this system, five parameters must be prepared as follows. 

Table. 7.1 Parameters in the simulation of the proposed system 

Population 
Size 
10 

Crossover 
probability 
0.7 

Mutation 
probability 
0.15 

Scaling window 
size 
1 

Termination 
criterion 
200 

The parameters of the genetic algorithm are: population size is very small 10, 

probability of crossover is 0.7, and probability of mutation is 0.15. Parameters of 

the ignored region of the "square annulus" (refer to Figure 3.1) are set w' /w = 0.8 

and h' /h = 0.5. We use n = 1 in equation (3.14) of the Dynamic Fitness Function 

method. The GA is terminated at 200 generations. We demonstrate the effectiveness 

of the SD-Control method in the next part. 

7.4.3 Results of Simulations and Considerations 

For evaluation of the proposed system, we tried six times simulations for each 

subject with five seconds video sequence with 30 frames per second. 

Figures 7. 7-7.9 shows tracking results of simulations. In these results, the filled 

rectangle region is the detected lips region. The outside rectangular, which includes 

that, represents the final search domain. In Figure 7.8, the thirteenth frame of subject 

2 failed, however the next frame can be repaired by the flexible search domain control 

described in Section 7.3.1. This failure occurs by frame-out of a little bit part of lips 

region. Such a self-repair worked in all simulations. 

We simulated six times for each three subjects by five seconds video sequence (150 

frames). The number of frames are 6 x 150 frames for each subject, and the total 

number of frames is 2,700. In Table 7.2, accuracy and processing time are shown. 

This processing time is the average time to detect and track the lips region and to 

output its geometric change information for five second, without frame input/output 



7.4 Computer Simulation Results and Considerations 109 

=s-

Figure 7.7 Target video frame examples (subject 1): see from top left to bottom right. 
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Figure 7.8 Target video frame examples (subject 2): see from top left to bottom right. 
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Figure 7.9 Target video frame examples (subject 3): see from top left to bottom right. 
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time. We judged success or failure by discriminant equation described in Section 3.3. 

From Table 7.2, it is shown that detection and tracking are carried out with high 

speed and a real-time processing. Furthermore, the detection and tracking accuracy 

is high for each subject. 

Table 7.3 presents numerical results of the first frame of each subject in Figures 7.7-

7.9. The row labelled "manual" is a solution, which is acquired by matching with a 

template image manually, and the row labelled "GAs" is a result of our proposed 

system. In this Table 7.3, tx and ty represent the coordinate, mx and my are the 

scaling rate, and angle is the rotation angle. The manual solution and system's 

are nearly equal. From simulations, it is demonstrated that high speed and high 

accuracy lips region detection and tracking is possible to be done, with acquisition of 

its numerical geometric change information. 

Table. 7.2 Results of simulation ( accuracy and average processing time) 

sub.1 sub.2 sub.3 total 
accuracy [%] 92.00 94.56 96.78 94.44 

average processing time [sec] 4.61 4.44 4.45 4.50 

Table. 7.3 Numerical results (comparison of manual with GAs) 

subject method ix ty mx my angle [deg] 

1 
.manual 136 50 1.642 1.713 -11.0 

GAs 137 49 1.643 1.965 -7.8 

2 
manual 114 159 1.416 1.994 -25.7 

GAs 116 160 1.541 2.467 -29.2 

3 
manual 81 109 1.385 1.360 19.6 

GAs 80 108 1.392 1.455 18.8 

7.5 Conclusion 

In this paper, real-time (30 frames per second) detection and tracking of lips region 

of a talking person in natural scenes were presented. Furthermore we tried to acquire 

the numeric of lips region geometric change information. Our approach is based on 

image template matching with GAs. Moreover, this consists of some novel features 

of lips color and shape deformations, and improvements of GAs. 
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In our simulations, some failures occurred, because of the lips region frame-out. 

However, such things often happen1 in natural scene. From simulation results, it is 

evaluated that our proposed system can continue to chase the lips region even in such 

a case. It is demonstrated that the lips region detection and tracking at high speed 

and with high accuracy is possible, with acquisition of its numerical geometric change 

information. This means that our proposed system can apply to robot perception 

and interface of mobile devices. Because, by using the geometric information, the lips 

region can be normalized as a visual front end of audio-visual speech recognition. Our 

future work is to simulate by more situations and to try these applications. 
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Chapter 8 

Way Ahead ... 

8.1 Formidable Challenge 

Image Understanding systems start by processing images to remove noise and ir

relevant information and to enhance the relevant information, then they analyze the 

image with feature extraction techniques. However, there is few Image Understand

ing systems which are suitable for practical use. The reasons is that it is difficult to 

extract the relevant information to represent the object stably, supporting real-world. 

The object has complex changes by various causes. The complex changes are classified 

by the causes as follow. 

1. changes of the scene by camera motion 

2. changes of appearance by motion of itself 

3. shape deformations of the object 

4. changes of the color information by illumination. 

This dissertation dealt with 1-3. Forth problem illumination is an important but 

formidable problem which is the same as others. The reason is that the color is 

important information for human to detect an object, and for Image Understanding 

too. If the object can be detected with invariance for all illumination condition, 

many applications will be achieved, such as robots in nuclear power stations, robotic 

planetary exploration, video-based security systems, and so on. 
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Chapter 9 

Conclusions 

The purpose of this work is object detection in an active scene. As a part of the 

objectives, we also try to acquire numerical information to represent the object. 

Image Understanding is the process to understand the content of images in order 

to automate visual tasks by computers. The technical challenge of this study is 

to make the computer understand the contents of the images. In other words, the 

most difficult problem is to automatically produce a reasonable description from an 

image. It is clear that the nature of images and descriptions have a big distance. In 

the fields of Artificial Intelligence, Scene Analysis, Image Analysis, Image Processing, 

and Computer Vision, the many researchers work on reducing this distance in the last 

twenty years. However, there is few Image Understanding systems which are suitable 

for practical use. The reasons is that it is difficult to extract the relevant information 

to represent the object stably, supporting real-world. The object has complex changes 

by various causes. A new object detection and information extraction approach, which 

can be applied to these various changes, is necessary for Image Understanding. 

In this dissertation, the object detection and the information extraction system is 

proposed. The object is lips region of a talking person. The camera is free to move 

and independent with the human. 

The first chapter showed the methodology as basis of the proposed system in this 

dissertation, and described the choice of the best fitness function for this system. The 

best fitness function is the Dynamic Fitness Function. The other chapters dealt with 

this Dynamic Fitness Function. 

This system had some problems. The first is this system was unsuitable for practical 
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use. The reasons is that this system deals with two-dimensional changes only. In order 

to support the real-world, we must develop a system to three-dimensional space. This 

development was described in Chapters 4 and 5. 

The second problem is the search speed. GA is a probabilistic search technique 

which is suitable for the exploration of large and complex search spaces. Typically, 

the GA has a trade-off between exploration accuracy and speed. In other words, 

to obtain high accuracy, the size of the population and the number of generations 

must be increased. Therefore, high speed exploration with keeping high accuracy

downsizing of GA is necessary. In Cahpter 6, we proposed the downsized GA with 

the Search Domain Control method. 

The proposed methods which we mentioned above, dealt with a single image. In 

order to achieve real-time video processing and use previous methods efficiently, the 

evolutionary video processing was proposed in Chapter 7. The main techniques of 

this system are the flexible control of search domain and the inheritance of genetic 

information between video frames. The simulation results indicated that high speed 

and high accurate object detection and information extraction was achieved by using 

this method. 

The research result which are mentioned above is very useful in many situations 

where the picture understanding system is necessary, as follows: 

Dangerous situation Tasks which is too dangerous for human. 

Examples are: robots in nuclear power stations, robotic planetary exploration. 

Sensitive situation Tasks which suffer if the human fatigues, and which are prone to 

this problem. 

Examples are: industrial inspection, video-based security systems. 

Economical situation Tasks which require specialized training, resulting in human 

resources that are rare and costly. 

Example are: Medical screening for tumors, intelligence gathering from satellite 

imagery. 

Strict situation Tasks which humans do poorly because visual items need to be mea-



sured accurately. 

Example are: progress of disease, efficacy of medication, growth of cracks in 

weldments, number of specific cells in a microscope slide. 

Humanly impossible situation Tasks which have too much data for effective applica

tion of humans. 

Examples are: counting the potholes in highways, inspection of every bottle in 

a bottling plant, keeping up with intelligence data during wartime. 

The Genetic and Evolutionary Computation (GEO) is the generic name for GA, 

Genetic programming (GP) that is the extension of GA, Evolutionary Strategy (ES), 

and Evolutionary Progra~ing (EP) [22]. Recently, GECs have gained a growing 

popularity and a fairly great number of attempts to use GECs to solve complex 

problems in various application fields [22]. In this work, it is shown that GECs can 

be applied to the complex problem as mentioned above, which is object detection in 

an active scene for Image Understanding. I will pursue in future research about Image 

Understanding technology, such as detection, tracking, and information acquisition of 

not only lips region but also other objects. 
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