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Abstract. Several studies have been attempted to grasp the modal characteris-

tics in machine operation. Derivation of the scaling factor for normalized 

eigenmodes is one of the important issues in operational modal analysis. In this 

study, we propose a procedure with the mass of piezoelectric acceleration 

transducers. Then the vibration testing for the mass change method is per-

formed without using additional masses. We obtain the modal characteristics 

from the acquired acceleration responses by the transducers that is less than all 

measurement points. That is, the measurement is performed multiple times by 

changing the measurement locations. A modified procedure is proposed to cal-

culate the scaling factor for normalized eigenmodes and proper natural frequen-

cies by removing the influence of the mass of the added piezoelectric accel-

erometer. The validity of the proposed method is verified by numerical calcula-

tions and experiments of a rectangular plate. 

Keywords: Operational modal estimation, Normalized eigenmodes, Mass 

change method. 

1 Intoroduction 

Operational modal analysis is employed to extract experimental modal characteris-

tics of a structure.  Then the excitation force is unknown, normalized eigenmodes can 

not be obtained. Derivation of the normalized eigenmodes is one of the important 

issues in operational modal analysis [1]. Therefore, several procedures has been pro-

posed for determining the normalized eigenmodes to overcome the problem [2-5]. 

The procedures give known changes to the structure and detect fluctuation of dynamic 

characteristics. Generally, it is easier to change the dynamic characteristics due to 

additional masses than the change of the rigidity. In practice, changes in dynamic 

characteristics due to additional masses are mainly used. Therefore, the method with 

additional masses is called the mass change method. The mass change method speci-

fies scaling factors to derive normalized eigenmodes. The mass change method has 

been widely applied to civil engineering structures [6]. Contrary, there are not many 

applications to machine structures. In mechanical structures, the influence of the add-

ed mass on the dynamic characteristics is relatively large. Accelerometer mass can 
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also be considered to have an effect on dynamics. Then, a procedure of using an ac-

celerometer as an additional mass is proposed. On the other hand, piezoelectric accel-

erometers are usually used to measure the vibration of structures. The conventional 

mass change method changes the natural frequency by using an additional mass in 

addition to the accelerometer. However, the masses of the accelerometers can be re-

garded as the additional masses. The number of accelerometers used in measurement 

is less than the measurement points. The accelerometers are moved over all measure-

ment points, which detects changes in the natural frequency at each location of the 

accelerometers. Additionally, it is possible to derive correct natural frequencies ex-

cluding the influence of the acceleration masses. 

Numerical calculations and experiments are carried out on an aluminum plates. 

The measurements are carried out by using three accelerometers, and each accelerom-

eter has a mass of 2g. In the experiment, the mass of accelerometer may be considered 

to have little influence on the dynamic characteristics of the plate. Thus, three kinds 

of additional mass of 3g, 8g and 13g are prepared to investigate the effect of addition-

al mass. 

2 Mass change Method 

The original eigenvalue problem without damping can be written as 

𝑀φω2 = 𝐾𝜑                     (1) 

where M and K are the mass and the stiffness matrix, respectively.  φ is a eigenmode 

vector, ω denotes the eigen value.  The conventional mass change method derives the 

normalized eigenmodes by adding the known masses to the original system. Howev-

er, in this study, since it is assumed that the accelerometers already work as additional 

masses, the eigenvalue problem in the first location of accelerometers is described as 

(𝑀 + ∆𝑀1)𝜑1𝜔1
2 = 𝐾𝜑1                 (2) 

where ∆𝑀1 is the mass matrix for the first accelerometer location. Subscript 1 indi-

cates the first accelerometer location. Then, the eigenvalue problem in the second 

location of accelerometers can be rewritten as follows. 

 (𝑀 + ∆𝑀2)𝜑2𝜔2
2 = 𝐾𝜑2.                (3) 

where ∆𝑀2 is the mass matrix for the second accelerometer location. Similarly, the 

accelerometers are moved overall measurement points. In each measurement, we 

provide a reference point in which the accelerometer is placed on a fixed location. 

Thus, the eigenmodes of the whole structure can be estimated. We assume the each 

eigenmode does not change before and after adding masses. The following is written 

with subscripts 1 and 2 for simplicity. 

 𝜑1 ≅ 𝜑2 = 𝜑                    (4) 
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Equation (3) is subtracted from equation (2) using the assumption in equation (4) in 

which the eigenmode is invariant.  

𝑀𝜑(𝜔1
2 − 𝜔2

2) + (∆𝑀1𝜔1
2 − ∆𝑀2𝜔2

2)𝜑 = 0          (5) 

Equation (5) is premultiplied by  𝜑𝑇. 

𝜑𝑇𝑀𝜑(𝜔1
2 − 𝜔2

2) + 𝜑𝑇(∆𝑀1𝜔1
2 − ∆𝑀2𝜔2

2)𝜑 = 0        (6) 

Here, the relationship between unnormalized eigenmodes and the normalized ones 

can be written using scaling factor α as follows. 

𝜓 = 𝛼𝜑                       (7) 

Then M-orthogonality as a constraint is applied  

ψ𝑇𝑀𝜓 = 1                     (8) 

Equation (6) is rewritten as  

(𝜔1
2 −𝜔2

2) + 𝛼2𝜑𝑇(∆𝑀1𝜔1
2 − ∆𝑀2𝜔2

2)𝜑 = 0         (9) 

The scaling factor is estimated by measurement results from the first and the second 

accelerometer locations. 

α = √|
𝜔1
2−𝜔2

2

𝜔2
2𝜑𝑇∆𝑀2𝜑−𝜔1

2𝜑𝑇∆𝑀1𝜑
|             (10) 

Here, the absolute value is taken in the square root so that the scaling factor does not 

become an imaginary number. The scaling factors are calculated for all combinations 

of accelerometer locations and the mean value are derived.  

Next, the natural frequency is estimated without the influence of the accelerometer 

mass. Eigenvalue problems without additional masses for equation (1) is rewritten as 

𝑀𝜑0𝜔0
2 = 𝐾𝜑0                   (11) 

where the subscript 0 denotes no additional mass. From equation (11) and equation 

(2), the natural frequency excluding the influence of the additional mass can be esti-

mated as follows. 

ω0
2 = ω1

2 + α2φT∆𝑀1φω1
2               (12) 

3 Numerical example 

In order to confirm the validity of the proposed procedure, it applied to a finite el-

ement model of an aluminum plate (300mm square, 8mm thickness).  The plate 

shown in Fig.1 is modeled by triangular plate elements. Then the number of elements 

is 450, the boundary conditions of four sides are free. The measurements are carried 

out by using three accelerometers, and each accelerometer has a mass of 2g. Three 
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accelerometers are moved over 12 measurement points. Point 1 as a reference point is 

selected. The eigenmodes can be measured with fewer accelerometers than the num-

ber of measurement points. It is not necessary to mount accelerometers at all meas-

urement points and acquire data simultaneously. We acquire modal characteristics at 

11 measurement points except the reference point by using two accelerometers in this 

procedure. The combination of accelerometers location shown in Table 1 is employed 

in this example. Then six sets of natural frequencies and eigenmodes are obtained and 

the 15 (= 6C2) scaling factors are calculated. Table 2 shows the mean value of scaling 

factors in each mode order. The natural frequencies and eigenmodes before and after 

mass addition were obtained by solving the eigenvalue problem. The M-orthogonality 

of scaled eigenmodes are shownin Table 3. Table 4 shows the natural frequencies 

excluding the influence of the additional masses.  The estimated natural frequencies 

coincide the theoretical ones.   

 
Fig.1 An aluminum square plate model. 

Table 3 M-orthogonality of scaled eigenmodes 

Mode 


1st 2nd 3rd 4th 5th 

 

1st 1.0078 4.47e-14 8.48e-15 -1.39e-15 3.98e-15 

2nd 4.47e-14 1.0006 8.68e-16 -4.34e-16 -2.35e-15 

3rd 8.48e-14 8.68e-16 1.0179 -1.85e-14 9.35e-15 

4th -1.39e-15 -4.34e-16 -1.85e-14 0.98551 2.10e-13 

5th 3.98e-15 -2.35e-15 9.35e-15 2.10e-13 0.93719 

 

Table 4 Natural frequencies of mass change 

method (MCM) and FEM 

Mode 
Natural frequency (Hz) 

MCM FEM 

1st 287.94 287.94 

2nd 416.76 416.76 

3rd 534.33 534.31 

4th 738.33 738.33 

5th 748.41 748.42 

 

Table 1 Combination of Measurement 

position 

 Position of 

accelerometers 

1 ① ② ④ 

2 ① ③ ⑦ 

3 ① ⑥ ⑧ 

4 ① ⑤ ⑩ 

5 ① ⑨ ⑪ 

6 ① ⑨ ⑫ 

 

Table 2 Average scaling factors 

 

Mode Scaling factor 

1st 15.112 

2nd 18.227 

3rd 16.414 

4th 29.865 

5th 29.256 
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Table 7 Natural frequencies without 

additional masses 

 Natural frequencies 

for additional mass [Hz] 

Mode 2g 5g 10g 15g 

1st 296.8 289.5 297.4 294.8 

2nd 431.6 430.3 427.8 428.6 

3rd 544.2 543.3 541.9 544.0 

 

Table 6  Average of scaling factors 

 

 Scaling factors for additional mass 

Mode 2g 5g 10g 15g 

1st 3.678 1.114 1.875 1.890 

2nd 0.748 0.240 0.302 0.372 

3rd 0.879 0.455 0.327 0.758 

 

4 Experiment 

In experiment, the estimation of scaling factors is carried out for an aluminum 

square plate which has same dimension of the simulation model. Four corners of the 

plate are supported by rubber sponge to approximate boundary conditions similar to 

numerical calculations. Three accelerometers (PCB, 352C65) are used here. The ac-

celerometer mass is 2g and the measurement procedure is the same as in the simula-

tion. The combinations of measurement locations also follow Table 1. However, the 

mass of accelerometer may be considered to have little influence on the dynamic 

characteristics of the plate. Thus, three kinds of additional mass of 3g, 8g and 13g 

were prepared to investigate the effect of additional mass. The mass is used attached 

to the accelerometer. After all, the effects for estimation results are considered in four 

types additional mass of 2g (accelerometer mass only), 5g (=2g+3g), 10g (2g+8g) and 

15g (2g+13g). Since it is necessary to give an excitation force in the experiment, an 

excitation force is given by an impulse hammer.  

In this experiment, we excited the plate by an impulse hammer. The excitation 

force signal can not be used because we assume the application in the operational 

state. Since an impulse force includes a broad-band frequency component, the vibra-

tion responses sufficiently describe the dynamic characteristics. In this research, we 

solve the realization problem by the subspace identification method using only the 

output responses and extract the natural frequencies and eigenmodes. In order to con-

(a) Additional mass of 2g 

 MCM 

Mode 1st 2nd 3rd 

F 

E 

M 

1st 1.00572 -0.02422 -0.08750 

2nd 0.00162 0.49249 -0.01168 

3rd 0.00252 0.67195 1.06036 

 

(b) Additional mass of 5g 

 MCM 

Mode 1st 2nd 3rd 

F 

E 

M 

1st 1.01712 0.28221 0.095377 

2nd 0.00134 0.83571 -0.07886 

3rd 0.00486 -0.25498 0.884989 

 

 (c) Additional mass of 10g 

 MCM 

Mode 1st 2nd 3rd 

F 

E 

M 

1st 0.98780 0.01153 -0.00253 

2nd 0.00214 1.13641 0.00190 

3rd 0.00224 -0.0146 0.94560 

 

(d) Additional mass of 15g 

 MCM 

Mode 1st 2nd 3rd 

F 

E 

M 

1st 1.00132 -0.02044 0.00800 

2nd 0.00226 1.04112 0.00432 

3rd 0.00710 -0.05566 0.91573 

 

Table 5  M-orthogonality in XORviaGDOP 
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firm the orthogonality of the normalized modes, we used the norm of orthogonality of 

normalized eigenmodes proposed by Matsumura et al. Table 5 shows the investiga-

tion results of the orthogonality of eigenmodes. The additional mass should be at 

least 5 g for this specimen. It is difficult to estimate accurate scaling factors in exper-

iments due to the influence of measurement noise and so on. Table 6 shows the aver-

age scaling factors for each additional mass. 

The appropriate results for low-order modes were obtained, while inadequate re-

sults were derived for higher-order modes. When comparing the mode shapes ob-

tained by experiments with those of the finite element method, the shapes are similar 

in low-order mode, but the difference is distinct in higher-order modes. Higher-order 

eigenmodes will be affected by the additional mass more than low-order eigenmodes. 

Finally, the natural frequency without the influence of the added mass is shown in 

Table 7 It is difficult to compare the natural frequency results excluding the influence 

of the accelerometer mass accurately. In the future, it is desirable to measure the natu-

ral frequencies by using a non-contact transducer such as a laser Doppler vibrometer. 

5 Conclusion 

We proposed a mass change method that uses accelerometers as the additional 

mass to obtain the scaling factor which is an important parameter estimating normal-

ized eigenmode. Numerical calculations and experiments were carried out on an alu-

minum plates. The adequate estimation results were derived by the simulation. The 

experiment shows that the normalized eigenmodes strongly depends on the accuracy 

of the measured mode shapes. Since the assumption that the shape of eigenmode does 

not change before and after mass addition in not adequate, the change of eigenmode 

after addition of mass will be considered. 
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